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Abstract

A central open question of computational neuroscience is to identify the data structures 

and algorithms that are used in mammalian cortex to support successive acts of the basic 

cognitive tasks of memorization and association. This paper addresses the simultaneous

challenges of realizing these two distinct tasks with the same data structure, and doing so 

while respecting the following four basic quantitative parameters of cortex, the neuron 

number, the synapse number, the synapse strengths, and the switching times. Previous 

work had not succeeded in reconciling all these opposing constraints, the low values of 

synapse strengths that are typically observed experimentally having contributed a 

particular obstacle. In this paper we describe a computational scheme that supports both 

memory formation and association, and is feasible on networks of model neurons that 

respect the widely observed values of the above-mentioned four quantitative parameters.

Our scheme allows for both disjoint and shared representations. The algorithms are 

simple, and in one version both memorization and association require just one step of 

vicinal or neighborly influence. The issues of interference among the different circuits 

that are established, of robustness to noise, and of the stability of the hierarchical 

memorization process are addressed. A calculus, therefore, is implied for analyzing the 

capabilities of particular neural systems and subsystems, in terms of their basic numerical

parameters.

* This paper is to appear in Neural Computation, MIT Press. 
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Introduction

We consider four quantitative parameters of a neural system that together constrain its 

computational capabilities: the number of neurons, the number of neurons with which 

each neuron synapses, the strength of synaptic connections, and the speed of response of 

a neuron. The typical values that these parameters are believed to have in mammalian

cortex appear to impose extremely severe constraints. We believe that it is for this reason 

that computationally explicit mechanisms for realizing multiple cognitive tasks 

simultaneously on models having these typical cortical parameters, have not been 

previously offered. 

Estimates of these four cortical parameters are known for several systems. The number of 

neurons in mouse cortex has been estimated to be 1.6 x 10
7
, while the corresponding 

estimate is in the region of 10
10

 for humans (Braitenberg and Schuz, 1998). There also 

exist estimates of the number of neurons in different parts of cortex, and in related 

structures such as the hippocampus and olfactory bulb. 

The number of neurons with which each neuron synapses, which we shall call the degree, 

is a little harder to measure. However, it is considered that the effect of multiple

synapsing between pairs of neurons is small and therefore that this degree is close to the 

total number of synapses per neuron, which has been estimated to be 7,800 in mouse

cortex and in the 24,000-80,000 range in humans (Abeles 1991). 

The third parameter, the synapse strength, presents a still more complex set of issues. The 

most basic question here is how many of a neuron’s neighbors need to be sending an 

action potential in order to create an action potential in the neuron.  Equivalently, the 

contribution of each synapse, the excitatory presynaptic potential, can be measured in 

millivolts and the fraction that this constitutes of the threshold voltage that needs to be 

overcome evaluated. While some moderately strong synapses have been recorded

(Thomson et al., 1993; Markram and Tdodyks, 1996a; Ali et al., 1998), the average value 
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is believed to be weak. The effective fraction of the threshold that each neighbor 

contributes, has been estimated (Abeles, 1991) to be in the range 0.003 to 0.2. In other 

words it is physiologically quite possible that cognitive computations are characterized 

by a very small and hard to observe fraction of synapses that contribute above this range, 

perhaps even up to the threshold fraction of 1.0. However, there is no experimental

confirmation of this to date, and for that reason this paper addresses the possibility that at 

least some neural systems work entirely with synapses whose strengths are some orders 

of magnitude smaller.

The time it takes for a neuron to complete a cycle of causing an action potential in 

response to action potentials in its presynaptic neurons has been estimated as being in the 

1-10 millisecond range. Since mammals can perform significant cognitive tasks in 100-

200 milliseconds, algorithms that take a few dozen parallel steps must suffice. 

The central technical contribution of this paper is to show that two basic computational

problems, memory formation and association, can be implemented consistently in model

neural systems that respect all of the above mentioned numerical parameters.

The first basic function, JOIN, implements memory formation of a new item in terms of

two established items: If two items A and B are already represented in the neural system,

the task of JOIN is to modify the circuit so that at subsequent times there is the 

representation of a new item C that will fire if and only if the representations of both A 

and B are firing. Further, the representation of C is an “equal citizen” with those of A and 

B for the purposes of subsequent calls of JOIN. JOIN is intended as the basic form of 

memorization of an item, and incorporates the idea that such memorization has to be 

indexed in terms of the internal representations of items already represented.

The second function, LINK, implements association: If two “items” A and B are already 

represented in the neural system in the sense that certain inputs can cause either of these 

to fire, the task of LINK is to modify the circuit so that at subsequent times whenever the 
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representation of item A fires, then the modified circuit will cause the representation of

item B to fire also.

Implicit in both the definitions of JOIN and LINK is the additional requirement that there 

be no deleterious interference or side-effects. This means that the circuit modifications do 

not impair the functioning of previously established circuits, that when the newly created 

circuit executes no unintended other items fire, and that the intended action of the new 

circuit cannot be realized in consequence of some unintended condition.

We note that for some neural systems such as the hippocampus and the olfactory bulb, 

the question of what items, whether representing location or odors, for example, are being 

represented has been the subject of some experimental study already. Also for such 

systems our four cortical parameters can be measured. We expect, therefore, that our 

analysis offers both explanatory and predictive value for understanding such systems. For 

the parts of cortex that process higher-level functions the corresponding experimental

evidence is more elusive. 

In order that our results apply to a wide range of neural systems, we describe 

computational results for systems within a broad range of realistic parameters. We show 

that for wide ranges of values of the neuron count between 10
5
 and 10

9
, and of values of 

the synapse count or degree between 16 and 10
6
, there is a range of values of the synapse 

strength between .001 and .125 for which both JOIN and LINK can be implemented.

Further this latter range usually includes synaptic strengths that are at the small end of the 

range. Tables 1 - 4 summarize this data and show, given the values of the neuron count 

and degree of a neural system, the maximum synapse strength that is sufficient for JOIN 

and LINK, in both disjoint and shared representations. The implied algorithms for LINK 

take just one step, and for JOIN either two steps (Tables 1, 2) or also just one step (Tables 

3, 4). The simplicity of these basic algorithms leaves room for more complex functions to 

be built on top of them.
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We also describe a general relationship among the parameters that holds under some

stated assumptions for systems that use the mechanisms described. This relationship (*) 

states that kn exceeds rd, but only by a most a fixed small constant factor, where 1/k is 

the maximum collective strength of the synapses to any one neuron from any one of its 

presynaptic neurons, n is the number of neurons, r is the number of neurons that represent 

a single item, and d is the number of neurons from which each neuron receives synapses.

The essential novel contribution of this paper is to show that random graphs have some

unexpected powers: in particular for parameters that have been observed in biology, they 

allow a method of assigning memory to a new item, and also allow for paths, and 

algorithms for establishing the paths, for realizing associations between items.

There is a long history of studies of random connectivity for neural network models,

notably Beurle (1963), Griffith (1963, 1971), Braitenberg (1978), Feldman (1982), and 

Abeles (1991). In common with such previous studies, ours assumes random

interconnections and does not apply to systems where, for example, the connections are 

strictly topographic. The other component of our approach that also has some history is 

the study of local representations in neural networks, including Barlow (1972), Feldman

(1982), Feldman and Ballard (1982), Shastri and A. Ajjanagadde (1993), and 

Shastri(2001). The question of how multiple cognitive functions can be realized 

simultaneously using local representations and random connections has been pursued by 

Valiant (1988, 1994). 

Our central subject matter is the difficulty of computing flexibly on sparse networks 

where nodes are further frustrated in having influence on others by the weakness of the 

synapses. This difficulty has been recognized most explicitly in the work of Griffith 

(1963) and Abeles (1991). Griffith suggests communication via chains that consist of sets 

of k nodes chained together so that each member of each set of k nodes is connected to 

each member of the next set in the chain. If the synaptic strength of each synapse is 1/k

then a signal can be maintained along the chain. Abeles suggests a more general 

structure, which he calls a synfire chain, in which each set has h k nodes and each node 
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is connected to k of the h nodes in the next set. He shows that for some small values of k

such chains can be found somewhere in suitably dense such networks. 

The goals of this paper impose multiple constraints for which these previous proposals 

are not sufficient. For example, for realizing associations we want that between any pair 

of items there be a potential chain of communication. In other words, these chains have to 

exist from anywhere to anywhere in the network, rather than just somewhere in the 

network. A second constraint is that we want explicit computational mechanisms for 

enabling the chain to be invoked to perform the association, and the passive existence of 

the chain in the network is not enough. A third requirement is that for memory formation

we need connectivity of an item to two others. 

Some readers may choose to view this paper as one that solves a communication or 

wiring problem, and not a computational one. This view is partly justified since, once it is 

established that the networks have sufficiently flexible interaction capabilities, the 

mechanisms required at the neurons are computationally very simple. For readers who 

wish to investigate more rigorously what simple means here we have supplied a section 

that goes into more details. The model of computation used there is the neuroidal model

(Valiant 1994), which was designed to capture the communication capabilities and 

limitations of cortex as simply as possible. It assumes only the simplest timing and state 

change mechanisms for neurons so that there be no doubt that neurons are capable of 

doing at least that much. Demonstrating that some previously mysterious task can be 

implemented even on this simple model therefore has explanatory power for actual neural 

systems.

The neuroidal model was designed to be more generally programmable than its 

predecessors and hence to offer the challenge of designing explicit computational

mechanisms for explicitly defined and possibly multiple cognitive tasks. The contribution 

of this paper may be viewed as that of exhibiting a wide range of new solutions to that 

model. The previous solutions given for the current tasks were under the “direct action 

hypothesis” – the hypothesis that synapses could become so strong that a single 
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presynaptic neuron was enough to cause an action potential in the postsynaptic neuron. 

Whether this hypothesis holds for neural systems that perform the relevant cognitive 

tasks is currently unresolved. In contrast, the mechanisms described in this paper are in 

line with synaptic strength values that have been widely observed and generally accepted. 

This paper pursues a computer science perspective. In that field it is generally found, on 

the positive side, that once one algorithm has been discovered for solving a 

computational problem within specified resource bounds, many others often follow. On 

the other hand, on the negative side, it is found that the resource bounds on computation

can be very severe. For example, for the NP-complete problem of satisfiability (Cook,

1971; Papadimitriou 1994) of Boolean formulae with n occurrences of literals no 

algorithm for solving all instances of it in 2
f(n)

steps is known for any function f(n)

growing more slowly than linear in n. If a device were found that could solve this 

problem faster, then a considerable mystery would be created: The device would be using 

some mechanism that is not understood. Neuroscience has mysteries of the same

computational nature and needs to resolve them. This paper aims at making one of these 

mysteries concrete and to resolve it.

Graph Theory 

We consider a random graph G with n vertices (Bollobas, 2001). From each vertex there 

is a directed edge to each other vertex with probability p, so that the expected number of 

nodes to which a node is connected is d = p(n - 1). In this model a vertex corresponds to a 

neuron, and a directed edge from one vertex to another models the synapse between the 

presynaptic neuron and the postsynaptic neuron. Such a model makes sense for neural 

circuits that are richly interconnected. A variant of the model is that of a bipartite graph 

where the vertex set can be partitioned into two subsets V1 and V2 such that every edge is 

directed from a V1 vertex to a V2 vertex. This would be appropriate for modeling the 

connections from one area of cortex to a second, possibly distant, area. The analyses we 

give for JOIN and LINK apply equally to both variants. We shall use d = pn in the 
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analysis, which is exact for the bipartite case, and a good approximation for the other 

case for large n.

In general, to obtain rigorous results about random graphs we take the view that for the 

fixed nodes under consideration the edges are present or not each with probability p

independent of each other. It is convenient for the sake of analysis to view the edges as 

being generated in that manner afresh, rather than as fixed at some previous time.

We assume that the maximum synaptic strength is 1/k of the threshold, for some integer 

k. In the graph theoretic properties we shall, therefore, always need to find at least k

presynaptic neighbors to model the k presynaptic neurons that need to be active to make

the neuron in question active. 

Lastly, we shall model the representation of an item in cortex by a set of about r neurons, 

where r is the replication factor. In general, such an item will be considered to be 

recognized if essentially all the constituent neurons are active. In general different items

will be represented by different numbers of neurons, though of the same order of 

magnitude. We do not try to ensure that they are all represented by exactly r. However,

once an item is represented by some r’ neurons, then it makes sense to assert that if no 

more than r’/2 of its members are firing then the item has not been recognized.

We call a representation disjoint or shared, respectively, depending on whether the sets 

that represent two distinct items need, or need not, be disjoint. In disjoint representations, 

clearly, no more than n/r items can be represented, while shared representations allow for 

many more, in principle.

Memory Formation for Disjoint Representations 

The JOIN property is the following. Given values of n, d and k, which are the empirical

parameters of the neural system, we need to show that the following holds. Given two 

subsets of nodes A and B of size r, the number of nodes to which there are at least k edges 
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directed from A nodes, and also at least k edges directed from B nodes has expected 

value of r. The vertices that are so connected will represent the new item C. The above-

mentioned property ensures that the representation of C will be made to fire by causing 

the representation of either one of A or B to fire. The required network is illustrated in 

Figure 1. We want C to be an equal citizen as much as possible with A and B for the 

purposes of further calls of JOIN. We ensure this by requiring that the expected number

of nodes that represent C is the same as the number of those that represent A and B. 

In general we denote by (r, p, k) the probability that in r tosses of a coin that comes up 

heads with probability p, and tails with probability 1-p, there will be k or more heads. 

This quantity is equal to the sum for j ranging from k to r of the value of (r, p, j) = 

(r!/(j!(r-j)!)p
j
(1-p)

r-j
. For constructing our tables we compute such terms to double 

precision using an expansion for the logarithm of the factorial or Gamma function 

(Abramowitz and Stegun, 1964). 

We now consider the JOIN property italicized above. For each vertex u in the network 

the probability that it has at least k edges directed towards it from the r nodes of A is (r,

p, k), since each vertex of A can be regarded as a coin toss with probability p of heads 

(i.e. of being connected to u) and we want at least k successes. The same holds for the 

nodes of B. Hence the probability of a node being connected in this way to both A and B 

is p’ = ( (r, p, k))
2
, and hence the expected number of vertices so connected is n times

this quantity. The stated requirement on the JOIN property, therefore, is that the 

following be satisfied:

n( (r, p, k))
2
= r.                                            [1] 

This raises the important issue of stability. Even if the numbers of nodes assigned to A 

and B are both exactly r, this process will assign r nodes to C only in expectation. How 

stable is this process if such memorization operations are performed in sequence, with 
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previously memorized items forming the A and B items of the next memorization

operation? Fortunately, it is easy to see that this process gets more and more stable as r

increases. The argument for relationship [1] showed that the number of nodes assigned to 

C is a random variable with a binomial distribution defined as the number of successes in 

n trials where the probability of success in each trial is p’. This distribution therefore has 

mean np’, as already observed, and variance np’(1-p’). The point is that this variance is 

close to the mean r = np’ if p’ is small relative to 1, and then the standard deviation, 

which is the square root of the variance, is approximately r. Hence the standard 

deviation as a fraction of the mean decreases as 1/ r as the mean np’ = r increases. For 

the ranges of values that occur typically in this paper, such as r equal to 10
3
, 10

4
 or even 

much larger, this r standard deviation will be a small fraction or r and hence one can 

expect the memorization process to be stable for many stages. Thus for stability the large 

k large r cases considered in this paper are much more favorable than the k =1 case 

considered in (Valiant, 1994) with r = 50. For the latter situation some analysis and 

suggested ways of coping with the more limited stability were offered in (Valiant, 1994, 

Gerbessiotis, 2003). 

If fewer than a half of the representatives of an item are firing, we regard that item as not 

being recognized. As a side-effect condition we therefore want that if no more than a half 

of one of A or B is active then the probability that more than a half of C is active is 

negligible. Since we cannot control the size of C exactly we ensure the condition that at 

most a half of C be active by insisting that at most a much smaller fraction of r, such as 

r/10, be active. The intention is that r/10 will be smaller than a half of C even allowing 

for the variations in the size of C after several stages of memory allocation.  This gives: 

(n, (r/2, p, k) (r, p, k), r/10)  ~  0.                                 [2] 

The second side-effect condition we impose is related to the notion of capacity, or the 

number of items that can be stored. To guarantee large capacity we need an assurance 

that the A  B nodes allocated will not be caused to fire if a different conjunction is 

activated. The bad case is if the second conjunction involves one of A or B, say A, and 
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another item D different from B. If the node sets allocated to A  B and not to A  D is 

of size at least 2r/3 then we will consider there to be no interference since if A  B is of 

size at most 4r/3 then the firing of A  D will cause fewer than half of the nodes of A  B 

to fire.

The probability that a node receives k inputs from B and k from A, but fewer than k from

D, is p’ = (1 - (r, p, k))( (r, p, k))
2
, and we want that the number of nodes that are so 

allocated to A  B but not to A  D, be at least 2r/3. Hence we want 

(n, p’, 2r/3) ~ 1.                                        [3] 

Association for Disjoint Representations 

We now turn to the LINK property, which ensures that B can be caused to fire by A via 

an intermediate set of “relay” neurons: Given two sets A and B of r nodes, for each B 

vertex u with high probability the following occurs:  the number of (relay) vertices from 

which there is a directed edge to u and to which there are at least k edges directed from 

A nodes, is at least k. We shall call this probabilityY. This property ensures that each 

neuron u that represents B will be caused to fire with high probability if the A 

representation fires. This property is illustrated in Figure 2. 

For the LINK property we note that the probability of a vertex having at least k

connections from A and also having a connection to B vertex u is p (r, p, k). We need 

that the number of such nodes be at least k with high probability, or in other words that 

Y = (n, p (r, p, k), k)  ~  1.                            [4] 
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As a side effect condition we need that if at most a half of A fire then with high 

probability fewer than a half of B should fire. We approximate this quantity by assuming

independence for the various u:

(r, (n, p (r/2, p, k), k), r/2)  ~  0.                     [5] 

As a second side-effect condition we consider the probability that a third item C for 

which no association with B has been set up by a LINK operation, will cause B to fire 

because some relay nodes are shared with A. Further, we make this more challenging by 

allowing there to have been t, rather than just one, association with B previously set up, 

say from A1, …, At. Now, the probability that a node will act as a relay node from A1 to a 

fixed node u in B is p (r, p, k). For t such previous associations the probability that a 

node acts as a relay for at least one of the Ai is p’ = p(1-(1- (r, p, k))
t
). If we require that 

these nodes be valid relay nodes from item C also, then this probability gets multiplied by 

another factor of (r, p, k) since C is disjoint from A1,…, At. Then the side-effect 

requirement becomes that p” = (n, p’ (r, p, k), k), the probability of there being at least 

k relay nodes for u is so small that it is unlikely that a large fraction, say at least r/2, of 

the B nodes are caused to fire by C. We approximate this quantity also by making the 

assumption of independence for the various u:

(r, p”, r/2)  ~  0.                                    [6]

Memory Formation for Shared Representations 

By a shared representation we shall mean here a representation where each neuron can 

represent more than one item. There is no longer a distinction between nodes that have 

and those that have not been allocated. The items each node will be assigned by JOIN are 

already determined by the network connections without any training process being 

necessary. The actual meaning of the items that will be memorized at a node will, of 
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course, depend on the meanings assigned by a different process, such as the hardwiring of 

certain sensory functions to some input nodes.

The model here is that an item is represented by r neurons, randomly chosen. The 

expected intersection of two such sets then is of size r
2
/n. We can recompute the relations 

corresponding to [1] – [6] under this assumption. For simplicity we shall consider only 

the case in which for JOIN the neurons of A and B are in one area, and those of C in 

another, and for LINK the neurons of A, B and the relay nodes are in three different 

areas, respectively. Then, if for simplicity we make the assumption that the intersection is 

of size exactly r’, the closest integer to r
2
/n, then relation [1] for JOIN becomes:

n{ (r’, p, k)  + (i=0 : k-1) [ (r’, p, i)( (r-r’, p, k-i))
2
]} = c1r,      [1’] 

where i in the summation indexes the number of connections from the intersection of A 

and B. We need to show that c1 is close to one. 

Equation [2’] we adapt from [2] to be the following: 

(n, p’, r/10)  ~  0,                                                 [2’] 

where p’ = ( (r’, p, k) + (i=0, …, k-1) [ (r’, p, i) (r-r’, p, k-i) (r/2-r’, p, k-i)]), where 

further i in the summation indexes the number of connections from a neuron that is in 

both A and B, and r’ = r
2
/n.

We adapt Equation [3’] from [3] by considering the case that the intersections A  B, A 

 D, and B  D all have their expected sizes r’ = r
2
/n, and that A  B  D has its 

expected size r’’ = r
3
/n

2
. For a fixed node in C we shall denote the numbers of 

connections to these four intersections by i+m, j+m, l+m, and m, respectively, in the 

summation below. Then the probability of a node being allocated to A  B and not to A 

D is lower bounded by the following quantity p’, where r^ =r’-r’’:
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(i=0 : k) (r^, p, i) (j=0 : k-i) (r^, p, j) (l=0 : k-i-j) (r^, p, l) (m=0 : k-i-j-l) (r”, p, m)

             [ (r-2r’+r’’, p, k-i-j-m) (r-2r’+r’’, p, k-j-l-m)(1- (r-2r’+r’’, p, k-i-l-m))].

(Note that to allow for terms in which the intersection of A and B have more than k

connections to the C node we need to interpret the first term (r^, p, i) in the above 

expression for the particular value i = k to mean (r^, p, k)) . Then the relationship we 

need is

(n, p’,  2r/3)  ~  1.                                   [3’] 

Association for Shared Representations 

Equations [4’] and [5’] in the shared coding are identical to [4] and [5] since we are 

assuming here, for simplicity, that in an implementation of LINK between A and B, the 

neurons representing A, B, and the relay nodes are from three disjoint sets. 

Equation [6’] will correspond to equation [6] in the special case of t = 1. For a fixed node 

in B, the probability of a node u being a relay node to it and having k edges coming both 

from A and from C is: 

p’ = p( (r’, p, k) + (i=0, …, k-1) [ (r’, p, i) ( (r-r’, p, k-i))
2
]).

The probability that there are at least k of these is p’’ = (n, p’, k). We want that the

probability that at least half of the members of B have such sets of at least k relay nodes 

be small. We approximate this quantity by assuming independence for the various u:

(r, p’’, r/2)  ~  0.                                             [6’] 
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One-step Memory Formation for Shared Representations

The algorithm for memorization implied above requires A and B to be active at different 

time instants and therefore requires the memorization process to take two steps. Here we 

shall discuss a process by which memorization can be achieved in one step. For the sake 

of brevity we shall consider one-step only for the shared representation case. The results 

are presented in Tables 3 and 4. 

The main advantage of these one-step algorithms is that the algorithms become even 

simpler and assume even less about the timing mechanism of the model of computation.

On the other hand, one small complication arises: the number of inputs needed to fire a 

node in the memorization algorithm is now different from that needed in the association 

algorithm. Instead of having a single parameter k, we shall have two parameters km and ka

respectively. It turns out that km = 2ka works. This means is that we can fix the parameter

k of the neurons to be km, and then use a weight in the memorization algorithm that is 

only half as strong as the maximum value allowed.

We now consider the JOIN property. For each vertex u that is a potential representative 

of C the probability that it has at least km edges directed towards it from the nodes of A 

B is now p’ = (2r-r’, p, km), provided the intersection of A and B is of size exactly r’,

the integer closest to the expectation r
2
/n. This is because each vertex of A  B may be 

regarded as a coin toss with probability p of coming up heads (i.e. of being connected to 

u) and we want at least km successes. Hence the expected number of vertices so connected 

is n times this quantity. The stated requirement on the JOIN property, therefore, is that 

the following be satisfied:

n (2r-r’, p, km)  ~ r.                                     [1”] 
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Alternatively one could impose some specific probability distribution on the choice of A 

and B and compute an analog of [1”] that is precise for that distribution and does not 

need the assumption that the intersections are of size exactly r’.

If fewer than a half of the representatives of an item are firing, we regard that item as not 

being recognized. As a side-effect condition we therefore want that if no more than a half 

of one of A or B is active then the probability that more than a half of C is active is 

negligible. In exact analogy with [2] and [2’] we have that 

(n, (3r/2, p, km), r/10)  ~  0.                                 [2”] 

Here 3r/2 upper bounds the number of firing nodes in A  B if at most r/2 are firing in A 

and all are firing in B, say. 

As a second side-effect condition we again need an assurance that the A  B nodes 

allocated will not be caused to fire if a different conjunction is activated. Again, a bad 

case is if the second conjunction is A  D where D is different from B. If the node set 

allocated to A  B and not to A  D is at least of size 2r/3 we will consider there to be no 

interference since if A  B is of size less than 4r/3 then the firing of A  D will cause 

fewer than half of the nodes of A  B to fire.

If A, B and D were disjoint sets of r nodes then the probability that a node receives km

inputs from A  B but fewer than k = km from A  D, would be

            p’ = (s=0 : k-1) (r, p, s) ( (r, p, km - s)) (1 - (r, p, km – s)),

where s denotes the number of nodes in A that are connected to that node. We want that 

the number of nodes that are so allocated to A  B but not to A  D, be at least 2r/3.

Hence we would want that
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(n, p’, 2r/3) ~ 1.                                   [3”] 

In the event that A, B, and D are not disjoint but randomly chosen sets of r elements we 

need equation [3”] but with a value of p’ computed as follows: We assume that the 

intersections A  B, A  D, and B  D all have their expected sizes r’ = r
2
/n, and that A 

 B  D has its expected size r’’ = r
3
/n

2
. For a fixed node in C we shall denote the 

numbers of connections to these four intersections by i+m, j+m, l+m, and m,

respectively, in the summation below. Then the probability of a node being allocated to A 

 B and not to A  D is lower bounded by the following quantity p’, where r^ =r’-r’’ and 

r
#
 = r – 2r’ + r’’:

p’ = (s=0 : k-1) ( r
#
, p, s) (i=0 : k-s-1) (r^, p, i) (j=0 : k-i-s-1) (r^, p, j) (m=0 : k-i-j-s-1) (r”, p, m)

(l=0 : k-i-j-m-s-1) (r^, p, l) [( (r
#
, p, km – s-i-j-l-m)) (1 - ( r

#
, p, km – s-i-j-l-m))].

Here s indexes the number of connections from nodes that are in A but not in B or D.

One-step Association with Shared Representations 

For the LINK property we simply have relations [4], [5], and [6’] with k replaced by ka:

Y = (n, p (r, p, ka), ka)  ~  1.                                   [4”] 

(r, (n, p (r/2, p, ka), ka), r/2)  ~  0.                           [5”] 

and

(r, p’’, r/2)  ~  0.                                           [6”] 
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where

p’’ = (n, p’, k), and

          p’ = p( (r’, p, ka) + (i=0, …, k-1) [ (r’, p, i) ( (r-r’, p, ka -i))
2
]).

Since [6’’] only guarantees that one previous association to item C will not lead to false

associations with C, we also use [6] to compute an estimate of the maximum number of 

previous associations that still allow resistance to such false associations.

Graph-theoretic Results

In Tables 1 and 2 we summarize the solutions we have found: For each combination of n,

d and k the table entry gives a value of r that satisfies all six conditions [1] – [6] to high 

precision, as well as their equivalents [1’] – [3’] and [6’] for shared representations.

(There are essentially only eight equations since [2’] and [6’], subsume [2] and [6] 

respectively.) For example consider a neural system with n = 1,000,000 neurons where 

each one is connected to 8192 others on the average and the maximum synaptic strengths 

are 1/64 of the threshold amount. The entry 8491 found in Table 1 gives the value of r

that solves the ten constraints. It means that if each item is represented by about 8491 

neurons then the graph has the capability of realizing JOIN and LINK using the 

algorithms to be outlined in later sections. The central positive result of this paper is the 

existence of entries in the tables for combinations of neuron numbers, synapse strengths, 

and synapse numbers that are widely observed in neural systems. We expect that the 

analysis that underlies the tables offers a basis for a calculus for understanding the 

algorithms and data structures used in specific systems, such as the hippocampus or the 

olfactory bulb, 
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In interpreting the tables the following comments are in order. The solutions were found 

by solving [1] using binary search, and discarding any solutions that failed to solve the 

remaining relations. As a further comment we note that equation [1] and some of the 

others are defined only for integer values of r, and in our search we therefore imposed the 

constraint of allowing only such integer values. The values of r are therefore the integer 

values for which the value of the left hand side of [1] is as close as possible to r. We

detail the exact integer values as a reminder of this. For all the entries shown the 

difference between the two sides of [1] is at most 1%, except for those labeled * where a 

difference of 10% is allowed.

The following are some further observations: The case of k = 1 equation [4] is known 

(Valiant 1994) to give an asymptotic value of Y ~ 1-1/e = .63….  In general, values k = 1, 

2, and 4 violate at least one of either [2] or [5].  Most of the entries support Equation [6] 

only up to t = 1, except for some entries with k = 8 or 16 and with some of the higher 

values of d. Finally, the reader will observe that corresponding entries for different values 

of the neuron count n are in the ratio of the values of n.

We note that for the k = 1 case the analysis  in (Valiant 1994) relates to the present 

analysis in the following way: It is observed there that in general for any r and n the 

graph density that supports JOIN is too sparse to support LINK with a Y value close to 1. 

The suggested solution there is to use a graph that is dense enough to support LINK, and 

to have it ignore a random fraction of the connections when implementing JOIN so as to 

effectively use a sparser graph regime for that purpose.  On a separate issue, the earlier 

analysis did not have any equivalents of the relations [2] and [5] above. For disjoint 

representations, where the intention is that in each situation either all or none of the 

representatives of an item fires, these conditions might be argued to be too onerous.

Tables 3 and 4 summarize the solutions we have found that support the one-step 

algorithm. We note that in general corresponding values of r a little smaller in these 

Tables than in Tables 1 and 2. With regard to equation [6] our findings, which are not 

detailed here, are as follows: While the parameters of Tables 1 and 2 support maximum
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values of t =1 usually, the smaller values of r in Tables 3 and 4 (where [6] is only an 

approximation) lead to rather larger values of t, scattered in the range 1 – 7. Further, it 

turns out that instead of using km = 2ka, as we do in these tables, we can find similar

results for slightly smaller coefficients, such as km = 1.95ka, or km = 1.9ka, and these give 

even smaller values of r and larger values of t.

The Computational Model and Algorithms 

As explained earlier, our goal is not only to show that the connectivity of the networks 

we consider are sufficient to provide the minimum communication bandwidth needed for 

realizing memorization and association, but also to show that algorithms are possible that 

modify the  network so as to be able to execute instances of these tasks. In particular each 

of these two tasks and for each representation one needs two algorithms, one for creating

the circuit, say for associating A to B in the first place, and one for subsequently 

executing the task, namely causing B to fire when A fires. 

For describing such algorithms we need a model of computation. We employ the 

neuroidal model because it is programmable and well suited to describing algorithms

(Valiant, 1994). As mentioned earlier the neuroidal model is designed to be so simple that 

there is no debate that real neurons have at least as much power. It is not designed to 

capture all the features of real neurons. 

Our algorithms are described for a variant of the neuroidal model that allows synapses to 

have memory in addition to weights. This has some biological support (Markram and 

Tsodyks, 1996b) and allows for somewhat more natural programming, even though 

temporary values of synaptic weights may be used instead, in principle, to simulate such 

states (Valiant 1994). A brief summary of the model is as follows: A neuroidal net 

consists of a weighted directed graph G with a model neuron or neuroid at each node. A 

neuroid is a threshold element with some additional internal memory, which can be in 

one of a set of modes. The mode si of node i at an instant will specify the threshold Ti,
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and may also have further components such as a member qi of a finite set of states Q. In 

particular a mode is either firing or non-firing and fi has value 1 or 0 accordingly. The 

weight of an edge from node j to node i is wji and models the strength of a synapse for 

which j is presynaptic and i is postsynaptic. Each synapse can also have a state qji, which 

with wji, forms a component of the mode sji . The only way a neuroid i can be influenced 

by other neuroids is through the quantity wi which equals the sum of the weights wji over

all nodes j presynaptic to i that are in firing modes. Each neuroid executes an algorithm

that is local to itself and can be formally defined in terms of mode update functions  and 

, for the neuroid itself and each synapse, respectively: 

( si , wi )  = si’,  and 

( si, wi, sji , fj )  = sji’.

These relations express the values of the modes of the neuroid and synapses at one step in 

terms of the values at the previous step of the variables on which they are permitted to 

depend. Thus the mode of a neuroid can depend only on its mode at the previous step and 

on the sum wi of weights of synapses incoming from firing nodes. The mode of one of its 

synapses can depend only on the mode of the same synapse, on the mode of the neuroid, 

on the firing status of the presynaptic neuroid, and on the sum wi of  weights of synapses 

incoming from firing presynaptic neuroids. The model assumes a timing mechanism that 

has two components. Each transition has a period. We assume here that all transitions 

have a period of 1, except for threshold transitions, those that are triggered by wi Ti,

which work on a faster time scale. There is a global synchronization mechanism such 

that, for example, if some external input is to cause the representations of two items A 

and B to fire simultaneously then the nodes partaking in these representations will be 

caused to fire synchronously enough that the algorithms that will be caused to execute 

can keep in lockstep for the duration of these local algorithms. These durations will be 

typically no more than ten, and for the purposes of this paper, just two steps. 

By a disjoint representation we shall mean a representation where each neuroid can 

represent at most one item, though one item may be represented by many neuroids. The 
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specific disjoint representation that our algorithms support has been called a positive

representation (Valiant 1994). The generalization that allows a node to represent more

than one item, as needed for the shared representations of the next section, we call a 

positive shared representation.

The neuroidal model allows for negative weights, which may be needed, for example, for 

inductive learning. However, the algorithms we describe here for JOIN and LINK do not 

use negative weights. 

We shall start with the algorithms needed for the disjoint two-step scheme implied by 

relations [1] – [6]. The algorithms for implementing JOIN and LINK are very similar to 

those that were described for the same tasks for unit weights [Reference 6, Algorithms

7.2 and 8.1.]  It is clear, however, that once graph-theoretic properties such as [1]-[6] are 

guaranteed then a rich variety of variants of these algorithms also suffice. We shall 

describe these algorithms informally here.

The following algorithm for creating JOIN needs the nodes of A and B to be caused to 

fire at distinct time steps. The nodes that are candidates for C = A  B (a) are initially in 

“unallocated” state q1, (b) have a fixed threshold T, (c) have each synapse in initial state 

qq1, and (d) have all the presynaptic weights initially at the value T/k.

The algorithm acting locally on each candidate C node will act over two steps. The first 

step is prompted by the firing of A, and the second by the firing of B one time unit later. 

Following these two prompts each candidate C node initially in state q1 that has at least k

connections from A and also at least k connections from B will be in state q2, indicating 

that it has become a C node and assigned to store something. Incoming weights from

nodes other than A or B will be made zero. An incoming weight from A will equal T/x if

there are x k of them, and those from B will equal T/y if there are y k of them. A 

candidate node that does not receive two successive prompts will return to the initial 

unassigned condition.
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The algorithmic mechanism that realizes this outcome is the following: First note that a 

node that does become a C node needs to make the incoming synapses have one of the 

three weight values depending on whether it comes from A, B or neither. The trick is that 

after the A prompt the synapses from A will memorize the value T/x for an x k as its 

weight, and memorize the fact that it is in this transitory condition by having the synapse 

state have the temporary value qq2. Also the node will memorize the fact that it is in a 

transitory state in which k connections from A have been found by going to state q3. At 

the B prompt, if at a candidate node in state q3 some y k synapses come from firing 

nodes then these synapses can be updated to have value T/y. At the same time the A 

synapses, in state qq2, can go on to take on the values T/x, and the remaining synapses 

the value 0. However, if no such k connections from B nodes are found at this second 

step then the whole neuroid returns to its initial condition. 

The reader can verify that the circuit constructed as described can execute the created 

conjunction using a very similar two-step process if at any later time A and B are 

presented at successive time instants. However, many variations are possible. For 

example, if the weights are set to T/2x and T/2y instead of T/x and T/y then simultaneous

presentation of A and B will work for recognition. Thus one-step execution is possible 

even with two-step creation. 

We observe here that in general here is a chance that the set of neuroids that are identified

to represent a conjunction are mostly previously taken, and the new ones that can be 

assigned form only a small fraction of r. Condition [2] ensures that that this effect is 

initially limited. The situation here is akin to that of a hashing scheme in which as the 

memory fills up fewer and fewer new places are available (Valiant, 1994).

We now go on to discuss an algorithm for creating LINK. We consider A to be 

represented in one area from which there are directed edges to an area of relay neuroids, 

from which in turn there are directed edges to a third area containing B. Initially the relay 

neuroids have threshold T and all weights on incoming edges weight T/k, and on outgoing 
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edges weight 0. The relay neuroids never change, except for firing. The neuroids in B are 

in state q1 initially.

The algorithm for creating LINK has one step in which the representations of A and B are 

caused to fire at the first prompt. For the nodes in B that are in state q1 and are caused to 

fire, each incoming edge from a firing node is given weight T/k.

The algorithm for executing LINK is even simpler. It requires simple threshold firing at 

both the relay level as well as in the B nodes. 

We now go on to discuss the shared representation expressed by relations [1’] – [6’]. The 

algorithm given for creating and executing LINK in the disjoint case described above 

applies unchanged to the shared case also. For JOIN the creation algorithm given has to 

be modified so that no distinction is made any more between allocated and unallocated 

nodes. Now no creation process is necessary! Execution can be realized by the following 

modification of the creation algorithm for the disjoint case: (i) the final state is made the 

same as the initial state q1, rather than a new state q2, and (ii) no synaptic weights are 

changed at all. The evaluation algorithm is unchanged. 

The above descriptions of the two algorithms assume bipartite graphs, in which A and B 

will be in different areas for the case of LINK, and C in a different area from A and B in 

the case of JOIN. To adapt the algorithms to general graphs small modifications are 

needed to allow for the node sets having nonzero intersections.

For the shared representation one-step algorithm there is again no creation process. 

Evaluation requires again only threshold firing. For LINK there is no difference between 

the one-step and two-step cases. 
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Capacity and Interference 

The intention of our representations is that when all or most of the nodes representing an 

item fire then the item is considered recognized. For example the activation of 

sufficiently many neurons in a representation in a motor area of cortex would cause a 

certain muscle movement.

This style of representation gives rise to a pair of related concerns: How many items can 

be represented in the system? What exactly does it mean for an item to be represented if

unforeseen interference from other activities in the circuit can occur? 

First, we note that these concerns occur in a fundamentally novel way in our approach as 

compared with some previous theories. In a traditional associative memory, for example,

there is just one kind of execution, namely retrieval, and we can assume that nothing else 

is going on simultaneously with an instance of it.  Hence, the notion of capacity, the 

number of items that can be stored, is analyzable in a clean manner (Graham and 

Willshaw, 1997).

In this paper we have two kinds of tasks, memorization and association. We also have 

diverse environments arising from different histories of past circuit creations. Further, we 

may want some robustness to other simultaneous activities in the circuit, and our longer-

term aim may be to support further tasks. These factors make possible a large number of 

potential sources of interference, which we define to be the effect on the execution of an 

algorithm of network conditions that arise from sources not specific to that execution.

Our guarantee that the circuit acts correctly is only with respect to some specified set of 

non-interference conditions such as  relations [2], [3], [5] or  [6] and a robustness 

condition that, as described in the section to follow, that upper bounds the total number of 

nodes that are active in the whole circuit. No guarantees are implied for situations that are 

outside these constraints. For example, if the circuit has a “seizure” so that half of the 
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nodes extraneous to the task at hand fire, then this is a pathological condition for which 

no guarantees are offered.

A second observation is that our guarantees are only probabilistic and, at least in the 

current paper, only as computed by some numerical calculations of limited precision. In 

particular, in order to bound the probability of error in the various relations, we have 

computed the tails of the Bernouilli distribution (n, p, k) by adding the individual non-

negligible terms (n, p, i), using double precision calculations. Since the number of terms

grows with n our accuracy was limited to about 10
-6

for the largest values of n that we 

considered.

In principle, the calculations may be performed to arbitrary accuracy in the following 

sense: One could compute for what minimum integer x is the probability of error less 

than 10
-x

 for each relation.

Doing such detailed calculations is beyond the scope of this paper. It will suffice here to 

observe that certainly in some cases within the tables of parameters that we consider, the 

errors are much smaller than the claimed 10
-6

, in fact less than 10
-1000

 in one extremity.

As an example, we give a simple analytic upper bound on the error for relation [2’’]: 

(n, (3r/2, p, km), r/10)  ~  0

under the assumption [1’’]

n (2r-r’, p, km)  ~ r

where, further, km = 2k. Now, for generic variables n, k, p, and b, if k = (1+b)np and 0 b

 1, then 
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(n, p, k)  exp(-b
2
np/3)

can be derived from Chernoff’s bound (Angluin and Valiant, 1979), where “exp” denotes 

exponentiation to the base e = 2.71… . From this bound it follows that

(3r/2, p, 2k)  exp(- (2k/(3rp/2) -1)
2
(3rp/2)/3).

Now in all cases in the tables rp < k (a fact which also follows from [1’’] if we assume r’

to be negligible and r/n to be small enough to ensure that km = 2k exceeds the mean.) It 

then follows by substitution that (3r/2, p, 2k)  exp(- rp/18). So if we choose values 

from the tables with n = 10
9
, rp  180, and r  10

7
, say, then equation [2’’] becomes

(10
9
, exp(-10), 10

6
) ~ 0. Applying the general bound on  given above a second time

gives that the error in [2’’] is at most (10
9
, 10

-4
, 10

6
) (10

9
, 10

-4
, 2*10

5
)  exp(-

10
5
/3)  10

-1000
. Thus at one extremity of our range of parameters the errors for the one 

relation [2’’] are indeed extremely small.

Our point is that while for conceptually simpler models the notion of capacity, a single 

value for the number of items that can be represented, makes sense, for more complex

models a more appropriate way of expressing the same notion is that of upper bounding 

the probability of various kind of interference in any execution of the task. For example,

relation [2] does not give an absolute guarantee of the relevant interference not 

happening. It says that if A and B have total size 3r/2 and the graph is regarded as 

randomly generated with respect to those sets, then the probability of the unwanted 

interference is very small (e. g. 10
-6

or 10
-1000

). This we interpret to say, roughly, in the 

fixed network, that if A is fixed and of size r and B a random set of r/2 nodes, then the 

interference effect will occur with such small probability. 
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Robustness to Noise 

The previous discussion on capacity referred to specific interactions in the network. A 

more generic source of interference that can be analyzed is that due to some fixed 

fraction of neurons being active in the network that are extraneous to the task being 

executed. The main question is the fraction of extraneous neurons that can be active 

without interfering with the intended effects of the task at hand. We shall call that 

fraction the noise rate .

In general we can refine each of our non-interference constraints to allow for the 

expected number s = n of extraneous nodes being additionally active. We have restricted 

the entries in Tables 1 and 2 to those where non-interference relations [2], [3], [5], [6], 

[2’], [3’], and [6’], held even with perturbations corresponding to noise rates  in the 

range from 10
-4

 to 10
-6

.  In all seven relations we replaced the relevant quantities r or r/2,

when they referred to the input neurons of the task, by r + n or r/2 + n, as appropriate. 

In particular, for the respective relations the replacements were done for the following 

neuron sets:  [2], [2’] : A, B; [3], [3’] : A, B, D;  [5] : A;   and [6], [6’]: A1, B. In Tables 3 

and 4 the entries are restricted in an exactly analogous way. We note that, with the 

exception of equations [3], [3’], [3”], it is clear that with a lower noise rate it is easier to 

satisfy these equations. 

Estimates of the noise rates that can be tolerated can be made in a number of other senses 

also. For example, we could assume that all situations, including both circuit creations 

and executions, are subject to some noise rate, and solve Equation 1 under that 

assumption.

We also note that we have sought noise rates that can be supported by a very wide range 

of the parameters. Higher rates can be tolerated for individual parameter combinations.
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Predictions

The entries in our tables are all solutions to equations [1], [1’] or [1’’]. Remarkably, there 

is the following simple interdependence among r, d, k and n:

rd < kn  < c2rd (*)

where, for each entry in Tables 1 – 4, c2 is a modest constant. In fact for all entries in the 

tables with k  64, it is the case that c2 is smaller than 1.35. For entries with k = 32, k = 

16 and k = 8 it is smaller than 1.6, 2.1 and 3.0, respectively. This relationship can be 

explained as follows: Equation [1] is of the form f(B(r, p, k)) = r/n where f is a fixed 

function, here the squaring function. For const k the expectation rp of the associated 

Binomial distribution will stay a constant as r goes up by factor of 10 and p goes down by 

factor of 10, or equivalently as n goes up by a factor of 10 for constant d. (Note that this 

explains why the corresponding entries in the tables for the various values of n are 

approximately in the ratio of the magnitudes of n.) Since, in general, r/n is small,

solutions of equation [1] will correspond to having combinations of r, p, k that

correspond to a point somewhat above the expectation. In other words, k will be 

somewhat above rp = rd/n. Since the binomial distribution falls off exponentially above 

the mean k will not be much larger than rn/d, from which we deduce that kd is a little 

larger than rn. It is easy to see that the same argument also holds for relation [1”] if km =

2k.

This simple relation can be taken as a prediction for systems that allocate memory in the 

style of our memorization mechanism, provided the number of representatives for a 

concept at the lower level, i. e. A and B, is the same as at the next level, C. This is an 

attractive assumption for a memory system that treats all memorized concepts as “equal 

citizens”. It may not be true for all systems. For example, in various levels of a vision or 

other sensory system there may be amplification or reduction in the number of neurons 
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that represent an item between the various levels, and in that case appropriate 

modifications of equations [1] or [1”] need to be solved instead. 

Finally, we note that a node in our formalism may be simulating a unit that consists of 

more than one biological neuron. For example, the suggestion that local connections 

between different layers in cortex may have the effect of increasing the effective degree 

of a node in the long-range connection network is analyzed in detail in (Valiant, 1994).

Discussion

We have shown that networks of model neurons having the four parameters of neuron 

count, synapse count, strength of synapses, and switching time all within ranges widely 

observed in biology, can realize the two basic tasks of memory formation and 

association. We have given tables of values for these parameters that are consistent with 

the quantitative constraints that we have identified as being sufficient for the realization 

of these two tasks. Our positive result is that entries exist for realistic combinations of

these numerical parameters. Further, the algorithms needed for creating and executing the 

circuits for these tasks are of the simplest kind, requiring as little as one step of vicinal or 

neighborly interaction. 

The two basic tasks that we have considered here have been the basis for implementing a 

broader variety of cognitive tasks, including memorization of conjunctions and 

disjunctions, handling relations, and inductive learning, under the direct-action 

hypothesis of strong synapses (Valiant 1994). For the less restrictive setting of the current 

paper any such broader implications that may follow have yet to be worked out. In 

particular, if items have a shared representation, and these are to be the targets of 

inductive learning then special challenges arise. If multiple concepts are being learned 

and the examples for them are intermingled in time, then having a single synapse take 

part in the learning of more than one concept would appear to be problematic.
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This work offers apparently the first explanation of how the basic cognitive tasks that we 

consider here can be performed at all by neural systems that have synaptic strengths that 

are as weak as those that are typically observed experimentally. It is probable that 

different neural systems exploit different combinations of the numerical parameters, and 

do so in different ways. It is possible, and even probable, for example, that higher order 

cognitive tasks require disjoint representations and stronger synapses. Our methodology

offers a calculus for investigating such phenomena.
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                                                            n = 100,000 NEURONS

     k = 8  k = 16  k = 32  k = 64 k = 128 k = 256 k = 512 k = 1024 

d = 128 

d = 256         1981       5025 

d = 512           899       2338      5420 

d = 1024           412       1098      2582 

d = 2048         519      1238      2749 

d = 4096       *247        597      1337    2865 

d = 8192       *119      *290        654    1407 

d = 16384      *143      *322    *695     1458 

d = 32768    ^*162  ^*347    ^*727   *1496 

d = 65536   ^*753

                                                          n =  1,000,000 NEURONS

d = 128 

d = 256       19803     50235 

d = 512         8979     23365     54181 

d = 1024         4105     10957     25796 

d = 2048         1888       5168     12353    27460 

d = 4096         ^873       2449       5940    13330   28607 

d = 8192         ^406       1165       2866      6491   14015 

d = 16384         ^190       ^557       1388      3169     6883   14497 

d = 32768       ^268       ^675      1552   ^3388     7161    14836 

d = 65536     ^*130       ^330    ^*763 ^*1672   ^3545    ^7360

d = 131072     ^*163    ^*378   ^*830   ^1761    ^3660

d = 262144    ^*190   ^*415   ^*1827

d = 524288 

                                                           n =  10,000,000 NEURONS

d = 128 

d = 256     198025   502339 

d = 512       89777   233636   541791 

d = 1024       41033   109547   257940 

d = 2048       18868     51660   123498  274571 

d = 4096       ^8717     24467     59368  133265 286021

d = 8192       ^4043     11628     28628    64866 140098

d = 16384       ^1882     ^5542     13839    31643   68761 144886

d = 32768        ^ 879     ^2649       6704    15464   33802   71516 148248

d = 65536     ^1269     ^3255    ^7570 ^16640 ^35342 ^73463

d = 131072       ^610     ^1584    ^3712   ^8202 ^17484 ^36437  ^74842

d = 262144       ^295       ^773    ^1824   ^4049   ^8660 ^18089

d = 524288 

d = 1048576 

Table 1. The entries give a value of the replication factor r that is the closest integer 

solution to Equation [1] for the given values of the neuron count n, the degree d and the 

inverse synaptic strength k. Equation [1] is accurate to ratio 10
-2

 (but only 10
-1

 if marked

by *) and Equation [4] to 10
-6

.  Equations [2], [3], [5], [6], [2’], [3’], and [6’] are accurate 

to 10
-6

. For unmarked entries these accuracies are achieved even if the noise rates are 10
-4

for [2], [3], [5], [2’], 10
-5

 for [6] and [3’], and 10
-6

 for [6’]. For entries marked with a ^ 

this accuracy is achieved with the lower noise rate 10
-6

 for all seven equations. Equation 

[1’] is satisfied with constant 1 < c1 < 1.1. 
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                                                                   n = 100,000,000 NEURONS

k = 8 k = 16 k = 32 k = 64 k = 128 k = 256 k = 512 k =1024 

d = 128 

d = 256   1980239 5023377

d = 512 897763 2336342   5417894 

d = 1024 410318 1095455   2579374 

d = 2048     188664  516578   1234952   2745675 

d = 4096     ^87153     244648    593653   1332609   2860166 

d = 8192     ^40412     116254   286244     648612   1400921 

d = 16384     ^18797     ^55394  138351     316375   687547  1448778 

d = 32768      ^ 8766     ^26455 67001     154582     337949 715063   1482369 

d = 65536       ^4098     ^12660     ^32501     ^75636   ^166314   ^353310   ^734499

d = 131072       ^6069     ^15789     ^37053     ^81930  ^ 174721   ^364217 ^ 748226 

d = 262144       ^2915       ^7681     ^18172     ^40397    ^ 86468   ^180718 ^ 371950 

d = 524288 

d = 1048576 

                                                               n =  1,000,000,000 NEURONS

d = 128 

d = 256 19802377 50233759

d = 512 8977613 23363401 54178923

d = 1024 4103166 10954534 25793723

d = 2048   1886626 5165758 12349496 27456714

d = 4096   ^871517   2446454   5936498 13326048 28601613

d = 8192   ^404099   1162518  2862401   6486077 14009157

d = 16384   ^187946     553914  1383469   3163694  6875400 14487695

d = 32768    ^ 87638   ^264523  669965   1545764 3379417 7150540 14823572

d = 65536     ^40955   ^126564   ^324966   ^756296 ^1663055 ^3532995  ^7344851

d = 131072     ^60656   ^157842   ^370461   ^819214 ^1747094  ^3642013 ^7482072

d = 262144     ^29112     ^76758   ^181644   ^403874   ^864553  ^1807014 ^3719279

d = 524288 

d = 1048576 

Table 2. The entries give the value of the replication factor r that is the closest integer 

solution to Equation [1] for the given values of the neuron count n, the degree d and the 

inverse synaptic strength k. Equation [1] is accurate to ratio 10
-2

 and Equation [4] to 10
-6

.

Equations [2], [3], [5], [6], [2’], [3’], and [6’] are accurate to 10
-6

. For unmarked entries 

these accuracies are achieved even if the noise rates are 10
-4

 for [2], [3], [5], [2’] , 10
-5

 for 

[6] and [3’], and 10
-6

 for [6’]. For entries marked with a ^ this accuracy is achieved with 

the lower noise rate 10
-6

 for all seven equations. Equation [1’] is satisfied with constant 1 

< c1 < 1.1. 
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                                                            n = 100,000 NEURONS

     k = 8  k = 16  k = 32  k = 64 k = 128 k = 256 k = 512 k = 1024 

d = 128 

d = 256 

d = 512       2134      5170 

d = 1024       1000      2436 

d = 2048        473*      1164     2653 

d = 4096      562*    1284*    2809 

d = 8192      628*   1372*    2922 

d = 16384    678*    1438* 

d = 32768    339*      716*    1488* 

d = 65536 

                                                          n =  1,000,000 NEURONS

d = 128 

d = 256 

d = 512 

d = 1024         3571     9974     24327 

d = 2048     4707     11603  26487 

d = 4096     2233       5576  12792   28027 

d = 8192     1065       2692    6219   13650 29122

d = 16384       1305    3037     6688 14265   29899 

d = 32768       636*    1488*     3290   7028   14706 

d = 65536      733   1625*   3477     7274

d = 131072      364*     807*   1728*     3614   7454

d = 262144     406*   865      1806   3717*

d = 524288 

                                                           n =  10,000,000 NEURONS

d = 128 

d = 256 

d = 512 

d = 1024       35693     99248 

d = 2048       16451     46807   115310 

d = 4096     22307     55487  126970 

d = 8192     10619     26877    61909 

d = 16384       5069     13005    30302   66577 

d = 32768       6307    14815   32814   69939 

d = 65536      7258   16155   34635  72347

d = 131072      3562     7967   17131  35946

d = 262144     3936     8487  17838   36887

d = 524288    8867   18350 

d = 1048576 

Table 3. The entries give the value of the replication factor r that is the closest integer solution to Equation

[1”] for the given values of the neuron count n, the degree d and the inverse synaptic strength k, where km  =

2k and ka  = k. Equation [1”] is accurate to ratio 10-2 (but only 10-1 if marked by *) and Equation [4”] to 10-

6.  Equations [2”], [3”], [5”], and [6”] are accurate to 10-6. These accuracies are achieved even if the noise 

rates for [2”], [3”], [5”], and [6”] are 10-4, 10-4, 10-4, 10-5, respectively 
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                                                                   n = 100,000,000 NEURONS

k = 8 k = 16 k = 32 k = 64 k = 128 k = 256 k = 512 k =1024 

d = 128 

d = 256 

d = 512 

d = 1024     356186 991770

d = 2048     164349  469174   1152860 

d = 4096     222765     555466   1270184 

d = 8192     106086     268344     619272 

d = 16384       50640   129914     302491   665623 

d = 32768  63004     147976     327502     698966

d = 65536       72484     161315     345606    722820

d = 131072      35546       79539     171018    358615

d = 262144       39248     84678    178029 367903

d = 524288      88413 183035

d = 1048576 

                                                               n =  1,000,000,000 NEURONS

d = 128 

d = 256 

d = 512 

d = 1024   3561948 9917674

d = 2048   1643398 4691653 11528462

d = 4096   2227722   5554651 12701863

d = 8192   1060910   2683448   6192598 

d = 16384     506456   1299108   3024779  6656114 

d = 32768    630010   1479667  3274935  6989595 

d = 65536     724718 1613041  3455971   7228103 

d = 131072     355323  795184 1710073   3585972 

d = 262144     392293     846699   1780004 3678864

d = 524288     883950 1830101

d = 1048576 

Table 4. The entries give the value of the replication factor r that is the closest integer 

solution to Equation [1”] for the given values of the neuron count n, the degree d and the 

inverse synaptic strength k, where km  =  2k and ka  = k. Equation [1”] is accurate to ratio 

10
-2

, and Equation 4 to 10
-6

. Equations [2”], [3”], [5”], and [6”] are accurate to 10
-6

.

These accuracies are achieved even if the noise rates for [2”], [3”], [5”], and [6”] are 10
-4

,

10
-4

, 10
-4

, 10
-5

, respectively.
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Figure 1.  Graph-theoretic structure needed for the two-step algorithm for disjoint representations for the

memorization of the conjunction of items at A and B. For shared representations the sets A and B may

intersect. For the one-step algorithm there is a bound km on the total number of edges coming from A and B,

rather than bounds on A and B separately.
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Figure 2.  Graph-theoretic structure needed for the algorithm for establishing an association of the item at A 

to the item at B.
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