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Abstract. We define the notion of diversity for families of finite func-
tions, and express the limitations of a simple class of holographic algo-
rithms, called elementary algorithms, in terms of limitations on diver-
sity. We show that this class of elementary algorithms is too weak to
solve the Boolean Circuit Value problem, or Boolean Satisfiability, or
the Permanent. The lower bound argument is a natural but apparently
novel combination of counting and algebraic dependence arguments that
is viable in the holographic framework. We go on to describe polynomial
time holographic algorithms that go beyond the elementarity restriction
in the two respects that they use exponential size fields, and multiple
oracle calls in the form of polynomial interpolation. These new algo-
rithms, which use bases of three components, compute the parity of
the following quantities for degree three planar undirected graphs: the
number of 3-colorings up to permutation of colors, the number of con-
nected vertex covers, and the number of induced forests or feedback
vertex sets. In each case the parity can also be computed for any one
slice of the problem, in particular for colorings where the first color is
used a certain number of times, or where the connected vertex cover,
feedback set or induced forest has a certain number of nodes.
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1. Introduction

The theory of holographic algorithms is based on a notion of re-
duction that enables computational problems to be interrelated
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with unusual fluidity. The theory offers three basic reduction tech-
niques:

(a) Holographic transformations that relate pairs of problems
by simply taking a different view or basis,

(b) Holographic gadgets that use internal cancellations custom
designed for the problems at hand, and

(c) Interpolation techniques for recovering information from the
outputs of computations on a set of specially prepared variants of
the problem instance at hand.

The overarching open question in the theory is whether this
combination of techniques can bridge the gap between classical
polynomial algorithms on the one hand, and the class of #P-
complete (or NP- or ⊕P-complete) problems as defined by classical
reductions, on the other.

In order to further our understanding of this question we intro-
duce here the notion of diversity for finite functions, in terms of
which some limitations of the simplest kinds of holographic algo-
rithms that we discussed in an earlier paper (Valiant 2006) can be
explored more explicitly. These simplest holographic algorithms
are those obtained from what we define as elementary reductions.
We show that such algorithms do impose a limitation on the diver-
sity of the functions that can be realized. It remains unresolved,
however, whether holographic algorithms that are not bound by
the constraints of elementarity, such as those given in later sec-
tions of this paper, that use interpolation, can evade this diversity
limitation.

In the later sections we go on to describe some polynomial
time holographic algorithms for three natural problems for planar
undirected graphs of degree three. These compute the parity of
the number of solutions of each of the following three problems:
feedback vertex sets (or, equivalently, induced forests), connected
vertex covers, and vertex 3-colorings up to permutations of col-
ors. These algorithms use the three element basis b3 from Valiant
(2008). Bases of size greater than two have been studied systemat-
ically more recently, for example by Cai et al. (2014), Chen (2016),
Xia (2016).

For brevity of exposition we shall assume familiarity with the



Some Observations on Holographic Algorithms 1 3

basic notions and notations of holographic algorithms as described
in (Valiant 2004, 2008).

2. Diversity

For a Boolean function f(x1, ..., xm) and a subset S ⊆ X =
{x1, ..., xm} of size n, we define the diversity of S in f to be the
logarithm to the base two of the number of different functions of the
n variables of S that can be obtained by fixing the m−n remaining
variables X − S in the 2m−n different ways. This is the central
concept in proofs (Neciporuk 1966) of lower bounds on formula
complexity. He showed that if X has a partition into subsets Si
such that the average diversity of the Si in f is substantial, then a
nonlinear lower bound on the formula size of f follows.

We say that a Boolean function f(x1, ..., xm) has n-diversity D
if D is the maximum diversity of S in f , over all subsets S ⊆ X =
{x1, ..., xm} of size n . Since there are 22n Boolean functions of n
variables, the maximum n-diversity of a function is 2n.

A Boolean function family f = {fm(x1, ..., xm) | m = 1, ...} has
diversity g(n) if for each positive integer n, g(n) is the maximum
n-diversity of fm for any m ≥ n. Clearly g(n) ≤ 2n.

A Boolean function family f has polynomial diversity if its di-
versity g(n) is upper bounded by some polynomial p(n). It has
exponential diversity if it is lower bounded by c2cn

κ
for some con-

stants c, κ > 0. It has exponential standard diversity if, for some
polynomial p(n), exponential diversity is achieved for all n by fm
with some m ≤ 2p(n). It has polynomial standard diversity if, for
all polynomials p(n), the n-diversity achieved for n by fm with
m ≤ 2p(n) is polynomial bounded.

Such definitions can also be made for finite fields Fq for families
with fi: {0, ..., q − 1}i 7→ {0, ..., q − 1}. In that case the maximum
n-diversity of a family is qn log2 q.

High diversity does not imply high complexity. The Circuit
Value problem (Ladner 1975) CVn,r(x1, ..., xn+r) we shall formu-
late here as the function that regards its first n inputs as a vector
v of n Boolean values, and the remaining bits as a specification of
a Boolean circuit C of n inputs with binary gates.
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Proposition 1 The circuit value problem has exponential diver-
sity.
Proof An m gate circuit of n inputs can be specified using r =
O((n+m)log(n+m)) bits. Since all the 22n Boolean functions of n
variables can be realized by a circuit with O(2n/n) gates Lupanov
(1958), they can all be encoded in CVn,r if r = O(2n). We define
CV to have such an encoding of circuits. Hence CV has diversity
2n since S = (x1, ..., xn) has diversity 2n in CVn,r for an appro-
priate r = O(2n). Clearly CV then also has exponential standard
diversity. �.

Using the following notion of reduction one can deduce that
most natural P-, NP- and #P-complete problems have exponen-
tial standard diversity. We say that a reduction τ from {CVn,r}
to a family of functions {Qi} is segregating if in polynomial time τ
maps the pair v, C to a pair of Boolean sequences (y, z) such that
(i) for any fixed n and r, the lengths of y and of z are uniquely
determined, (ii) the length of y is polynomially bounded in terms
of n, (iii) y depends on v and not C, (iv) z depends on C and not
v, and (v) Qi(y, z) = C(v). (In short, y encodes v, z encodes C,
and Qi evaluates C on v. The length of y is polynomial in n, but
the length of z may be exponential in n.)

Proposition 2 If CV is reducible to Q by a segregating reduction
then Q has exponential standard diversity.
Proof For a fixed size n consider CVn,r with r exponential in n
and large enough that all 22n Boolean functions of n variables can
be expressed. Now consider one of the 22n choices of C. Since the
reduction, say τ , is segregating, for all v it will map (v, C) to (y, z)
for the some fixed value of z. For C and z so fixed, as v varies so
will y, and Qi(y, z) = C(v). Hence, Qi will compute on the encod-
ing y of v the same Boolean function as C does on v. Hence, fixing
z in different ways will make Qi compute 22n different functions of
y. If S is the set of variables that represents y then the diversity
of S in Qi will be 2n. Since τ is segregating, by condition (ii) |S| is
polynomially bounded in terms of n. It follows that the diversity
of S in Qi will be at least c2c|S|

κ
for appropriate positive constants



Some Observations on Holographic Algorithms 2 5

c and κ. �.

Now for many NP-complete problems, by tracing through the
known reductions, one can derive segregating reductions from CV
to them. For example, consider the family Q corresponding to
Cook’s 3SAT problem. HereQi(x) is a 3CNF formula with i clauses
and variables from x1, ..., xi. From a circuit C with inputs x1, ..., xn,
and any vector v of values of x1, ..., xn, one can construct by now
standard methods a polynomial size 3CNF formula that is satis-
fiable if and only if that circuit C on that input v evaluates to
one: The formula will have the first n clauses encode the input
with the jth clause being (xj) or (x′j) according to whether the jth

among the n bits of v is 1 or 0. It will have the remaining clauses
encode the gates. This is a segregating polynomial time reduction
from CV to 3CNF. Related to the 3CNF satisfiability problem is
⊕3CNF, the problem of determining the parity of the number of
solutions of a 3CNF formula, and their planar analogs Pl-3CNF
and ⊕Pl-3CNF. From the above construction we can deduce the
following.

Proposition 3 The problems 3CNF, ⊕3CNF, Pl-3CNF and ⊕Pl-
3CNF all have exponential standard diversity.
Proof The previous paragraph describes a segregating reduction
from CV to 3CNF. This establishes the result for 3CNF by virtue
of Proposition 2. Since the construction can be made to preserve
the number of solutions, the 3CNF formula will have 0 or 1 solu-
tions according to whether the value output by the circuit C is 0
or 1. The result for ⊕3CNF therefore also follows. For the pla-
nar case one uses additional sets of clauses that act as crossovers
and make the formula planar, as described by Lichtenstein (1982).
These can also be made to preserve the number of solutions (Hunt
et al. 1998). These additional clauses can be viewed as part of
the circuit encoding, and then yield a segregating reduction to the
planar versions of Pl-3CNF and ⊕Pl-3CNF as needed. �

With this starting point one can ask for each of the known
NP-complete problems, such as those of Karp (1972), whether CV
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is reducible to some natural encodings of them by a segregating
reduction. It appears that this is the case for the vast majority,
and for those it then follows that some natural encoding of them
has exponential standard diversity.

What is the status of the numerous counting problems that are
known to be complete in an appropriate counting class, but for
which existence is polynomial time computable and not known to
be complete for P? Do these counting problems have CV embedded
in them equally explicitly? The following shows that in some such
cases the embedding is in fact explicit.

Proposition 4 The Permanent modulo k for any prime k 6= 2 has
exponential standard diversity.
Proof From the proof in Valiant (1979a) one can obtain a segre-
gating reduction from CV via 3CNF to the permanent modulo k
for any prime k other than two. �

On the other hand, proofs of #P-completeness often go through
interpolation (Cai et al. 2008; Jerrum 1987; Vadhan 2001; Valiant
1979b; Xia et al. 2007). It is an open problem whether in those
cases exponential diversity is necessarily implied. For example,
does counting matchings modulo 3, in some natural encoding of
planar graphs, have exponential diversity? There are cases in which
the known reductions to the counting problem take particularly cir-
cuitous routes through interpolations, raising the possibility that
the CV problem is truly disguised, but nevertheless exponential di-
versity can be deduced from known reductions for the correspond-
ing parity problem. One example of this is planar vertex cover
for which known #P completeness proofs (Vadhan 2001; Xia et al.
2007) are indirect. However, for the subclass of planar regular
3/2-graphs (bipartite graphs with degree 2 on one side and 3 on
the other) a segregating reduction from 3CNF to this vertex cover
problem that preserves the parity of the number of solutions can be
derived from the the ⊕P-completeness proof of this problem given
in Valiant (2006).

Proposition 5 The parity of the number of vertex covers for pla-
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nar regular 3/2 graphs has exponential standard diversity.

Clearly a unary Boolean function family, one that is zero when-
ever any xi = 1, will have polynomial diversity. Since there exist
unary function families of arbitrarily high Turing machine time
complexity it follows that polynomial diversity does not imply
polynomial time Turing machine complexity. Pavel Pudlák has
made the following elegant observation that shows that low n-
diversity can also be possessed by functions that have high com-
plexity in many other senses, such as having exponential circuit
complexity or being NP-complete. For any function f(x) on n in-
puts consider an error correcting code g: {0, 1}n → {0, 1}r that
corrects more than n errors and can be computed and inverted ef-
ficiently. Let h : {0, 1}r → {0, 1} be such that h(y) = 1 iff y = g(x)
for some x and f(x) = 1. Then h has n-diversity at most n + 1
since for any domain d of n of its input bits, fixing the remaining
bits will permit it to have value 1 for at most 1 of the 2n values
of d, and hence there are at most 2n + 1 such different functions
possible of the n variables of d.

In other words, functions of arbitrary difficulty can be made
to have low n-diversity for n appropriately chosen. However, the
above discussion does not preclude the function h having exponen-
tial n′ diversity for some n′ ≥ n. Indeed the following appears to
be unresolved.

Open Problem Does any function family f that is NP-complete,
⊕P-complete, #P-complete, or PSPACE-complete, have polyno-
mial diversity?

3. Elementary Reductions to Matchgrids

We shall now define the notion of an elementary reduction to match-
grids. The definition is a generalization of the one given in Valiant
(2006) that was specific to reductions from 3CNF. Here we con-
sider a Boolean function family f with respect to input domain d.
for each m there is a specified function fm on Boolean variables
x1, ..., xm, and a specified subset dm of nm of these m variables.
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Such a family, like 3CNF, is assumed to have a natural representa-
tion, and a natural representation size that is robust to polynomial
factors.

We say that τ is a k(m)-oracle reduction from family f to match-
grids if for each family member fm it generates k(m) matchgrids in
polynomial time and from their Holants it computes the solution
to the original problem also in polynomial time. Note that while
many holographic algorithms in the literature are 1-oracle, several
multi-oracle matchgrid reductions that use interpolation have been
described also (Cai & Choudhary 2007; Valiant 2004, 2008).

Suppose that τ is a polynomial time 1-oracle reduction from
f to matchgrids over field F . For a function fm, a domain of
its variables dm of size nm, and an assignment z to the set cm of
variables that is the complement of dm, let M(fm, dm, z) be the set
of 2n adjacency matrices of the set of matchgrid images under τ of
the 2n restrictions of fm when the n = nm variables specified by
dm are fixed in all possible ways.

Then τ is a local boundary reduction for family f and domain d
if for each m, z the matchgrids produced have adjacency matrices
M(fm, dm, z) and planar embeddings such that
(a) the 2n embeddings have an identical set of nodes Um,z.
(b) in these 2n embeddings all the edges and their weights are
identical, except possibly those that have both endpoints within a
subset Zm,z ⊆ Um,z, which is of size upper bounded by a polynomial
L(n) independent of m.
(c) the Zm,z nodes have degrees bounded by a constant independent
of n, m or z.
(d) the nodes Zm,z all lie in the infinite outer face of the embedding
of the graph induced by Tm,z = Um,z − Zm,z, and
(e) the edges incident to pairs of vertices in Zm,z can be partitioned
into n sets such that each such set Si corresponds to a variable xki
in dm, and the weights of Si are functions of the value of xki but
are independent of the values of the other xj in dm (i. e. those
with j 6= ki.)

We shall say that a reduction τ from a family f with respect to
input domain d of size n to matchgrids over F is elementary if it has
the four properties of (i) being 1-oracle, (ii) being local boundary,
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(iii) having the number of field elements |F | polynomial bounded
in m, and (iv) having Holant(τ(f(x))) determine the value of f(x).
We then also say that τ is an elementary reduction for (f, d).

We note that there are no constraints on what the transforma-
tion does on different z. The intent is that when the Circuit Value
problem is embedded, then the different circuits C can be embed-
ded in arbitrarily different ways, but for any one circuit there are
constraints on the way the matchgrids can vary as the inputs v to
C vary. Also note that the field size is allowed to grow polynomi-
ally with m, so that it can be exponential in n if m is exponential
in n.

4. Elementary Reductions Compute Functions
of Polynomial Diversity

Here we provide a lower bound argument that proves limitations
on the functions that can be obtained as elementary reductions
to matchgrids. The argument is a simple combination of counting
and algebra. The counting part dictates the restriction to fields
of limited size. The algebraic part captures the notion that the
different components of a signature are Pfaffians of submatrices of
a common matrix and therefore obey some algebraic relationships
that limit the possible signatures.

We start with a universality statement that all realizable sig-
natures having a fixed number of components are realizable by a
single matchgate with parameters set to certain values. A proto-
type of such a result for the related context of matchcircuits and
characters was proved for 2-input 2-output gates in Valiant (2002).
This was subsequently generalized by Cai et al. (2009) and Cai &
Gorenstein (2014) to arbitrary size gates and shown to be the essen-
tially equivalent problem for the planar matchgrids and signatures
considered in Valiant (2004) and here.

Theorem 1 There is a weighted planar graph G having r external
nodes and O(r4) edges of which all but O(r2) have fixed weight ±1,
such that for any field F , any standard signature that is realized
by some matchgrid with r external nodes can be realized by G by
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setting the O(r2) variable-weight edges to appropriate constants.
Proof This follows most directly from Cai & Gorenstein (2014).
Their Theorem 7 provides such a construction for matchcircuits. It
consists of a planar realization of a complete graph with crossover
gadgets at the intersections. The general result then follows from
the equivalence of matchgrids and matchcircuits also shown there.
�

Theorem 2 For any family f and domain d if there is an ele-
mentary reduction to matchgrids for (f, d), then d has polynomial
standard diversity in family f .
Proof Suppose that τ is a polynomial time 1-oracle reduction from
f to matchgrids over field F . For a function fm and a domain of
its variables dm of size n = nm, for each z let M(fm, dm, z) be the
set of adjacency matrices as defined above and consider the pla-
nar embeddings that respect conditions (a)-(e) of the definition of
elementarity.

By (a), (b) these embeddings are identical with respect to all
the edges that are incident to a Tm,z node at least at one end .
We regard the embedding of the nodes Tm,z as a matchgrid Hm,z.
By (d) the remaining nodes Zm,z are all mapped into the outer
face of Hm,z. Since, by (b) and (c), |Zm,z| is upper bounded by a
polynomial L(n), and the degrees of the Zm,z nodes by a constant,
Hm,z has O(L(n)) external connections, and can be regarded as a
matchgrid with O(L(n)) external nodes. Now, by Theorem 1, Hm,z

can be replaced by a matchgrid with O((L(n))2) variable weight
edges. From this we deduce that as z varies, the total number
of inequivalent matchgrids Hm,z is at most a1 = |F |O((L(n))2). (In
other words it is single exponential in n however large m may be.)

It remains to complete the estimation of the number of different
functions of the original n domain dm variables that the matchgrids
can realize as z varies, by also taking into account the remainder of
the matchgrid specification, namely the nodes Zm,z and the edges
incident to them. We can fix the names of the nodes of Zm,z and the
external nodes of Hm,z, which altogether number O(L(n)). Then
the number of potential edges that have at least one endpoint in
|Zm,z| is at most A = O((L(n))2). By assumption (e), each choice
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of z partitions the edges among pairs of Zm,z nodes into n sets,
and each such set will have a weight assignment that represents
the corresponding domain variable having value zero, and a weight
assignment corresponding to value one. The number of partitions
is upper bounded by a2 = nA clearly. Also, for each such partition,
a3 = |F |2A upper bounds the number of distinct weightings of the
edges between Zm,z nodes that among them represent all combi-
nations of 0’s and 1’s for the n variables of dm. Also, the number
of possible weight assignments to edges incident to both Zm,z and
Tm,z nodes is upper bounded by a4 = |F |O(L(n)). It follows that the
total number of functions of the domain variables that the match-
grids can realize is upper bounded by a1a2a3a4, which itself is upper
bounded by (nL(n)|F |)O((L(n))2). Now, by condition (iii) of elemen-
tarity, |F | is polynomial bounded in m. For standard diversity m
is single exponential in a polynomial p(n). It follows that the num-
ber of distinct functions is at most 2O(q(n)) for some polynomial q.
In other words the standard diversity is at most polynomial in n. �

From this result one can deduce for problems known to have
high diversity that they do not have elementary reductions to
matchgrids. The following is an instance that parallels a result
in Valiant (2006):

Corollary 1 There is no elementary reduction from (f, d) to match-
grids where f is any one of Pl-3CNF, 3CNF,⊕Pl-3CNF or⊕3CNF,
and d specifies a subset of O(logm) of the clauses for formulae with
m clauses.
Proof This follows from Proposition 3 and Theorem 2. �

Note that this corollary implies that one should not expect that
the planar Circuit Value Problem with inputs on the periphery can
be mapped into a matchgrid by an elementary reduction.

It is an interesting question whether implications of a con-
verse nature also hold. For problems such as #7Pl-Rtw-Mon-3CNF
(Valiant 2006) for which 1-oracle holographic algorithms exist, even
for fields whose size does not increase at all with the input size,
one would like to determine whether they have polynomial diver-
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sity. For planar representations of Boolean functions one can define
a notion of planar diversity where the domains dm have to be on the
outer face of the embedding. Then the particulars of the algorithm
just described for #7Pl-Rtw-Mon-3CNF do imply polynomial pla-
nar diversity for that problem. However, such arguments do not
appear to apply to domains that are not on the periphery, or to
general diversity.

Multiple oracle calls appear to be very useful in reductions
among counting problems. There are multitudes of #P-complete
problems that have been proved complete via reductions that in-
volve multiple oracle calls and polynomial interpolation on the re-
sults (Cai et al. 2008; Jerrum 1987; Vadhan 2001; Valiant 1979b;
Xia et al. 2007). For any one of these problems one can ask whether
they have polynomial diversity.

In the opposite direction, one can ask whether algorithms that
make multiple oracle calls, each via an elementary reduction, can
compute functions of exponential diversity. To formulate specific
questions of this kind one would need to define specific classes of
such multiple oracle call algorithms. One relevant such class is
offered by the algorithms described in Sections 6-8 of this paper.
These all have the following form: Given an instance G of the
problem, one generates a single matchgrid with weights that are
polynomials in x with coefficients from a field F . The solution
sought is the jth least significant bit in the coefficient of xi of the
Holant, where i, j are predetermined integers, and all the coeffi-
cients are guaranteed to be integral. There is the further constraint
that if this coefficient is nonzero then it has at least j − 1 factors
of 2. Note that the solutions here are obtained by the multi-oracle
reduction that evaluates the matchgrid at enough different values
of x, and then interpolates for the appropriate coefficient. It is
an interesting question to determine whether or not these classes
of reductions can evade the polynomial constraint on diversity of
elementary reductions.

5. The basis b3

The basis b3 (Valiant 2008) has three components z = (1, 0), n
= (1,−1), p = (1, 1). It has the useful property that for all x ∈ F ,
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xz3 + n3 + p3 is an even ternary signature and therefore, by Propo-
sition 6.2 in Valiant (2008), is realizable by a planar matchgate. To
verify this it is sufficient to expand xz3 + n3 + p3 as :

(x, 0, 0, 0, 0, 0, 0, 0)+(1,−1,−1, 1,−1, 1, 1,−1)+(1, 1, 1, 1, 1, 1, 1, 1)
= (x+ 2, 0, 0, 2, 0, 2, 2, 0) = [x+ 2, 0, 2, 0].

We shall call this signature, and the gate realizing it, g3(x). The
analogous two-output signature g2(x) is also even, and therefore
realizable by virtue of Proposition 6.1 in Valiant (2008), since

xz2 + n2 + p2 = (x, 0, 0, 0) + (1,−1,−1, 1) + (1, 1, 1, 1) = [x+
2, 0, 2],

as is also the one output signature g1(x) = xz + n + p = [x+2, 0].

For each of the three parity problems that we define in the
sections that follow, we shall consider planar graphs of n vertices
all of maximum degree three. Our constructions do not require
that the graph be cubic in the sense that every node has degree
exactly three.

For each problem we shall construct for any such graph G a
family of matchgrids Ω(G, x) indexed by x, using a fixed binary
recognizer r for the edges, and the above mentioned generators
g1(x), g2(x) and g3(x), for the nodes of degrees one, two and
three, respectively. Then for each problem, Holant(Ω(G, x)) can
be viewed as a polynomial in x of degree at most n. If we evaluate
Holant(Ω(G, x)) for one G and n + 1 distinct values of x, and
interpolate for the coefficients, then the coefficient of xi will be
the sum of the contributions to the Holant of the states in which
exactly i of the generators are generating z’s, and the remainder
n’s or p’s.

Alternatively, we shall sometimes substitute g1(s), g2(t) and
g3(x), with different indeterminates s, t, x. Then after evaluating
at O(n3) distinct points, we can interpolate to obtain the coefficient
of sitjxl, which gives the contribution to the Holant of states where
among the z generators, exactly i have degree one, j degree two,
and l degree three.

We now describe the binary recognizers that we use for the
edges. Each of these recognizers is a simple chain, of one or two
edges, with the end nodes serving as the two external nodes. In
our notation below * denotes a node, and *(w)* denotes an edge
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of weight w between two nodes. The following can be verified by
inspection.

Proposition 6 The values of the following three recognizers are as
follows when (a, b) is input from the left, and (c, d) from the right:
r1: *(1)* has value ac+ bd,
r2: *(1)*(1)* has value ad+ bc, and
r3: *(1)*(-1)* has value ad− bc.

6. Holographic Algorithm for the Parity of the
Number of Induced Forests or Feedback

Vertex Sets

The Minimum Feedback Vertex Set problem for undirected graphs
is defined as follows: Given an undirected graph G and an integer
k the question is to determine whether there is a set of k vertices
whose removal leaves a forest (i.e. a graph with no cycles.) There
is a substantial literature on this existence problem. The directed
version of this problem was proved NP-complete by Karp (1972).
The undirected version we study here was proved NP-complete by
Garey & Johnson (1979). Subsequently it was shown to be NP-
complete even for planar graphs of degree four by Speckenmeyer
(1983). For cubic (i.e. regular degree three) graphs a polynomial
algorithm was given by Li & Liu (1999). (This last result is also
implied by the polynomial time algorithm of Ueno et al. (1988)
for the Minimum Connected Vertex Cover problem (defined in the
next section) for cubic graphs, in conjunction with the result of
Speckenmeyer (1983, 1988) that for any cubic graph on n vertices
MCVC-MFVS = n/2 − 1, where MCVC and MFVS denote the
sizes of the minimum connected vertex cover and the minimum
feedback vertex set.)

Here we are interested not in the existence problem but in the
parity of the number of solutions, not only for forests of the largest
size but for forests of every size, and not only for regular graphs of
degree three, but for all graphs of maximum degree three. How-
ever, we restrict ourselves here to planar graphs. Thus the problem
we address, ⊕PlmFVS, is the following: Given a degree m planar
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undirected graph G and an integer k, determine the parity of the
number of sets of k nodes that induce a forest in G.

Theorem 3 There is a deterministic polynomial time algorithm
for ⊕Pl3FVS.
Proof We place g3(x), g2(x) and g1(x) generators at vertices of
degree three, two and one respectively. We place a recognizer r1 on
each edge. Then, by Proposition 6, the value of each recognizer as
a function of the nine possible combinations of what the adjacent
nodes generate are as follows: zz → 1; zp → 1; zn → 1; pz → 1;
nz → 1; pp → 2; nn → 2; pn → 0; np → 0.

We regard each state σ (i.e. each combination of states of all
the generators) of the matchgrid as a two-coloring, where one color,
Z, corresponds to the nodes generating z’s, and the other, Y, those
generating n’s and p’s. For each such state we define #YY(σ) to
be the number of edges joining a pair of nodes both colored Y,
and #Ycomponents(σ) to be the number of connected components
induced in G by the removal of the Z nodes and the edges adjacent
to them. Then the Holant will be the sum over all such Z/Y 2-
colorings of G of the value U = 2#Y components(σ)+#Y Y (σ), since each
connected component has one of two states (all n or all p), and
each edge in such a component contributes a further factor of two.
If G has n nodes and the number of Z nodes is fixed as n− k, then
the minimum number of divisors of 2 in U is 2n−(n−k) = 2k, and is
achieved if and only if the YY edges induce a forest in G. (Note
that in any graph with k nodes the sum of the number of edges and
the number of connected components is at least k, the minimum
being achieved only if the graph is a forest.) Hence, if one divides
the coefficient of xn−k in Holant(Ω(G, x)) by 2k, then the parity of
that number is the desired solution to ⊕Pl3FVS(G, k). �

7. Holographic Algorithm for the Parity of the
Number of Connected Vertex Covers

The Minimum Connected Vertex Cover problem is the following.
Given an undirected graph G determine the size of the smallest
set of nodes that (i) is a vertex cover, and (ii) induces a connected
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subgraph of G.

The existence problem was shown NP-complete for degree four
planar graphs by Garey & Johnson (1977). Fernau & Manlove
(2009) showed that this result holds even in the bipartite case. For
cubic graphs it was shown to be polynomial time computable by
Ueno et al. (1988).

Here we are interested in the following parity problem⊕PlmCVC.
Given an undirected planar graph G of maximum degree m and
an integer k, the problem is to compute the parity of the number
of connected vertex covers of G of k vertices.

Theorem 4 There is a deterministic polynomial time algorithm
for ⊕Pl3CVC.
Proof We place g3(x), g2(t), and g1(s) generators at vertices of
degree three, two and one respectively. We place a recognizer r2 on
each edge. Then, by Proposition 6, the value of each recognizer as
a function of the nine possible combinations of what the adjacent
nodes generate are as follows: zz → 0; zp → 1; zn → -1; pz → 1;
nz → -1; pp → 2; nn → -2; pn → 0; np → 0.

As before, we regard each state σ of the matchgrid as a two
coloring, where one color, Z, corresponds to the nodes generating
z’s, and the other, Y, those generating n’s and p’s. For each such
state we define #YY(σ) to be the number of edges joining a pair
of nodes both colored Y, and #Ycomponents(σ) to be the num-
ber of connected components induced in G by these YY edges.
Now the Holant will be the sum, over some such Z/Y 2-colorings
of G in which the nodes colored Z form an independent set, of
U = ±2#Y components(σ)+#Y Y (σ). This will follow by a similar argu-
ment to that used in Theorem 3, except now the Z nodes form an
independent set since the value of r2 for zz input is zero, and we
need to analyze potential cancelations.

We first consider the case that the graph has an even number
of edges. To derive this value of U we first note that if the graph
has n nodes and is cubic, then for a state in which the Z nodes
form an independent set of size n − k, it will be the case that
#Y Y (σ) = 3n/2− 3(n− k) = 3(k − n/2). For each Y/Z coloring
and for any connected component induced by the Y colored edges
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in G, there will be two valid states, corresponding to the Y-colored
nodes having all p or all n states. When one changes all the Y
nodes from p to n then the values of all the recognizers in G will
change sign. Hence if the nodes in this component have an even
number of edges incident to them in G then these contributions
to the Holant will have the same sign, and otherwise will cancel.
Hence the minimum (nonzero) number of divisors of 2 in U is
3(k− n/2) + 1, and is achieved if and only if the YY edges induce
one connected component in G and G has an even number of edges.
Hence, if one divides the coefficient of xn−k in Holant(Ω(G, x)) by
23(k−n/2)+1, then the parity of that number is the desired solution
to ⊕Pl3CVC(G).

If the graph is not regular, then by interpolation we can find
the coefficient of sitjxl in Holant(Ω(G, s, t, x)) for all i, j, l. For any
specific combination of i, j, l the value of #YY(σ) is |E|−i−2j−3l,
where |E| is the total number of edges in G. Hence we can compute
the parity of the number of solutions for any combination i, j, l, and
hence for all the combinations with i+j+l = n−k. We shall derive
the parity of the number of solutions corresponding to such Z sets
by dividing the appropriate coefficient by 2|E|−i−2j−3l+1 rather than
by 23(k−n/2)+1 as used in the regular case.

So far we have assumed that the number of edges in G is even.
To treat the alternative case we choose an arbitrary edge and re-
place r2 by r1 on it. This ensures that when switching between all
p and all n states the sign will not change on this one edge, and
hence not for the product of all of these odd number of edges. It
only remains to ensure that the Y nodes still form a vertex cover,
and for this it is necessary to preclude that the endpoints of the
chosen edge be both in state Z. This can be done by multiplying
the x term in these two generators by a new indeterminate w, and,
by interpolation, computing and adding the coefficients of w0 and
w1 (while ignoring that of w2). �
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8. Holographic Algorithm for the Parity of the
Number of Vertex Colorings

A 3-Vertex Coloring of a graph G is an assignment of a color from a
palette of 3 colors to each vertex so that no pair of adjacent vertices
has the same color. Clearly the set of all such proper colorings can
be partitioned into equivalence classes of 3! colorings, so that the
members of each class differ only by a permutation of the colors.
Here we are interested in the following two closely related prob-
lems. The problem ⊕PlmCol: for an undirected planar graph G of
maximum degree m determine the parity of the number of equiv-
alence classes of 3-colorings of G. The problem ⊕PlmFCol: for an
undirected planar graph G of maximum degree m and an integer k
determine the parity of the number of 3-colorings that are invari-
ant under permutation of the second and third color, when exactly
k nodes are given the first color. We note that the correspond-
ing counting problems for 3-colorability of degree three graphs are
#P-complete Bubley et al. (1999).

Theorem 5 (Barbanchon 2004) For some constant m, ⊕PlmCol
is ⊕P-complete.

Theorem 6 There is a deterministic polynomial time algorithm
for ⊕Pl3FCol and for ⊕Pl3Col.
Proof We place g3(x), g2(t), and g1(s) generators at vertices of
degree three, two and one respectively, and r3 recognizers on each
edge. The r3 recognizers for ad− bc are not symmetric, and can be
placed in arbitrary orientation without influencing our result. By
Proposition 6 the value of each recognizer as a function of the nine
possible combinations of what the adjacent nodes generate are as
follows: zz→ 0; zp→ 1; zn→ -1; pz→ -1; nz→ 1; pp→ 0; nn
→ 0; pn → -2; np → 2.

Again we regard each state σ of the matchgrid as a two coloring,
where one color, Z, corresponds to the nodes generating z’s, and the
other, Y, those generating n’s and p’s. For each such state we de-
fine #YY(σ) to be the number of edges joining a pair of nodes both
colored Y, and #Ycomponents(σ) to be the number of connected
components induced in G by these YY edges. Then the Holant
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will be the sum over some such Z/Y 2-colorings of G in which the
nodes colored Z form an independent set and those colored Y form
a bipartite graph, of the values U = ±2#Y components(σ)+#Y Y (σ).

To see this we first assume that the graph is cubic and has
an even number of edges. If the graph has n nodes, then for a
state in which the Z nodes form an independent set of size k, then
#YY(σ) = 3n/2 − 3k. We note that for each Y/Z coloring the
YY edges will form a set of connected bipartite components in G.
In each component there will be two valid states, corresponding
to which of the two parts is in p or n state. When one swaps p
and n all the values of all the recognizers will change sign. Hence if
there are an even number of edges incident to the nodes in one such
component, then the contributions to the Holant will have the same
sign for the two states. Hence the minimum number of divisors of
2 in U is 3n/2−3k+ 1, and is achieved if and only if the YY edges
induce one connected bipartite component in G. Hence, if one
divides the coefficient of xk in Holant(Ω(G, x)) by 23n/2−3k+1, then
the parity of that number is the parity of the number of solutions
to ⊕Pl3FCol(G, k). The sum of these, modulo 2, for k = 1, ..., n,
is the solution to ⊕Pl3Col(G), since each solution to Pl3Col(G)
corresponds to three solutions of Pl3FCol(G, k) instances.

Graphs that are not regular can be treated exactly as in The-
orem 4. Graphs with an odd number of edges can be treated by
picking one boundary edge and simulating its effect as if all entries
in the signature of that recognizer were nonnegative but unchanged
in magnitude. This can be done using the fact that any signature
for gates with one external node can be realized by boundary gates.
(See Valiant (2008). This also holds for two external nodes.) Then
if the chosen boundary edge has both endpoints of degree three,
for example, we would compute the Holant for the 9 matchgrids
obtained by replacing the left generator g3(x) by generators for
each of z, p, and n, in turn, and the right generator g3(x) by the
same choice, and combining the 9 values of the resulting Holants
to reflect the intended signature component of the r3 recognizer
that is being replaced. �

Following a suggestion of a referee, we note that in this section
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we could have eliminated 2’s from the signature by using the basis
z = (s−1, 0), n = (s,−s), p = (s, s), where s = 2−

1
2 .

For completeness we mention some applications to the edge col-
oring problem. Here we are counting valid edge colorings, again
modulo permutations of colors. We defined planar regular 3/2-
graphs earlier. Here we define planar 3/2-graphs to be bipartite
graphs where one side has degree at most three and the other side
degree at most 2.

Theorem 7 The parity of the number of edge 3-colorings of planar
3/2 graphs can be computed in polynomial time.
Proof The line graph of such a graph is a planar degree three
graph, and hence the result follows immediately from Theorem 6.
�

The following states equivalences between two pairs of prob-
lems whose complexities are currently unresolved. Note that in
naming problems we use cubic to denote regular graphs of degree
three, and the number 3 to refer to graphs of maximum degree
three. HC is the Hamiltonian circuit problem. Note that as far as
their counting analogues, #PlCubicHC was proved #P-complete
in Lískiewicz et al. (2003), and #PlCubicEdgeColor was so proved
in Cai et al. (2014).

Theorem 8 ⊕CubicHC is polynomial time reducible to
⊕CubicEdgeColor. Similarly ⊕PlCubicHC is polynomial time
reducible to ⊕PlCubicEdgeColor.
Proof Pick any vertex v and fix the three colors, say Y, R and B,
arbitrarily for the three incident edges. In any coloring of G we call
a maximal set of edges that are connected and each colored Y or R
a YR-component. Note that any such component must be a simple
cycle. Any coloring that contains i > 1 YR-components belongs to
an equivalence class of 2i−1 colorings that have the same pattern
of B colors, and differ only in the coloring of the YR-components,
except for the one that includes the chosen vertex v where the col-
ors are fixed. Hence, the only B patterns that contribute an odd
number of colors are those that have exactly one YR-component,
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or equivalently, one cycle including all the vertices. �

For the problem of edge coloring planar graphs of degree at
most three there are some formulations that can be shown to be
⊕P-complete by reduction to ⊕Pl3HC which was shown to be ⊕P-
complete in Valiant (2005). Let Pl3EdgeColorYR be the problem
of edge coloring a planar graph where every vertex has degree at
most three, and the edge coloring is restricted so that every edge
adjacent to a vertex of degree less than three must have color Y or
R.

Theorem 9 ⊕Pl3EdgeColorYR is ⊕P-complete.
Proof The argument of the proof of Theorem 8 still applies: any
YR-component must be a simple cycle, and the parity of the num-
ber of such colorings is ⊕Pl3HC the parity of the number of Hamil-
tonian cycles, which is ⊕P-complete for planar degree three graphs,
as observed above. �

However, ⊕3EdgeColor and ⊕Pl3EdgeColor appear to be open.
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