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Abstract 
We show how a general quantitative theory of neural computation can 
be used to explain two recent experimental findings in neuroscience. 
The first of these findings is that in human medial temporal lobe there 
exist neurons that correspond to identifiable concepts, such as a 
particular actress. Further, even when such concepts are preselected by 
the experimenter, such neurons can be found with paradoxical ease, 
after examining relatively few neurons. We offer a quantitative 
computational explanation of this phenomenon, where apparently none 
existed before. Second, for the locust olfactory system estimates of the 
four parameters of neuron numbers, synapse numbers, synapse 
strengths, and the numbers of neurons that represent an odor are now 
available. We show here that these numbers are related as predicted by 
the general theory.  More generally, we identify two useful regimes for 
neural computation with distinct ranges of these quantitative 
parameters. 
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1. Introduction 
 
A central problem of neuroscience is to provide explicit mechanistic 
explanations for the basic tasks of cognition such as memorization and 
association. The methodology of computer science suggests that a solution 
to this problem would consist of three parts: a concrete model of neural 
computation, explicit specifications of the cognitive tasks that are to be 
realized, and explicit algorithms that can be demonstrably executed on this 
model to realize the tasks. Also, one expects that the outcome will include a 
coherent class of scalable algorithms that demonstrably work for large 
ranges of such resource parameters as the number of neurons.  
 
A theoretical investigation using this methodology can be expected to 
uncover how the brain actually works if the brain is computationally so 
constrained that there are few solutions consistent with those constraints. We 
take this observation as our methodology. 
 
It appears that the brain is indeed highly constrained in how a neuron can 
have a purposeful effect on an arbitrary other neuron: In a system of n 
neurons each one typically receives inputs from a much smaller number d of 
other neurons. For example estimates of n = 1.6*107 and d = 7800 have been 
given for the mouse (Braitenberg and Schuz, 1998) and of n = 1010   and d = 
2.4*104 - 8*104 for humans (Abeles, 1991). Also, it is believed that even 
when a neuron does receive an input directly from another, the mean 
strength of such an influence is weak. A recent estimate for rat visual cortex 
(Song et al., 2005) gave the mean value for the excitatory postsynaptic 
potential (EPSP) of a synapse to be .77mV. This compares with a typical 
estimate of the threshold voltage of 20mV, and implies a rough estimate of k 
= 26 for the mean number of presynaptic neurons that are needed to cause a 
postsynaptic action potential. An earlier estimate (Abeles, 1991) of the 
general range of k was 5 – 300. A further constraint is that the brain can 
perform significant tasks in 100-200 milliseconds, which allows perhaps 
only 10-20 and certainly fewer than 100 basic steps (Feldman and Ballard, 
1982).  Basic algorithms need to work in very few steps. 
 
The model of computation used in this paper is characterized by the above 
defined three parameters (n, d, k), by the requirement that basic algorithms 
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run in a handful of steps, and by the restriction that the computational 
transitions of a neuron be simple enough that there is little doubt that actual 
neurons, in all their complexity, are capable of performing them. Graph 
models based on n and d have been considered widely before (Griffith, 
1963; Braitenberg, 1978; Feldman, 1982; Palm, 1982) and sometimes in 
conjunction with the third physical parameter of synaptic strength (Griffith, 
1963; Abeles, 1991). In general, we seek detailed quantitative explanations 
of how networks with given parameters can support algorithms that can 
perform sequences of intended actions as required, without unintended 
interference among these actions. Also, unlike previous authors, we use a 
hierarchical notion of memory allocation, which would appear to be more 
useful for building up complex data structures that reflect the complexities 
of knowledge, rather than being merely sufficient to support data lookup. 
The specific model and theory we use appears in (Valiant, 2005), where it is 
discussed more fully. For completeness we restate here the most relevant 
aspects of the theory before we move on to discuss the particular 
experimental findings (Quian Quiroga, et al., 2005; Jortner, Farivar, and 
Laurent 2006) that we seek to explain.  
 
We emphasize that our assumptions are extremely mild. In particular there is 
no assumption about the nature of the firing mechanisms, which may be 
governed by various nonlinearities. The assumption that some value of k 
exists asserts merely that some minimum total presynaptic activity is 
required to cause an action potential in a neuron. 

 
   2. Representation 
 
Before we discuss tasks we need to take a specific position on the 
representation of information. We define two representations: positive 
shared and positive disjoint. They have in common the properties that: 
 
    (i) Every real world “item” corresponds to the firing of a set of r neurons, 
    (ii) The items are memorized in a hierarchical fashion, so that a new item 
C when first stored will be stored as a conjunction of two items already 
memorized, say, A and B.  
    (iii) The representation may be graded so that the recognition of the item 
corresponds to a large enough fraction but not necessarily all of the 
corresponding neurons firing. 
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The representation is called disjoint if each neuron corresponds to at most 
one item, and shared if it can correspond to more than one. 
 
By an item we mean anything that correlates to the real world. It can be a 
smell, a particular person, a place, a time, a general concept, a small visual 
feature, an event, or any conjunction of instances of these. In some neural 
systems it is well established that neural activity in individual cells have 
identifiable real world correlates. Examples of these are place cells in the 
hippocampus (O’Keefe and Dostrovsky, 1971; O’Keefe, et al., 1998). and 
face cells in inferotemporal cortex (Gross, Bender, and Rocha-Miranda, 
1969; Gross, Rocha-Miranda, and Bender, 1972). Determining the exact 
scope of the item that an actual neuron represents is much more problematic 
but can be attempted by presenting enough stimuli. Some remarkable 
recordings from human medial temporal lobe by Quian Quiroga et al. (2005) 
provide convincing evidence for the existence of cells that recognize items 
of some specificity, such as a particular actor or building, and are invariant 
to a broad variety of views of them. On the other hand, there exist other parts 
of cortex, such as in the prefrontal areas, in which no similar identification 
between individual neurons and their functions has yet been found, and 
many neurons appear to be silent.  
 
The issue of neural representations has been widely discussed (Barlow, 
1972; Page, 2000). Our representation can be viewed as particularly specific 
and simple. In general, the larger r the denser the representation, where the 
sparse/dense distinction corresponds to the fraction of neurons that are active 
at a typical instant. If r is large then we have an instance of what some 
would call a distributed representation. Here we provide a combinatorial 
explanation for the need for whatever particular value of r is used, and do 
not assume or require any other assumptions.  
 
   3. A Basic Relationship 
 
In terms of the four parameters n, d, k and r, we can deduce relationship  
 
                                              rd/n    k                                                  (*) 

 
that holds generally for algorithms of the nature that we shall describe, and 
which can be tested experimentally. Further, as we shall discuss, it is 
consistent with recent findings for the locust olfactory system (Jortner, 
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Farivar, and Laurent, 2006).  With regard to this relationship we make the 
following remarks. If r neurons are active and each one is connected by 
synapses to d other neurons then each neuron receives inputs from an 
average of rd/n of the active ones. Hence, k cannot be much less than this 
quantity rd/n, for then all the other neurons would typically become active, 
precluding meaningful computation. The force of the relationship (*) is that 
when k is in a narrow band of values, as large as or a little larger than rd/n, 
then a rich range of computations of a unified nature can be supported, based 
though on somewhat complex statistical phenomena (Valiant, 2005).  
 
   4. Basic Tasks and Algorithms 
 
Since our methodology seeks to exploit constraints, the tasks we seek to 
explain are those that are most challenging for networks in which 
connections may be relatively few and individually weak. We characterize 
these most challenging tasks as those where arbitrary pairs of distinct 
previously made memories may have to be related somehow, such as by 
forming a conjunction of them or making an association. We call these 
random access tasks.  
 
We are interested in basic tasks that have the capability of forming rapidly 
evaluatable neural circuits that reflect the potentially arbitrary and complex 
inter-relationships among different pieces of knowledge that are required in 
describing the world. We regard hierarchical memory formation in 
combination with association to be a viable basis for building such circuits. 
The widely investigated “associative memories” (Marr, 1969; Kanerva, 
1998; Graham and Willshaw, 1997), which have the functionality that 
information keyed with a fixed key, possibly degraded, can be entered and 
retrieved, appear to be less effective for this purpose.  
 
Our approach is exemplified by the archetypal random access task of 
hierarchical memory formation, which we define as follows. Given two 
items A and B already represented, the task is (a) to assign a representing set 
of neurons for a new item C, and (b) to make further modifications to the 
circuits as necessary, in the form of state changes at the neurons or weight 
changes at the synapses, so that the circuit will behave as follows. If at some 
later time the representatives of both A and B fire then the representatives of 
C will fire also.  
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In addition, we also need some non-interference conditions, which ensure 
that C will not fire if it is not intended to. For example, suppose we 
determine that more than 95% of a representing set should fire for the 
associated item to be considered recognized, fewer than 50% if it is not, and 
that intermediate situations never occur. Then we want less than 50 % of C 
to fire if less than 50% of A fires even if 100% of B does. Condition X 
represents this condition. Condition Y is a condition that ensures that if A 
and a different item D fire then this will not cause C to fire. (The somewhat 
more precise description is as follows: For condition X, since the size of C is 
r only in expectation the technical condition we use is not that fewer 50% of 
C but that fewer than 3r/10 candidate nodes fire. This allows for the fact that 
C may be smaller than the expected value r. For condition Y the technical 
condition is that the number of nodes corresponding to A ⁄ B and not A ⁄ D 
should be at least 2r/3. In general, the capacity can be computed by showing 
that the probability of the specific non-interference conditions that are to be 
avoided is small enough.) 
 
 
Our proposal for the mechanism to realize memory formation is the simplest 
imaginable. The neurons that are to represent C will be simply those that are 
richly enough connected to both A and B that activity at A and B can cause 
each such neuron to overcome its threshold. We assume a random network 
of n neurons, each receiving an input from any other independently with 
probability d/n. In any act of memorization the representatives of A and B 
are assumed to be fixed, either by preprogramming or by previous acts of 
memorization. The choice of C is then the result of a process determined by 
the random connections. Such algorithms may be called vicinal to emphasize 
the fact that their effect and execution is governed to a large extent by the 
immediate neighborly connections among the neurons. 
 
While testing directly whether the brain executes the above algorithm may 
be currently impractical, the theory makes some quantitative predictions that 
are testable. In particular, there is a governing equation that relates n, d, k 
and r and whose solutions are robust to variations in the equation. Consider 
the function B(m, p, s) defined to equal the probability that, in m tosses of a 
coin that comes up heads, or has success, with probability p, there will be at 
least s heads or successes. This is simply the upper tail of the Binomial 
distribution. We will always use it in cases in which s is a little larger than 
mp, the expected number of successes. The basic property we use is that as s 
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exceeds mp by a larger and larger amount, the tail B(m, p, s) will get rapidly 
smaller, and at an exponential rate once this excess is larger than a standard 
deviation (mp(1 - p))1/2. 
 
First we consider the case that A and B are represented by disjoint sets of r 
neurons. Let us define C to be exactly those neurons that have at least k 
connections from A and also at least k connections from B. Then the 
probability that an arbitrary neuron has these required connections to A is 
B(r, d/n, k). The same holds for B. It then follows that the probability that an 
arbitrary neuron has these connection properties to both is (B(r, d/n, k))2. 

Now if we want item C to be an “equal citizen” with items A and B in the 
sense that it has r representatives, at least in expectation, then we want that 
among the n candidate neurons there be an expected number r with these 
properties. (Here, as elsewhere, it is convenient to view the random graph as 
being generated after the A and B nodes are fixed.) Hence the governing 
equation is: 
 
                  (B(r, d/n, k)) 2 = r/n.                                      (1) 
 
Qualitatively this equation means that we want the number of successes k to 
be sufficiently above the expected number of successes rd/n that the 
resulting probability is r/n. (We think of r/n as being typically small, say 
smaller than 0.1.) As we have observed, the value of B(r, d/n, k) drops very 
rapidly as k increases above the mean rd/n. It follows that the rule of thumb 
(*) previously stated, that rd/n  k, needs to hold, where the relation  

denotes “is of the same order of magnitude and a little smaller than”. 
 
We note that relation (*) holds equally for several important variations of 
this formulation (Valiant, 2005).  
 
In Table 1 we tabulate solutions of (B(r, d/n, k))2 = r/n.   We note that if k 
and d are fixed then as r and n grow in proportion to each other, in 
particular, if r = xn for a fixed constant x, then  B(r, d/n, k) = B(xn, d/n, k) 

asymptotes to a fixed value dependent only on the two quantities xd and k, in 
the form of the Poisson distribution. Then equation (1) becomes (B(xn, d/n, 
k))2 = x, and its solution for x is essentially invariant to n once n is large 
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enough.  Hence we can regard these systems as being governed by just the 
three parameters d, k and x = r/n. 
 
The discussion so far establishes conditions for the wiring diagram that are 
sufficient to support hierarchical memory formation. To complete the theory 
one also needs to have a model of computation that enables the neuron and 
synapse updates to be specified explicitly. Such a model is described in 
reference (Valiant, 2005). There it is also shown that the task of association 
can be realized with the same parameters as those needed for memory 
formation, where association is defined as follows: Given two items A and B 
already represented the task is to make modifications in the circuit so that 
whenever in the future A fires so will B also.  
 
   5. Correspondences with Experimental Findings 
 
The classical model of vision in cortex is as a hierarchy. As one ascends it 
the complexity of the items represented by a neuron increases, as does their 
invariance to size, translation, etc. We hypothesize that the higher levels of 
the vision hierarchy require the capabilities of some form of hierarchical 
memory formation. Unfortunately, we do not know of any such system for 
which all of the parameters d, k and r/n, have been measured. However, the 
results of Quian Quiroga, et al. (2005) do imply estimates for r/n in human 
medial temporal lobe, and one can ask whether these are consistent in our 
table with reasonable values of the anatomical parameters d and k. Here is a 
brief summary of their experiments and findings: They recorded from 998 
units (346 single- and 652 multi-neurons) across a number of human patients 
variously in hippocampus, parahippocampal gyrus, amygdala and entorhinal 
cortex. Each morning they presented each patient with 82-110 (mean 94) 
visual stimuli (Kreiman, private communication, 2005).  For each patient 
they selected some 7-23 (mean 14) stimuli that provoked significant or the 
strongest responses, and in the afternoon for each such stimulus they 
presented 3-8 different views of the item that the experimenter had 
predetermined to be represented in that stimulus. For example, one chosen 
item was the actress Halle Berry, and different views included a portrait of 
her, a portrait of her in her recent role in a mask, and her name written as a 
string of letters. They found that 52 of the units did respond to the 
experimenters’ prechosen item, and of these 8 responded to two items. Thus 
we can conclude that there were 998 x 94 attempts to identify a neuron-item 
correspondence, and of these 60 succeeded. This implies an estimate for r/n 
of 60/(998 x 94) = .00064. Looking at our Table 1 we note that there are 
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some plausible values of k and d, such as k = 8 and d = 8192 that correspond 
to an r value in that range. The majority of entries there have higher values 
of r/n, and it is indeed probable that this calculation for r/n gives an 
underestimate. While the fact that some of the neurons recorded from where 
multiple neurons would suggest that this calculation overestimates, there are 
two other implicit assumptions that suggest the opposite. First, it was 
assumed that all the neurons (or units) in those areas represent some visual 
item, while it is quite possible that a significant fraction have a different 
purpose altogether. Second, it was assumed that the patients were familiar 
with and had representations for all the items presented to them.  
 
The one system we know in which all four parameters n, d, k, and r have 
been measured is in the olfactory system of the locust as investigated by 
Jortner, Farivar, and Laurent (2006). This system consists of a set of about 
830 projection neurons (PN) in each antennal lobe, which in turn connect to 
a set of about 50,000 Kenyon cells (KC). The system is subject to 20-30 Hz 
cycles. Within each cycle each cell undergoes 0 or 1 spikes. Within one such 
cycle a natural odor stimulus will cause about 100 - 150 of the 830 PNs to 
fire, and a comparatively smaller fraction of the KC’s, thought to be in the 
range 0.01- 0.5% (Laurent, private communication, 2005). The circuit 
sparsifies the representation of the odors, apparently to facilitate processing 
upstream. 
 
We shall use distinguishing notation for the two levels of neurons, lower 
case (r, n) for the PNs and upper case (R, N, D, K) for the KCs. From what 
we have already said the parameters of the PNs are n = 830 and r in the 
range 100 – 150. For the KCs N = 50,000 and R, to which our theory is 
rather insensitive, is in the range 5-250. Further, the estimate (Jortner, 
Farivar, and Laurent, 2006) for the fraction D/n of PNs from which a KC 
receives connections is 0.50 ± 0.13. Finally, the estimate (Jortner, Farivar, 
and Laurent, 2006) of K, derived from the ratio of the voltage threshold of a 
KC to the mean postsynaptic potential caused by a single PN is 100.  
 
Our interpretation of this circuit in our theory is the following. Its 
connections form a random bipartite graph where each PN is connected to 
each KC with probability D/n. An arbitrary odor causes an arbitrary subset 
of r of the PN’s to fire. Given a fixed chosen KC, what is the probability that 
it will be caused to fire by that odor. The answer to this is simply B(r, D/n, 
K).  Here each toss corresponds to one of the r PNs that is activated by the 
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odor, and success for a toss corresponds to that PN being connected to the 
chosen KC. Further we want the probability that this chosen KC fires to be 
R/N. Then the R KCs that will represent the odor will be simply those that 
are connected by at least K connections to the specific PNs that are 
activated by the odor.  
 
Hence, the six measured quantities should satisfy the equation: 
 
     B(r, D/n, K) = R/N.                                (4) 
 
As far as the approximate rule of thumb (*) derived above, we note that 
taking the mean values of 125 and .5 of the estimates for r and D/n gives an 
estimate of 62.5 for rD/n, which conforms roughly to the stated rule that 
rD/n should be of the same order of magnitude and a little smaller than K, 
which is estimated to have value 100.  
 
For a more precise fit we note that the range estimate for D/n is [.37, .63] 
and for r is [100, 150]. The theory predicts that there should be solutions to 
equation (4) for values in this range that give realistic values of R/N, which 
are in the range [.0001, .005]. It is easy to verify that this is indeed the case. 
Taking the value D/n = .60 and K = 100 the following are pairs of solutions 
for {r, R/N} of  the equation B(r, 0.60, 100) = R/N: 
 
      {130, .000035}, {132, .000102}, {134, .000272}, {136, .000671}, 
      {138, .001529}, {140, .003244}, {142, .006436}, {144, .011993}, 
      {146, .021084}, {148, .035101}, {150, .055538}.  
 
These solutions span the estimated range of .0001-.005 for R/N. Jortner, 
Farivar, and Laurent (2006) note that their estimate of K = 100 may be an 
overestimate because of nonlinear effects. Values of r and D/n in the middle 
of their estimated ranges of these would then be consistent with appropriate 
lower values of K.  
 
If instead of the above deterministic view we regard each of the r PNs as 
firing with probability p < 1, then equation (4) becomes B(r, pD/n, K) = R/N 

and the rule of thumb (*) becomes (**):  prd/n  k.  Experimental evidence 

suggests that PNs are probabilistic in this sense. The 100-150 estimate for r 

 10



refers to the number of the more reliable ones, and a further large number is 
activated less reliably.    
 
   6 Discussion                              
 
In conclusion, we shall now argue that for neural systems generally that 
compute random access tasks, two distinct regimes are discernible. From 
Table 1 we see that if k is large then r is a significant fraction of n. For 
example for k = 32 and d = 8192 we get r/n = .00286. This immediately 
suggests that if we are to memorize more than 1/.00286 ~ 350 items then we 
need shared rather than disjoint representations. A large value of k therefore 
forces the combination of (i) large k, (ii) large r, and (iii) shared 
representations. This combination we shall call regime-α. In fact, taking the 
non-inteference conditions into account one can argue that any value of k 
larger than 1 can be considered to be large in this context. In this regime we 
have discussed the task of memory formation. Also, it has been shown that 
the same parameters support association (Valiant, 2005).  
 
In earlier work (Valiant, 1994) we considered the combination of (i) strong k 
= 1 synapses, (ii) small r, and (iii) disjoint representations. We shall identify 
this as regime-β.  In this regime, while the paucity of interconnections is still 
a serious constraint, the system is closer to digital computation than is 
regime-α in the following senses: Information is localized in that 
representations are disjoint, and influence is localized in that a single neuron 
is able to cause an action potential in a neighbor. This regime has been 
shown to support a broader set of random access tasks (Valiant, 1994), 
including appropriate formalizations of: supervised memorization of 
conjunctions and disjunctions, inductive learning of conjunctions, 
disjunctions and appropriate linear separators, correlational learning, 
memorization and inductive learning of conjunctive expressions involving 
multiple objects and relations.  
 
It seems that in systems in which neuron-item correspondences can be 
discovered by probing a few hundred or a few thousand neurons, r must be a 
significant fraction of n for otherwise there would be little chance of such a 
correspondence being found. We suggest that within such systems, which 
include the hippocampus and inferotemporal cortex, regime-α is in 
operation. In these areas, which do not represent the highest cognitive areas, 
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the tasks of memory formation and association, for which we have 
quantitative mechanistic explanations, may be a sufficient basis for 
performing the required processing. 
 
On the other hand, there are areas such as prefrontal cortex, where item-
neuron correspondences have proved more difficult to identify. A natural 
theory is that in such areas regime-β has some significant role. Any failure to 
find item-neuron correspondences can be then explained by the small values 
of r, and the computation of apparently more complex tasks by the possibly 
greater computational capability of regime-β. Of course, the price to be paid 
is strong synapses. Synapses there need to have a large dynamic range so 
that they can change in strength between an average weak level to k = 1 
strength through learning. Whether neurons do this is currently unknown. 
Strong synapses, however, have been observed (Thomson, Deuchars, and 
West, 1993; Markram, and Tsodyks, 1996; Ali, et al. 1998) and one recent 
study shows that the distribution of synaptic strengths is heavy-tailed at the 
strong end (Song et al., 2005).  
 
Our analysis treats the human temporal lobe results as exemplars of regime-
α.  The locust olfactory system appears to be an interface between regime-α  

and regime-β, since it translates between large r to small r in a single step.  
There is evidence that different parts of cortex have widely different cortical 
parameters, as would be expected if they employed such different regimes. It 
has been found (Elston, Tweedale, and Rosa, 1999) that in macaques the 
number of spines in a polysensory area exceeds that in the primary visual 
area by a factor of thirteen.  
 
We suggest that this paper is a first step in a research program to validate a 
general quantitative algorithmic theory of neural computation against 
experimental evidence. The numerous immediate directions of further work 
include pursuing the following questions: Can the values of the four 
parameters n, d, k, and r be measured for systems other than the locust 
olfactory system? Can it be shown that synapses can change between 
average strength to k = 1 strength by learning, as required in regime-β? Can 
direct experimental evidence be found for some system that it works in 
regime-β? Is regime-β provably more powerful than regime-α in some 
significant computational sense? 
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    k=4    k=8   k=16    k=32   k=64  k=128 k = 256   k=512 k=1024 
d=64 .03496 .100  .244 9  .555 9      
d=128 .0146 .0442  .109 7  .247 9  .537 9     
d=256 .00626 .0198  .0502  .115 9  .249 9  .526 9    
d=512 .00270 .00898  .0234  .0542  .118 9  .249 9  .518 9   
d=1024 .00118 .00410  .0110  .0258   .0568  .120 9  .250 9  .512 9  
d=2048 .0005166 .00189  .00517  .0123  .0275  .0586  .122 9  .250 9 .509 9 
d=4096 .0002276 .000872     .00245  .00594  .0133  .0286   .0598  .123 9 .250 9 
d=8192 .0001016 .000404   .00116  .00286  .00649  .0140    .0294  .0606 .123 9 
d=16384 .00004466 .000188    .000554  .00138  .00316  .00688  .0145  .0299 .0612 
d=32768 .00001988 .00008766  .000265     .000670  .00155  .00338  .00715   .0148 .0303 
d=65536 .000008869 .00004106  .000127  .000325  .000756  .00166  .00353 .00734 .0151 

 
 
 
  
Table 1. The entries are solutions for x (= r/n) to equation (B(xn, d/n, k))2 = x 

for various combinations of d and k that hold for all values of n ≥ 106. The 
solutions given are for n = 109 and were found numerically. They are 
accurate to three significant figures for n = 109 and 108, to two for n = 107 
and to one for n = 106. The superscripts give the greatest power x § 9 such 
that for all integer powers n = 10y for x < y § 9 the non-interference 
conditions X and Y hold. For k = 1 and 2 condition X is violated for all n  

109 for all values of d shown, and therefore the entries are omitted. 
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