
 Memorization and Association on a Realistic Neural Model*

 Leslie G. Valiant

 Division of Engineering and Applied Sciences

 Harvard University

valiant@deas.harvard.edu

Abstract

A central open question of computational neuroscience is to identify the data structures

and algorithms that are used in mammalian cortex to support successive acts of the basic

cognitive tasks of memorization and association. This paper addresses the simultaneous

challenges of realizing these two distinct tasks with the same data structure, and doing so

while respecting the following four basic quantitative parameters of cortex, the neuron

number, the synapse number, the synapse strengths, and the switching times. Previous

work had not succeeded in reconciling all these opposing constraints, the low values of

synapse strengths that are typically observed experimentally having contributed a

particular obstacle. In this paper we describe a computational scheme that supports both

memory formation and association, and is feasible on networks of model neurons that

respect the widely observed values of the above-mentioned four quantitative parameters.

Our scheme allows for both disjoint and shared representations. The algorithms are

simple, and in one version both memorization and association require just one step of

vicinal or neighborly influence. The issues of interference among the different circuits

that are established, of robustness to noise, and of the stability of the hierarchical

memorization process are addressed. A calculus, therefore, is implied for analyzing the

capabilities of particular neural systems and subsystems, in terms of their basic numerical

parameters.

* This paper is to appear in Neural Computation, MIT Press.

1

Introduction

We consider four quantitative parameters of a neural system that together constrain its

computational capabilities: the number of neurons, the number of neurons with which

each neuron synapses, the strength of synaptic connections, and the speed of response of

a neuron. The typical values that these parameters are believed to have in mammalian

cortex appear to impose extremely severe constraints. We believe that it is for this reason

that computationally explicit mechanisms for realizing multiple cognitive tasks

simultaneously on models having these typical cortical parameters, have not been

previously offered.

Estimates of these four cortical parameters are known for several systems. The number of

neurons in mouse cortex has been estimated to be 1.6 x 10
7
, while the corresponding

estimate is in the region of 10
10

 for humans (Braitenberg and Schuz, 1998). There also

exist estimates of the number of neurons in different parts of cortex, and in related

structures such as the hippocampus and olfactory bulb.

The number of neurons with which each neuron synapses, which we shall call the degree,

is a little harder to measure. However, it is considered that the effect of multiple

synapsing between pairs of neurons is small and therefore that this degree is close to the

total number of synapses per neuron, which has been estimated to be 7,800 in mouse

cortex and in the 24,000-80,000 range in humans (Abeles 1991).

The third parameter, the synapse strength, presents a still more complex set of issues. The

most basic question here is how many of a neuron’s neighbors need to be sending an

action potential in order to create an action potential in the neuron. Equivalently, the

contribution of each synapse, the excitatory presynaptic potential, can be measured in

millivolts and the fraction that this constitutes of the threshold voltage that needs to be

overcome evaluated. While some moderately strong synapses have been recorded

(Thomson et al., 1993; Markram and Tdodyks, 1996a; Ali et al., 1998), the average value

2

is believed to be weak. The effective fraction of the threshold that each neighbor

contributes, has been estimated (Abeles, 1991) to be in the range 0.003 to 0.2. In other

words it is physiologically quite possible that cognitive computations are characterized

by a very small and hard to observe fraction of synapses that contribute above this range,

perhaps even up to the threshold fraction of 1.0. However, there is no experimental

confirmation of this to date, and for that reason this paper addresses the possibility that at

least some neural systems work entirely with synapses whose strengths are some orders

of magnitude smaller.

The time it takes for a neuron to complete a cycle of causing an action potential in

response to action potentials in its presynaptic neurons has been estimated as being in the

1-10 millisecond range. Since mammals can perform significant cognitive tasks in 100-

200 milliseconds, algorithms that take a few dozen parallel steps must suffice.

The central technical contribution of this paper is to show that two basic computational

problems, memory formation and association, can be implemented consistently in model

neural systems that respect all of the above mentioned numerical parameters.

The first basic function, JOIN, implements memory formation of a new item in terms of

two established items: If two items A and B are already represented in the neural system,

the task of JOIN is to modify the circuit so that at subsequent times there is the

representation of a new item C that will fire if and only if the representations of both A

and B are firing. Further, the representation of C is an “equal citizen” with those of A and

B for the purposes of subsequent calls of JOIN. JOIN is intended as the basic form of

memorization of an item, and incorporates the idea that such memorization has to be

indexed in terms of the internal representations of items already represented.

The second function, LINK, implements association: If two “items” A and B are already

represented in the neural system in the sense that certain inputs can cause either of these

to fire, the task of LINK is to modify the circuit so that at subsequent times whenever the

3

representation of item A fires, then the modified circuit will cause the representation of

item B to fire also.

Implicit in both the definitions of JOIN and LINK is the additional requirement that there

be no deleterious interference or side-effects. This means that the circuit modifications do

not impair the functioning of previously established circuits, that when the newly created

circuit executes no unintended other items fire, and that the intended action of the new

circuit cannot be realized in consequence of some unintended condition.

We note that for some neural systems such as the hippocampus and the olfactory bulb,

the question of what items, whether representing location or odors, for example, are being

represented has been the subject of some experimental study already. Also for such

systems our four cortical parameters can be measured. We expect, therefore, that our

analysis offers both explanatory and predictive value for understanding such systems. For

the parts of cortex that process higher-level functions the corresponding experimental

evidence is more elusive.

In order that our results apply to a wide range of neural systems, we describe

computational results for systems within a broad range of realistic parameters. We show

that for wide ranges of values of the neuron count between 10
5
 and 10

9
, and of values of

the synapse count or degree between 16 and 10
6
, there is a range of values of the synapse

strength between .001 and .125 for which both JOIN and LINK can be implemented.

Further this latter range usually includes synaptic strengths that are at the small end of the

range. Tables 1 - 4 summarize this data and show, given the values of the neuron count

and degree of a neural system, the maximum synapse strength that is sufficient for JOIN

and LINK, in both disjoint and shared representations. The implied algorithms for LINK

take just one step, and for JOIN either two steps (Tables 1, 2) or also just one step (Tables

3, 4). The simplicity of these basic algorithms leaves room for more complex functions to

be built on top of them.

4

We also describe a general relationship among the parameters that holds under some

stated assumptions for systems that use the mechanisms described. This relationship (*)

states that kn exceeds rd, but only by a most a fixed small constant factor, where 1/k is

the maximum collective strength of the synapses to any one neuron from any one of its

presynaptic neurons, n is the number of neurons, r is the number of neurons that represent

a single item, and d is the number of neurons from which each neuron receives synapses.

The essential novel contribution of this paper is to show that random graphs have some

unexpected powers: in particular for parameters that have been observed in biology, they

allow a method of assigning memory to a new item, and also allow for paths, and

algorithms for establishing the paths, for realizing associations between items.

There is a long history of studies of random connectivity for neural network models,

notably Beurle (1963), Griffith (1963, 1971), Braitenberg (1978), Feldman (1982), and

Abeles (1991). In common with such previous studies, ours assumes random

interconnections and does not apply to systems where, for example, the connections are

strictly topographic. The other component of our approach that also has some history is

the study of local representations in neural networks, including Barlow (1972), Feldman

(1982), Feldman and Ballard (1982), Shastri and A. Ajjanagadde (1993), and

Shastri(2001). The question of how multiple cognitive functions can be realized

simultaneously using local representations and random connections has been pursued by

Valiant (1988, 1994).

Our central subject matter is the difficulty of computing flexibly on sparse networks

where nodes are further frustrated in having influence on others by the weakness of the

synapses. This difficulty has been recognized most explicitly in the work of Griffith

(1963) and Abeles (1991). Griffith suggests communication via chains that consist of sets

of k nodes chained together so that each member of each set of k nodes is connected to

each member of the next set in the chain. If the synaptic strength of each synapse is 1/k

then a signal can be maintained along the chain. Abeles suggests a more general

structure, which he calls a synfire chain, in which each set has h k nodes and each node

5

is connected to k of the h nodes in the next set. He shows that for some small values of k

such chains can be found somewhere in suitably dense such networks.

The goals of this paper impose multiple constraints for which these previous proposals

are not sufficient. For example, for realizing associations we want that between any pair

of items there be a potential chain of communication. In other words, these chains have to

exist from anywhere to anywhere in the network, rather than just somewhere in the

network. A second constraint is that we want explicit computational mechanisms for

enabling the chain to be invoked to perform the association, and the passive existence of

the chain in the network is not enough. A third requirement is that for memory formation

we need connectivity of an item to two others.

Some readers may choose to view this paper as one that solves a communication or

wiring problem, and not a computational one. This view is partly justified since, once it is

established that the networks have sufficiently flexible interaction capabilities, the

mechanisms required at the neurons are computationally very simple. For readers who

wish to investigate more rigorously what simple means here we have supplied a section

that goes into more details. The model of computation used there is the neuroidal model

(Valiant 1994), which was designed to capture the communication capabilities and

limitations of cortex as simply as possible. It assumes only the simplest timing and state

change mechanisms for neurons so that there be no doubt that neurons are capable of

doing at least that much. Demonstrating that some previously mysterious task can be

implemented even on this simple model therefore has explanatory power for actual neural

systems.

The neuroidal model was designed to be more generally programmable than its

predecessors and hence to offer the challenge of designing explicit computational

mechanisms for explicitly defined and possibly multiple cognitive tasks. The contribution

of this paper may be viewed as that of exhibiting a wide range of new solutions to that

model. The previous solutions given for the current tasks were under the “direct action

hypothesis” – the hypothesis that synapses could become so strong that a single

6

presynaptic neuron was enough to cause an action potential in the postsynaptic neuron.

Whether this hypothesis holds for neural systems that perform the relevant cognitive

tasks is currently unresolved. In contrast, the mechanisms described in this paper are in

line with synaptic strength values that have been widely observed and generally accepted.

This paper pursues a computer science perspective. In that field it is generally found, on

the positive side, that once one algorithm has been discovered for solving a

computational problem within specified resource bounds, many others often follow. On

the other hand, on the negative side, it is found that the resource bounds on computation

can be very severe. For example, for the NP-complete problem of satisfiability (Cook,

1971; Papadimitriou 1994) of Boolean formulae with n occurrences of literals no

algorithm for solving all instances of it in 2
f(n)

steps is known for any function f(n)

growing more slowly than linear in n. If a device were found that could solve this

problem faster, then a considerable mystery would be created: The device would be using

some mechanism that is not understood. Neuroscience has mysteries of the same

computational nature and needs to resolve them. This paper aims at making one of these

mysteries concrete and to resolve it.

Graph Theory

We consider a random graph G with n vertices (Bollobas, 2001). From each vertex there

is a directed edge to each other vertex with probability p, so that the expected number of

nodes to which a node is connected is d = p(n - 1). In this model a vertex corresponds to a

neuron, and a directed edge from one vertex to another models the synapse between the

presynaptic neuron and the postsynaptic neuron. Such a model makes sense for neural

circuits that are richly interconnected. A variant of the model is that of a bipartite graph

where the vertex set can be partitioned into two subsets V1 and V2 such that every edge is

directed from a V1 vertex to a V2 vertex. This would be appropriate for modeling the

connections from one area of cortex to a second, possibly distant, area. The analyses we

give for JOIN and LINK apply equally to both variants. We shall use d = pn in the

7

analysis, which is exact for the bipartite case, and a good approximation for the other

case for large n.

In general, to obtain rigorous results about random graphs we take the view that for the

fixed nodes under consideration the edges are present or not each with probability p

independent of each other. It is convenient for the sake of analysis to view the edges as

being generated in that manner afresh, rather than as fixed at some previous time.

We assume that the maximum synaptic strength is 1/k of the threshold, for some integer

k. In the graph theoretic properties we shall, therefore, always need to find at least k

presynaptic neighbors to model the k presynaptic neurons that need to be active to make

the neuron in question active.

Lastly, we shall model the representation of an item in cortex by a set of about r neurons,

where r is the replication factor. In general, such an item will be considered to be

recognized if essentially all the constituent neurons are active. In general different items

will be represented by different numbers of neurons, though of the same order of

magnitude. We do not try to ensure that they are all represented by exactly r. However,

once an item is represented by some r’ neurons, then it makes sense to assert that if no

more than r’/2 of its members are firing then the item has not been recognized.

We call a representation disjoint or shared, respectively, depending on whether the sets

that represent two distinct items need, or need not, be disjoint. In disjoint representations,

clearly, no more than n/r items can be represented, while shared representations allow for

many more, in principle.

Memory Formation for Disjoint Representations

The JOIN property is the following. Given values of n, d and k, which are the empirical

parameters of the neural system, we need to show that the following holds. Given two

subsets of nodes A and B of size r, the number of nodes to which there are at least k edges

8

directed from A nodes, and also at least k edges directed from B nodes has expected

value of r. The vertices that are so connected will represent the new item C. The above-

mentioned property ensures that the representation of C will be made to fire by causing

the representation of either one of A or B to fire. The required network is illustrated in

Figure 1. We want C to be an equal citizen as much as possible with A and B for the

purposes of further calls of JOIN. We ensure this by requiring that the expected number

of nodes that represent C is the same as the number of those that represent A and B.

In general we denote by (r, p, k) the probability that in r tosses of a coin that comes up

heads with probability p, and tails with probability 1-p, there will be k or more heads.

This quantity is equal to the sum for j ranging from k to r of the value of (r, p, j) =

(r!/(j!(r-j)!)p
j
(1-p)

r-j
. For constructing our tables we compute such terms to double

precision using an expansion for the logarithm of the factorial or Gamma function

(Abramowitz and Stegun, 1964).

We now consider the JOIN property italicized above. For each vertex u in the network

the probability that it has at least k edges directed towards it from the r nodes of A is (r,

p, k), since each vertex of A can be regarded as a coin toss with probability p of heads

(i.e. of being connected to u) and we want at least k successes. The same holds for the

nodes of B. Hence the probability of a node being connected in this way to both A and B

is p’ = ((r, p, k))
2
, and hence the expected number of vertices so connected is n times

this quantity. The stated requirement on the JOIN property, therefore, is that the

following be satisfied:

n((r, p, k))
2
= r. [1]

This raises the important issue of stability. Even if the numbers of nodes assigned to A

and B are both exactly r, this process will assign r nodes to C only in expectation. How

stable is this process if such memorization operations are performed in sequence, with

9

previously memorized items forming the A and B items of the next memorization

operation? Fortunately, it is easy to see that this process gets more and more stable as r

increases. The argument for relationship [1] showed that the number of nodes assigned to

C is a random variable with a binomial distribution defined as the number of successes in

n trials where the probability of success in each trial is p’. This distribution therefore has

mean np’, as already observed, and variance np’(1-p’). The point is that this variance is

close to the mean r = np’ if p’ is small relative to 1, and then the standard deviation,

which is the square root of the variance, is approximately r. Hence the standard

deviation as a fraction of the mean decreases as 1/ r as the mean np’ = r increases. For

the ranges of values that occur typically in this paper, such as r equal to 10
3
, 10

4
 or even

much larger, this r standard deviation will be a small fraction or r and hence one can

expect the memorization process to be stable for many stages. Thus for stability the large

k large r cases considered in this paper are much more favorable than the k =1 case

considered in (Valiant, 1994) with r = 50. For the latter situation some analysis and

suggested ways of coping with the more limited stability were offered in (Valiant, 1994,

Gerbessiotis, 2003).

If fewer than a half of the representatives of an item are firing, we regard that item as not

being recognized. As a side-effect condition we therefore want that if no more than a half

of one of A or B is active then the probability that more than a half of C is active is

negligible. Since we cannot control the size of C exactly we ensure the condition that at

most a half of C be active by insisting that at most a much smaller fraction of r, such as

r/10, be active. The intention is that r/10 will be smaller than a half of C even allowing

for the variations in the size of C after several stages of memory allocation. This gives:

(n, (r/2, p, k) (r, p, k), r/10) ~ 0. [2]

The second side-effect condition we impose is related to the notion of capacity, or the

number of items that can be stored. To guarantee large capacity we need an assurance

that the A B nodes allocated will not be caused to fire if a different conjunction is

activated. The bad case is if the second conjunction involves one of A or B, say A, and

10

another item D different from B. If the node sets allocated to A B and not to A D is

of size at least 2r/3 then we will consider there to be no interference since if A B is of

size at most 4r/3 then the firing of A D will cause fewer than half of the nodes of A B

to fire.

The probability that a node receives k inputs from B and k from A, but fewer than k from

D, is p’ = (1 - (r, p, k))((r, p, k))
2
, and we want that the number of nodes that are so

allocated to A B but not to A D, be at least 2r/3. Hence we want

(n, p’, 2r/3) ~ 1. [3]

Association for Disjoint Representations

We now turn to the LINK property, which ensures that B can be caused to fire by A via

an intermediate set of “relay” neurons: Given two sets A and B of r nodes, for each B

vertex u with high probability the following occurs: the number of (relay) vertices from

which there is a directed edge to u and to which there are at least k edges directed from

A nodes, is at least k. We shall call this probabilityY. This property ensures that each

neuron u that represents B will be caused to fire with high probability if the A

representation fires. This property is illustrated in Figure 2.

For the LINK property we note that the probability of a vertex having at least k

connections from A and also having a connection to B vertex u is p (r, p, k). We need

that the number of such nodes be at least k with high probability, or in other words that

Y = (n, p (r, p, k), k) ~ 1. [4]

11

As a side effect condition we need that if at most a half of A fire then with high

probability fewer than a half of B should fire. We approximate this quantity by assuming

independence for the various u:

(r, (n, p (r/2, p, k), k), r/2) ~ 0. [5]

As a second side-effect condition we consider the probability that a third item C for

which no association with B has been set up by a LINK operation, will cause B to fire

because some relay nodes are shared with A. Further, we make this more challenging by

allowing there to have been t, rather than just one, association with B previously set up,

say from A1, …, At. Now, the probability that a node will act as a relay node from A1 to a

fixed node u in B is p (r, p, k). For t such previous associations the probability that a

node acts as a relay for at least one of the Ai is p’ = p(1-(1- (r, p, k))
t
). If we require that

these nodes be valid relay nodes from item C also, then this probability gets multiplied by

another factor of (r, p, k) since C is disjoint from A1,…, At. Then the side-effect

requirement becomes that p” = (n, p’ (r, p, k), k), the probability of there being at least

k relay nodes for u is so small that it is unlikely that a large fraction, say at least r/2, of

the B nodes are caused to fire by C. We approximate this quantity also by making the

assumption of independence for the various u:

(r, p”, r/2) ~ 0. [6]

Memory Formation for Shared Representations

By a shared representation we shall mean here a representation where each neuron can

represent more than one item. There is no longer a distinction between nodes that have

and those that have not been allocated. The items each node will be assigned by JOIN are

already determined by the network connections without any training process being

necessary. The actual meaning of the items that will be memorized at a node will, of

12

course, depend on the meanings assigned by a different process, such as the hardwiring of

certain sensory functions to some input nodes.

The model here is that an item is represented by r neurons, randomly chosen. The

expected intersection of two such sets then is of size r
2
/n. We can recompute the relations

corresponding to [1] – [6] under this assumption. For simplicity we shall consider only

the case in which for JOIN the neurons of A and B are in one area, and those of C in

another, and for LINK the neurons of A, B and the relay nodes are in three different

areas, respectively. Then, if for simplicity we make the assumption that the intersection is

of size exactly r’, the closest integer to r
2
/n, then relation [1] for JOIN becomes:

n{ (r’, p, k) + (i=0 : k-1) [(r’, p, i)((r-r’, p, k-i))
2
]} = c1r, [1’]

where i in the summation indexes the number of connections from the intersection of A

and B. We need to show that c1 is close to one.

Equation [2’] we adapt from [2] to be the following:

(n, p’, r/10) ~ 0, [2’]

where p’ = ((r’, p, k) + (i=0, …, k-1) [(r’, p, i) (r-r’, p, k-i) (r/2-r’, p, k-i)]), where

further i in the summation indexes the number of connections from a neuron that is in

both A and B, and r’ = r
2
/n.

We adapt Equation [3’] from [3] by considering the case that the intersections A B, A

 D, and B D all have their expected sizes r’ = r
2
/n, and that A B D has its

expected size r’’ = r
3
/n

2
. For a fixed node in C we shall denote the numbers of

connections to these four intersections by i+m, j+m, l+m, and m, respectively, in the

summation below. Then the probability of a node being allocated to A B and not to A

D is lower bounded by the following quantity p’, where r^ =r’-r’’:

13

(i=0 : k) (r^, p, i) (j=0 : k-i) (r^, p, j) (l=0 : k-i-j) (r^, p, l) (m=0 : k-i-j-l) (r”, p, m)

 [(r-2r’+r’’, p, k-i-j-m) (r-2r’+r’’, p, k-j-l-m)(1- (r-2r’+r’’, p, k-i-l-m))].

(Note that to allow for terms in which the intersection of A and B have more than k

connections to the C node we need to interpret the first term (r^, p, i) in the above

expression for the particular value i = k to mean (r^, p, k)) . Then the relationship we

need is

(n, p’, 2r/3) ~ 1. [3’]

Association for Shared Representations

Equations [4’] and [5’] in the shared coding are identical to [4] and [5] since we are

assuming here, for simplicity, that in an implementation of LINK between A and B, the

neurons representing A, B, and the relay nodes are from three disjoint sets.

Equation [6’] will correspond to equation [6] in the special case of t = 1. For a fixed node

in B, the probability of a node u being a relay node to it and having k edges coming both

from A and from C is:

p’ = p((r’, p, k) + (i=0, …, k-1) [(r’, p, i) ((r-r’, p, k-i))
2
]).

The probability that there are at least k of these is p’’ = (n, p’, k). We want that the

probability that at least half of the members of B have such sets of at least k relay nodes

be small. We approximate this quantity by assuming independence for the various u:

(r, p’’, r/2) ~ 0. [6’]

14

One-step Memory Formation for Shared Representations

The algorithm for memorization implied above requires A and B to be active at different

time instants and therefore requires the memorization process to take two steps. Here we

shall discuss a process by which memorization can be achieved in one step. For the sake

of brevity we shall consider one-step only for the shared representation case. The results

are presented in Tables 3 and 4.

The main advantage of these one-step algorithms is that the algorithms become even

simpler and assume even less about the timing mechanism of the model of computation.

On the other hand, one small complication arises: the number of inputs needed to fire a

node in the memorization algorithm is now different from that needed in the association

algorithm. Instead of having a single parameter k, we shall have two parameters km and ka

respectively. It turns out that km = 2ka works. This means is that we can fix the parameter

k of the neurons to be km, and then use a weight in the memorization algorithm that is

only half as strong as the maximum value allowed.

We now consider the JOIN property. For each vertex u that is a potential representative

of C the probability that it has at least km edges directed towards it from the nodes of A

B is now p’ = (2r-r’, p, km), provided the intersection of A and B is of size exactly r’,

the integer closest to the expectation r
2
/n. This is because each vertex of A B may be

regarded as a coin toss with probability p of coming up heads (i.e. of being connected to

u) and we want at least km successes. Hence the expected number of vertices so connected

is n times this quantity. The stated requirement on the JOIN property, therefore, is that

the following be satisfied:

n (2r-r’, p, km) ~ r. [1”]

15

Alternatively one could impose some specific probability distribution on the choice of A

and B and compute an analog of [1”] that is precise for that distribution and does not

need the assumption that the intersections are of size exactly r’.

If fewer than a half of the representatives of an item are firing, we regard that item as not

being recognized. As a side-effect condition we therefore want that if no more than a half

of one of A or B is active then the probability that more than a half of C is active is

negligible. In exact analogy with [2] and [2’] we have that

(n, (3r/2, p, km), r/10) ~ 0. [2”]

Here 3r/2 upper bounds the number of firing nodes in A B if at most r/2 are firing in A

and all are firing in B, say.

As a second side-effect condition we again need an assurance that the A B nodes

allocated will not be caused to fire if a different conjunction is activated. Again, a bad

case is if the second conjunction is A D where D is different from B. If the node set

allocated to A B and not to A D is at least of size 2r/3 we will consider there to be no

interference since if A B is of size less than 4r/3 then the firing of A D will cause

fewer than half of the nodes of A B to fire.

If A, B and D were disjoint sets of r nodes then the probability that a node receives km

inputs from A B but fewer than k = km from A D, would be

 p’ = (s=0 : k-1) (r, p, s) ((r, p, km - s)) (1 - (r, p, km – s)),

where s denotes the number of nodes in A that are connected to that node. We want that

the number of nodes that are so allocated to A B but not to A D, be at least 2r/3.

Hence we would want that

16

(n, p’, 2r/3) ~ 1. [3”]

In the event that A, B, and D are not disjoint but randomly chosen sets of r elements we

need equation [3”] but with a value of p’ computed as follows: We assume that the

intersections A B, A D, and B D all have their expected sizes r’ = r
2
/n, and that A

 B D has its expected size r’’ = r
3
/n

2
. For a fixed node in C we shall denote the

numbers of connections to these four intersections by i+m, j+m, l+m, and m,

respectively, in the summation below. Then the probability of a node being allocated to A

 B and not to A D is lower bounded by the following quantity p’, where r^ =r’-r’’ and

r
#
 = r – 2r’ + r’’:

p’ = (s=0 : k-1) (r
#
, p, s) (i=0 : k-s-1) (r^, p, i) (j=0 : k-i-s-1) (r^, p, j) (m=0 : k-i-j-s-1) (r”, p, m)

(l=0 : k-i-j-m-s-1) (r^, p, l) [((r
#
, p, km – s-i-j-l-m)) (1 - (r

#
, p, km – s-i-j-l-m))].

Here s indexes the number of connections from nodes that are in A but not in B or D.

One-step Association with Shared Representations

For the LINK property we simply have relations [4], [5], and [6’] with k replaced by ka:

Y = (n, p (r, p, ka), ka) ~ 1. [4”]

(r, (n, p (r/2, p, ka), ka), r/2) ~ 0. [5”]

and

(r, p’’, r/2) ~ 0. [6”]

17

where

p’’ = (n, p’, k), and

 p’ = p((r’, p, ka) + (i=0, …, k-1) [(r’, p, i) ((r-r’, p, ka -i))
2
]).

Since [6’’] only guarantees that one previous association to item C will not lead to false

associations with C, we also use [6] to compute an estimate of the maximum number of

previous associations that still allow resistance to such false associations.

Graph-theoretic Results

In Tables 1 and 2 we summarize the solutions we have found: For each combination of n,

d and k the table entry gives a value of r that satisfies all six conditions [1] – [6] to high

precision, as well as their equivalents [1’] – [3’] and [6’] for shared representations.

(There are essentially only eight equations since [2’] and [6’], subsume [2] and [6]

respectively.) For example consider a neural system with n = 1,000,000 neurons where

each one is connected to 8192 others on the average and the maximum synaptic strengths

are 1/64 of the threshold amount. The entry 8491 found in Table 1 gives the value of r

that solves the ten constraints. It means that if each item is represented by about 8491

neurons then the graph has the capability of realizing JOIN and LINK using the

algorithms to be outlined in later sections. The central positive result of this paper is the

existence of entries in the tables for combinations of neuron numbers, synapse strengths,

and synapse numbers that are widely observed in neural systems. We expect that the

analysis that underlies the tables offers a basis for a calculus for understanding the

algorithms and data structures used in specific systems, such as the hippocampus or the

olfactory bulb,

18

In interpreting the tables the following comments are in order. The solutions were found

by solving [1] using binary search, and discarding any solutions that failed to solve the

remaining relations. As a further comment we note that equation [1] and some of the

others are defined only for integer values of r, and in our search we therefore imposed the

constraint of allowing only such integer values. The values of r are therefore the integer

values for which the value of the left hand side of [1] is as close as possible to r. We

detail the exact integer values as a reminder of this. For all the entries shown the

difference between the two sides of [1] is at most 1%, except for those labeled * where a

difference of 10% is allowed.

The following are some further observations: The case of k = 1 equation [4] is known

(Valiant 1994) to give an asymptotic value of Y ~ 1-1/e = .63…. In general, values k = 1,

2, and 4 violate at least one of either [2] or [5]. Most of the entries support Equation [6]

only up to t = 1, except for some entries with k = 8 or 16 and with some of the higher

values of d. Finally, the reader will observe that corresponding entries for different values

of the neuron count n are in the ratio of the values of n.

We note that for the k = 1 case the analysis in (Valiant 1994) relates to the present

analysis in the following way: It is observed there that in general for any r and n the

graph density that supports JOIN is too sparse to support LINK with a Y value close to 1.

The suggested solution there is to use a graph that is dense enough to support LINK, and

to have it ignore a random fraction of the connections when implementing JOIN so as to

effectively use a sparser graph regime for that purpose. On a separate issue, the earlier

analysis did not have any equivalents of the relations [2] and [5] above. For disjoint

representations, where the intention is that in each situation either all or none of the

representatives of an item fires, these conditions might be argued to be too onerous.

Tables 3 and 4 summarize the solutions we have found that support the one-step

algorithm. We note that in general corresponding values of r a little smaller in these

Tables than in Tables 1 and 2. With regard to equation [6] our findings, which are not

detailed here, are as follows: While the parameters of Tables 1 and 2 support maximum

19

values of t =1 usually, the smaller values of r in Tables 3 and 4 (where [6] is only an

approximation) lead to rather larger values of t, scattered in the range 1 – 7. Further, it

turns out that instead of using km = 2ka, as we do in these tables, we can find similar

results for slightly smaller coefficients, such as km = 1.95ka, or km = 1.9ka, and these give

even smaller values of r and larger values of t.

The Computational Model and Algorithms

As explained earlier, our goal is not only to show that the connectivity of the networks

we consider are sufficient to provide the minimum communication bandwidth needed for

realizing memorization and association, but also to show that algorithms are possible that

modify the network so as to be able to execute instances of these tasks. In particular each

of these two tasks and for each representation one needs two algorithms, one for creating

the circuit, say for associating A to B in the first place, and one for subsequently

executing the task, namely causing B to fire when A fires.

For describing such algorithms we need a model of computation. We employ the

neuroidal model because it is programmable and well suited to describing algorithms

(Valiant, 1994). As mentioned earlier the neuroidal model is designed to be so simple that

there is no debate that real neurons have at least as much power. It is not designed to

capture all the features of real neurons.

Our algorithms are described for a variant of the neuroidal model that allows synapses to

have memory in addition to weights. This has some biological support (Markram and

Tsodyks, 1996b) and allows for somewhat more natural programming, even though

temporary values of synaptic weights may be used instead, in principle, to simulate such

states (Valiant 1994). A brief summary of the model is as follows: A neuroidal net

consists of a weighted directed graph G with a model neuron or neuroid at each node. A

neuroid is a threshold element with some additional internal memory, which can be in

one of a set of modes. The mode si of node i at an instant will specify the threshold Ti,

20

and may also have further components such as a member qi of a finite set of states Q. In

particular a mode is either firing or non-firing and fi has value 1 or 0 accordingly. The

weight of an edge from node j to node i is wji and models the strength of a synapse for

which j is presynaptic and i is postsynaptic. Each synapse can also have a state qji, which

with wji, forms a component of the mode sji . The only way a neuroid i can be influenced

by other neuroids is through the quantity wi which equals the sum of the weights wji over

all nodes j presynaptic to i that are in firing modes. Each neuroid executes an algorithm

that is local to itself and can be formally defined in terms of mode update functions and

, for the neuroid itself and each synapse, respectively:

(si , wi) = si’, and

(si, wi, sji , fj) = sji’.

These relations express the values of the modes of the neuroid and synapses at one step in

terms of the values at the previous step of the variables on which they are permitted to

depend. Thus the mode of a neuroid can depend only on its mode at the previous step and

on the sum wi of weights of synapses incoming from firing nodes. The mode of one of its

synapses can depend only on the mode of the same synapse, on the mode of the neuroid,

on the firing status of the presynaptic neuroid, and on the sum wi of weights of synapses

incoming from firing presynaptic neuroids. The model assumes a timing mechanism that

has two components. Each transition has a period. We assume here that all transitions

have a period of 1, except for threshold transitions, those that are triggered by wi Ti,

which work on a faster time scale. There is a global synchronization mechanism such

that, for example, if some external input is to cause the representations of two items A

and B to fire simultaneously then the nodes partaking in these representations will be

caused to fire synchronously enough that the algorithms that will be caused to execute

can keep in lockstep for the duration of these local algorithms. These durations will be

typically no more than ten, and for the purposes of this paper, just two steps.

By a disjoint representation we shall mean a representation where each neuroid can

represent at most one item, though one item may be represented by many neuroids. The

21

specific disjoint representation that our algorithms support has been called a positive

representation (Valiant 1994). The generalization that allows a node to represent more

than one item, as needed for the shared representations of the next section, we call a

positive shared representation.

The neuroidal model allows for negative weights, which may be needed, for example, for

inductive learning. However, the algorithms we describe here for JOIN and LINK do not

use negative weights.

We shall start with the algorithms needed for the disjoint two-step scheme implied by

relations [1] – [6]. The algorithms for implementing JOIN and LINK are very similar to

those that were described for the same tasks for unit weights [Reference 6, Algorithms

7.2 and 8.1.] It is clear, however, that once graph-theoretic properties such as [1]-[6] are

guaranteed then a rich variety of variants of these algorithms also suffice. We shall

describe these algorithms informally here.

The following algorithm for creating JOIN needs the nodes of A and B to be caused to

fire at distinct time steps. The nodes that are candidates for C = A B (a) are initially in

“unallocated” state q1, (b) have a fixed threshold T, (c) have each synapse in initial state

qq1, and (d) have all the presynaptic weights initially at the value T/k.

The algorithm acting locally on each candidate C node will act over two steps. The first

step is prompted by the firing of A, and the second by the firing of B one time unit later.

Following these two prompts each candidate C node initially in state q1 that has at least k

connections from A and also at least k connections from B will be in state q2, indicating

that it has become a C node and assigned to store something. Incoming weights from

nodes other than A or B will be made zero. An incoming weight from A will equal T/x if

there are x k of them, and those from B will equal T/y if there are y k of them. A

candidate node that does not receive two successive prompts will return to the initial

unassigned condition.

22

The algorithmic mechanism that realizes this outcome is the following: First note that a

node that does become a C node needs to make the incoming synapses have one of the

three weight values depending on whether it comes from A, B or neither. The trick is that

after the A prompt the synapses from A will memorize the value T/x for an x k as its

weight, and memorize the fact that it is in this transitory condition by having the synapse

state have the temporary value qq2. Also the node will memorize the fact that it is in a

transitory state in which k connections from A have been found by going to state q3. At

the B prompt, if at a candidate node in state q3 some y k synapses come from firing

nodes then these synapses can be updated to have value T/y. At the same time the A

synapses, in state qq2, can go on to take on the values T/x, and the remaining synapses

the value 0. However, if no such k connections from B nodes are found at this second

step then the whole neuroid returns to its initial condition.

The reader can verify that the circuit constructed as described can execute the created

conjunction using a very similar two-step process if at any later time A and B are

presented at successive time instants. However, many variations are possible. For

example, if the weights are set to T/2x and T/2y instead of T/x and T/y then simultaneous

presentation of A and B will work for recognition. Thus one-step execution is possible

even with two-step creation.

We observe here that in general here is a chance that the set of neuroids that are identified

to represent a conjunction are mostly previously taken, and the new ones that can be

assigned form only a small fraction of r. Condition [2] ensures that that this effect is

initially limited. The situation here is akin to that of a hashing scheme in which as the

memory fills up fewer and fewer new places are available (Valiant, 1994).

We now go on to discuss an algorithm for creating LINK. We consider A to be

represented in one area from which there are directed edges to an area of relay neuroids,

from which in turn there are directed edges to a third area containing B. Initially the relay

neuroids have threshold T and all weights on incoming edges weight T/k, and on outgoing

23

edges weight 0. The relay neuroids never change, except for firing. The neuroids in B are

in state q1 initially.

The algorithm for creating LINK has one step in which the representations of A and B are

caused to fire at the first prompt. For the nodes in B that are in state q1 and are caused to

fire, each incoming edge from a firing node is given weight T/k.

The algorithm for executing LINK is even simpler. It requires simple threshold firing at

both the relay level as well as in the B nodes.

We now go on to discuss the shared representation expressed by relations [1’] – [6’]. The

algorithm given for creating and executing LINK in the disjoint case described above

applies unchanged to the shared case also. For JOIN the creation algorithm given has to

be modified so that no distinction is made any more between allocated and unallocated

nodes. Now no creation process is necessary! Execution can be realized by the following

modification of the creation algorithm for the disjoint case: (i) the final state is made the

same as the initial state q1, rather than a new state q2, and (ii) no synaptic weights are

changed at all. The evaluation algorithm is unchanged.

The above descriptions of the two algorithms assume bipartite graphs, in which A and B

will be in different areas for the case of LINK, and C in a different area from A and B in

the case of JOIN. To adapt the algorithms to general graphs small modifications are

needed to allow for the node sets having nonzero intersections.

For the shared representation one-step algorithm there is again no creation process.

Evaluation requires again only threshold firing. For LINK there is no difference between

the one-step and two-step cases.

24

Capacity and Interference

The intention of our representations is that when all or most of the nodes representing an

item fire then the item is considered recognized. For example the activation of

sufficiently many neurons in a representation in a motor area of cortex would cause a

certain muscle movement.

This style of representation gives rise to a pair of related concerns: How many items can

be represented in the system? What exactly does it mean for an item to be represented if

unforeseen interference from other activities in the circuit can occur?

First, we note that these concerns occur in a fundamentally novel way in our approach as

compared with some previous theories. In a traditional associative memory, for example,

there is just one kind of execution, namely retrieval, and we can assume that nothing else

is going on simultaneously with an instance of it. Hence, the notion of capacity, the

number of items that can be stored, is analyzable in a clean manner (Graham and

Willshaw, 1997).

In this paper we have two kinds of tasks, memorization and association. We also have

diverse environments arising from different histories of past circuit creations. Further, we

may want some robustness to other simultaneous activities in the circuit, and our longer-

term aim may be to support further tasks. These factors make possible a large number of

potential sources of interference, which we define to be the effect on the execution of an

algorithm of network conditions that arise from sources not specific to that execution.

Our guarantee that the circuit acts correctly is only with respect to some specified set of

non-interference conditions such as relations [2], [3], [5] or [6] and a robustness

condition that, as described in the section to follow, that upper bounds the total number of

nodes that are active in the whole circuit. No guarantees are implied for situations that are

outside these constraints. For example, if the circuit has a “seizure” so that half of the

25

nodes extraneous to the task at hand fire, then this is a pathological condition for which

no guarantees are offered.

A second observation is that our guarantees are only probabilistic and, at least in the

current paper, only as computed by some numerical calculations of limited precision. In

particular, in order to bound the probability of error in the various relations, we have

computed the tails of the Bernouilli distribution (n, p, k) by adding the individual non-

negligible terms (n, p, i), using double precision calculations. Since the number of terms

grows with n our accuracy was limited to about 10
-6

for the largest values of n that we

considered.

In principle, the calculations may be performed to arbitrary accuracy in the following

sense: One could compute for what minimum integer x is the probability of error less

than 10
-x

 for each relation.

Doing such detailed calculations is beyond the scope of this paper. It will suffice here to

observe that certainly in some cases within the tables of parameters that we consider, the

errors are much smaller than the claimed 10
-6

, in fact less than 10
-1000

 in one extremity.

As an example, we give a simple analytic upper bound on the error for relation [2’’]:

(n, (3r/2, p, km), r/10) ~ 0

under the assumption [1’’]

n (2r-r’, p, km) ~ r

where, further, km = 2k. Now, for generic variables n, k, p, and b, if k = (1+b)np and 0 b

 1, then

26

(n, p, k) exp(-b
2
np/3)

can be derived from Chernoff’s bound (Angluin and Valiant, 1979), where “exp” denotes

exponentiation to the base e = 2.71… . From this bound it follows that

(3r/2, p, 2k) exp(- (2k/(3rp/2) -1)
2
(3rp/2)/3).

Now in all cases in the tables rp < k (a fact which also follows from [1’’] if we assume r’

to be negligible and r/n to be small enough to ensure that km = 2k exceeds the mean.) It

then follows by substitution that (3r/2, p, 2k) exp(- rp/18). So if we choose values

from the tables with n = 10
9
, rp 180, and r 10

7
, say, then equation [2’’] becomes

(10
9
, exp(-10), 10

6
) ~ 0. Applying the general bound on given above a second time

gives that the error in [2’’] is at most (10
9
, 10

-4
, 10

6
) (10

9
, 10

-4
, 2*10

5
) exp(-

10
5
/3) 10

-1000
. Thus at one extremity of our range of parameters the errors for the one

relation [2’’] are indeed extremely small.

Our point is that while for conceptually simpler models the notion of capacity, a single

value for the number of items that can be represented, makes sense, for more complex

models a more appropriate way of expressing the same notion is that of upper bounding

the probability of various kind of interference in any execution of the task. For example,

relation [2] does not give an absolute guarantee of the relevant interference not

happening. It says that if A and B have total size 3r/2 and the graph is regarded as

randomly generated with respect to those sets, then the probability of the unwanted

interference is very small (e. g. 10
-6

or 10
-1000

). This we interpret to say, roughly, in the

fixed network, that if A is fixed and of size r and B a random set of r/2 nodes, then the

interference effect will occur with such small probability.

27

Robustness to Noise

The previous discussion on capacity referred to specific interactions in the network. A

more generic source of interference that can be analyzed is that due to some fixed

fraction of neurons being active in the network that are extraneous to the task being

executed. The main question is the fraction of extraneous neurons that can be active

without interfering with the intended effects of the task at hand. We shall call that

fraction the noise rate .

In general we can refine each of our non-interference constraints to allow for the

expected number s = n of extraneous nodes being additionally active. We have restricted

the entries in Tables 1 and 2 to those where non-interference relations [2], [3], [5], [6],

[2’], [3’], and [6’], held even with perturbations corresponding to noise rates in the

range from 10
-4

 to 10
-6

. In all seven relations we replaced the relevant quantities r or r/2,

when they referred to the input neurons of the task, by r + n or r/2 + n, as appropriate.

In particular, for the respective relations the replacements were done for the following

neuron sets: [2], [2’] : A, B; [3], [3’] : A, B, D; [5] : A; and [6], [6’]: A1, B. In Tables 3

and 4 the entries are restricted in an exactly analogous way. We note that, with the

exception of equations [3], [3’], [3”], it is clear that with a lower noise rate it is easier to

satisfy these equations.

Estimates of the noise rates that can be tolerated can be made in a number of other senses

also. For example, we could assume that all situations, including both circuit creations

and executions, are subject to some noise rate, and solve Equation 1 under that

assumption.

We also note that we have sought noise rates that can be supported by a very wide range

of the parameters. Higher rates can be tolerated for individual parameter combinations.

28

Predictions

The entries in our tables are all solutions to equations [1], [1’] or [1’’]. Remarkably, there

is the following simple interdependence among r, d, k and n:

rd < kn < c2rd (*)

where, for each entry in Tables 1 – 4, c2 is a modest constant. In fact for all entries in the

tables with k 64, it is the case that c2 is smaller than 1.35. For entries with k = 32, k =

16 and k = 8 it is smaller than 1.6, 2.1 and 3.0, respectively. This relationship can be

explained as follows: Equation [1] is of the form f(B(r, p, k)) = r/n where f is a fixed

function, here the squaring function. For const k the expectation rp of the associated

Binomial distribution will stay a constant as r goes up by factor of 10 and p goes down by

factor of 10, or equivalently as n goes up by a factor of 10 for constant d. (Note that this

explains why the corresponding entries in the tables for the various values of n are

approximately in the ratio of the magnitudes of n.) Since, in general, r/n is small,

solutions of equation [1] will correspond to having combinations of r, p, k that

correspond to a point somewhat above the expectation. In other words, k will be

somewhat above rp = rd/n. Since the binomial distribution falls off exponentially above

the mean k will not be much larger than rn/d, from which we deduce that kd is a little

larger than rn. It is easy to see that the same argument also holds for relation [1”] if km =

2k.

This simple relation can be taken as a prediction for systems that allocate memory in the

style of our memorization mechanism, provided the number of representatives for a

concept at the lower level, i. e. A and B, is the same as at the next level, C. This is an

attractive assumption for a memory system that treats all memorized concepts as “equal

citizens”. It may not be true for all systems. For example, in various levels of a vision or

other sensory system there may be amplification or reduction in the number of neurons

29

that represent an item between the various levels, and in that case appropriate

modifications of equations [1] or [1”] need to be solved instead.

Finally, we note that a node in our formalism may be simulating a unit that consists of

more than one biological neuron. For example, the suggestion that local connections

between different layers in cortex may have the effect of increasing the effective degree

of a node in the long-range connection network is analyzed in detail in (Valiant, 1994).

Discussion

We have shown that networks of model neurons having the four parameters of neuron

count, synapse count, strength of synapses, and switching time all within ranges widely

observed in biology, can realize the two basic tasks of memory formation and

association. We have given tables of values for these parameters that are consistent with

the quantitative constraints that we have identified as being sufficient for the realization

of these two tasks. Our positive result is that entries exist for realistic combinations of

these numerical parameters. Further, the algorithms needed for creating and executing the

circuits for these tasks are of the simplest kind, requiring as little as one step of vicinal or

neighborly interaction.

The two basic tasks that we have considered here have been the basis for implementing a

broader variety of cognitive tasks, including memorization of conjunctions and

disjunctions, handling relations, and inductive learning, under the direct-action

hypothesis of strong synapses (Valiant 1994). For the less restrictive setting of the current

paper any such broader implications that may follow have yet to be worked out. In

particular, if items have a shared representation, and these are to be the targets of

inductive learning then special challenges arise. If multiple concepts are being learned

and the examples for them are intermingled in time, then having a single synapse take

part in the learning of more than one concept would appear to be problematic.

30

This work offers apparently the first explanation of how the basic cognitive tasks that we

consider here can be performed at all by neural systems that have synaptic strengths that

are as weak as those that are typically observed experimentally. It is probable that

different neural systems exploit different combinations of the numerical parameters, and

do so in different ways. It is possible, and even probable, for example, that higher order

cognitive tasks require disjoint representations and stronger synapses. Our methodology

offers a calculus for investigating such phenomena.

References

Abeles. M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex, Cambridge

University Press.

Abramowitz, M. and Stegun, I. (1964). Handbook of Mathematical Functions, National

Bureau of Standards, Applied Mathematics Series – 55.

Ali, A. B., Deuchars, J., Pawelzik, H., and Thomson, A. M. (1998). J.Physiol. 507:201-

217.

Angluin, D. and Valiant, L. G. (1979). J. Comput. and Syst. Sciences, 8:155-193.

Barlow, H. B. (1972). Perception 1:371-394.

Beurle, R. L. (1955). Philos. Trans. R. Soc. Lond. [Biol.] 240: 55-87.

Bollobas, B. (2001). Random Graphs, Cambridge University Press.

Braitenberg, V. (1978). In Theoretical Approaches to Complex Systems, Lecture Notes in

Biomathematics, 21 (R.Heim and G. Palm (eds.)) 171-188.

31

Braitenberg, V. and Schuz, A. (1998). Cortex: Statistics and Geometry of Neuronal

Connectivity, Springer-Verlag, Berlin.

Cook S. A., (1971). In Proc 3
rd

 ACM Symp. On Theory of Computing, 151-158, ACM

Press, New York.

Feldman, J. A. (1982). Biol. Cybern. 46:27-39.

Feldman J. A., and Ballard. D. H. (1982). Cog. Sci. 6:205-254.

Gerbessiotis, A. V. (2003) International Journal of Computer Mathematics, 80:689-707.

Graham, B., and Willshaw, D. (1997). Network: Comput. Neural Syst. 8:35-54.

Griffith, J. S. (1963). Biophys. J. 3:299-308.

Griffith, J. S. (1971). Mathematical Neurobiology: An Introduction to the Mathematics of

the Nervous System, Academic Press, New York.

Markram, H., and Tsodyks, M., (1996a). J. Physiol. (Paris), 90:229-232.

Markram H. and Tsodyks, M. (1996b). Nature 382:807-810

Papadimitriou, C. H. (1994). Computational Complexity, (Addison-Wesley, 1994).

Shastri L., and Ajjanagadde, A. (1993). Behavioral and Brain Sciences, 16(3): 417-494.

Shastri L. (2001). Neurocomputing, 38-40: 889-897.

Thomson, A. M., Deuchars, J., and West, D. C. (1993). J. Neurophysiol. 70: 2354-2369.

32

Valiant, L. G. (1988). In Proc. AAAI-88, Vol 2, Morgan Kaufmann, San Mateo, CA.,

629- 634.

Valiant, L. G. (1994) Circuits of the Mind, Oxford University Press.

Acknowledgements

This work was supported in part by grants from the National Science Foundation NSF-

CCR-98-77049, NSF-CCR-03-10882 and NSF-CCF-0432037. The author is also

grateful to two anonymous referees for their helpful comments.

33

 n = 100,000 NEURONS

 k = 8 k = 16 k = 32 k = 64 k = 128 k = 256 k = 512 k = 1024

d = 128

d = 256 1981 5025

d = 512 899 2338 5420

d = 1024 412 1098 2582

d = 2048 519 1238 2749

d = 4096 *247 597 1337 2865

d = 8192 *119 *290 654 1407

d = 16384 *143 *322 *695 1458

d = 32768 ^*162 ^*347 ^*727 *1496

d = 65536 ^*753

 n = 1,000,000 NEURONS

d = 128

d = 256 19803 50235

d = 512 8979 23365 54181

d = 1024 4105 10957 25796

d = 2048 1888 5168 12353 27460

d = 4096 ^873 2449 5940 13330 28607

d = 8192 ^406 1165 2866 6491 14015

d = 16384 ^190 ^557 1388 3169 6883 14497

d = 32768 ^268 ^675 1552 ^3388 7161 14836

d = 65536 ^*130 ^330 ^*763 ^*1672 ^3545 ^7360

d = 131072 ^*163 ^*378 ^*830 ^1761 ^3660

d = 262144 ^*190 ^*415 ^*1827

d = 524288

 n = 10,000,000 NEURONS

d = 128

d = 256 198025 502339

d = 512 89777 233636 541791

d = 1024 41033 109547 257940

d = 2048 18868 51660 123498 274571

d = 4096 ^8717 24467 59368 133265 286021

d = 8192 ^4043 11628 28628 64866 140098

d = 16384 ^1882 ^5542 13839 31643 68761 144886

d = 32768 ^ 879 ^2649 6704 15464 33802 71516 148248

d = 65536 ^1269 ^3255 ^7570 ^16640 ^35342 ^73463

d = 131072 ^610 ^1584 ^3712 ^8202 ^17484 ^36437 ^74842

d = 262144 ^295 ^773 ^1824 ^4049 ^8660 ^18089

d = 524288

d = 1048576

Table 1. The entries give a value of the replication factor r that is the closest integer

solution to Equation [1] for the given values of the neuron count n, the degree d and the

inverse synaptic strength k. Equation [1] is accurate to ratio 10
-2

 (but only 10
-1

 if marked

by *) and Equation [4] to 10
-6

. Equations [2], [3], [5], [6], [2’], [3’], and [6’] are accurate

to 10
-6

. For unmarked entries these accuracies are achieved even if the noise rates are 10
-4

for [2], [3], [5], [2’], 10
-5

 for [6] and [3’], and 10
-6

 for [6’]. For entries marked with a ^

this accuracy is achieved with the lower noise rate 10
-6

 for all seven equations. Equation

[1’] is satisfied with constant 1 < c1 < 1.1.

34

 n = 100,000,000 NEURONS

k = 8 k = 16 k = 32 k = 64 k = 128 k = 256 k = 512 k =1024

d = 128

d = 256 1980239 5023377

d = 512 897763 2336342 5417894

d = 1024 410318 1095455 2579374

d = 2048 188664 516578 1234952 2745675

d = 4096 ^87153 244648 593653 1332609 2860166

d = 8192 ^40412 116254 286244 648612 1400921

d = 16384 ^18797 ^55394 138351 316375 687547 1448778

d = 32768 ^ 8766 ^26455 67001 154582 337949 715063 1482369

d = 65536 ^4098 ^12660 ^32501 ^75636 ^166314 ^353310 ^734499

d = 131072 ^6069 ^15789 ^37053 ^81930 ^ 174721 ^364217 ^ 748226

d = 262144 ^2915 ^7681 ^18172 ^40397 ^ 86468 ^180718 ^ 371950

d = 524288

d = 1048576

 n = 1,000,000,000 NEURONS

d = 128

d = 256 19802377 50233759

d = 512 8977613 23363401 54178923

d = 1024 4103166 10954534 25793723

d = 2048 1886626 5165758 12349496 27456714

d = 4096 ^871517 2446454 5936498 13326048 28601613

d = 8192 ^404099 1162518 2862401 6486077 14009157

d = 16384 ^187946 553914 1383469 3163694 6875400 14487695

d = 32768 ^ 87638 ^264523 669965 1545764 3379417 7150540 14823572

d = 65536 ^40955 ^126564 ^324966 ^756296 ^1663055 ^3532995 ^7344851

d = 131072 ^60656 ^157842 ^370461 ^819214 ^1747094 ^3642013 ^7482072

d = 262144 ^29112 ^76758 ^181644 ^403874 ^864553 ^1807014 ^3719279

d = 524288

d = 1048576

Table 2. The entries give the value of the replication factor r that is the closest integer

solution to Equation [1] for the given values of the neuron count n, the degree d and the

inverse synaptic strength k. Equation [1] is accurate to ratio 10
-2

 and Equation [4] to 10
-6

.

Equations [2], [3], [5], [6], [2’], [3’], and [6’] are accurate to 10
-6

. For unmarked entries

these accuracies are achieved even if the noise rates are 10
-4

 for [2], [3], [5], [2’] , 10
-5

 for

[6] and [3’], and 10
-6

 for [6’]. For entries marked with a ^ this accuracy is achieved with

the lower noise rate 10
-6

 for all seven equations. Equation [1’] is satisfied with constant 1

< c1 < 1.1.

35

 n = 100,000 NEURONS

 k = 8 k = 16 k = 32 k = 64 k = 128 k = 256 k = 512 k = 1024

d = 128

d = 256

d = 512 2134 5170

d = 1024 1000 2436

d = 2048 473* 1164 2653

d = 4096 562* 1284* 2809

d = 8192 628* 1372* 2922

d = 16384 678* 1438*

d = 32768 339* 716* 1488*

d = 65536

 n = 1,000,000 NEURONS

d = 128

d = 256

d = 512

d = 1024 3571 9974 24327

d = 2048 4707 11603 26487

d = 4096 2233 5576 12792 28027

d = 8192 1065 2692 6219 13650 29122

d = 16384 1305 3037 6688 14265 29899

d = 32768 636* 1488* 3290 7028 14706

d = 65536 733 1625* 3477 7274

d = 131072 364* 807* 1728* 3614 7454

d = 262144 406* 865 1806 3717*

d = 524288

 n = 10,000,000 NEURONS

d = 128

d = 256

d = 512

d = 1024 35693 99248

d = 2048 16451 46807 115310

d = 4096 22307 55487 126970

d = 8192 10619 26877 61909

d = 16384 5069 13005 30302 66577

d = 32768 6307 14815 32814 69939

d = 65536 7258 16155 34635 72347

d = 131072 3562 7967 17131 35946

d = 262144 3936 8487 17838 36887

d = 524288 8867 18350

d = 1048576

Table 3. The entries give the value of the replication factor r that is the closest integer solution to Equation

[1”] for the given values of the neuron count n, the degree d and the inverse synaptic strength k, where km =

2k and ka = k. Equation [1”] is accurate to ratio 10-2 (but only 10-1 if marked by *) and Equation [4”] to 10-

6. Equations [2”], [3”], [5”], and [6”] are accurate to 10-6. These accuracies are achieved even if the noise

rates for [2”], [3”], [5”], and [6”] are 10-4, 10-4, 10-4, 10-5, respectively

36

 n = 100,000,000 NEURONS

k = 8 k = 16 k = 32 k = 64 k = 128 k = 256 k = 512 k =1024

d = 128

d = 256

d = 512

d = 1024 356186 991770

d = 2048 164349 469174 1152860

d = 4096 222765 555466 1270184

d = 8192 106086 268344 619272

d = 16384 50640 129914 302491 665623

d = 32768 63004 147976 327502 698966

d = 65536 72484 161315 345606 722820

d = 131072 35546 79539 171018 358615

d = 262144 39248 84678 178029 367903

d = 524288 88413 183035

d = 1048576

 n = 1,000,000,000 NEURONS

d = 128

d = 256

d = 512

d = 1024 3561948 9917674

d = 2048 1643398 4691653 11528462

d = 4096 2227722 5554651 12701863

d = 8192 1060910 2683448 6192598

d = 16384 506456 1299108 3024779 6656114

d = 32768 630010 1479667 3274935 6989595

d = 65536 724718 1613041 3455971 7228103

d = 131072 355323 795184 1710073 3585972

d = 262144 392293 846699 1780004 3678864

d = 524288 883950 1830101

d = 1048576

Table 4. The entries give the value of the replication factor r that is the closest integer

solution to Equation [1”] for the given values of the neuron count n, the degree d and the

inverse synaptic strength k, where km = 2k and ka = k. Equation [1”] is accurate to ratio

10
-2

, and Equation 4 to 10
-6

. Equations [2”], [3”], [5”], and [6”] are accurate to 10
-6

.

These accuracies are achieved even if the noise rates for [2”], [3”], [5”], and [6”] are 10
-4

,

10
-4

, 10
-4

, 10
-5

, respectively.

37

C
k

k

k

k

B

Ar

r

Figure 1. Graph-theoretic structure needed for the two-step algorithm for disjoint representations for the

memorization of the conjunction of items at A and B. For shared representations the sets A and B may

intersect. For the one-step algorithm there is a bound km on the total number of edges coming from A and B,

rather than bounds on A and B separately.

38

k
k

BAr r

Figure 2. Graph-theoretic structure needed for the algorithm for establishing an association of the item at A

to the item at B.

39

