A quantitative theory of neural computation
Leslie G Valiant
Harvard University, Division of Engineering and Applied Sciences, Cambridge, MA 02138

Email: valiant@deas.harvard.edu
Tel: 617-495-5817
Fax: 617-495-9837

Abstract

We show how a general quantitative theory of neural computation can be used to explain two recent experimental findings in neuroscience. The first of these findings is that in human medial temporal lobe there exist neurons that correspond to identifiable concepts, such as a particular actress. Further, even when such concepts are preselected by the experimenter, such neurons can be found with paradoxical ease, after examining relatively few neurons. We offer a quantitative computational explanation of this phenomenon, where apparently none existed before. Second, for the locust olfactory system estimates of the four parameters of neuron numbers, synapse numbers, synapse strengths, and the numbers of neurons that represent an odor are now available. We show here that these numbers are related as predicted by the general theory. More generally, we identify two useful regimes for neural computation with distinct ranges of these quantitative parameters.

1. Introduction

A central problem of neuroscience is to provide explicit mechanistic explanations for the basic tasks of cognition such as memorization and association. The methodology of computer science suggests that a solution to this problem would consist of three parts: a concrete model of neural computation, explicit specifications of the cognitive tasks that are to be realized, and explicit algorithms that can be demonstrably executed on this model to realize the tasks. Also, one expects that the outcome will include a coherent class of scalable algorithms that demonstrably work for large ranges of such resource parameters as the number of neurons.

A theoretical investigation using this methodology can be expected to uncover how the brain actually works if the brain is computationally so constrained that there are few solutions consistent with those constraints. We take this observation as our methodology.

It appears that the brain is indeed highly constrained in how a neuron can have a purposeful effect on an arbitrary other neuron: In a system of n neurons each one typically receives inputs from a much smaller number d of other neurons. For example estimates of $n=1.6^{*} 10^{7}$ and $d=7800$ have been given for the mouse (Braitenberg and Schuz, 1998) and of $n=10^{10}$ and $d=$ $2.4 * 10^{4}-8 * 10^{4}$ for humans (Abeles, 1991). Also, it is believed that even when a neuron does receive an input directly from another, the mean strength of such an influence is weak. A recent estimate for rat visual cortex (Song et al., 2005) gave the mean value for the excitatory postsynaptic potential (EPSP) of a synapse to be .77 mV . This compares with a typical estimate of the threshold voltage of 20 mV , and implies a rough estimate of k $=26$ for the mean number of presynaptic neurons that are needed to cause a postsynaptic action potential. An earlier estimate (Abeles, 1991) of the general range of k was $5-300$. A further constraint is that the brain can perform significant tasks in 100-200 milliseconds, which allows perhaps only 10-20 and certainly fewer than 100 basic steps (Feldman and Ballard, 1982). Basic algorithms need to work in very few steps.

The model of computation used in this paper is characterized by the above defined three parameters (n, d, k), by the requirement that basic algorithms
run in a handful of steps, and by the restriction that the computational transitions of a neuron be simple enough that there is little doubt that actual neurons, in all their complexity, are capable of performing them. Graph models based on n and d have been considered widely before (Griffith, 1963; Braitenberg, 1978; Feldman, 1982; Palm, 1982) and sometimes in conjunction with the third physical parameter of synaptic strength (Griffith, 1963; Abeles, 1991). In general, we seek detailed quantitative explanations of how networks with given parameters can support algorithms that can perform sequences of intended actions as required, without unintended interference among these actions. Also, unlike previous authors, we use a hierarchical notion of memory allocation, which would appear to be more useful for building up complex data structures that reflect the complexities of knowledge, rather than being merely sufficient to support data lookup. The specific model and theory we use appears in (Valiant, 2005), where it is discussed more fully. For completeness we restate here the most relevant aspects of the theory before we move on to discuss the particular experimental findings (Quian Quiroga, et al., 2005; Jortner, Farivar, and Laurent 2006) that we seek to explain.

We emphasize that our assumptions are extremely mild. In particular there is no assumption about the nature of the firing mechanisms, which may be governed by various nonlinearities. The assumption that some value of k exists asserts merely that some minimum total presynaptic activity is required to cause an action potential in a neuron.

2. Representation

Before we discuss tasks we need to take a specific position on the representation of information. We define two representations: positive shared and positive disjoint. They have in common the properties that:
(i) Every real world "item" corresponds to the firing of a set of r neurons,
(ii) The items are memorized in a hierarchical fashion, so that a new item C when first stored will be stored as a conjunction of two items already memorized, say, A and B.
(iii) The representation may be graded so that the recognition of the item corresponds to a large enough fraction but not necessarily all of the corresponding neurons firing.

The representation is called disjoint if each neuron corresponds to at most one item, and shared if it can correspond to more than one.

By an item we mean anything that correlates to the real world. It can be a smell, a particular person, a place, a time, a general concept, a small visual feature, an event, or any conjunction of instances of these. In some neural systems it is well established that neural activity in individual cells have identifiable real world correlates. Examples of these are place cells in the hippocampus (O'Keefe and Dostrovsky, 1971; O'Keefe, et al., 1998). and face cells in inferotemporal cortex (Gross, Bender, and Rocha-Miranda, 1969; Gross, Rocha-Miranda, and Bender, 1972). Determining the exact scope of the item that an actual neuron represents is much more problematic but can be attempted by presenting enough stimuli. Some remarkable recordings from human medial temporal lobe by Quian Quiroga et al. (2005) provide convincing evidence for the existence of cells that recognize items of some specificity, such as a particular actor or building, and are invariant to a broad variety of views of them. On the other hand, there exist other parts of cortex, such as in the prefrontal areas, in which no similar identification between individual neurons and their functions has yet been found, and many neurons appear to be silent.

The issue of neural representations has been widely discussed (Barlow, 1972; Page, 2000). Our representation can be viewed as particularly specific and simple. In general, the larger r the denser the representation, where the sparse/dense distinction corresponds to the fraction of neurons that are active at a typical instant. If r is large then we have an instance of what some would call a distributed representation. Here we provide a combinatorial explanation for the need for whatever particular value of r is used, and do not assume or require any other assumptions.

3. A Basic Relationship

In terms of the four parameters n, d, k and r, we can deduce relationship

$$
\begin{equation*}
r d / n \lesssim k \tag{*}
\end{equation*}
$$

that holds generally for algorithms of the nature that we shall describe, and which can be tested experimentally. Further, as we shall discuss, it is consistent with recent findings for the locust olfactory system (Jortner,

Farivar, and Laurent, 2006). With regard to this relationship we make the following remarks. If r neurons are active and each one is connected by synapses to d other neurons then each neuron receives inputs from an average of $r d / n$ of the active ones. Hence, k cannot be much less than this quantity $r d / n$, for then all the other neurons would typically become active, precluding meaningful computation. The force of the relationship (*) is that when k is in a narrow band of values, as large as or a little larger than $r d / n$, then a rich range of computations of a unified nature can be supported, based though on somewhat complex statistical phenomena (Valiant, 2005).

4. Basic Tasks and Algorithms

Since our methodology seeks to exploit constraints, the tasks we seek to explain are those that are most challenging for networks in which connections may be relatively few and individually weak. We characterize these most challenging tasks as those where arbitrary pairs of distinct previously made memories may have to be related somehow, such as by forming a conjunction of them or making an association. We call these random access tasks.

We are interested in basic tasks that have the capability of forming rapidly evaluatable neural circuits that reflect the potentially arbitrary and complex inter-relationships among different pieces of knowledge that are required in describing the world. We regard hierarchical memory formation in combination with association to be a viable basis for building such circuits. The widely investigated "associative memories" (Marr, 1969; Kanerva, 1998; Graham and Willshaw, 1997), which have the functionality that information keyed with a fixed key, possibly degraded, can be entered and retrieved, appear to be less effective for this purpose.

Our approach is exemplified by the archetypal random access task of hierarchical memory formation, which we define as follows. Given two items A and B already represented, the task is (a) to assign a representing set of neurons for a new item C, and (b) to make further modifications to the circuits as necessary, in the form of state changes at the neurons or weight changes at the synapses, so that the circuit will behave as follows. If at some later time the representatives of both A and B fire then the representatives of C will fire also.

In addition, we also need some non-interference conditions, which ensure that C will not fire if it is not intended to. For example, suppose we determine that more than 95% of a representing set should fire for the associated item to be considered recognized, fewer than 50% if it is not, and that intermediate situations never occur. Then we want less than 50% of C to fire if less than 50% of A fires even if 100% of B does. Condition X represents this condition. Condition Y is a condition that ensures that if A and a different item D fire then this will not cause C to fire. (The somewhat more precise description is as follows: For condition X , since the size of C is r only in expectation the technical condition we use is not that fewer 50% of C but that fewer than $3 r / 10$ candidate nodes fire. This allows for the fact that C may be smaller than the expected value r. For condition Y the technical condition is that the number of nodes corresponding to $A \wedge B$ and not $A \wedge D$ should be at least $2 r / 3$. In general, the capacity can be computed by showing that the probability of the specific non-interference conditions that are to be avoided is small enough.)

Our proposal for the mechanism to realize memory formation is the simplest imaginable. The neurons that are to represent C will be simply those that are richly enough connected to both A and B that activity at A and B can cause each such neuron to overcome its threshold. We assume a random network of n neurons, each receiving an input from any other independently with probability d / n. In any act of memorization the representatives of A and B are assumed to be fixed, either by preprogramming or by previous acts of memorization. The choice of C is then the result of a process determined by the random connections. Such algorithms may be called vicinal to emphasize the fact that their effect and execution is governed to a large extent by the immediate neighborly connections among the neurons.

While testing directly whether the brain executes the above algorithm may be currently impractical, the theory makes some quantitative predictions that are testable. In particular, there is a governing equation that relates n, d, k and r and whose solutions are robust to variations in the equation. Consider the function $\mathcal{B}(m, p, s)$ defined to equal the probability that, in m tosses of a coin that comes up heads, or has success, with probability p, there will be at least s heads or successes. This is simply the upper tail of the Binomial distribution. We will always use it in cases in which s is a little larger than $m p$, the expected number of successes. The basic property we use is that as s
exceeds $m p$ by a larger and larger amount, the tail $\mathcal{B}(m, p, s)$ will get rapidly smaller, and at an exponential rate once this excess is larger than a standard deviation $(m p(1-p))^{1 / 2}$.

First we consider the case that A and B are represented by disjoint sets of r neurons. Let us define C to be exactly those neurons that have at least k connections from A and also at least k connections from B. Then the probability that an arbitrary neuron has these required connections to A is $\mathcal{B}(r, d / n, k)$. The same holds for B. It then follows that the probability that an arbitrary neuron has these connection properties to both is $(\mathcal{B}(r, d / n, k))^{2}$. Now if we want item C to be an "equal citizen" with items A and B in the sense that it has r representatives, at least in expectation, then we want that among the n candidate neurons there be an expected number r with these properties. (Here, as elsewhere, it is convenient to view the random graph as being generated after the A and B nodes are fixed.) Hence the governing equation is:

$$
\begin{equation*}
(\mathcal{B}(r, d / n, k))^{2}=r / n . \tag{1}
\end{equation*}
$$

Qualitatively this equation means that we want the number of successes k to be sufficiently above the expected number of successes $r d / n$ that the resulting probability is r / n. (We think of r / n as being typically small, say smaller than 0.1.) As we have observed, the value of $\mathcal{B}(r, d / n, k)$ drops very rapidly as k increases above the mean $r d / n$. It follows that the rule of thumb $\left(^{*}\right)$ previously stated, that $r d / n \lesssim k$, needs to hold, where the relation \lesssim denotes "is of the same order of magnitude and a little smaller than".

We note that relation (*) holds equally for several important variations of this formulation (Valiant, 2005).

In Table 1 we tabulate solutions of $(\mathcal{B}(r, d / n, k))^{2}=r / n$. We note that if k and d are fixed then as r and n grow in proportion to each other, in particular, if $r=x n$ for a fixed constant x, then $\mathcal{B}(r, d / n, k)=\mathcal{B}(x n, d / n, k)$ asymptotes to a fixed value dependent only on the two quantities $x d$ and k, in the form of the Poisson distribution. Then equation (1) becomes ($\mathcal{B}(x n, d / n$, $k))^{2}=x$, and its solution for x is essentially invariant to n once n is large
enough. Hence we can regard these systems as being governed by just the three parameters d, k and $x=r / n$.

The discussion so far establishes conditions for the wiring diagram that are sufficient to support hierarchical memory formation. To complete the theory one also needs to have a model of computation that enables the neuron and synapse updates to be specified explicitly. Such a model is described in reference (Valiant, 2005). There it is also shown that the task of association can be realized with the same parameters as those needed for memory formation, where association is defined as follows: Given two items A and B already represented the task is to make modifications in the circuit so that whenever in the future A fires so will B also.

5. Correspondences with Experimental Findings

The classical model of vision in cortex is as a hierarchy. As one ascends it the complexity of the items represented by a neuron increases, as does their invariance to size, translation, etc. We hypothesize that the higher levels of the vision hierarchy require the capabilities of some form of hierarchical memory formation. Unfortunately, we do not know of any such system for which all of the parameters d, k and r / n, have been measured. However, the results of Quian Quiroga, et al. (2005) do imply estimates for r / n in human medial temporal lobe, and one can ask whether these are consistent in our table with reasonable values of the anatomical parameters d and k. Here is a brief summary of their experiments and findings: They recorded from 998 units (346 single- and 652 multi-neurons) across a number of human patients variously in hippocampus, parahippocampal gyrus, amygdala and entorhinal cortex. Each morning they presented each patient with 82-110 (mean 94) visual stimuli (Kreiman, private communication, 2005). For each patient they selected some 7-23 (mean 14) stimuli that provoked significant or the strongest responses, and in the afternoon for each such stimulus they presented 3-8 different views of the item that the experimenter had predetermined to be represented in that stimulus. For example, one chosen item was the actress Halle Berry, and different views included a portrait of her, a portrait of her in her recent role in a mask, and her name written as a string of letters. They found that 52 of the units did respond to the experimenters' prechosen item, and of these 8 responded to two items. Thus we can conclude that there were 998×94 attempts to identify a neuron-item correspondence, and of these 60 succeeded. This implies an estimate for r / n of $60 /(998 \times 94)=.00064$. Looking at our Table 1 we note that there are
some plausible values of k and d, such as $k=8$ and $d=8192$ that correspond to an r value in that range. The majority of entries there have higher values of r / n, and it is indeed probable that this calculation for r / n gives an underestimate. While the fact that some of the neurons recorded from where multiple neurons would suggest that this calculation overestimates, there are two other implicit assumptions that suggest the opposite. First, it was assumed that all the neurons (or units) in those areas represent some visual item, while it is quite possible that a significant fraction have a different purpose altogether. Second, it was assumed that the patients were familiar with and had representations for all the items presented to them.

The one system we know in which all four parameters n, d, k, and r have been measured is in the olfactory system of the locust as investigated by Jortner, Farivar, and Laurent (2006). This system consists of a set of about 830 projection neurons (PN) in each antennal lobe, which in turn connect to a set of about 50,000 Kenyon cells (KC). The system is subject to $20-30 \mathrm{~Hz}$ cycles. Within each cycle each cell undergoes 0 or 1 spikes. Within one such cycle a natural odor stimulus will cause about $100-150$ of the 830 PNs to fire, and a comparatively smaller fraction of the KC's, thought to be in the range $0.01-0.5 \%$ (Laurent, private communication, 2005). The circuit sparsifies the representation of the odors, apparently to facilitate processing upstream.

We shall use distinguishing notation for the two levels of neurons, lower case (r, n) for the PNs and upper case (R, N, D, K) for the KCs. From what we have already said the parameters of the PNs are $n=830$ and r in the range $100-150$. For the KCs $N=50,000$ and R, to which our theory is rather insensitive, is in the range $5-250$. Further, the estimate (Jortner, Farivar, and Laurent, 2006) for the fraction D / n of PNs from which a KC receives connections is 0.50 ± 0.13. Finally, the estimate (Jortner, Farivar, and Laurent, 2006) of K, derived from the ratio of the voltage threshold of a KC to the mean postsynaptic potential caused by a single PN is 100 .

Our interpretation of this circuit in our theory is the following. Its connections form a random bipartite graph where each PN is connected to each KC with probability D / n. An arbitrary odor causes an arbitrary subset of r of the PN's to fire. Given a fixed chosen KC , what is the probability that it will be caused to fire by that odor. The answer to this is simply $\mathcal{B}(r, D / n$, K). Here each toss corresponds to one of the r PNs that is activated by the
odor, and success for a toss corresponds to that PN being connected to the chosen KC. Further we want the probability that this chosen KC fires to be R / N. Then the R KCs that will represent the odor will be simply those that are connected by at least K connections to the specific $P N s$ that are activated by the odor.

Hence, the six measured quantities should satisfy the equation:

$$
\begin{equation*}
\mathcal{B}(r, D / n, K)=R / N . \tag{4}
\end{equation*}
$$

As far as the approximate rule of thumb (*) derived above, we note that taking the mean values of 125 and .5 of the estimates for r and D / n gives an estimate of 62.5 for $r D / n$, which conforms roughly to the stated rule that $r D / n$ should be of the same order of magnitude and a little smaller than K, which is estimated to have value 100 .

For a more precise fit we note that the range estimate for D / n is $[.37, .63]$ and for r is $[100,150]$. The theory predicts that there should be solutions to equation (4) for values in this range that give realistic values of R / N, which are in the range $[.0001, .005]$. It is easy to verify that this is indeed the case. Taking the value $D / n=.60$ and $K=100$ the following are pairs of solutions for $\{r, R / N\}$ of the equation $\mathcal{B}(r, 0.60,100)=R / N$:

$$
\begin{aligned}
& \{130, .000035\},\{132, .000102\},\{134, .000272\},\{136, .000671\}, \\
& \{138, .001529\},\{140, .003244\},\{142, .006436\},\{144, .011993\}, \\
& \{146, .021084\},\{148, .035101\},\{150, .055538\} .
\end{aligned}
$$

These solutions span the estimated range of $.0001-.005$ for R / N. Jortner, Farivar, and Laurent (2006) note that their estimate of $K=100$ may be an overestimate because of nonlinear effects. Values of r and D / n in the middle of their estimated ranges of these would then be consistent with appropriate lower values of K.

If instead of the above deterministic view we regard each of the r PNs as firing with probability $p<1$, then equation (4) becomes $\mathcal{B}(r, p D / n, K)=R / N$ and the rule of thumb $\left({ }^{*}\right)$ becomes $\left({ }^{* *}\right): p r d / n \lesssim k$. Experimental evidence suggests that PNs are probabilistic in this sense. The 100-150 estimate for r
refers to the number of the more reliable ones, and a further large number is activated less reliably.

6 Discussion

In conclusion, we shall now argue that for neural systems generally that compute random access tasks, two distinct regimes are discernible. From Table 1 we see that if k is large then r is a significant fraction of n. For example for $k=32$ and $d=8192$ we get $r / n=.00286$. This immediately suggests that if we are to memorize more than $1 / .00286 \sim 350$ items then we need shared rather than disjoint representations. A large value of k therefore forces the combination of (i) large k, (ii) large r, and (iii) shared representations. This combination we shall call regime- α. In fact, taking the non-inteference conditions into account one can argue that any value of k larger than 1 can be considered to be large in this context. In this regime we have discussed the task of memory formation. Also, it has been shown that the same parameters support association (Valiant, 2005).

In earlier work (Valiant, 1994) we considered the combination of (i) strong k $=1$ synapses, (ii) small r, and (iii) disjoint representations. We shall identify this as regime- β. In this regime, while the paucity of interconnections is still a serious constraint, the system is closer to digital computation than is regime- α in the following senses: Information is localized in that representations are disjoint, and influence is localized in that a single neuron is able to cause an action potential in a neighbor. This regime has been shown to support a broader set of random access tasks (Valiant, 1994), including appropriate formalizations of: supervised memorization of conjunctions and disjunctions, inductive learning of conjunctions, disjunctions and appropriate linear separators, correlational learning, memorization and inductive learning of conjunctive expressions involving multiple objects and relations.

It seems that in systems in which neuron-item correspondences can be discovered by probing a few hundred or a few thousand neurons, r must be a significant fraction of n for otherwise there would be little chance of such a correspondence being found. We suggest that within such systems, which include the hippocampus and inferotemporal cortex, regime- α is in operation. In these areas, which do not represent the highest cognitive areas,
the tasks of memory formation and association, for which we have quantitative mechanistic explanations, may be a sufficient basis for performing the required processing.

On the other hand, there are areas such as prefrontal cortex, where itemneuron correspondences have proved more difficult to identify. A natural theory is that in such areas regime- β has some significant role. Any failure to find item-neuron correspondences can be then explained by the small values of r, and the computation of apparently more complex tasks by the possibly greater computational capability of regime- β. Of course, the price to be paid is strong synapses. Synapses there need to have a large dynamic range so that they can change in strength between an average weak level to $k=1$ strength through learning. Whether neurons do this is currently unknown. Strong synapses, however, have been observed (Thomson, Deuchars, and West, 1993; Markram, and Tsodyks, 1996; Ali, et al. 1998) and one recent study shows that the distribution of synaptic strengths is heavy-tailed at the strong end (Song et al., 2005).

Our analysis treats the human temporal lobe results as exemplars of regimeα. The locust olfactory system appears to be an interface between regime- α and regime- β, since it translates between large r to small r in a single step. There is evidence that different parts of cortex have widely different cortical parameters, as would be expected if they employed such different regimes. It has been found (Elston, Tweedale, and Rosa, 1999) that in macaques the number of spines in a polysensory area exceeds that in the primary visual area by a factor of thirteen.

We suggest that this paper is a first step in a research program to validate a general quantitative algorithmic theory of neural computation against experimental evidence. The numerous immediate directions of further work include pursuing the following questions: Can the values of the four parameters n, d, k, and r be measured for systems other than the locust olfactory system? Can it be shown that synapses can change between average strength to $k=1$ strength by learning, as required in regime- β ? Can direct experimental evidence be found for some system that it works in regime- β ? Is regime- β provably more powerful than regime- α in some significant computational sense?

Acknowledgements

I am grateful to Gilles Laurent and Gabriel Kreiman for their data and for discussions. This work was supported in part by grants from the National Science Foundation NSF-CCR-03-10882, NSF-CCF-04-32037, and NSF-CCF-04-27129.

References

Abeles, M. (1991) Corticonics: Neural Circuits of the Cerebral Cortex, (Cambridge University Press, Cambridge).

Ali, A. B., Deuchars, J., Pawelzik, H. and Thomson, A. M. (1998), CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices J.Physiol. 507, 201.

Barlow, H. B. (1972), Single units and sensation: A neuron doctrine for perceptual psychology. Perception 1, 371.

Braitenberg, V. (1978), in Theoretical Approaches to Complex Systems, Lecture Notes in Biomathematics, 21, R.Heim, G. Palm Eds. (SpringerVerlag, Berlin) pp 171-188.

Braitenberg, V., and Schuz, A. (1998), Cortex: Statistics and Geometry of Neuronal Connectivity, (Springer-Verlag, Berlin).

Elston, G. N., Tweedale, R. and Rosa, M. G. P. (1999), Cortical integration in the visual system of the macaque monkey: large-scale morphological differences in the pyramidal neurons in the occipital, parietal and temporal lobes. Proc. R. Soc. Lond. B 266, 1367.

Feldman, J. A. (1982). Dynamic connections in neural networks. Biol. Cybern., 46, 27.

Feldman, J. A., and Ballard, D. H. (1982), Connectionist models and their properties. Cog. Sci. 6:205.

Graham, B., and Willshaw, D. (1997), Capacity and information efficiency of the associative net. Network: Comput. Neural Syst. 8, 35.

Griffith, J. S. (1963), On the stability of brain-like structures. Biophys. J., 3, 299.

Gross, C. G., Bender, D. B. and Rocha-Miranda, C. E. (1969), Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science, 166, 1303.

Gross, C. G., Rocha-Miranda, C. E. and Bender, D. B. (1972), Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol, 35, 96.

Jortner, R. A., Farivar, S. S., and Laurent (2006), G. Dense connectivity for sparse coding in the locust olfactory system. Manuscript, (2006).

Kanerva, P. (1988), Sparse Distributed Memory, (MIT Press, Cambridge).
Markram, H., and Tsodyks, M. (1996), Redistribution of synaptic efficacy: A mechanism to generate infinite synaptic input diversity from a homogenous population of neurons without changing absolute synaptic efficacies.
J. Physiol. (Paris), 90, 229.

Marr, D. (1969), A theory of cerebellar cortex. J. Physiol 202, 437.
O'Keefe, J., and Dostrovsky, J. (1971), The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat. J., Brain Res. 34, 171.

O’Keefe, J., Burgess, N., Donnett, J. G., Jeffery, K.J., and Maguire, E. A. (1998), TI - Place cells, navigational accuracy, and the human hippocampus. Phil. Trans. Roy. Soc. Lond. B, 353, 1333.

Page, M. (2000), Connectionist modelling in psychology: A localist manifesto. Behavioral and Brain Sciences, 23:4, 443.

Palm, G. (1982), Neural Assemblies: An Alternative Approach to Artifcial Intelligence. Springer-Verlag, Berlin.

Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C. and Fried, I. (2005), Invariant visual representation by single neurons in the human brain. Nature, 435, 1102-1107.

Song, S., Sjostrom, P.S., Reigl, M., Nelson, S., and Chklovskii, D. M. (2005), Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3:3, 507.

Thomson, A. M., Deuchars, J. and West, D. C. (1993), Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically J. Neurophysiol. 70: 2354.

Valiant, L. G. (1994), Circuits of the Mind, (Oxford University Press, New York).

Valiant, L. G. (2005), Memorization and association on a realistic neural model. Neural Computation, 17:3, 527.

	$\mathrm{k}=4$	$\mathrm{k}=8$	$\mathrm{k}=16$	$\mathrm{k}=32$	$\mathrm{k}=64$	$\mathrm{k}=128$	$\mathrm{k}=256$	$\mathrm{k}=512$	$\mathrm{k}=1024$
$\mathrm{~d}=64$	$.0349^{6}$.100	$.244^{9}$	$.555^{9}$					
$\mathrm{~d}=128$.0146	.0442	$.109^{7}$	$.247^{9}$	$.537^{9}$				
$\mathrm{~d}=256$.00626	.0198	.0502	$.115^{9}$	$.249^{9}$	$.526^{9}$			
$\mathrm{~d}=512$.00270	.00898	.0234	.0542	$.118^{9}$	$.249^{9}$	$.518^{9}$		
$\mathrm{~d}=1024$.00118	.00410	.0110	.0258	.0568	$.120^{9}$	$.250^{9}$	$.512^{9}$	
$\mathrm{~d}=2048$	$.000516^{6}$.00189	.00517	.0123	.0275	.0586	$.122^{9}$	$.250^{9}$	$.509^{9}$
$\mathrm{~d}=4096$	$.000227^{6}$.000872	.00245	.00594	.0133	.0286	.0598	$.123^{9}$	$.250^{9}$
$\mathrm{~d}=8192$	$.000101^{6}$.000404	.00116	.00286	.00649	.0140	.0294	.0606	$.123^{9}$
$\mathrm{~d}=16384$	$.0000446^{6}$.000188	.000554	.00138	.00316	.00688	.0145	.0299	.0612
$\mathrm{~d}=32768$	$.0000198^{8}$	$.0000876^{6}$.000265	.000670	.00155	.00338	.00715	.0148	.0303
$\mathrm{~d}=65536$	$.00000886^{9}$	$.0000410^{6}$.000127	.000325	.000756	.00166	.00353	.00734	.0151

Table 1. The entries are solutions for $x(=r / n)$ to equation $(\mathcal{B}(x n, d / n, k))^{2}=x$ for various combinations of d and k that hold for all values of $n \geq 10^{6}$. The solutions given are for $n=10^{9}$ and were found numerically. They are accurate to three significant figures for $n=10^{9}$ and 10^{8}, to two for $n=10^{7}$ and to one for $n=10^{6}$. The superscripts give the greatest power $x \leq 9$ such that for all integer powers $n=10^{y}$ for $x<y \leq 9$ the non-interference conditions X and Y hold. For $k=1$ and 2 condition X is violated for all $n \leqq$ 10^{9} for all values of d shown, and therefore the entries are omitted.

