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Abstract
A central goal of Artificial Intelligence is to create sys-
tems that embody commonsense knowledge in a reli-
able enough form that it can be used for reasoning in
novel situations. Knowledge Infusion is an approach to
this problem in which the commonsense knowledge is
acquired by learning. In this paper we report on exper-
iments on a corpus of a half million sentences of natu-
ral language text that test whether commonsense knowl-
edge can be usefully acquired through this approach.
We examine the task of predicting a deleted word from
the remainder of a sentence for some 268 target words.
As baseline we consider how well this task can be per-
formed using learned rules based on the words within
a fixed distance of the target word and their parts of
speech. This captures an approach that has been previ-
ously demonstrated to be highly successful for a variety
of natural language tasks. We then go on to learn from
the corpus rules that embody commonsense knowledge,
additional to the knowledge used in the baseline case.
We show that chaining learned commonsense rules to-
gether leads to measurable improvements in prediction
performance on our task as compared with the baseline.
This is apparently the first experimental demonstration
that commonsense knowledge can be learned from natu-
ral inputs on a massive scale reliably enough that chain-
ing the learned rules is efficacious for reasoning.

Introduction
Knowledge Infusion is a particular approach to the prob-
lem of knowledge acquisition in intelligent systems (Valiant
2006). Its aim is to make systems possible that acquire
knowledge on a large scale by learning, and then use it ro-
bustly for reasoning. The theory offers quantitative guaran-
tees on the accuracy of the reasoning given certain assump-
tions about the learnability of the knowledge and the ade-
quacy of the available data.

In this paper we describe an implementation of this ap-
proach for natural language data, and report on experiments
that show that the approach provides quantifiable benefits.
The experiments are performed on a natural language corpus
of a half million sentences (Graff 1995). We measure per-
formance on a natural language task of the following form:

∗This work was supported by the NSF grant CCF-04-27129.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Given a word A and a sentence B from which the identity
of one target word is hidden, determine whether the hidden
target word is A. We are interested in the power of learned
knowledge about the world, rather than natural language
constructs themselves. For this reason we use information
from an automatic parser, to identify, for example, the sub-
ject and object of a verb, and hence derive an instance where
a certain relation holds in the world. This tagging informa-
tion is then given with the sentence as part of the input dur-
ing both the induction phase and the evaluation phase.

We have chosen performance on a natural language task
as a vehicle for demonstrating the acquisition of real-world
knowledge, both because such data is plentiful, but also be-
cause such tasks have been widely researched, so that there
is some baseline for comparison. In general, surprisingly
good quantitative performance has been found with sim-
ple statistical methods (e.g., n-gram methods (Manning and
Schütze 1999)). Even better performances can be obtained
using learning methods that look at the words (and possibly
their parts of speech) within a fixed distance of the target
word in the sentence or in the syntax tree (Even-Zohar and
Roth 2000). We believe that the success of such syntax-
oriented methods can be largely accounted for by the high
volume of statistical evidence that can be made available to
such algorithms, while keeping the number of features in-
volved in the learning process moderate.

We seek to learn real-world knowledge from the natural
language text. In particular, we wish to learn about all the
concepts, or at least those that occur frequently enough in
the corpus, in terms of all the others. In this setting the num-
ber of examples that corroborate the relationship between
any pair of concepts may be few, and only limited statistical
evidence for any one may be available even in an enormous
corpus. Thus, the engineering problem to overcome is to
design a system in which the performance gain that might
derive from the extra knowledge gathered when compared
with the more syntactic methods mentioned above, is not
completely canceled by the noise introduced by the relative
sparsity of the data that embodies this extra knowledge.

Knowledge Representation
Central to any approach for handling knowledge is the repre-
sentation employed. For real-world knowledge, such as that
encoded in natural language text, a relational representation
is appropriate, naturally accommodating the representation



of entities of interest and relations that hold amongst those.
Beyond expressivity, the chosen representation should be
one that is well suited for the efficient acquisition and manip-
ulation of knowledge, and where these two processes can be
carried out in a principled manner. We adopt in this work the
formalism of Robust Logic (Valiant 2000), which has been
explicitly designed with these goals in mind. We briefly re-
view the main components of this formalism next.

We consider a fixed setR of relationsRi of arities α(i) ≤
α, for some maximum arity α. A scene consists of n generic
token objects T = {t1, . . . , tn}, and a vector that states for
every relation Ri ∈ R, and every one of its nα(i) bindings
over the tokens T , whether Ri holds for that binding. The
input examples to our learning and reasoning systems will
be such scenes.

We define a schema (of relations) Q as a finite set of ex-
pressions composed of a finite conjunction of members ofR
each with some quantification. One such schema is

{R1(w), ∃v : R2(w, v), ∃v : R3(v) ∧R4(w, v),

∃v1∃v2 : R5(w) ∧R6(v1) ∧R7(w, v1, v2)}.

Expressions in a schema contain both quantified variables,
denoted by v’s, and free variables, denoted by w’s. Ex-
pressions in a schema can be thought of as corresponding
to composite features, derived from the primitive features
defined by relations inR.

Given the truth-values of all bindings of all relations inR
as determined by a scene, the scene determines a truth-value
for each binding of the free variables of each expression in
a schema Q. In this context, we view each member of the
schema Q as an independently quantified expression, mean-
ing that for the various expressions inQ and their binding of
free variables, the quantification of the bound variables are
independent. A propositional learning algorithm can then be
applied on the determined boolean vector, and all its prop-
erties, such as sample bounds, attribute-efficiency and re-
silience to errors will be inherited in the relational domain.

The relational learning algorithm thus obtained induces
rules of the form

body(w1, . . . , wα(i)) ≡ Ri(w1, . . . , wα(i)),

where body is some (efficiently evaluatable) function over
those expressions in a schema of relations that have the same
set of free variables w1, . . . , wα(i) as Ri, and all free vari-
ables are assumed to be universally quantified over the entire
rule. In particular, the efficiently evaluatable function class
of which body is a member is that of linear threshold func-
tions. For each binding of these free variables, the resulting
binding of body accurately (in the PAC sense (Valiant 1984))
predicts the value of the corresponding binding of Ri. This
soundness guarantee allows the principled chaining of in-
duced rules for reasoning.

Knowledge Acquisition and Manipulation
A relational rule

body(w1, . . . , wα(i)) ≡ Ri(w1, . . . , wα(i))

is interpreted under the PAC semantics of Robust Logic as
stating that the rule is true for every binding of the free vari-
ables w1, . . . , wα(i). This interpretation dictates how the

rule is to be learned (i.e., how the body of the rule is to be
determined), and how the rule is to be reasoned with (i.e.,
how predictions on the rule’s head are to be made).

Constructing Learning Examples
When learning a rule for a relation Ri, one seeks to identify
an expression, here a threshold function, over the expres-
sions in the schema Q to act as the rule’s body. The actual
learning part is carried out by standard propositional learn-
ing algorithms (CCG-UIUC 2005; Littlestone 1988). We ex-
plain here how the relational scenes and rules can be appro-
priately manipulated by such propositional algorithms.

Every binding Ri(tj1 , . . . , tjα(i)
) of the relation Ri en-

countered to be true or false in a scene is taken to indicate
that the scene provides, respectively, positive or negative ev-
idence on what a rule predicting Ri should look like.

By way of illustration, assume that R contains the rela-
tions human, gathering, hold of arities 1, 1, and 2, respec-
tively, and that Q contains, amongst others, the expressions
human(w1), ∃v1 : hold(v1, w2), and ∃v2 : holds(w3, v2) ∧
gathering(v2). Consider now the relational rule

(∃v2 : holds(w1, v2) ∧ gathering(v2)) ≡ human(w1),

and a scene that determines that the bindings human(t3),
gathering(t4), gathering(t7), holds(t3, t7), holds(t8, t4) of
the relations that appear in the rule are assigned the value
true, while all remaining bindings of these relations are as-
signed the value false. For the binding that maps w1 to t3
and v2 to t7, the scene states that ∃v2 : holds(w1, v2) ∧
gathering(v2) is true and human(w1) is true — this pro-
vides evidence in support of the relational rule. For the bind-
ing that maps w1 to t8 and v2 to t4, the scene states that
∃v2 : holds(w1, v2)∧ gathering(v2) is true and human(w1)
is false — this provides evidence against the relational rule.

Such cases where scenes simultaneously provide evidence
in support and against a relational rule are permissible, and
in fact natural. They could arise, for instance, if the tokens
t3, t4, t7, t8 correspond, respectively, to the entities Alice,
press conference, barbecue party, government; whether this
information is represented in the scene is inconsequential for
our argument. The scene, then, implies that Alice (a human)
is holding a barbecue party (a gathering), which agrees with
the relational rule that each entity that is holding a gathering
is a human. However, the scene also implies that the govern-
ment (not a human) is holding a press conference (a gather-
ing), which disagrees with the relational rule. Both pieces of
evidence are valid, and should be taken into account.

Drawing Conclusions
Learned relational rules are interpreted as equivalences. In-
deed, the approach taken by Knowledge Infusion is that
of inducing all knowledge characterizing a target relation
Ri(w1, . . . , wα(i)) that is implicit in the available training
data. Unlike the case of implicational rules, equivalence
rules support both positive and negative predictions.

The process of making predictions by applying learned
rules on scenes is carried out in the following natural man-
ner. The body body(w1, . . . , wα(i)) of a rule is evaluated
on a given scene. For each of the bindings of the free vari-
ables in the rule for which the body of the rule evaluates to



true/false, the rule predicts that its head Ri(w1, . . . , wα(i))
is also true/false. Clearly, multiple conclusions may be
drawn from a single relational rule so applied to a scene.
It is also possible that a scene does not provide enough in-
formation for the body of a rule to be evaluated for certain
bindings. For those bindings, no prediction is made.

Assume, as above, that we have the relational rule

(∃v2 : holds(w1, v2) ∧ gathering(v2)) ≡ human(w1).

Assume also that a scene determines that the bindings
gathering(t7), holds(t3, t7) are true, that holds(t8, t4) is
false, and that all remaining bindings are unknown. The rule
predicts, then, that human(t3) is true, but makes no predic-
tion on the truth-value of human(t8). Indeed, note that al-
though entity t8 does not hold t4, nothing is known about
whether it holds something else, say t5, that could be a gath-
ering. The scene does not provide enough information to
determine whether t8 is human or not.

Unlike the case of learning, where it is possible to reduce
the relational case to a propositional one, such a reduction is
not apparently possible for reasoning. A reasoner capable of
dealing with variables, bindings, and relations, is necessary.

Related Work
Because of its central role in building intelligent agents, the
acquisition and manipulation of commonsense knowledge
has been investigated in numerous works in the literature.

Previous automated approaches to knowledge acquisition
generally differ form our approach in that the extracted
knowledge is in the form of facts (e.g., the KnowItAll
Project (Etzioni et al. 2005)), as opposed to commonsense
rules that embody some generalization. Non-automated ap-
proaches to knowledge acquisition generally rely on humans
to provide knowledge that is either in some raw form not de-
signed for reasoning (e.g., the Open Mind Initiative (Stork
1999)), or if it is in a computer-readable form (e.g., the Cyc
Project (Lenat 1995)) it is not designed for error tolerance.

Robust Logic is designed to make computationally feasi-
ble both learning and reasoning for an expressive a class as
possible. Inductive Logic Programming (Muggleton 1991)
is an alternative approach to relational learning, which, how-
ever, does not place the same emphasis on algorithmic ef-
ficiency, or on a principled common semantics for learn-
ing and reasoning. Though more expressive within logic,
ILP is restricted to logic, and offers no comparable per-
formance guarantees. Although standard software pack-
ages for ILP have been employed for various natural lan-
guage tasks in the past, these efforts have focused on rather
small corpora comprised of only a few hundred sentences,
due to scalability considerations (Page and Srinivasan 2003;
Specia et al. 2006). By contrast, our experiments are carried
out on corpora that are several orders of magnitude larger,
and beyond the capabilities of such software.

In the particular application of Knowledge Infusion ex-
plored in this work, we seek to identify rules that general-
ize facts encoded in text. Liakata (2004) has studied this
problem in a limited domain with a small set of learned con-
cepts, aiming to establish that natural rules can be extracted.
We are interested in the learning of knowledge on a more

massive scale, and its subsequent application to recover in-
formation implicit in text. Our goal is related to those of
Reading the Web (Mitchell 2005) and Machine Reading (Et-
zioni, Banko, and Cafarella 2006). Yet, the more ambitious
goal of our work is to develop a general system that acquires
and manipulates knowledge in a principled and medium-
independent way.

The extraction of information implicit in text is, to some
extent, related to the task of recognizing textual entailment
(Dagan, Glickman, and Magnini 2005). Unlike our goal of
acquiring knowledge of what holds in some underlying real-
ity, textual entailment seeks to establish whether some state-
ment is implied by another (irrespectively of their objective
truth), and measures success subjectively against a human
gold standard. One approach encodes sentences in a logi-
cal form, and employs a theorem prover to check for logical
implication between them (Bos and Markert 2005). Another
approach produces an abstraction hierarchy of syntactic and
semantic information found in sentences, and seeks to de-
termine whether the second sentence subsumes the first one
(de Salvo Braz et al. 2005). Some of the machine learning
techniques used to produce the abstraction hierarchy are also
employed in our approach (CCG-UIUC 2006). Amongst the
most successful approaches, and the one closest to our ex-
perimental setting, is that of recognizing textual entailment
by employing knowledge induced from a large corpus (Hickl
et al. 2006). The fundamental difference between textual
entailment and our approach is that the former is a classifi-
cation task, that of checking whether one sentence is implied
by another, while ours is a generation task, that of deriving
rules that can be applied to arbitrary situations.

In a different context, some work (Even-Zohar and Roth
2000) has focused more on learning computer-readable rules
that are subsequently applied to disambiguate pairs of words
in previously unseen text. More recent work (Punyakanok
et al. 2005) has also examined how such rules interact
with each other through known domain constraints, and how
taking these constraints into account can enhance perfor-
mance. Knowledge Infusion goes further, in that it considers
how rules interact with each other through chaining: Robust
Logic provides semantics for reasoning by chaining rules
and our experimental results seek to quantify the benefits so
obtained.

Some form of chaining is employed in transformation-
based learning (Brill 1993), although little emphasis has
been placed on its formal analysis. According to this
method, missing information on all features is initially com-
pleted heuristically, and rules are subsequently induced and
applied to correct the initial predictions. Such rules encode
knowledge about the structure of the wrong predictions of
earlier rules, and not knowledge about the underlying real-
ity that one ultimately seeks to discover. The strategy of
forcing all features to obtain definite values fundamentally
differs from our approach of making predictions only when
it is justified for the rules to do so. Despite the success of
this strategy in certain natural language tasks (e.g., part-of-
speech tagging (Brill 1995), text chunking (Ramshaw and
Marcus 1995), spelling correction (Mangu and Brill 1997)),
completing all missing information is unrealistic in the ex-
perimental setting of Knowledge Infusion that we consider.



Because of the large number of features with missing infor-
mation in each scene, making such predictions would incur
huge computational costs.

Stracuzzi (2005) explores the logistics and memory man-
agement issues that arise during learning of multiple con-
cepts. He concludes that rules should be learned in levels,
and one should select carefully which rules to use for en-
hancing information at higher levels.

Scene Construction
Central to Knowledge Infusion is the construction of scenes,
from which knowledge is acquired, and on which the knowl-
edge is evaluated. Text corpora offer a natural and abundant
source for obtaining scenes. The process through which this
is achieved in our system is outlined in this section.

The scenes employed in the experiments reported are
based on text taken from the North American News Text
Corpus (Graff 1995), a series of plaintext newspaper ar-
ticles. Six months worth of articles, comprising approxi-
mately a half million sentences, were employed. Each of the
sentences was tagged by the Semantic Role Labeler (CCG-
UIUC 2006), an automated tagging software. The result
was a set of sentences, with each word tagged by its part
of speech, and each verb associated with fragments of the
sentence that correspond to the verb’s arguments. A partic-
ular resulting sentence is illustrated in Figure 1.

The Collins Head Rules (Collins 1999, Appendix A) were
applied on sentence fragments to identify their head words,
permitting the association of each verb argument with typi-
cally a single word. Roughly, the head word of a sentence
fragment captures the essence of the sentence fragment. Re-
ferring to Figure 1, for instance, the head words of the sen-
tence fragments “the second warrant” and “a search that was
overly broad and therefore illegal” are respectively “war-
rant” and “search”. Using these head words one may then
extract from the entire sentence the information that “war-
rant precipitated search”, which summarizes the sentence.

Entity and Relation Identification
A scene is constructed for each sentence. With each word in
the sentence we associate in the Robust Logic a token. The
seventeen words in the sentence of Figure 1 are, thus, as-
sociated in order of appearance with the tokens t1, . . . , t17.
We consider a sentence as admitting two interpretations, one
where the sentence itself is the reality of interest, and the
other where the sentence simply describes some underlying
scenario of interest. Depending on which of these two re-
alities one considers, the token associated with each word
admits a different interpretation. Consider, for instance, to-
ken t17 that is associated with the word “.”. Under the first
interpretation, then, token t17 corresponds to the entity “.” as
a syntactic element of a sentence; there is no entity under the
second interpretation to which token t17 may meaningfully
correspond. Indeed, this is consistent with the fact that the
dot symbol in a sentence only serves as offering syntactic
information, but not semantic information. Consider, now,
token t2 that is associated with the word “defense”. In ad-
dition to the syntactic entity to which token t2 corresponds
under the first interpretation, one may easily identify a se-
mantic entity to which token t2 corresponds; in the context

of the particular sentence considered, this semantic entity
could be, for instance, a lawyer in some court of law. Again,
this is consistent with the fact that nouns in a sentence offer
both syntactic and semantic information.

A set of relations is extracted from each sentence, along
with specific bindings. Since the size of the scene grows ex-
ponentially with the arity of the relations, here we restrict
the maximum arity α to be 2. Although any constant value
guarantees, in theory, a scene of size polynomial in the num-
ber of tokens, tractability is, in practice, compromised once
arities are increased beyond 2 or 3. Three main categories of
relations are defined.

The first category of relations considered is that of
word/pos instances, which comprises unary relations de-
rived from the word associated with each token, and its cor-
responding part of speech. Since the word “defense” is as-
sociated with token t2, the instance defensewrd(t2) becomes
part of the constructed scene. A second unary relation corre-
sponding to the part of speech of “defense”, also holds on t2;
thus, NNpos(t2) also becomes part of the scene constructed
for this word/pos instance in the given sentence. Such in-
stances offer both syntactic and semantic information.

For each verb in a sentence, we construct a second cate-
gory of relations which can have any arity up to the max-
imum arity α, and which we call verb instances. The ar-
guments of each such relation refer to head words of (some
of) the arguments of the corresponding verb, that may be
its subject, object, manner, actual occurrence of the verb in
the sentence, etc. Consider, for instance, our earlier exam-
ple where the words “warrant” and “search” were identified,
respectively, as the subject and object of the verb “precipi-
tate”, while the word “precipitated” was identified as the ac-
tual occurrence of the verb in the sentence. According to our
approach of assigning tokens, the verb’s three arguments are
associated, respectively, with the tokens t6, t9, and t7. Since
the maximum arity α is 2, the following verb instances are
constructed:

precipitatesbj(t6), precipitateobj(t9),

precipitatevrb(t7), precipitatesbj,obj(t6, t9),

precipitatesbj,vrb(t6, t7), precipitateobj,vrb(t9, t7).

Verb instances offer purely semantic information, as they de-
scribe what holds in an underlying scenario according to the
sentence’s meaning.

Proximity instances, the third category of relations, arise
from words within close distance of a certain other word in
a sentence. For each of the former words and their part of
speech, we construct a unary relation that holds on the latter
word, and is annotated by their relative position, a number in
the interval [−3,+3]. The sentence in Figure 1, for instance,
gives rise to proximity instances that include the following:

thewrd,+2(t2), precipitatewrd,-2(t9), JJpos,-1(t6)

In some sense, then, proximity instances resemble word/pos
instances, but hold on the token associated with a nearby
word. Unlike the other categories of instances, proximity
instances are clearly syntactic. Such relations offer informa-
tion relating to the medium in which information is encoded



Syntactic Information

sentence

(S1 (S (NP (DT The)

(NN defense))

(VP (VBZ contends)

(SBAR (S (NP (DT the)

(JJ second)

(NN warrant))

(VP (VBD precipitated)

(NP (NP (DT a)

(NN search))

(SBAR (WHNP (WDT that))

(S (VP (AUX was)

(ADJP (ADJP (RB overly)

(JJ broad))

(CC and)

(ADJP (RB therefore)

(JJ illegal)))))))))))

(. .)))

Semantic Information

contend precipitate be

(A0 + + +

+ A0) + +

(V + V) + +

(A1 + (A0 + +

+ + +

+ + A0) +

+ (V + V) +

+ (A1 + (A1 +

+ + + A1)

+ + (R-A1 + R-A1)

+ + (V + V)

+ + (A2 +

+ + +

+ + +

+ + +

+ A1) + A1) + A2)

+ + +

Figure 1: The output of automated tagging of the sentence “The defense contends the second warrant precipitated a search that
was overly broad and therefore illegal.”. Syntactic information about the sentence is shown on the left. Semantic information
about the verbs that occur in the sentence, along with the sentence fragments that correspond to each verb’s arguments are
shown on the right. Syntax tags beginning with VB and NN correspond, respectively, to verbs and nouns. The semantic tags V,
A0, and A1 indicate, respectively, the position of the verb in the sentence, the part of the sentence that corresponds to the verb’s
subject, and the part of the sentence that corresponds to the verb’s object.

(i.e., English text), and do not directly offer information on
the underlying scenario described by a sentence. They are,
however, known to be useful in many natural language tasks
(Even-Zohar and Roth 2000; Roth and Yih 2001).

Each identified relation undergoes synonym clustering,
and is replaced in the scene by its primary synonym accord-
ing to its most common WordNet sense (Miller 1995).

Negative Instance Sampling
Knowledge encoded in natural language text is largely about
properties of a domain that are true, and rarely about those
that are false. In view of the need for negative learning in-
stances, one could take the approach of treating all unknown
information as false. For certain tasks, such as disambigua-
tion of a pair of words (Even-Zohar and Roth 2000), this is
appropriate. This approach is not, however, appropriate for
Knowledge Infusion. A practical concern is that the con-
structed negative instances should not outnumber the avail-
able positive ones by several orders of magnitude. A more
philosophical concern is that in Knowledge Infusion when a
rule is applied it should not predict false every time some-
thing is unstated. Instead, we expect the unknown infor-
mation to be completed in a manner that corresponds to the
truth in the underlying domain of interest.

To construct negative instances for the relation Ri1 of ar-
ity m we employ a form of sampling. Whenever a positive
instance of some other relation Ri2(tj1 , . . . , tjm) of arity m
is encountered, a negative instanceRi1(tj1 , . . . , tjm) forRi1
is constructed on the same tokens. The negative instance
is probabilistically constructed according to the frequency
of positive examples of Ri1 compared to that of other re-
lations, in a manner that ensures that positive and negative

instances forRi1 are (on expectation) balanced. Hence, only
few of the unknown instances ofRi1 are treated as false, and
only when some other relation holds on the same tokens. In
the scene derived from the sentence in Figure 1, thus, the
binding precipitatesbj,obj(t9, t13) is, with some probability,
taken to be false, since the binding besbj,obj(t9, t13) is al-
ready known to be true in the scene.

Schemas and Target-Centered Quantification
The experiments reported all use the schema Q described
below. The expressions in Q are based on conjunctions

Ri0(tj1 , . . . , tjα(i0)
) ∧Ri1(tj1) ∧ . . . ∧Riα(i0)

(tjα(i0)
)

of a (unary or non-unary) relation Ri0 with a set of other
unary relations Rik that hold on distinct tokens on which
the former relation holds; call these conjunctions the gener-
ating expressions. Word/pos, verb, and proximity instances
may all appear in a generating expression. With respect to
the set of relations derived from the sentence in Figure 1,
for instance, precipitatesubj,obj(t6, t9) ∧ warrantwrd(t6) ∧

RBpos,+3(t9) and warrantwrd(t6) ∧ precipitatewrd,+1(t6)

are amongst the generating expressions constructed.
Once a generating expression is constructed, all of its

possible existential quantifications are considered, and un-
quantified tokens are replaced with free variables. The set
of all expressions so constructed comprise the schema Q.
Note, however, that only a subset of the quantifications is
actually employed in any particular learning task, the sub-
set depending on the target relation itself. If, for instance,
the target relation is warrantwrd, and the scene assigns a
definite truth-value only to one binding of this relation, say



warrantwrd(t6), then any expression in the schemaQ result-
ing from a generating expression that contains tokens other
than t6, as is the case for ∃v1 : precipitatesubj,obj(v1, t9),
is not eligible to appear in the body of the rule being in-
duced. By contrast, both ∃v2 : precipitatesubj,obj(t6, v2)
and ∃v1∃v2 : precipitatesubj,obj(v1, v2) are eligible.

To avoid explicitly constructing those expressions in Q
not used in a given scene, we employ a target-centered quan-
tification technique, which is applied during the training
phase, and dynamically builds quantifications on a per tar-
get relation basis. For a given binding Ri(tj1 , . . . , tjα(i)

) of
a target relation Ri, and a given generating expression

Ri0(. . . , tjk , . . . , t`1 . . . , t`m) ∧

. . . ∧Rik(tjk) ∧ . . . ∧Ri′1(t`1) ∧ . . . ∧Ri′m(t`m),

we existentially quantify each token t` not amongst the to-
kens on which Ri holds, so that different quantifiers imply
different quantified tokens; this gives the expression

∃v1 . . . ∃vm : Ri0(. . . , tjk , . . . , v1, . . . , vm) ∧

. . . ∧Rik(tjk) ∧ . . . ∧Ri′1(v1) ∧ . . . ∧Ri′m(vm).

The remaining tokens are replaced by distinct free variables,
and the resulting expression becomes part of the dynami-
cally constructed schema Q. Thus, for each fixed bind-
ing of a target relation, a generating expression is uniquely
and efficiently quantified, in a manner that retains as much
of its association with the binding of the target relation as
possible. The resulting quantified expression is allowed to
appear in the body of the rule being induced for the tar-
get relation only if the two share some unquantified token.
This last requirement further reduces the number of expres-
sions in Q, by eliminating expressions that convey no di-
rect information for the given binding of the target relation.
Thus, for the binding warrantwrd(t6) of the target relation
warrantwrd, the expression ∃v2 : precipitatesubj,obj(t6, v2)
is the unique quantification of the generating expression
precipitatesubj,obj(t6, t9) that is eligible to appear in an in-
duced rule for warrantwrd.

Experimental Approach
The main goal of our experimental setting was that of estab-
lishing that commonsense knowledge can be learned from
natural inputs on a massive scale reliably enough that chain-
ing the learned rules is efficacious for reasoning. We discuss
in this section the approach we have taken.

Primitive Rule Operations
The primitive blocks of our experimental approach are three
rule-based tasks: induction, evaluation, and application.

In the rule induction task, one is given as input a target
relation Ri, and a training set T of scenes. The scenes are
sequentially fed to the relational learner implemented within
our system. Relations are translated to appropriate proposi-
tions as described earlier, and a propositional Winnow-based
learner (CCG-UIUC 2005) is invoked to produce a proposi-
tional rule, which is then mapped back to a relational rule
Ki. This relational rule is the output of the induction task.

In the rule evaluation task, one is given as input a rule
Ki with an associated head relation Ri, and a testing set E
of scenes. Each binding of Ri is considered. For some of
these bindings the scenes in E designate a truth-value for
Ri. For each such case, the truth-value is recorded, and then
obscured. The remainder of the scene is given as input to
the rule Ki, and the rule makes a prediction for the obscured
binding of Ri. The prediction is recorded and contrasted
against the actual truth-value that was obscured. The pro-
cess is repeated across all bindings in E. Recall, precision,
and F-measure performance is computed for the rule. These
performance values are the output of the evaluation task.

In the rule application task, one is given as input a set of
rules K, and a set S of scenes. Each triple comprised of a
rule Ki ∈ K, a binding of the rule’s head Ri, and a scene in
S is considered in turn. In case the scene already assigns a
truth-value to the binding of Ri on which a prediction is to
be made, that truth-value is first obscured. The rule is then
applied to the scene and makes a prediction, and the scene
is updated with the prediction of the rule. Rules in K are
applied in parallel in that their predictions are not visible to
each other; only the input scenes are visible to the rules. The
set of all enhanced scenes (after the application of all rules
on all scenes in S) is the output of the application task.

The output of the rule application task can be used as in-
put to another task of rule induction or rule evaluation. This
allows one to investigate the effects of chaining rules, since
the rule that is to be induced or evaluated on the output of the
rule application task has access to the conclusions of previ-
ously applied rules, and is allowed to build on those. In this
rule chaining task, the rules that were applied during the rule
application task comprise the first layer of rules, whereas the
single rule that is induced/evaluated during the rule induc-
tion/evaluation task comprises the second layer of rules.

To avoid any possible leakage of information between the
two layers of rules in this chaining process, we modify the
rule application task as follows: The head Ri0 of the rule
that is involved in the second layer is also given as input to
the rule application task; note that the head is known even
if the rule has not been induced yet. Before the first layer
of rules K is applied to scenes in S to draw conclusions,
any information about Ri0 holding in the scene is obscured.
Thus, rules K do not have access to the truth-value of any
binding of Ri0 , and cannot encode any information about
that truth-value in their predictions.

When enhancing scenes during the rule application task,
several alternatives may be considered. Predictions that are
in conflict with information already given in a scene may be
either retained or discarded. In those cases where a rule’s
prediction is chosen to be added to a scene, we consider
adding the prediction either on the actual target relation, or
on a duplicate new target relation. For instance, the predic-
tion on the binding defensewrd(t2) may be either added in
a scene as is, or as defense∗wrd(t2). The latter approach
introduces additional learning features for the second layer
of rules, but does not affect the distribution of the original
ones. We also investigate the case where only confident rule
predictions are considered for inclusion in a scene.



Confident Rule Predictions

The option of considering only confident rule predictions
amounts, in general, to artificially reducing the complete-
ness of rules in favor of increasing their soundness. We em-
ploy this in the rule application task, but not on any of the
rules involved in a rule evaluation task, whose performance
is reported in our experiments.

To achieve an increase in predictive precision for rules K
in a rule application task, one may first decide which of the
given rules K are to be applied, and which are to remain in-
active. To do so, each rule is assigned an overall confidence
corresponding to our belief in the rule’s predictive sound-
ness; we call this confidence external. This confidence is
based on the rule’s empirically measured predictive sound-
ness, when trained and tested through cross-validation. Note
that all such training and testing is performed on the first
half of the corpus. No access is permitted to the second half
of the corpus, which is reserved for the final evaluation of
our experimental investigation of extracting commonsense
knowledge. Based on the external confidence assigned to
each rule, only rules that exceed some specified external
confidence threshold are chosen to be applied, ensuring that
their positive and negative predictions are highly sound.

A second means of increasing the predictive precision is
to decide which amongst the predictions of a given rule inK
are to be incorporated in a scene, and which are not. Each
rule is assigned a confidence on each of its individual appli-
cations, corresponding to the rule’s own belief that a positive
prediction will be indeed accurate; we call this confidence
internal. Rules with bodies based on linear thresholds, as
the ones we consider here, have a natural internal confidence
indicator: the sum of the weights of the active features in a
given scene, abbreviated henceforth as SWAF. Since a linear
threshold rule makes a positive prediction when its SWAF
is sufficiently large, it is natural to assume that the higher
the rule’s SWAF is, the more confident the rule is on the
accuracy of making a positive prediction. This indicator is,
however, insufficient as it does not meaningfully correspond
to the likelihood that the prediction will be accurate.

We convert SWAFs into such likelihoods by establish-
ing an empirical mapping between the two through cross-
validation. The goal of the mapping is to identify when a
given rule is internally confident with probability p that a
particular positive prediction is accurate. For each applica-
tion of the rule, we record the actual value that the scene de-
termines for the target relation to be predicted, and the rule’s
SWAF. We then adjust the rule to make positive predictions
only when its SWAF is above some value v(p), computed to
be the least value such that when the rule’s SWAF is above
v(p), at least a percentage p of the actual values of the target
attribute were true during cross-validation; these cases cor-
respond to those where the rule correctly predicts that the
value of the target attribute is true. v(p) is the rule’s internal
confidence threshold for achieving precision p.

By standard arguments, it can be shown that the two ap-
proaches discussed above are provably predictive in the PAC
sense, in the exact context in which they are employed — to
identify highly sound rules, and highly precise predictions.

Learning and Reasoning Interplay
Our experimental tasks were designed to evaluate, among
other things, various types of interactions between the learn-
ing and reasoning processes. Interactions differ on whether
rules are applied in parallel or chained, and on whether
chaining happens during the training phase or the testing
phase. The different configurations discussed below con-
sider different ways in which rule induction, rule evaluation,
and rule application interact. Each experimental task takes
as input a training set T0 of scenes, a testing setE0 of scenes,
an enhancement set Renh of relations, and a target relation
Ri0 . In all cases, the output of the experimental task is a
single rule Ki0 for predicting Ri0 , and the performance of
that rule on a testing set of scenes that is determined by each
task.

In a type 00 experimental task, the relations in Renh are
ignored. The rule Ki0 is induced on the training set T0, and
evaluated on the testing set E0.

In a type 01 experimental task, a rule is induced on the
training set T0 for each relation in Renh. The learned rules
Kenh are applied on the testing setE0 to obtain an enhanced
testing set E1. The rule Ki0 is induced on the training set
T0, and evaluated on the enhanced testing set E1.

In a type 10 experimental task, a rule is induced on the
training set T0 for each relation in Renh. The learned rules
Kenh are applied on the training set T0 to obtain an en-
hanced training set T1. The rule Ki0 is induced on the en-
hanced training set T1, and evaluated on the testing set E0.

In a type 11 experimental task, a rule is induced on the
training set T0 for each relation in Renh. The learned rules
Kenh are applied on the training set T0 and on the testing set
E0 to obtain an enhanced training set T1 and an enhanced
testing set E1, respectively. The rule Ki0 is induced on
the enhanced training set T1, and evaluated on the enhanced
testing set E1.

We repeat that the performance of the rule Ki0 is the
only piece of information reported in the experimental tasks.
Rules in Kenh are only employed to enhance the informa-
tion available to Ki0 during its induction and/or evaluation.
Only externally confident rules in Kenh are used during the
enhancement phase, and only their internally confident pre-
dictions are recorded. As discussed earlier, we exclude the
possibility that any information on the relationRi0 leaks into
the predictions of Kenh by obscuring during the enhance-
ment phase all information on expressions involving Ri0 .

Information on certain additional expressions is also ob-
scured whenever any rule in Kenh ∪ {Ki0} makes predic-
tions. Recall that the relations R constructed for a scene
are associated with certain words in some sentence, and that
multiple relations might be associated with the same word.
For instance, the relations contendwrd, contendsbj,obj, and
contendwrd,+2, corresponding, respectively, to a word/pos
instance, a verb instance, and a proximity instance, are all
associated with the word “contend”, despite the fact that the
relations are meant to encode different pieces of information
regarding the syntax and semantics of the sentence. If any
of these three relations is to be predicted through some rule,
then all expressions in the employed schema that involve any
of these relations are obscured.



Syntactic and Semantic Information
Orthogonally to how rules are induced, evaluated, and ap-
plied, we also examine the effect of the type of informa-
tion that is made available to rules. Recall that scenes con-
structed from sentences provide two main types of informa-
tion: syntactic and semantic. These correspond respectively
to information about the sentence itself; and information
about the underlying reality, or meaning, of the sentence.

In our experimental setting we employ the term syntactic
information to mean that part of a scene that only contains
word/pos and proximity instances. We employ the term se-
mantic or commonsense information to mean that part of a
scene that only contains word/pos and verb instances. This
distinction gives rise to three categories of experiments, de-
pending on which type of information is allowed: syntactic,
semantic, or both. Thus, for instance, when inducing, evalu-
ating, or applying rules, we may make only semantic infor-
mation visible to the rules. Such rules capture, then, com-
monsense knowledge, since they encode information that re-
lates semantic pieces of information (about the underlying
reality). Note that the type of information that is visible to a
rule within a given experimental task does not change across
the rule’s induction, evaluation, and application.

In the case of chaining rules, each of the two layers of
rules may face different types of information. It is possible,
for instance, for rules in the first layer to be induced and
applied with access to semantic information only, whereas
the single rule in the second layer is induced and evaluated
with access to both semantic and syntactic information.

Experimental Parameters and Results
We report in this section experimental results that were ob-
tained by applying the methodology described in this paper.

Experimental Parameters
The available part of the North American News Text Cor-
pus (Graff 1995) was split into two equal halves, containing
different sets of articles. The first half was further split and
was used for parameter fitting during the design of the ex-
periments. The entire first half was also used as a training
set for the experiments reported, with the second half being
used as a testing set. Each sentence gave rise to a scene, and
the first and second halves of the corpus were used, respec-
tively, to populate the training set T0 and the testing set E0.
In particular, the two sets were constructed from sentences
coming from different newspaper articles, and in fact, from
newspaper articles coming from different and disjoint three
month time periods, so that any implicit correlation between
the two sets would be avoided. Each of the sets was pro-
cessed as described earlier in this paper.

Various standard learning parameters were determined
empirically. During induction tasks, the training set was se-
quentially fed to the learning algorithm 20 times to allow
the induced rules to stabilize, and avoid any artifacts that
the fixed ordering of the training set might have produced.
Features that occurred rarely in the training set were pruned.

Target relations Ri0 were selected to be word instances
that occurred more than 500 times and less than 10, 000
times in the training set T0. 268 different such targets were

chosen. In all experiments that employed chaining of rules, a
common enhancement setRenh of relations was used, which
was obtained as follows: Rules for all 268 target relations
Ri0 were trained under various sets of learning parameters,
and various scene construction parameters. The verb in-
stances that were part of the learned rules were assembled,
and those occurring in some expression with a weight of
more than 0.05 were selected to populate the enhancement
target set Renh. For efficiency reasons, the size of Renh was
reduced to the hundreds by retaining only the top 30% of the
verb instances ordered according to their weight; this gave
rise to 599 such verb instances. We emphasize that the re-
lations in Renh were selected based not on their occurrence
frequency, but, rather, on their perceived usefulness for rules
that predict at least one of the 268 target relations for at least
one choice of learning parameters. This abductive approach
allowed the size of the rule base Kenh associated with Renh
to remain relatively constrained compared to the simpler ap-
proach of learning rules for all verb instances found in any
of the scenes in the training set T0.

When inducing and applying rules Kenh, only seman-
tic information was made visible and used. These are the
rules in our experimental setting that we consider as the
commonsense knowledge being extracted from the text cor-
pus. Following the experimental tasks that we have already
described, these commonsense rules were used to enhance
scenes with extra predicted information that was not origi-
nally present in the scenes. Only rules in Kenh with exter-
nal confidence 75% were employed to enhance the scenes
T0 and E0; 200 rules satisfied this constraint. Only predic-
tions with internal confidence 99.9% were recorded in the
enhanced scenes T1 and E1. Recorded predictions assumed
new names, and conflicts were not discarded, so as to fa-
cilitate the easier monitoring of the behavior of the system.
Changing either of these choices did not seem to affect the
reported end results.

Experimental Results
The four types 00, 01, 10, 11 of experimental tasks were car-
ried out with input 〈T0, E0, Renh, Ri0〉, for each of the 268
different choices of Ri0 . As anticipated, the performance
on the experimental tasks of type 01 and 10 was on average
significantly lower than the performance on the experimen-
tal tasks of type 00 and 11, because of the mismatch between
the distributions for training and testing of the rule Ki0 pre-
dicting the target relationRi0 . The performance on the latter
two experimental tasks is illustrated in detail in Figure 2.

For any fixed target relation Ri0 (corresponding to a point
on the x-axis in Figure 2), our experimental setting resem-
bles the following scenario: An agent is presented with a
training set of sentences, tagged with part of speech infor-
mation, and with the each sentence’s verbs (and their argu-
ments) identified, and is allowed to induce a rule Ki0 for
predicting whether the word associated with the target rela-
tionRi0 is present in each sentence. Subsequently, the agent
is presented with a new sentence from some testing set of
sentences, tagged as before, but with some word obscured.
The agent is asked to determine whether the obscured word
is equal to the word associated with the target relation Ri0 ;
always replying “yes” (or “no”) guarantees a 50% accuracy.



individual statistics accuracy recall precision F-measure

mean for case (A) ♦ 66.17% 61.03% 72.67% 61.17%
mean for case (B) ¨ 74.46% 66.24% 79.78% 71.98%
mean for case (C) × 78.01% 71.65% 82.32% 76.18%
mean for case (D) ¤ 78.65% 71.67% 83.79% 76.87%
mean for case (E) ¥ 80.24% 74.57% 84.32% 78.95%
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statistics on (B)−(A) accuracy recall precision F-measure
mean (of all values) 8.29% 5.20% 7.11% 10.81%

trimmed mean (80%) 7.93% 4.37% 6.99% 8.62%
median (of all values) 7.46% 3.44% 7.30% 6.03%

average deviation 4.97% 21.81% 9.97% 12.30%
standard deviation 6.21% 26.11% 11.50% 15.96%

99% confidence interval [7.31%, 9.26%] [1.10%, 9.31%] [5.30%, 8.91%] [8.30%, 13.32%]
t-test on (A) and (B) 0.00000 0.00325 0.00000 0.00000

Sevl targets benefited 248 (92.5%) 143 (53.4%) 180 (67.2%) 204 (76.1%)

statistics on (D)−(C) accuracy recall precision F-measure
mean (of all values) 0.64% 0.02% 1.47% 0.69%

trimmed mean (80%) 0.78% 0.23% 1.35% 0.75%
median (of all values) 0.78% 0.53% 1.11% 0.81%

average deviation 1.18% 3.88% 2.48% 1.73%
standard deviation 2.02% 5.61% 3.31% 2.55%

99% confidence interval [0.32%, 0.96%] [−0.86%, 0.90%] [0.95%, 1.99%] [0.29%, 1.09%]
t-test on (C) and (D) 0.24873 0.98355 0.00770 0.29872

Sevl targets benefited 200 (74.6%) 148 (55.2%) 185 (69.0%) 184 (68.7%)

statistics on (E)−(D) accuracy recall precision F-measure
mean (of all values) 1.58% 2.90% 0.53% 2.08%

trimmed mean (80%) 1.35% 2.89% 0.20% 1.78%
median (of all values) 1.19% 2.39% −0.04% 1.46%

average deviation 1.82% 4.52% 2.69% 2.58%
standard deviation 2.41% 6.30% 3.61% 3.51%

99% confidence interval [1.20%, 1.96%] [1.91%, 3.89%] [−0.04%, 1.10%] [1.53%, 2.63%]
t-test on (D) and (E) 0.00297 0.00076 0.26608 0.00082

Sevl targets benefited 195 (72.8%) 200 (74.6%) 131 (48.9%) 200 (74.6%)

Figure 2: Empirical results for 268 sets of experiments. Each set of experiments involves inducing and evaluating a rule Ki0

for a given target relation Ri0 . Within each set of experiments, five performance points are reported, depending on the type
of information that is available during the induction and evaluation of Ki0 : (A) only semantic information is visible to Ki0 ;
(B) as in (A), but training and testing scenes are enhanced through commonsense rules Kenh; (C) only syntactic information is
visible to Ki0 ; (D) both syntactic and semantic information is visible to Ki0 ; and (E) as in (D), but training and testing scenes
are enhanced through commonsense rules Kenh. The top left table shows the average performance for (A) through (E) across
the 268 choices of Ri0 . The graph plots the F-measure performance (on the y-axis) for each of the 268 choices of Ri0 (on the
x-axis); the curves show polynomials of degree six that minimize the squared-distance error from the corresponding data points.
Statistics on the differences between three pairs of cases are shown on the right. Rows labelled “99% confidence interval” show
intervals for the true mean of the difference assuming target relations Ri0 are uniformly drawn. Rows labelled “t-test on X
and Y ” show the probability of the empirical means of X and Y being this far apart under the null hypothesis that they come
from the same distribution. The difference (B)−(A) shows the benefit of chaining when only semantic information is visible to
Ki0 . The difference (D)−(C) suggests that cases (C) and (D) have comparable performance. The difference (E)−(D) shows
the benefit of chaining when both syntactic and semantic information is visible to Ki0 . The 268 choices of Ri0 are sorted (on
the x-axis) in the graph in order of increasing (E)−(D) difference.

Alternatively, and conceptually closer to our treatment of
missing information, one may view the task as that of pre-
dicting whether a certain entity in the underlying scenario
described by the sentence has a certain property, namely the
property that corresponds to the target relation Ri0 .

In the experimental tasks of type 00 the agent attempts to
reach a decision by applying the rule Ki0 that it has previ-
ously induced. Different cases are examined when the rule
Ki0 is induced and evaluated, by allowing the rule access to
only semantic (case (A)), only syntactic (case (C)), or both
(case (D)) types of information in the sentence. In the exper-
imental tasks of type 11 (cases (B) and (E)), the agent again
attempts to reach a decision through the induction and appli-
cation of the rule Ki0 , but it is first allowed to enhance the
sentences by drawing conclusions through a set of common-
sense rules Kenh. All commonsense rules Kenh are applied
both before inducingKi0 and before applyingKi0 . Of inter-
est in our experimental setting is examining whether the ap-
plication of these commonsense rules enhances the agent’s
ability to make correct predictions in the described scenario.

The experimental results indicate that enhancing scenes
with commonsense conclusions is useful overall, leading to
performance increases that are robust across various choices

ofRi0 . We note, in particular, that (D) and (E) refer to exper-
iments in which exactly the same information (namely, both
syntactic and semantic) is visible to the rule Ki0 . They only
differ in that an extra layer of rule application is allowed in
(E). Hence, we can deduce that in this instance reasoning
with commonsense knowledge leads to an increase in per-
formance. The purpose of (C) is to offer a baseline for com-
parison. It shows that a state-of-the-art technique (where
only syntactic information is visible to the rule Ki0 ) gives
similar performance to (D), and hence that the improvement
shown for (E) over (D) is meaningful in the context of high
performing systems. In other words, it is this improvement
of (E) over (D) that we offer as evidence for usefulness of
the rules extracted and hence the success of Knowledge In-
fusion. Note that with respect to F-measure, (E) improves
performance in 200 of the 268 experiments, the average im-
provement over all experiments is 2.08%, and the 99% con-
fidence interval for this mean is [1.53%, 2.63%].

Cases (A) and (B), included for illustrative purposes, show
an analogous improvement obtained from reasoning with
commonsense knowledge, when only semantic information
is visible to the rule Ki0 .

For completeness we present part of a rule induced in the



second layer of a type 11 experimental task for predicting
pricewrd(w). Associated with each feature (i.e., member of
Q) is its weight in the induced linear threshold, which has a
threshold value of 1.

∃v1 : lower∗sbj,obj(w, v1) ∧ demand(v1) (0.514704)

∃v2 : lower∗sbj,obj(v2, w) ∧ bargain(v2) (1.088027)

∃v3 : lower∗sbj,obj(v3, w) ∧ competition(v3) (0.985423)

This rule snippet shows that price lowers demand, and
is lowered by bargain and competition. Note that the rule
would likely predict pricewrd(w) on the basis of the truth
of either of the last two features, but would need additional
corroboration for the first one. Note also that in this ex-
ample the verb instance lower∗sbj,obj is not present in the
original scenes, but is added to the enhanced scenes during
the application of the commonsense rules in Kenh. The rule
presented above is able to exploit this predicted feature.

Evaluation
Although certain individual components of our experimen-
tal approach might have been used in previous studies, this
is apparently the first demonstration of an actual system ca-
pable of extracting real-world knowledge in an automated
manner and on such a massive scale as reported here.

Our NLP task is designed to test the hypothesis that com-
monsense knowledge has been learned, and is different from
and not strictly comparable to previous NLP experiments.
We learn one prediction rule for each target word to encap-
sulate the commonsense knowledge about it. The traditional
NLP task most relevant to our setting is Word Sense Disam-
biguation (Agirre and Edmonds 2006), where rules predict
which among a pair of words is missing. That is an easier
task. One could in principle reproduce such results on our
scale by considering the 267 · 268 = 71556 possible pairs
of words. Our techniques may offer similar increases in per-
formance in such experiments, but we would consider that a
weaker demonstration of commonsense knowledge acquisi-
tion, even if it could be done with moderate computational
cost.

We wish to emphasize that the system’s design and im-
plementation has been an engineering challenge that span
several years. The system was built to handle noise and
ambiguities in natural language text, and parsing errors that
resulted from the use of NLP tools. The corpus that was
employed was not specially prepared to identify sentences
with useful information. Instead, for each target the rule
was induced from about one thousand sentences found au-
tomatically among the half million sentences in the corpus.
The design and implementation of the system were carried
out with scalability in mind, often employing tailored algo-
rithms and advanced data structures, heavy use of memoiza-
tion, and explicit compression techniques for storing infor-
mation in memory. On several occasions, the requirement
for scalability necessitated that data be handled in a manner
known to introduce additional noise, dealing with which was
delegated to a noise-resilient learning algorithm.

The reasoning engine comprised the main bottleneck, and
necessitated its implementation anew, despite also support-

ing the invocation of a Prolog engine. The reasoning engine
tests hundreds of relational rules, for each of hundreds of
groundings of their variables, and parses thousands of fea-
tures in each rule’s body to determine what conclusions to
draw, repeating this on each of a half million scenes, and
dealing with millions of distinct features overall. Such a
massive scale reasoning task is far beyond the capabilities of
Prolog engines in terms of memory and time usage. Induc-
tive Logic Programming software, such as Aleph (Srinivasan
2004), is also excluded from consideration, since the ILP
learning techniques involve exponential-time algorithms.

Significant effort was also put in the logistics of storing
data shared across different experiments or corresponding
to the system’s final output. The reported experiments re-
quired tens of gigabytes of storage space for storing scenes,
identified features, propositional examples, induced rules in
propositional and relational forms, enhanced scenes, perfor-
mance results for several metrics for each rule, and so on.

In closing, we note that the system supports numerous pa-
rameters not fully explored in the reported experiments. Pa-
rameterization is with respect to both the front-end compo-
nent dealing with natural language text related processing,
and the back-end medium-independent engines for learning
and reasoning. The back-end component of the system of-
fers a general tool for Knowledge Infusion, which can be
employed in other experimental settings in place of existing
general-purpose learning and reasoning software.

Conclusions

The development of automatic knowledge acquisition mech-
anisms for commonsense knowledge is clearly a worthy
goal. A basic question addressed in this paper is a method-
ological one: how should progress in that pursuit be mea-
sured? The experimental design described in this paper of-
fers one approach to this problem, and the experimental re-
sults successfully demonstrate the feasibility of the proposed
approach on a massive scale real-world task.

The main conclusion that the experiments point to is that
the chaining of learned rules, some of which express com-
monsense knowledge, results in increased performance for
the prediction task we have described. We emphasize that
every aspect of our experiment is designed to be scalable, so
that similar experiments should be possible for larger data
sets and more target words.

There are several promising avenues towards attempting
to obtain larger performance improvements than we have re-
ported here. Besides the obvious, larger corpora, more com-
putational power and more elaborate algorithmic engineer-
ing, the following modifications may also lead to significant
improvements: Coreference resolution may be incorporated.
Scenes may be constructed from multiple sentences, rather
than from a single sentence (which is particularly restrictive
since when we obscure information related to the target in
the scene enhancement stage, we are removing a significant
fraction of the information). Learning algorithms other than
the Winnow-based system we used can be tried, as may also
other ways of producing negative examples, more expressive
schemas, and more layers of reasoning.
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