1 Overview

In the last lecture we studied the Knapsack problem which is an NP-complete optimization problem and we gave an algorithm which can solve within an approximation of \((1 - \varepsilon)\) for any \(\varepsilon > 0\) in time \(O\left(\frac{n^3}{\varepsilon}\right)\).

Today, we will study the Max Cover problem and submodular optimization which are generalizations of the Knapsack problem.

2 Max Cover

Input: sets \(T_1, \ldots, T_n\) that cover some universe.

Goal: Find \(k\) sets whose union is maximal, i.e. find:

\[S \in \arg\max_{R:|R| \leq k} \left| \bigcup_{i \in R} T_i \right| \]

Equivalent formulation. There is a bipartite graph. Elements of the universe are the vertices on one side of the graph, and each set is a vertex on the other side. There is an edge between a set and an element of the universe iff the element is contained in the set. The sets are usually called *parents* and the elements they contain are their *children*. The goal is to select a set of \(k\) parents which are connected to as many children as possible.

A greedy algorithm for Max Cover. It is possible to show that Max Cover is an NP-complete problem to show. However, we can hope to construct an approximation algorithm for this problem. A natural candidate algorithm is the Greedy Algorithm presented in Algorithm 1. The analysis of this algorithm will be done later after we introduce some new terminology.

Algorithm 1 Greedy algorithm for Max Cover

1: \(S \leftarrow \emptyset \)
2: \(\textbf{while } |S| \leq k \textbf{ do} \)
3: \(T \leftarrow \text{set that covers the most elements that are not yet covered by } S \)
4: \(S \leftarrow S \cup \{T\} \)
5: \(\textbf{end while} \)
6: \(\textbf{return } S \)
3 Submodular functions

Definition 1. A function \(f : 2^N \to \mathbb{R} \) is **submodular** iff:
\[
f(S \cup T) \leq f(S) + f(T) - f(S \cap T), \quad S, T \subseteq N
\]

Example. Here are a few examples of classes of submodular functions:

- **Additive functions:** \(f(S) = \sum_{a \in S} f(a) \). Indeed if \(S \cap T \neq \emptyset \) we have:
 \[
f(S \cup T) = \sum_{a \in S \cup T} f(a) = \sum_{a \in S} f(a) + \sum_{a \in T} f(a)
 \]
 If not, we can write \(S \cup T = (S \setminus (S \cap T)) \cup T \) and use that:
 \[
f(S \setminus (S \cap T)) = \sum_{a \in S} f(a) - \sum_{a \in S \cap T} f(a)
 \]

- **Unit-demand functions:** \(f(S) = \max_{a \in S} f(a) \).

- **Coverage functions:** \(f(S) = |\bigcup_{i \in S} T_i| \) given sets \(T_1, \ldots, T_n \).

So the Knapsack problem and the Max Cover problem are specific examples of submodular optimization problems. Our goal is now to analyze Algorithm 1 for a general submodular function.

4 Properties of submodular functions

Definition 2. For a function \(f : 2^N \to \mathbb{R} \) and set \(S \subseteq N \), the **marginal contribution** of \(T \subseteq N \) to \(S \) is:
\[
f_S(T) = f(T \cup S) - f(S)
\]

Proposition 3. A function \(f : 2^N \to \mathbb{R} \) is submodular iff:
\[
f_S(a) \geq f_T(a), \quad S \subseteq T, \quad a \in N \setminus T
\]

Definition 4. A function \(f : 2^N \to \mathbb{R} \) is **subadditive** iff:
\[
f(S \cup T) \leq f(S) + f(T), \quad S, T \subseteq N
\]

Definition 5. A function \(f : 2^N \to \mathbb{R} \) is **monotone** iff:
\[
f(S) \leq f(T), \quad S \subseteq T
\]

Proposition 6. If a function is monotone and submodular then \(f_S \) is subadditive for any \(S \subseteq N \). You will do this in the problem set.

Proof. Use that \(f_S(T) = f(S \cup T) - f(S) \)
Algorithm 2 Greedy algorithm for any submodular function

1: \(S \leftarrow \emptyset \)
2: \(\textbf{while} \ |S| \leq k \ \textbf{do} \)
3: \(S \leftarrow S \cup \text{argmax}_{a \notin S} f_S(a) \)
4: \(\textbf{end while} \)
5: \(\text{return } S \)

5 An algorithm for Submodular Maximization

With this new terminology, we can rewrite Algorithm 1 for a general submodular function: adding
the set which covers the most elements that are not yet covered by \(S \) is equivalent to choosing the
set which maximizes the marginal contribution to the current solution.

Theorem 7. For any monotone submodular function \(f : 2^N \rightarrow \mathbb{R} \), Algorithm 2 returns a set \(S \) such that:

\[
f(S) \geq \left(1 - \frac{1}{e}\right) \max_{T:|T|\leq k} f(T)
\]

Remark. \(1 - \frac{1}{e} \approx 0.63 \), so the greedy algorithm gets to 63% of the optimal value.

Let us define \(\text{OPT} = \max_{|T|\leq k} f(T) \). The proof of this theorem will rely on the following lemma.

Lemma 8. Let \(S \) be the set selected by the greedy algorithm at some stage and let \(a \notin S \) be the
element added to \(S \) at this stage. Then:

\[
f_S(a) \geq \frac{1}{k} (\text{OPT} - f(S))
\]

Proof. Let \(O \) be the optimal solution and let \(o^* \in \text{argmax}_{o \in O} f_S(o) \). Because \(f_S \) is subadditive:

\[
f_S(O) \leq \sum_{o \in O} f_S(o) \leq k \cdot f_S(o^*) \leq k \cdot f_S(a)
\]

where the first inequality used that the marginal contribution is subadditive (Lemma 6), and the
last inequality used that by definition \(a \) is the element which maximizes the marginal contribution.

This implies:

\[
f_S(a) \geq \frac{1}{k} f_S(O) = \frac{1}{k} (f(S \cup O) - f(S)) \geq \frac{1}{k} (f(O) - f(S))
\]

where the last inequality used the monotonicity of \(f \).

We are now ready to prove the theorem.

Proof. The proof is by induction. Let \(S_i = \{a_1, \ldots, a_i\} \) be the set of elements selected by greedy
after iteration \(i \) for \(i \in \{1, \ldots, k\} \). We will prove:

\[
f(S_i) \geq \left(1 - \left(1 - \frac{1}{k}\right)^i\right) f(O), \quad 1 \leq i \leq k
\] (1)

First note that Lemma 8 can be rewritten as:

\[
f(S_{i+1}) - f(S_i) \geq \frac{1}{k} (f(O) - f(S_i))
\]
Base case. For \(i = 1 \), we have \(S_0 = \emptyset \), hence:

\[
f(S_1) = f(a_1) \geq \frac{1}{k} f(O) = \left(1 - \left(1 - \frac{1}{k}\right)\right) f(O)
\]

Inductive step. Assume the result holds \(i = \ell \), we will prove for \(i = \ell + 1 \):

\[
f(S_{\ell+1}) \geq \frac{1}{k} (f(O) - f(S_{\ell})) + f(S_{\ell}) = \frac{1}{k} f(O) + \left(1 - \frac{1}{k}\right) f(S_{\ell})
\]

Now, by applying the inductive hypothesis:

\[
f(S_{\ell+1}) \geq \frac{1}{k} (f(O) + \left(1 - \left(1 - \frac{1}{k}\right)\right) \left(1 - \frac{1}{k}\right) f(O)
\]

\[= \left(1 - \left(1 - \frac{1}{k}\right)^{\ell+1}\right) f(O)
\]

We can now conclude by using Equation 1 for \(i = k \) and using that for \(k \geq 1 \), \((1 - 1/k)^k \leq \frac{1}{e}\), hence:

\[
f(S_{\ell+1}) \geq \left(1 - \frac{1}{e}\right) f(O)
\]

Should we be happy about this result? Yes, it was proven in 1998 that unless \(P=NP \), no polynomial-time algorithm can obtain an approximation ratio better than \(1 - 1/e \).

6 Maximizing influence in Social Networks

A nice application of submodularity is to the problem of Influence Maximization in social networks: an company wants to run a marketing campaign on a social network and wants to target a few influential individuals who will then spread awareness of the product being targeted to the rest of the network.

Goal: Select a subset of individuals who will be most influential.

Of course, this problem depends a lot on how to define and quantify the influence of individuals. A possible model of influence is to assume that there is a probability attached to each edge in the network. Once a node gets infected, it spreads the infection to its neighbors according to the edges' probabilities.

See more details in the section notes for this week.