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Abstract—We investigate neural circuits in the exacting
setting that (i) the acquisition of a piece of knowledge can
occur from a single interaction, (ii) the result of each such
interaction is a rapidly evaluatable subcircuit, (iii) hundreds
of thousands of such subcircuits can be acquired in sequence
without substantially degrading the earlier ones, and (iv) recall
can be in the form of a rapid evaluation of a composition of
subcircuits that have been so acquired at arbitrary different
earlier times.

We develop a complexity theory, in terms of asymptotically
matching upper and lower bounds, on the capacity of a neural
network for executing, in this setting, the following action,
which we call association: Each action sets up a subcircuit so
that the excitation of a chosen set of neurons A will in future
cause the excitation of another chosen set B.

A succession of experiences, possibly over a lifetime, results
in the realization of a complex set of subcircuits. The com-
posability requirement constrains the model to ensure that, for
each association as realized by a subcircuit, the excitation in the
triggering set of neurons A is quantitatively similar to that in
the triggered set B, and also that the unintended excitation in
the rest of the system is negligible. These requirements ensure
that chains of associations can be triggered

We first analyze what we call the Basic Mechanism, which
uses only direct connections between neurons in the triggering
set A and the target set B. We consider random networks of
n neurons with expected number d of connections to and from
each. We show that in the composable context capacity growth
is limited by d2, a severe limitation if the network is sparse, as
it is in cortex. We go on to study the Expansive Mechanism,
that additionally uses intermediate relay neurons which have
high synaptic weights. For this mechanism we show that the
capacity can grow as dn, to within logarithmic factors. From
these two results it follows that in the composable regime, for
the realistic cortical estimate of d = n

1
2 , superlinear capacity

of order n
3
2 in terms of the neuron numbers can be realized

by the Expansive Mechanism, instead of the linear order n to
which the Basic Mechanism is limited. More generally, for both
mechanisms, we establish matching upper and lower bounds
on capacity in terms of the parameters n, d, and the inverse
maximum synaptic strength k.

The results as stated above assume that in a set of associ-
ations, a target B can be triggered by at most one set A. It
can be shown that the capacities are similar if the number m
of As that can trigger a B is greater than one but small, but
become severely constrained if m exceeds a certain threshold.
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I. INTRODUCTION

It is natural to seek an understanding of the computations
cortex performs by considering what its fundamental capa-
bilities are, and examining these in light of the resources
that are available to it. For this pursuit one needs concrete
formulations of the basic capabilities of cortex, and also a
quantification of its most fundamental resources.

As far as capabilities we shall consider the tasks of mem-
orization and learning. Besides formalizing what each act of
memorization and learning accomplishes in isolation, as one
would in learning theory, it is equally important to take into
account the larger context that the brain is both (a) a self-
contained system and (b) one that has to perform numerous
tasks of multiple kinds. This context is somewhat unique in
terms of computational systems that have been studied in
a learning context. We shall therefore start by spelling out
seven requirements that we regard as critical: (1) One-Shot
Memorization: Some acts of knowledge acquisition require
just one interaction with the outside world. (2) Lifelong
Learning: In a lifetime hundreds of thousands of pieces of
knowledge are acquired, and the functionality of each one
is retained long after the time of its acquisition, and after
much further knowledge has been acquired. (3) Subcircuit
Creation: The acts of learning and memorization result in
subcircuits that can be evaluated rapidly on new inputs, as
in a recognition task, so as to realize the near instantaneous
use of knowledge acquired over a possibly extended period.
Such a subcircuit is not merely a representation of the
knowledge but also an executable algorithm that acts out that
knowledge. (4) Composable Subcircuits: A circuit acquired
for a task should be of the form that its evaluation fits
into a chain of evaluations of circuits learned at various
earlier and later times. Knowledge acquired at disparate
times can be combined on the fly, as needed, to per-
form a complex recognition task almost instantaneously. (5)
Quantitative Plausibility: The basic resource requirements,
of time steps, neuron numbers, connection numbers and
synaptic strengths need to be plausible. (6) Architectural
Plausibility: The algorithms should be executable on a
distributed model that allows connections to have influence



in just one direction, and needs minimal synchronization. (7)
Cognitively Adequate Set of Primitives: A set of primitives
must be supported simultaneously that might be a basis for
implementing the broader functions of cognition. For this
set we have previously advocated a set of four: association,
supervised memorization, inductive learning of threshold
functions, and hierarchical memorization [V94]. The intent
is that these primitives be powerful enough in combination
that a broad array of more complex cognitive functions be
implementable in terms of them, as pursued, for example, in
[PV15]. This paper focuses on the first of these primitives,
association, but within a framework that has been shown to
also support the three others.

The essential resources of cortex we shall capture as three
numerical values: n, the number of neurons, d the number of
connections from and to each neuron, and k, the inverse of
the maximum strength that a connection, realized possibly
as multiple synapses, from one neuron to another may have.
For example, k = 20 means that when synapses are at
their maximum permitted strength, 20 presynaptic neurons
firing are enough to cause a postsynaptic neuron to fire.
Each of these three resources takes up physical volume,
and is therefore precious. A fourth resource is time: all our
mechanisms are essentially optimal in this in requiring just
one or two steps.

The results proved in this paper can be regarded as purely
graph theoretic. They show that for a random directed graph
where each edge has one of two weights, the requirements
(1) - (6) above can be realized, with each learning act
changing an appropriate set of weights, so that the graph
when interpreted as a circuit of threshold elements realizes
the composition of the functionality instances presented over
a period. Humans appear to be able to realize perhaps
hundreds of thousands of such functionality instances over
lifetime. We are not aware of any proposals alternative to the
one discussed in this paper that might account quantitatively
for the scale of this phenomenon.

Of course, the human brain has far larger capacity in the
pure information theoretic sense. But achieving substantial
capacity while realizing the above computational functional-
ities with the architecture of the brain appears problematic.

As far as philosophical backdrop we note that while
generalization is at the heart of the learning phenomenon,
that is not what we study here. For the architecture of the
brain a sharp resource tension arises already for the simpler
task of association when implemented at scale.

II. THE NEUROIDAL MODEL

The neuroidal model is a distributed model of computation
designed to allow algorithms with the above described seven
constraints to be described and analyzed [V94]. In this
model the neurons and connections never change, only
the synaptic strengths of the connections and the various
states, as described below. The model is designed to not

overestimate the capabilities of cortex: there should be little
doubt that the algorithms that the model supports could be
supported in cortex, and in a resource-faithful manner. It is
designed as a framework in which mechanisms of quantita-
tively impressive functionality might be demonstrated to be
supportable. Such a model is useful when, as in this paper,
one can demonstrate mechanisms that are quantitatively
consistent with what is known. Thesemwchanisms then offer
an explanation of how cortex might compute. Currently
there appears to be no alternative proposals that meet these
constraints.

The model is entirely distributed, with each neuron run-
ning its own algorithm. The main features of the model are
that each synapse i has a weight wi, and the total memory
capacity of a neuron includes not only these weights but also
some additional state information that is distributed both at
each synapse as a synapse state si and as an overall neuron
state s. At any instant for any one neuron we denote the sum
of weights wi of all its synapses from presynaptic neurons
that are firing, by w. The algorithms run on the neuron will
update the states s, si and weights wi under the following
constraints: (i) a synaptic weight wi or synaptic state si
update can depend only on the weight wi and state si of the
same synapse, on the sum w, and on the value of the neuron
state s, all at the previous instant, and (ii) the neuron state
s can depend only on w and s at the previous instant. The
model has a weak timing mechanism in which the neurons
can stay synchronized for a few steps.

Regarding biological evidence we note that there appear
to be a remarkable diversity of types among the neurons, and
even among the synapses. From the neuroidal perspective,
these reflect the diversity of algorithms that are implemented
at different neurons.

Cortex is known to support global signaling by a small
number of neuromodulators. However, since the total infor-
mation content of these at any instant is negligible compared
to that of the synapses, it is the distributed mechanisms
realized at the neurons, and modeled by neuroids, that have
to carry the main computational burden.

We note that in all our uses of the model we identify an
item (which may correspond to a real world concept, object
or event) that is being processed, with a set A of neurons that
are active. These sets of neurons, which we call arbsets , are
not better connected to each other than arbitrary sets, and
are in that way unlike Hebb’s assemblies , which are.

III. RELATIONS TO PREVIOUS WORK

There is a large literature on “association” neural net-
works, in various senses of that word [WBLH69, W71,
H82, BW92, GW97, BK98, DA03, KPS06, ELS14]. Our
emphasis on composability points to “hetero-associative”
networks in the style of Willshaw [WBLH69, W71, GW97]
as opposed to “auto-associative” networks. The basic Will-
shaw network, as reformulated for the present context, is as



follows: There is a network consisting of n input nodes and
n output nodes, with directed edges going from the former to
the latter. For randomly chosen sets X1, ..., XC of size R of
input nodes and randomly chosen sets Y1, ..., YC of size r of
output nodes, set up the C associations so that in the future:
whenever all the neurons in one Xi (and no other neurons)
fire then the result will be that all of the corresponding Yi
will fire, but with significant probability none of the other
neurons will.

For computations in the brain we need to model sparse
networks, where the expected number of connections from
and to each neuron is d� n. We are particularly interested
in the case d = n

1
2 , which we regard as illustrative of mam-

malian cortex. If the synapses are binary and there are O(nd)
modifiable synapses, then 2O(nd) different combinations of
weights can be realized. Then it follows that the capacity
C can be at most Õ(nd), where the Õ notation means that
logarithmic factors are suppressed. The reason is that if the
sets X1, ..., XC , Y1, ..., YC are all different and fixed, then
C! different permutations of them need to be realizable. But
C! is less than 2C log2 C = 2Ω̃(C), and hence for this not to
exceed 2O(nd), C can be at most Õ(nd).

We note that the Willshaw formulation is well suited to the
property of composability in one important respect: When
Xi fire, very little outside Yi will fire, so that if Yi were
an input to a second association then chaining can proceed
without substantial extraneous activity developing. To allow
for composability we shall in our formulation make two
modifications: First we allow the Xi, Yi to be subsets of
a common set, rather than from disjoint input and output
sets, so as to permit chaining of associations. Second, we
insist that Xi, Yi are all of the same size, which, as we shall
see, is not where capacity optimizes for Willshaw nets.

We make the following additional observations about how
our results differ from earlier analyses of Willshaw nets.
First, our formulation requires only local knowledge to
determine whether a neuron fires. Some earlier definitions
assume a winner-take-all criterion, where the threshold for
firing is defined in terms of the relative activity levels at all
the neurons. Second, some earlier analyses seek to optimize
the amount of information in the triggered sets of neurons.
In our analysis the number of bits of information contained
in the description of a Yi is not relevant.

Using an informal argument Graham and Willshaw
[GW97, Appendix B] argue that an order of growth of
C = Θ̃(nd) is indeed achievable for their formulation.
However, to achieve it they need that the ratio R

r , where
R is the size of the input sets Xi and r the size of the
output sets Yi, grow as n

d . For the parameters of relevance,
particularly d = n

1
2 , this means that the sizes R, r of the

inputs and outputs are greatly unbalanced. This is at odds
with the need that the circuits be composable, which requires
that r = R, at least approximately, and in which case their
capacity estimate becomes Θ̃(d2). Note that these capacity

estimates of Graham and Willshaw [GW97] are consistent
with our upper and lower bounds for the Basic Mechanism
(Theorems 1 and 2).

With regard to other neural models, we note that for
networks that perform auto-association, that is those that
learn a set of bit-strings and can recover the closest one
given a noisy version [H82], capacity Θ(nd) can indeed be
achieved [DA01]. But this auto-associative functionality has
not been shown to be able to support composable circuits
with a cognitively adequate set of primitives in the sense
discussed here. In a different direction, we note that our relay
nodes differ from conventional “hidden units” in requiring
no updating, and hence evade that objection to biological
plausibility.

IV. RANDOM GRAPHS AND RANDOM SETS OF NEURONS

We consider random directed graphs Gn,d = (V,E) on
n neurons V where the edges E consist of ordered pairs
(x, y) of neurons joined by a directed edge, in each of
the two directions independently with probability d/n. (We
permit self-loops, but do not exploit them.) For a graph G
and sets X1, ..., XC , Y1, ...YC ⊂ V we will seek to realize
associations Xi → Yi for 1 ≤ i ≤ C in the sense of the
section to follow. Each Xi will have R nodes and each Yi r
nodes. We particularly have in mind the composable setting,
where R = r and some of the triggered sets Yj are equal to
some triggering set Xi, so that chains of associations, such
as X1 → Y1 = X2 → Y2 can be realized by a single circuit
evaluation. We think of the Yi as randomly generated first
for i = 1, ..., C. Then each Xi is either randomly generated
independent of everything prior, or is made equal to some
Yj with j < i, but no Yj is equated with more than one Xi.

V. ASSOCIATIONS

For simplicity, and as will be sufficient, we shall consider
here that synaptic strengths can have one of just two possible
values, zero and a high value. We take the latter to be 1

k if
we set the thresholds of all the neurons to be unity, so that
a neuron will fire whenever at least k of its high valued
synapses come from neurons that are firing.

We say that neuron set X directly t-excites neuron y if
the number of high valued edges incoming to y from X is
at least t. We note that if y ∈ X then whenever X all fire
so will y, but we will say that X t-excites y only if such
an influence is realized entirely via edges that leave X and
arrive back at y. In general, Xi and Yi are from a common
set of neurons, so that some Xi may intersect with some Yj
and indeed may be the same.

In the following definitions of capacity probabilities arise
both from the selection of the Xs and Y s, and also from the
selection of the edges E of G. By a mechanism we mean a
neuroidal algorithm. In Sections 6 and 8 we shall describe
particular such mechanisms. For general such mechanisms
we say that neuron set X t-excites neuron y if when all of



X fire, but no others, then y will be directly t-excited by a
set of neurons from which it receives connections.

Definition 1 We say that a mechanism has capacity C for
(k, k′, R, r)-associations for some k′ ≤ k if with respect
to randomly chosen sets X1, ..., XC ⊂ V of size R and
Y1, ..., YC ⊂ V of size r the mechanism achieves that: (A)
for each i and for each y ∈ Yi the probability is more
than 1 − 1

2rC that Xi k-excites y, and (B) for each i the
expectation of the number of neurons y such that y /∈ Yi
and Xi k

′-excites y, is less than 1
2 .

We now define the corresponding notion in the
composable setting where r = R and chaining is possible.

Definition 2 We say that a mechanism has capacity C for
(k, k′, r)-composable-associations for some k′ ≤ k if for
randomly chosen sets Y1, ..., YC ⊂ V of size r, and sets
X1, ..., XC also of size r, each chosen either randomly or
to be equal to some Yi with no two Xs being the same
Yi the mechanism achieves that: (A) for each i and for
each y ∈ Yi the probability is more than 1 − 1

2rC that
Xi k-excites y, and (B) for each i the expectation of the
number of neurons y such that y /∈ Yi and Xi k

′-excites y,
is less than 1

2 .

The intent of (A) is to ensure that there is at least an
even chance that all of the C associations Xi → Yi are
implemented exactly: If there are C choices of i, and, for
each i there are r choices of y, then a maximum 1

2rC
probability of failure for each combination, will, by the
union bound, imply an upper bound of 1

2 on the probability
of any failures among those rC events.

The intent of (B) is to ensure, roughly, that in expectation,
for each Xi the odds are against there being any y /∈ Yi that
is k′-excited by Xi.

We note that the default case is that k′ = k. Smaller k′

is harder to achieve but potentially offers more resilience to
noise. For our lower bound results we choose k′ substantially
less than k, such as k

8 , simply to make the proofs easier.
These definitions assume that in a set of associations, a

target B can be triggered by at most one set A. It can be
shown that the capacities are similar if the number m of As
that can trigger a B is greater than one but small, but become
severely constrained if m exceeds a certain threshold.

VI. THE BASIC MECHANISM

We first explore the capabilities of a particular simple
update algorithm, which we shall call the Basic Mechanism.
We shall later go on to consider the slightly more complex
Expansive Mechanism that builds on it. We shall prove
bounds on the capabilities and limitations of both, with a
view to demonstrating the superior capacity of the latter in
the composable context.

In the Basic Mechanism each neuron has threshold 1,
and initially each synapse has the low value of 0. When an
association Xi → Yi is being learned each neuron y ∈ Yi
goes into a certain state s and all the neurons in Xi are made
to fire. In state s a neuron executes the following update
algorithm: For edges incoming from nonfiring neurons the
weights are left unchanged. For edges incoming from firing
neurons the weight of each is set to 1/k.

The result of an execution of this mechanism at a neuron
y ∈ Yi is the following. If A ⊂ Xi is the set of its
presynaptic neighbors that fire during the execution of this
mechanism and |A| ≥ k, then at subsequent times whenever
all the neurons in Xi fire, so will the target neuron y since
at least k presynaptic neurons will be firing via edges each
with weight 1

k . If |A| < k then all the edges from A to y
will be also set to 1

k , but the subsequent firing of A will not
cause y to fire because the threshold would not have been
reached. Further, only synapses on edges from the Xi to the
Yi neurons will have changed.

This algorithm can be easily implemented in the neuroidal
model. When realizing Xi → Yi both the sets Xi and Yi
will be caused to fire at some point, as a result perhaps of
some input acting through some other subcircuits. This will
force the set Yi to go into the special state s from which it
will execute the described mechanism, while other neurons,
that are not in that state, will not.

The Basic Mechanism may be viewed as the most natural
mechanism for networks in which there are direct connec-
tions from the Xi to the Yi. It is equivalent to that used in
Willshaw nets [W71].

When the Basic Mechanism has been realized for a set
of C associations on graph G = (V,E), we say that the
effectuating edge set is E∗ = E ∩ (

⋃
i{(x, y)|x ∈ Xi, y ∈

Yi}). This is just the set of edges that have been assigned
high values by the mechanism.

VII. RELATIONS AMONG n, d, r, R, k FOR THE BASIC
MECHANISM

We have five positive integer parameters n,R, r, k, d. It is
clear by definition that d ≤ n since d

n is a probability, that of
a connection from one neuron to another. Also, if we have
even a single source item X , represented by R neurons, that
can cause another neuron y to fire that has indegree d (the
average), then for any association to be realized k ≤ R and
k ≤ d, since y requires at least k inputs to come from X .
Also, for nontriviality we assume r,R < n.

We now turn to the capacity C, the number of associations
that can be acquired in succession without the ones acquired
earlier degrading in their effectiveness. A basic estimate of
the resources needed for these operations can be derived
from the observation that there are r neurons in a target item
Y , and each one needs at least k incoming synapses. Hence
each component Xi → Yi of an association corresponds
to at least kr synapses. Now, there is an expected number



of dn synapses in the whole system. Hence a default
estimate is that the capacity of the system is upper bounded
by ν = dn

kr . (This corresponds to the maximum possible
count obtained when the synapses are not shared among
the different components of a set of associations.) We shall
show that for both the Basic Mechanism and the Expansive
Mechanisms this default estimate is indeed a provable upper
bound to a constant factor (Theorems 2(b) and 4(b)). We
shall also show that it can be achieved to constant factors
(Theorems 1(b) and 3(b)) for relevant parameters. Thus,
while the mechanisms do allow synapse sharing, the capacity
they achieve cannot exceed the default estimate.

A further ratio that will emerge from the analysis is the
basic efficacy ηb = kn

Rd . We shall show (Theorem 2(a)) that
the Basic Mechanism imposes the constraint ηb < 1. For
the Expansive Mechanism the same holds for the expansive
efficacy ηe = kn

RDd (Theorem 4(a)).
In [V06], where k was defined as the inverse mean rather

than inverse maximum synaptic strength, it was pointed
out that if for that k, kn

Rd ≥ 1 then the firing of a single
neuron will cause too many others to fire. For the Standard
Mechanism in this paper, for example, this inverse mean will
grow from zero slowly as associations are accumulated, and
the capacity will be exceeded before it gets near the inverse
maximum.

VIII. THE EXPANSIVE MECHANISM

The Expansive Mechanism is like the Basic Mechanism
except that it is realized via an intermediate layer of relay
neurons which aid in the distribution of information without
increasing the degree. The inputs Xi and outputs Yi of the
associations are represented in a basis layer of n neurons.
The basis neurons are connected in a forward direction to a
set of neurons in the relay layer, which, for simplicity, we
also assume to number n. A forward connection between an
arbitrary neuron in the basis layer and an arbitrary neuron in
the relay layer exists with probability D

n , so that the expected
number of connections from a basis neuron or to a relay
neuron is D. The synaptic weight on an incoming edge to a
relay neuron is fixed to be 1. Thus when the R neurons in Xi

fire then a possibly much larger set Ai of up to about RD
relay nodes will be caused to fire, and about this number
will fire if RD � n.

There is a second set of edges directed from the relay
neurons to the basis neurons. The probability of a connection
from a fixed relay neuron to a fixed basis neuron is d/n, so
that the expected number of connections to a basis neuron
or from a relay neuron is d. A random graph with basis and
relay neurons as described and having these parameters, we
call Gn,d,D.

Philosophically, either of the sets Xi or Ai (or both) in
the above discussion can be regarded as “representing” the
item at hand. (Thus if Xi is small and Ai is large then this is
both a sparse and a dense representation!) Having a large Ai

gives the benefit of wider connectivity into the whole system.
However, the only synapses that are modifiable are those
from the relay to the basis layer, which initially have the
value 0. For realizing the association Xi → Yi the Expansive
Mechanism updates the synapses from the set Ai of relays
to the neuron y ∈ Yi in the basis layer exactly as the Basic
Mechanism acts between an input set Xi and the neuron y.

The effectuating set of edges will be defined here as those
edges from the relay to the basis layer that are set high by the
mechanism for the set of C associations at hand. Taking the
view of the default estimate of C as nd

rk or, equivalently,
that synapses are not substantially reusable for different
associations, a smaller r ensures that fewer synapses are
devoted to any one item, and hence larger capacities are
possible.

In the Basic Mechanism the same edges have to realize
both the representation (where small may be good) as well
as the connectivity (where large may be good.) In the Expan-
sive Mechanism these two tasks are in a certain sense split.
Most notably, in order to achieve high capacity the Basic
Mechanism needs |Xi| = R much larger than |Yi| = r. One
can hypothesize that the Expansive Mechanism simulates
such a larger R using |Ai| as proxy. As the analysis in the
proof of Theorem 3 shows, this hypothesis turns out to be
true. But this needs proof since, unlike the Xi, the Ai are
by no means independent of each other for the different i.

IX. RELATIONS AMONG n, d, r, R, k,D FOR THE
EXPANSIVE MECHANISM

As far as our new parameter D it is clear, by definition,
that D ≤ n since D

n is the probability of a connection. As
in the Basic Mechanism the default estimate of the capacity
is again ν = nd

kr , since the weights of the relay neurons
are never changed, and among the basis neurons, about kr
synapses are associated with any one association out of
a total number of dn synapses. However, we now define
the expansive efficacy to be ηe = kn

RDd . We will find in
Theorems 3 and 4 that this quantity plays a similar role as
ηb, and that ηe < 1 holds in this new context also.

X. SUMMARY OF OUR RESULTS

The dependence of the capacity C on all the other pa-
rameters is quite complex. The following summarizes some
of the more relevant dependencies shown by of our results.
Some are proved under certain technical constraints on the
parameters.

We start with the general case where r,R are not neces-
sarily equal, and give a general upper bound (Theorem 2)
on capacity:

(I) For the Basic Mechanism C ≤ d2R
k2r .

In the composable setting, where R = r, it follows that
d2 is an upper bound on capacity, which is linear in n for
the density d = n

1
2 that is of most interest, and falls short

of the information theoretically optimal capacity of Θ(dn).



On the other hand, we show that the optimal capacity dn
is achievable for suitable parameters, but this needs R to be
larger than r (Corollary 1.1):

(II) For every c > 0 there exist λ,K > 0 such that
capacity C = λ dn

(log2 n)2 can be achieved by the Basic
Mechanism with k = K log2 n, r = 3k, R = nr

d and
k′ = ck.
Thus, unless the density d is close to n, this capacity
C = Θ̃(nd) is achieved with disparate R, r sizes, which
is inconsistent with composability.

We go on to show that with the slightly more complex
Expansive Mechanism, optimal capacity C = Θ̃(nd) can
be realized with R = r, as required for composability
(Corollary 3.1 to Theorem 3):

(III) For any constant c > 0, for d = D = n
1
2 , r =

R = 3k, and k = Klog2n for large enough constant K,
capacity C = Θ( n

3
2

(log2 n)2 ) can be achieved by the Expansive
Mechanism.
Here d is still the expected degree of the network, but now
there is an added layer of relay neurons, and all paths from
the Xi to the Yi through which excitation occurs are of
length two and go through relay neurons. Our present result
is a quantitative justification of both (a) the usefulness of
relay node algorithms as introduced in [V94], as well as (b)
the the Strong Synapse Hypothesis [V94, Chap 14.2] that
posits that for tasks such as associations the existence of
some strong synapses are advantageous. It confirms some
previous evidence from simulations [FV09].

Theorem 4 gives a limitation of the following kind:
(IV) The claims of Theorem 3 are optimal to constant

factors for the Expansive Mechanism, within wide ranges of
the parameter values.

One can also consider many-to-one associations, where
the same Y is the target of m distinct Xs. This generaliza-
tion is necessary to reflect the fact that in cognition several
concepts X may need to be associated to the same target
Y . The following is an informal statement of what can be
proved:

(V) For both the Basic and the Expansive Mechanism
the upper bounds stated for m = 1 hold also for moderate
values of m > 1. However, for m > n

R the capacity C drops
precipitously.

All our definitions and results are formulated so as to
make the proofs as transparent as possible. The constant
multipliers provided are mostly only for illustrative purposes
and can be improved. The results have numerous technical
constraints, retained in unoptimized form so that their role
can be easily traced.

XI. SOME COMBINATORIAL INEQUALITIES

We shall use several well-known properties of the bi-
nomial distribution. Let S1, ..., Sm be a sequence of m
independent {0, 1}-valued random variables where, for all
i, Pr[Si = 1] = p. Let S be the sum of the Si, and

let µ = mp be the expectation of S. Let β>(m,µ, α) be
the probability Pr[S > αµ] and let β≥(m,µ, α) be the
probability Pr[S ≥ αµ]. Sometimes it is convenient to use
the threshold τ = αµ (rather than α) as the third parameter,
in which case we denote β>(m,µ, α) by γ>(m,µ, τ) and
β≥(m,µ, α) by γ≥(m,µ, τ).

For bounding such tails of the Binomial distribution
we shall use Chernoff bounds. Some Chernoff bounds
also hold [PS97] when the m random variables are not
independent, but only negatively correlated in the following
senses: The set of {0, 1}-valued random variables with
Pr[Si = 1] = p is negatively upper correlated if for any
subset B ⊂ {1, ...,m} the probability that Si = 1 for all
i ∈ B is at most p|B|. The set is negatively lower correlated
if for any subset B ⊂ {1, ...,m} the probability that Si = 0
for all i ∈ B is at most (1− p)|B|.

Proposition 1 (Chernoff bounds)
(i) for 0 < α ≤ 1, β≥(m,µ, α) ≥ 1− (eα−1/(αα))µ.
(ii) for α ≥ 1, β≥(m,µ, α) ≤ (eα−1/(αα))µ.
(iii) for 0 < α ≤ 1, β>(m,µ, α) > 1− (eα−1/(αα))µ.
(iv) for α ≥ 1, β>(m,µ, α) < (eα−1/(αα))µ.
(v) The bounds (i) and (iii) hold for negatively lower
correlated sets of random variables with the same m, p, α.
The bounds (ii) and (iv) hold for negatively upper correlated
sets of random variables with the same m, p, α.

Proposition 2 For the binomial distribution for m
independent identically distributed events with expectation
µ:
(i) the median is either dµe or bµc, or both if µ is an
integer.
(ii) if m > 2 then Pr[S ≥ dµe] ≤ 3

4 .

We shall also use the following, where part (i) is
Bernoulli’s inequality, and part (ii) follows from the fact
that 1 + x ≤ ex for all real values of x.

Proposition 3 For all 0 ≤ x ≤ 1,
(i) if y ≥ 1 then (1− x)y ≥ 1− xy, and
(ii) if y > 0 and xy ≤ 1 then (1− x)y < 1− 1

2xy.

Proposition 4 Suppose Hi,j for 1 ≤ i ≤ n and 1 ≤ j ≤ m
are {0, 1}-valued random variables such that for each i
the set {Hi,j |1 ≤ j ≤ m} is negatively lower correlated,
and that the only correlations are among variables with
the same i. Then the set {

∧
1≤j≤mHi,j |1 ≤ i ≤ n} is also

negatively lower correlated. The analogous proposition also
holds for negatively upper correlated sets.

Proposition 5(i) For two randomly and independently
chosen sets A,B ⊂ T where |T | = n the
probability that |A ∩ B| ≥ 4 |A||B|n is at most
γ≥(|A|, 2 |A||B|n , 4 |A||B|n ) ≤ ( e4 )

2|A||B|
n .



Proof First we note that if |A| > n
4 then 4 |A||B|n > |B|,

and |A ∩ B| ≤ 4 |A||B|n with certainty. Otherwise, we can
consider a process in which the members of B are fixed
and the members of A are chosen in succession at random,
independent of previous draws. If m members of B have
been found so far among the choices for A and |A| ≤ n

4 ,
then the probability of hitting another member of B is
|B|−m
n−|A| ≤

4|B|
3n . Hence the probability of finding another

element in B is no greater than 2|B|
n each time. Applying

Proposition 1(ii) gives the second bound.

Proposition 5(ii) For two randomly chosen sets
A,B ⊂ T where |T | = n and |B| ≥ 2|A|,
the probability that |A ∩ B| ≥ |A||B|

4n is at least
1− γ≥(|A|, |A||B|2n , |A||B|4n ) > 1− ( 2

e )
|A||B|

4n .
Proof We can consider a process in which the members of
A are chosen in succession with a probability of intersecting
B at least |B|2n each time. To see this note that after m
members of A have been chosen, with m ≤ |A| ≤ |B|

2 ,
there are still |B| − m ≥ |B|

2 candidates left, and and at
most n to choose from. Hence the probability of success is
at least |B|2n at each stage. Applying Proposition 1(i) gives
the second bound.

XII. REALIZING ASSOCIATIONS BY THE BASIC
MECHANISM: POSSIBILITIES

We shall first show that the Basic Mechanism can indeed
achieve substantial capacity. In particular, Corollary 1.1 will
assert that, for certain parameters, capacity C = Θ̃(nd) is
achievable, and Corollary 1.2 that under the composability
constraint r = R, the more limited capacity C = Θ̃(d2)
is achievable. Note that Theorem 2 will show that the
assumption ηb < 1 in Theorem 1 holds unconditionally.

Theorem 1 For all positive integers C > 1, n, d, k,R, r
and k′, where also c = k′

k , ν = nd
kr and ηb = kn

Rd ≤ 1,
if (a) C < 1

2r e
k( 1
ηb
−1)

ηkb and (b) C ≤ ckn3

4erR2d = c
4eη

2
bν

then on random graph Gn,d the Basic Mechanism realizes
(k, k′, R, r)-associations to capacity C, provided that also
(i) ( e4 )

Cr
n < 1

4n and (ii) 2 + log2 n < ck.
Proof (A) We first show that (a) is enough to guarantee
that part (A) of Definition 1, of (k, k′, R, r)-associations, is
satisfied. Consider some i with 1 ≤ i ≤ C and the associated
randomly chosen sets Xi, Yi. Fix i,Xi and Yi, and consider
G as randomly generated from Gn,d. Then for each y ∈
Yi the probability that at least k edges incoming to y are
set to high by the association Xi → Yi is γ≥(R, Rdn , k) =
β≥(R, Rdn ,

kn
Rd ), the probability in R independent Bernoulli

trials (corresponding to the R neurons x ∈ Xi), each with
probability d

n of success (that (x, y) is in G) that there are
at least k successes. To satisfy condition (A) it is sufficient
that β≥(R, Rdn ,

kn
Rd ) ≥ 1− 1

2rC . For this it is sufficient that k

be sufficiently smaller than the expectation Rd/n. Also, for
α = kn

Rd = ηb it is the case that α = ηb < 1 by assumption.
Hence we can apply Proposition 1(i) with µ = Rd/n and
α = kn

Rd to get β≥(R, Rdn ,
kn
Rd ) ≥ 1 − e−µ(e/α)αµ = 1 −

e−
Rd
n ( edRkn )k. Hence for this β≥(R, Rdn ,

kn
Rd ) to be greater

than 1− 1
2rC , it is sufficient that 2rC < eRd/n( edRkn )−k, or

that C < 1
2r e

Rd
n −k( knRd )k.

(B) We now show that part (B) of the definition of
(k, k′, R, r)-associations is also satisfied by the conditions of
this Theorem. Consider G = (V,E) as randomly generated
from Gn,d, and let y ∈ V . Let Iy be the set of neurons
that are connected to y by edges in G, and let Qy be the
associations s, 1 ≤ s ≤ C, such that y ∈ Ys.

Now for any one y there are C choices of s, each having
probability r

n of success, namely of y ∈ Ys. Hence the
probability of more than 2Cr

n successes is γ>(C, Crn ,
2Cr
n ) =

β>(C, Crn , 2), which by Proposition 1(iv) is less than ( e4 )
Cr
n .

Hence by Condition (i), and summing expectations for all
the y, the expected number of neurons y with |Qy| > 2Cr

n
is less than 1

4 .
Consider now that G has been chosen. Fix an i, Yi and

a y /∈ Yi and assume that |Qy| ≤ 2Cr
n . Consider Xi as

randomly generated. The probability for some particular x ∈
V that “x ∈ Xi and (x, y) is in the effectuated set” is px,y ≤
R
n
d
n (1 − (1 − R

n )
2rC
n ), since R

n is the probabilty that x ∈
Xi,

d
n is the probability that (x, y) ∈ E, (1 − (1 − R

n )|Qy|)
is the probability that x ∈ Xs for at least one s ∈ Qy , and
|Qy| ≤ 2rC

n has been assumed. This px,y , by Proposition
3(i), is at most 2CrdR2

n4 . (Note that this Proposition applies
since R

n < 1 and 2rC
n ≥ 1 by virtue of (i).)

Now each of the three multiplicands in the expression
for px,y represents negatively upper correlated events for
any fixed y as x varies. First, the events that x ∈ Xi for
the various x, are negatively upper correlated since for any
S ⊂ V , the probability Prob(

∧
x∈S x ∈ Xi) ≤ (Rn )|S|.

This follows inductively from the fact that Prob(vj ∈
Xi|

∧
l<j vl ∈ Xi) = R−j

n−j ≤
R
n where S = {v1, ..., v|S|}

Second the events that (x, y) ∈ E are independent for the
different x. Finally, the events that x ∈ Xs for at least one
s ∈ Qy can be seen to be negatively upper correlated also
for the different x.

We conclude that, by virtue of Proposition 4, for the fixed
y the events that (x, y) are in the effectuated set for the
different x are negatively upper correlated. In Proposition 4
for the Hij the i correspond to the xs and j ∈ {1, 2, 3}
correspond to the three multiplicands in px,y . Hence by
Proposition 1(v) we can use the same Chernoff bounds as
hold if the events were independent.

Applying Proposition 1(ii), the probability that at least t
of these edges (x, y) have “x ∈ Xi and are in the effectuated
set” is at most γ≥(n, npx,y, t) ≤ γ≥(n, 2CrdR2

n3 , t) ≤
( 2dCerR2

n3t )t provided the condition Z that t ≥ 2dCrR2

n3

holds. Hence, under this condition Z, the probability that Xi



directly t−excites y is upper bounded by py = ( 2dCerR2

n3t )t,
which is at most ( 1

2 )t if C ≤ ckn3

4erR2d and t = ck.
But the needed condition Z is satisfied since putting t =

ck and C ≤ ckn3

4erR2d guarantees that t = ck ≥ 2dCrR2

n3 .
We deduce that the probability py is upper bounded by

( 1
2 )ck. If this is less than 1

4n , as is guaranteed by condition
(ii), then the expected number of neurons y /∈ Yi with
|Qy| ≤ 2Cr

n , that are ck-excited by Xi is less than 1
4 .

Hence we deduce, using the union bound, that the
expected number of y /∈ Yi that are ck-excited by Xi,
whether satisfying |Qy| ≤ 2Cr

n or not, is less than 1
2 as is

required by condition (B).

Corollary 1.1 For every c > 0 there exist λ,K > 0
such that capacity C = λ dn

(log2 n)2 can be achieved with
k = K log2 n, r = 3k, R = nr

d and k′ = ck, provided (i)
( e4 )

Cr
n < 1

4n and (ii) 2 + log2 n < ck.
Proof By substitution into parts (a) and (b) of the Theorem.
Part (a) can be satisfied for any λ by a suitable K, and part
(b) can be satisfied for any c, k for a suitable λ.

Corollary 1.2 For every c > 0 there exist λ,K > 0
such that capacity C = λ( dk )2 can be achieved with
k = K log2 n, R = r = 3kn

d and k′ = ck, provided (i)
( e4 )

Cr
n < 1

4n and (ii) 2 + log2 n < ck.
Proof By substitution into parts (a) and (b) of the Theorem.
As in Corollary 1.1, Part (a) can be satisfied for any λ by
a suitable K, and part (b) can be satisfied for any c, k for
a suitable λ.

Corollary 1.3 Theorem 1 with r = R also holds for
the Basic Mechanism realizing (k, k′, R)-composable-
associations.
Proof The difference between standard and composable
associations is that in the former the Xi are chosen
randomly and independently, while in the latter they may be
equated with a Yj that was chosen randomly earlier. Since
each Yj can be equated with at most one Xi, the latter
in the composable case can be viewed as independently
randomly chosen, for all the purposes of the proof of the
Theorem.

XIII. REALIZING ASSOCIATIONS BY THE BASIC
MECHANISM: LIMITATIONS

The following Theorem gives some upper bounds on the
capacity that can be achieved by the Basic Mechanism, for
the case k′ ≤ k

8 and k ≥ 40. We make two observations:
First, part (a) together with the inequality C < η2

bν from
(b) imply that the capacity is indeed upper bounded by
the default estimate ν = dn

rk . Theorem 1 showed that this
η2
bν is achievable to constant factors. Second, the last

bound ( dk )2(Rr ) implies that for the composability condition

R = r, the capacity is bounded in terms of d and k,
independent (!) of n and R.

Theorem 2 Where ν = nd
kr , ηb = kn

Rd , k ≥ 40, and Cr
n ≥ 10,

for the Basic Mechanism to realize (k, k′, R, r)-associations
to capacity C > 1 on random graph Gn,d it is necessary
(a) for any k′ that ηb < 1, and (b) for k′ ≤ k

8 that C <
n3k
drR2 = η2

bν ≤ n2

Rr ≤ ν ≤ ( dk )2(Rr ).
Proof (A) Consider a single association X1 → Y1. Consider
the X1 and Y1 as already chosen, while the graph G is
randomly generated. For each x ∈ X1 and y ∈ Y1 the
probability that the edge (x, y) will be set high by the Basic
Mechanism is d

n , namely the probability d
n that (x, y) is

present in G. Then the probability p that at least k edges
incoming to y from the neurons X1 are set high by the
mechanism acting for X1 → Y1 is the probability that in R
independent Bernoulli trials (choices of x ∈ Xi) each with
probability d

n of success, that there are at least k successes,
which is p = γ≥(R, Rdn , k) = β≥(R, Rdn ,

kn
Rd ). We show

that ηb < 1 by contradiction. Assume ηb = kn
Rd ≥ 1. Then

the expected number of successes in these Bernoulli trials
will be Rd

n ≤ k. Hence, by Proposition 2(ii) p > 3
4 is not

possible. However, condition (A) requires that this p exceed
1− 1

2rC , which is at least 3
4 if C > 1.

(B) Now consider that the C associations Xi → Yi,
1 ≤ i ≤ C, have been realized with randomly chosen sets
Xi of size R and Yi of size r, and that the effectuating
set E∗ results. For condition (B) we need for every i that
not many edges (x, y) with x ∈ Xi and y /∈ Yi be made
effectuating by the Xs → Ys with s 6= i. For contradiction
we shall assume that C = n3k

drR2 .
For every neuron y ∈ V define Qy to be the set of indices

s, with 1 ≤ s ≤ C, such that y ∈ Ys. It is easily seen, using
Proposition 1(i), that, for any fixed y, |Qy| < Cr

2n (i.e. is less
than a half of the expected size) with probability at most
p1 = 1− β≥(C, Crn ,

1
2 ) ≤ e−Crn (2e)

Cr
2n = ( 2

e )
Cr
2n . Hence, if

Cr
2n ≥ 5 then p1 ≤ 1

4 .
Consider i, Yi, and y /∈ Yi all as fixed, and G, Xi, and all

the other Xs as randomly generated. Assume |Qy| ≥ Cr
2n .

Choose a subset Q′ ⊂ Qy of size exactly Cr
2n . Then for an

x ∈ V the probability that edge (x, y) is set high will be
px,y = R

n
d
n (1 − (1 − R

n )|Qy|) where R
n is the probability

that x ∈ Xi, d
n is the probability that the edge is in E,

and 1 − (1 − R
n )|Qy| ≥ 1 − (1 − R

n )
Cr
2n is the probability

that x ∈ Xs for at least one s ∈ Qy . By Proposition 3(ii),
if RCr

n2 < 2, then this px,y is at least R2dCr
4n4 . But under

the substitution C = n3k
drR2 , RCr

n2 = ηb < 1, (which is
sufficient for RCr

n2 < 2) and the product R
2dCr
4n4 is k

4n . Now,
as in the proof of Theorem 1, the multiplicative components
in the expression for px,y are negatively correlated, now
we have them negatively lower correlated, and hence by
Proposition 4 so are the px,y for the various x for any one
y. (For example, to see that the events x ∈ Xi are negatively



lower correlated we need to show that for any S ⊂ V , the
probability Prob(

∧
x∈S x /∈ Xi) ≤ (n−Rn )|S|. This follows

inductively from the fact that Prob(vj /∈ Xi|
∧
l<j vl /∈

Xi) = n−R−j+1
n−j+1 ≤ n−R

n where S = {v1, ..., v|S|}.)
Hence the probability p2 that there are at least k′ successes

is at least γ≥(n, k4 , k
′) which by Proposition 1(i), is at least

1− ( 2
e )

k
8 if k′ ≤ k

8 . Hence p2 ≥ 3
4 if k

8 ≥ 5.
Hence the probability that for the fixed i and fixed y /∈ Yi

there are at least k8 effectuating edges from Xi to y is more
than (1− p1)× p2 >

1
2 . It follows that the expected number

of y /∈ Yi that have at least k8 effectuating edges from Xi is
greater than 1

2 , contradicting condition (B).
The last three inequalities follow by dividing n3k

drR2 by ηb
once, twice and thrice.

It follows that if r = R then C < d2

k2 . If also d = O(n
1
2 )

then the capacity is upper bounded linearly as O(n) in
terms of the number of nodes.

Corollary 2.1 Under the conditions of Theorem 2 if r = R
then for k′ ≤ k

8 , C < ( dk )2.

Corollary 2.2 Theorem 2 with r = R also holds for
the Basic Mechanism to realize (k, k8 , R)-composable
associations.
Proof Composable associations are a special case of
associations.

XIV. REALIZING ASSOCIATIONS BY THE EXPANSIVE
MECHANISM: POSSIBILITIES

We now go on to consider whether the capacity limitations
given above for the Basic Mechanism can be circumvented
if one adopts the Expansive Mechanism. We will show that
this is indeed the case, with the information theoretic limits
being reachable now even in the composable setting, with
R = r, which they were not for the Basic mechanism.

In the Expansive Mechanism one finds that the relay nodes
impose some intricate probabilistic interdependences among
the quantities to be analyzed. The upper and lower bound
proofs are now more finely balanced, and for ease of analysis
we shall be lax about the actual constants provided, which
are for illustrative purposes and can be improved.

Corollary 3.1 will describe a case of great interest, with
d = D = n

1
2 , r = R = 3k, and k = K log2 n, for large

enough constant K. We note that in this parameter regime
the conditions (i) - (viii) of Theorem 3 are constraints that
can be satisfied for large enough values of n.

Theorem 3 For all positive integers C > 1, n, d,D, k,R, r
and k′ where also c = k′

k , ν = nd
kr and ηe = kn

RdD , if (a)
C < 1

2r e
k( 1

2ηe
−1)(2ηe)

k, and (b) C ≤ ckn3

128rR2dD2 = c
128η

2
eν,

then on random graph Gn,d,D the Expansive Mechanism

realizes (k, k′, R, r)-associations to capacity C, provided
that (i) DR ≤ n, (ii) ηe ≤ 1

2 , (iii) ( e4 )D ≤ 1
10n , (iv)

( e4 )
Cr
n ≤ 1

10n , (v) ( e4 )
ckn
8d ≤ 1

10nC , (vi) ( eD )
2CrR2D

n2 ≤ 1
10nC ,

(vii) ( e4 )
ck
2 ≤ 1

10nC and (viii) 8CrR2 ≤ n2D.
Proof (A) Consider an arbitrary i with 1 ≤ i ≤ C, and
the choice of Xi, Yi as fixed, and G as randomly generated
from Gn,d,D. Consider a y ∈ Yi. Let My be the set of
relay nodes that have connections to y. Let Iy be the set
of basis nodes with edges to members of My . Then the
probability pu that an edge (u, y), where u is a fixed relay
node, gets a high setting by the association Xi → Yi is
the product of the probability that (u, y) is an edge of G,
and the probability that at least one of the nodes x ∈ Xi is
connected to u. In other words pu = d

n (1− (1− D
n )R). This

by Proposition 3(ii) is no less than RDd
2n2 provided RD

n ≤ 1,
a condition guaranteed by (i). Hence, the probability that at
least k edges incoming to y are set high by the association
Xi → Yi is lower bounded by the probability that in n
independent Bernoulli trials (corresponding to the choices of
u) each with probability at least RDd

2n2 of success, that there
are at least k successes, which is at least γ≥(n, RDd2n , k)
= β≥(n, RDd2n , 2kn

RdD ). If ηe ≤ 1
2 , as guaranteed by (ii),

then α = 2kn
RdD ≤ 1 and Proposition 1(i) applies, giving

β≥(n, RDd2n , 2kn
RdD ) ≥ 1 − e

−RdD
2n +k( 2kn

RdD )−k. Hence for
β≥(n, RDd2n , 2kn

RdD ) to exceed 1− 1
2rC , and so realize condi-

tion (A), it is sufficient that 2rC < e
RdD
2n ( eRdD2kn )−k, or that

C < 1
2r e

RdD
2n −k( 2kn

RdD )k.
(B) Let F be the event that the following both hold: every

vertex in the basis layer has outdegree at most 2D, and
for every basis layer vertex y, |{s|y ∈ Ys}| ≤ 2Cr

n . It is
easily seen, exactly as in Theorem 1, that the two parts have
probabilities lower bounded respectively by (a) 1−p1 where
p1 = β>(n,D, 2D) < ( e4 )D, and by (b) 1− p2 where p2 =

β>(C, Crn ,
2Cr
n ) < ( e4 )

Cr
n . Hence if conditions (iii) and (iv)

hold then the union bound can be applied to the p1 and
p2 derived, for each of the n vertices, to obtain that the
probability that F fails to hold is less than 1

5 .
We need that all the C associations Xi → Yi (1 ≤ i ≤ C)

be realized such that the firing of any one Xi should not
cause many spurious firings of ys such that y /∈ Yi. Such
spurious firings are caused when there are many relay nodes
u each connected from a node in Xi and also connected to
y, such that the edge (u, y) is set high by some association
Xs → Ys with s 6= i. A necessary and sufficient condition
for the edge (u, y) to be set high by Xs → Ys for some
s 6= i is that “y ∈ Ys, u is connected from some node v in
Xs, and (u, y) ∈ E”. There will be two cases to distinguish,
according to whether v ∈ Xs ∩Xi or v ∈ Xs −Xi.

Suppose that F holds, and consider a fixed i, Yi, and y /∈
Yi. Let Ui be the set of relay nodes to which there are
connections from Xi, Wi,y be the set to which there is an
edge from some basis layer node v ∈ Xs −Xi for some s
with y ∈ Ys, and Ti,y ⊂ Ui be the set to which there is an



edge from some basis layer node v ∈ Xi ∩Xs for some s
with y ∈ Ys. We shall upper bound the size of the set of
relay nodes Ri,y = (Wi,y ∪ Ti,y) ∩ Ui = Zi,y ∪ Ti,y where
Zi,y = (Ui ∩Wi,y).

We first upper bound |Zi,j |, corresponding to v ∈ Xs−Xi.
Now |Ui| ≤ 2RD since there are R vertices in Xi and, if F
holds, each is connected to at most 2D relay nodes. Also, if
F holds, |Wi,y| ≤ 4DRCr

n , since then there are at most 2Cr
n

choices of s for which y ∈ Ys, and for each such s there
are R members of Xs and each is connected to at most 2D
relay nodes.

We observe that the choice of Wi,y is independent of
the choice of Ui since the former depends on xs outside
of Xi, on the edges of G incident to those xs, and on the
membership of those xs in those other Xss. We need to
upper bound the size |Zi,y| of their intersection (Ui∩Wi,y).

Applying Proposition 5(i) with A = Ui and B = Wi,y

gives the probability that |Zi,y| ≥ 32D2R2Cr
n2 is at most

( e4 )
16D2R2Cr

n2 . Suppose that C = ckn3

128rR2dD2 . Then it follows

that this latter probability ( e4 )
16D2R2Cr

n2 is at most p3 =

( e4 )
ckn
8d and that except with that probability, |Zi,y| < ckn

4d .
We now upper bound |Ti,y|, corresponding to the case

of v ∈ Xi ∩ Xs and show that |Ti,y| ≤ 32D2R2Cr
n2 with a

similar overwhelming probability: If F holds the probability
that for a fixed v ∈ Xi it is the case that v ∈ Xs for at
least one of the at most 2Cr

n values of s such that y ∈ Ys
is at most 1 − (1 − R

n )
2Cr
n which by Proposition 3(i) is at

most 2CrR
n2 , provided 2Cr

n ≥ 1, which is implied by (iv). For
different vs these probabilities are not independent, but they
are negatively upper correlated, as in the proof of Theorem 1.
Hence, by Proposition 1(v) and Proposition 1(ii), the proba-
bility that there are more than 2R2CrD

n2 such vs in Xi is upper
bounded by β≥(R, 2CrR2

n2 , D), which by Proposition 1(ii) is

at most ( eD )
2CrR2D

n2 provided D ≥ 1, which is guaranteed by

assumption. But this p4 = ( eD )
2CrR2D

n2 ≤ 1
10nC if condition

(vi) holds. Hence, since each such v ∈ Xi has degree at
most 2D if F holds, it follows that |Ti,y| ≤ 4D2R2Cr

n2 which
is less than ckn

32d if C ≤ ckn3

128R2rdD2 .
We now combine the analyses of the two cases of v /∈ Xi

and v ∈ Xi to get |Ri,y| ≤ |Zi,y| + |Ti,y| ≤ 9ckn
32d ≤

ckn
2d ,

except with probability p3 + p4. Then the number |ti,y| of
relay nodes from which edges to y will get high values by
the associations s 6= i will be the fraction of Ri,y from which
edges to y exist in G, the probability of any one such edge
being d

n . Hence, |ti,y| will exceed twice the expectation,
namely, ck, with probability at most γ>( ckn2d ,

ck
2 , ck) which

by Proposition 1(iv) is less than p5 = ( e4 )
ck
2 , which is

bounded by (vii).
Now if we make p1 ≤ 1

10n , p2 ≤ 1
10n , p3 ≤ 1

10nC , p4 ≤
1

10nC and p5 ≤ 1
10nC , then by the union bound taken

over y for p1 and p2, and over y and i for p3, p4 and
p5, the probability of any error occurring by any of these

five means is less than 1
2 . This establishes property (B) of

Definition 1.

Corollary 3.1 For any constant c > 0, there exist λ,K
such that for d = D = n

1
2 , r = R = 3k, k = K log2 n,

capacity C = λn
3
2

, (log2 n)2 can be achieved.
Proof By substitution into parts (a) and (b) of the Theorem.
Part (a) can be satisfied for any λ by a suitable K. Part (b)
can be satisfied for any c,K by a suitable λ.

Corollary 3.2 Theorem 3 with r = R also holds for the
Expansive Mechanism realizing (k, k′, R)-composable-
associations.
Proof The argument of Corollary 1.3 holds here also.

XV. REALIZING ASSOCIATIONS BY THE EXPANSIVE
MECHANISM: LIMITATIONS

The simple information theoretic C ≤ Õ(nd) upper
bound from Section III applies to the Expansive Mechanism
just as it does for the Basic Mechanism, since in both
the only modifiable synapses are at the n basis nodes of
expected indegree d. Hence, for the composable case of
interest described in Corollary 3.1, namely d = D = n

1
2 ,

the Expansive Mechanism achieves optimal capacity Θ̃(n
3
2 ).

Here we shall give a lower bound that is stronger than
the information theoretic bound in that it applies to a
broader range of values of d,D. Part (a) shows that for
the expansive efficacy ηe = kn

RdD , ηe < 1 again must hold
without condition. Second, a lower bound is given that
applies to wide ranges of the parameters, subject to some
technical constraints (i) - (viii). Part (b) shows that the
default estimate ν = dn

rk is still an upper bound on the
capacity up to constant factors. Note that Corollary 4.1 will
show that for r = R, there is an upper bound on capacity
independent of n,R and r, but this now depends on the
degrees as d2D, rather than as the d2 upper bound of
Corollary 2.1, or the nd information theoretic bound.

Theorem 4 For all positive integers n > 1, d,D, k,R and r,
where ν = nd

kr and ηe = kn
RdD , for the Expansive Mechanism

to realize (k, k′, R, r)-associations to capacity C ≥ 2 on
random graph Gn,d,D it is necessary (a) for any k′ that
ηe < 1, and (b) for k′ ≤ k

16 , that C < 128n3k
D2drR2 = 128η2

eν ≤
128 n2

DRr ≤ 128ν ≤ 128( dk )2RD
r , provided that (i) ( 2

e )
D
2 ≤

1
12n , (ii) ( 2

e )
Cr
2n ≤ 1

12n , (iii) DR ≤ n, (iv) ( 2
e )

DR
4 ≤ 1

12C , (v)
CrDR ≤ 2n2, (vi) ( 2

e )
CrR
64n ≤ 1

12nC , (vii) ( 2
e )

kn
8d ≤ 1

12nC ,
(viii) ( 2

e )
k
16 ≤ 1

12nC .
Proof (A) Consider the first component X1 → Y1 of
the associations, and consider X1, Y1 as fixed. Consider a
y ∈ Y1. Now consider G as randomly chosen. Then the
probability p that an edge (u, y), where u is a fixed relay
node, gets a high setting is the product of the probability



that (u, y) is an edge of G, and the probability that at least
one of the basis nodes in X1 is connected to u. In other
words p = d

n (1 − (1 − D
n )R). This, by Proposition 3(i)

is no more than RDd
n2 . Hence, the probability that at least

k edges incoming to y are set high by firing X1 is the
probability, in n independent Bernoulli trials (corresponding
to the choices of u) each with probability no more than RDd

n2

of success, that there are at least k successes, which is no
more than γ≥(n, RDdn , k) = β≥(n, RDdn , kn

RdD ). Hence for
this to exceed 1 − 1

2rC ≥
3
4 and so achieve condition (A)

we need, by Proposition 2(ii), that kn
RDd = ηe < 1.

(B) Suppose all the C associations Xs → Ys (1 ≤ s ≤ C)
can be realized such that the firing of Xi does not cause
many spurious firings of ys such that y /∈ Yi. Such spurious
firings are caused when a relay node u connected from a
node in Xi is also connected to a y /∈ Yi, such that the
edge (u, y) is set high by some association Xs → Ys. A
necessary and sufficient condition for the edge (u, y) to be
set high by Xs → Ys is that y ∈ Ys, u is connected from
some node in Xs, and (u, y) ∈ E.

Let F be the event that the following both hold: (a) every
vertex in the basis layer has outdegree at least D

2 , and (b)
for every basis layer vertex y and every s with 1 ≤ s ≤ C,
if Qy is defined as {s|y ∈ Ys} then |Qy| ≥ Cr

2n . Now,
it is easily seen using Proposition 1(i) that the two parts
have probabilities lower bounded by (a) 1− p1 where p1 =
1 − β≥(n,D, D2 ) ≤ ( 2

e )
D
2 , and (b) 1 − p2 where p2 =

1 − β≥(C, Crn ,
Cr
2n ) ≤ ( 2

e )
Cr
2n . Hence if conditions (i) and

(ii) hold then applying these to p1, p2 for all the n values
of y gives that F holds except with probability 1

6 .
Now suppose that F holds, and consider a fixed i, Yi, and

y /∈ Yi. We shall lower bound the size of the set of relay
nodes Zi,y = Ui ∩Wi,y , where Ui is the set of relay nodes
to which there are connections from Xi, and Wi,y is the set
of relay nodes to which there is an edge from some basis
layer node v such that v ∈ Xs for some s with y ∈ Ys.

We first lower bound |Ui|. The probability that relay node
u is not in Ui is the probability that every edge from Xi to
u is missing, which is (1− D

n )R. We apply Proposition 3(ii)
to get (1 − D

n )R < 1 − DR
2n , provided DR

n ≤ 1, which is
guaranteed by assumption (iii). Hence u is present in Ui with
probability at least DR

2n , independently for each u. Hence
|Ui| is less than half the mean, DR4 with probability at most
p3 = 1− γ≥(n, DR2 , DR4 ) ≤ ( 2

e )
DR
4 , by Proposition 1.3.

Now we lower bound |Wi,y|. Let H = {v|v ∈
Xs for some s ∈ Qy, but v ∈ Xi}. Since, |Qy| ≥ Cr

2n ,
the probability that a vertex v /∈ Xi belongs to H is
at least 1 − (1 − R

n )
Cr
2n which by Proposition 3(ii) is at

least CrR
4n2 , provided CrR

2n2 ≤ 1, which follows from (v).
From (ii), Cr

2n ≥ 2. But if also Cr
2n ≤

n
R (from (v)) then

R ≤ n
2 . Hence the probability that |H| ≤ CrR

16n is no
more than 1− γ≥(n2 ,

CrR
8n , CrR16n ) ≤ ( 2

e )
CrR
16n by Proposition

1.3, and, in turn, by (vi), is then upper bounded by 1
12nC .

Now each member of Wi,y arises as one of at least D
2

random choices for each of the at least CrR
16n choices H .

Hence the probability p4 that |Wi,y| < CrRD
64n is at most

1 − γ≥(n, CrRD32n , CrRD64n ) ≤ ( 2
e )

CrRD
64n , which by (vi) is at

most 1
12nC .

It remains to lower bound the size of the intersection
|Zi,y| = |Wi,y ∩Ui|, where |Wi,y| ≥ CrRD

64n and |Ui| ≥ DR
4 .

We apply Proposition 5(ii) with A = Ui and B = Wi,y to
get that the probability that |Zi,y| ≤ D2R2Cr

1024n2 is less than

( 2
e )

D2R2Cr
1024n2 . Then if C ≤ 128kn3

rR2dD2 it follows that this latter

probability ( 2
e )

D2R2Cr
1024n2 is at most p5 = ( 2

e )
kn
8d (which by

(vii) is at most 1
12nC ) and that except with that probability

|Zi,y| ≥ kn
8d .

But if |Zi,y| ≥ kn
8d , then the number |ti,y| of relay nodes

from which edges to y will get high values by the associa-
tions s 6= i will be the number of the Zi,y from which edges
to y exist in G, the probability of any one such edge being
d
n . Hence, |ti,y| will exceed half the expectation, namely,
k
16 , with probability at least β≥(kn8d ,

k
8 ,

k
16 ) ≤ 1 − ( 2

e )
k
16 ,

by Proposition 1(i). Hence, the ys will be k
16 -excited except

with probability at most p6 = ( 2
e )

k
16 .

Now if conditions (i), (ii), (iv), (vi), (vii) and (viii) make
p1, p2 ≤ 1

12n , p3 ≤ 1
12C , and p4, p5, p6 ≤ 1

12nC , so that
by the union bound the probability of any error through
any occurrence of any of these events is at most 1

2 . This
establishes property (B) of Definition 1.

The last three inequalities follow by dividing 128n3k
D2drR2 by

ηe repeatedly and using (a).

Corollary 4.1 Under the conditions (i) - (viii) of Theorem
4, if r = R then for k′ < k

16 the capacity is limited by
C ≤ 128d2D

k2 .
Proof By substituting r = R in the statement of the
Theorem.

Corollary 4.2 Theorem 4 with r = R also holds for
the Expansive Mechanism when realizing (k, k16 , r)-
composable-associations.
Proof Composable associations are a special case of
associations.

XVI. CONCLUSION

Generic concepts of distributed representations, sparse
representations, grandmother cells have all been discussed
extensively in the neuroscience literature. Our approach may
be viewed as providing concrete semantics and quantitative
analysis for these otherwise imprecise notions.

Our assumption that every concept is represented by
the same exact number of neurons was already made in
the Willshaw net literature [WBLH69]. However, in the
current context, where we seek a cognitively adequate set
of primitives that includes hierarchical memorization, this



assumption needs some justification, because the simplest
implementations of the latter do not maintain such a fixed
number of neurons allocated to each concept [V94, G03].
However, this assumption is made reasonable by the more
recent result that simple feedforward networks can indeed
stabilize the numbers allocated [V12]. Without that stability
assumption the analysis becomes more difficult. Note that
the simulation results in [FV09] are incomparable with the
results here in that a broader set of primitives is implemented
there, and no stability enforced.

As a purely speculative note we observe that for the
Expansive Mechanism our asymptotic positive result is quite
delicate, and its advantages over the Basic Mechanism may
occur only for large cortices, such as those of humans.
This may be correlated with the question of whether our
functionality combination (1) - (6) described in the Intro-
duction is something most particular to humans. While these
considerations all motivate the current study, the possibility
that the Basic Mechanism is sufficient to explain human
performance has not been ruled out. If, as we expect,
associations need to be composed to only very limited depth,
requirements laxer than our Definitions 1 and 2 may suffice.

An important empirical question is whether evolution
has discovered the Expansive Mechanism. There are some
experimental indications of the existence of strong synaptic
connections, including in human cortex [MOK+08, DB15,
MRB+16]. However, the question of whether any are used
in a manner similar to our mechanisms remains unresolved.
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