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ABSTRACT
We consider the task of evaluating the spread of influence
in large networks in the well-studied independent cascade
model. We describe a novel sampling approach that can
be used to design scalable algorithms with provable perfor-
mance guarantees. These algorithms can be implemented in
distributed computation frameworks such as MapReduce.
We complement these results with a lower bound on the
query complexity of influence estimation in this model. We
validate the performance of these algorithms through exper-
iments that demonstrate the efficacy of our methods and
related heuristics.

1. INTRODUCTION
For the past several decades there has been a growing

interest in understanding the way information is adopted
between individuals in a society [20, 21, 34, 30, 4]. In re-
cent years, the surge of massive records of human interac-
tions has brought a new, system-wide perspective on such
processes. As interactions between individuals link across
multiple steps in a network, patterns of cascades emerge in
the data. These digital traces allow predicting future cas-
cades in the network [18, 19, 11], recovering cascades from
incomplete measurements [17, 8], and even engineering fu-
ture cascades by selecting important individuals to promote
a new product or social movement [14, 24].

Naturally, the availability of data at massive scale quickly
becomes a double-edged sword. While more data can po-
tentially make it easier to detect emerging patterns and im-
prove predictions, processing large data sets is challenging.
In cascades particularly, quantifying the impact of a chain
reaction of individual interactions in a large network quickly
becomes a difficult computational task.

Estimating the spread of a cascade. The primitive
module of cascade prediction and optimization methods is
the estimate of its expected spread in the network: given a
mathematical model of influence that describes the way in
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which information is transmitted in the network, the module
takes a set of infected nodes at time step t and returns the
expected number of nodes that will be infected in some time
step t′ > t. Since the mathematical models that we tend
to use are stochastic, these methods are estimated through
sampling. While naive sampling is usually reasonable for
small networks, already for networks with several thousands
of nodes estimating influence becomes a daunting task. This
naturally raises the following question.

Can cascade estimation be made scalable?

In this paper we address questions revolving around cas-
cade estimation in large networks. We focus on the well-
studied independent cascade model of influence as formu-
lated in [24] and consider the question of designing scalable
algorithms for estimating cascades in this model.

There are largely two aspects behind the role of scalable
algorithms for estimating influence. The first, and perhaps
more obvious, is the paradigmatic one: given the prominent
role of cascade estimation in data mining, we are naturally
interested in tools that can estimate cascades efficiently. The
other aspect revolves around our goal to understand whether
the models we use for describing cascades are appropriate. If
the purpose of a mathematical model is to accurately predict
cascades, we would like it to be computationally feasible to
estimate cascades on large data sets.

The standard approach to dealing with large-scale data is
through distributed computation frameworks such as MapRe-
duce [12] or Hadoop [35]. The idea is to partition the data,
perform local computations on the partitions, and aggregate
the results. By their definition, cascades do not easily suc-
cumb to distributed computing paradigms. Since the local
influence between any two nodes is affected by interactions
with all other nodes in the network, distributing this com-
putation becomes a serious challenge.

Main Results. We describe an algorithm that, for a pre-
scribed set of nodes, provides with high probability an arbi-
trarily accurate estimate of the influence function under the
independent cascade model. We show that this algorithm
can be implemented in a fashion that is compatible with par-
allel frameworks such as MapReduce. At a high level, the
idea is to estimate influence via a sampling approach that al-
lows both parallelization and trading off between simulation
cost and informativeness. We employ a probabilistic analy-
sis to illustrate how an algorithm can choose parameters to
navigate this tradeoff appropriately.

We complement this result by studying the information
demands of computing the influence of a single node in a



social network. At its core, estimating a cascade involves
simulations that iteratively make calls to an adjacency ma-
trix encoding the edges of the network. Since a single ma-
chine cannot store a large network in memory, large graphs
are stored in distributed hash tables that can be queried
by computational nodes. The question becomes: how many
queries does one need to perform in order to estimate in-
fluence well? We derive lower bounds on the number of
queries to the networks’ adjacency matrix required to esti-
mate the influence of a prescribed node in the network when
the topology of the network is a priori unknown.

1.1 Related work
The independent cascade model has been formulated by

Kempe, Kleinberg, and Tardos in their seminal paper [24].
There is a rich body of literature on predicting cascades [18,
19, 11, 7, 15], and work on improving the sampling methods
in influence maximization [6, 2], but we are not aware of
work that addresses the problem of substantial reduction
to the sampling required to estimate influence or how to
distribute this computation.

In recent work, Cohen et al. study a related problem
of sketching influence functions [10]. In their work, Cohen
et al. perform preprocessing and construct oracles that ap-
proximate influence functions well by sampling realizations
of the influence graphs. They show empirically that their
methods work well in practice. However, in order to guar-
antee a constant-factor approximation in theory, the number
of samples needs to be quadratic in the size of the graph. In
contrast, we develop a scalable algorithm that yields both
practical performance and theoretical guarantees.

There is a growing body of literature on parallel algo-
rithms in the MapReduce computational paradigm. Karloff
et al. [23] introduced the first theoretical model of compu-
tation that captures the main characteristics of the now-
popular MapReduce framework [12]. They provide a num-
ber of MapReduce algorithms for graph-theoretic problems.
Our estimation problem is tied to the reachability problem
in directed graphs, about which little is known in distributed
settings [37]. The literature on MapReduce algorithm design
also includes works on combinatorial optimization problems
such as (e.g., [9, 26, 25, 31]). A recurring theme in these
papers, which also appears in our methods, is the need to
estimate an objective value in a poly-log number of rounds.

The complexity of computing influence exactly is known
to be #P hard [38]. Here, we show the communication com-
plexity of approximating influence in a distributed setting.

2. PRELIMINARIES
We use the standard notation of a graph G = (V,E),

where |V | = n. At a high level, an influence spread pro-
cess on a graph G = (V,E) is defined to be a stochastic,
discrete process, that admits a sequence of subsets of nodes
S1, S2 . . . , Sn. For t ≥ 1, the subset of nodes St ⊆ V is re-
ferred to as the set of infected nodes corresponding to step
t. The point of origin of the process is given by a subset
S0 ⊆ V of seed nodes. In this context, the influence of a
node v ∈ V for step t is defined to be the expected num-
ber of infected nodes at step t; i.e., E[|St|], if we were to fix
S0 = {v}. In this paper, we will focus on the widely studied
independent cascade model [24], and assume t = n, though
all our results hold for any value of t > 0.

The Independent Cascade model. We will use the defi-
nition of the Independent Cascade as formalized by Kempe,
Kleinberg, and Tardos [24]. In this model, we are given a di-

rected edge-weighted graph G = (V,E,w), for w ∈ [0, 1]|E|.
Given the set of initially infected nodes S = S0, at each
step t > 1, every node u ∈ St−1 that was infected at step
t − 1, attempts to infect each of its out-neighbors v, and
succeeds with probability wuv. Once infected, a node re-
mains infected throughout the process. Note that due to
this monotonicity property of the process, it can take at
most n − 1 steps. We will be interested in estimating the
value of the function hG(S) = E[|Sn−1||S0 = S], defined to
be the expected size of the set S(n−1), given the initial set S,
where the expectation is taken over all of the realization of
the process. Slightly abusing notation, for a specified node
u ∈ V , we let hG(u) = hG({u}).

The query model. In both our lower bound and upper
bound results, we make use of the link-server model of com-
munication, which has been previously used in the context
of computing the PageRank of webpages (e.g., [1, 3]). Since
the social networks may have billions of nodes, a graph is too
large to store on individual machines. In this model, every
query on a node v returns the set of incoming and outgoing
neighborhoods of node v and the associated the edge prob-
abilities. This model provides a convenient abstraction that
enables us to study the information requirement of com-
puting the influence of a given node, without having any
dependencies on the way in which the information is of the
network is stored. Our lower bounds will be on the number
of queries to a centralized disk that stores the entire network.
In the case of distributed algorithms, this model implies that
all machines can communicate with this centralized server,
as common in distributed computing (e.g. [36, 13, 33, 5]).

3. SAMPLING METHODS
We now turn to the task of estimating the influence of a

given set of seed nodes, in the independent cascades model.
A natural approach to this problem is to repeatedly sample
the influence process. But we note that a straightforward
Monte Carlo simulation, in which the influence process is ex-
ecuted repeatedly to completion until the estimation errors
become small, can be prohibitively expensive. Our example
below illustrates that a linear number of simulations are re-
quired to guarantee a constant approximation in the worst
case. Since each simulation can involve traversing the entire
network, the full simulation process can scale quadratically
with network size. Moreover, this is a bound only on the
number of nodes traversed, and says nothing of the addi-
tional overhead of implementation.

A simple example illustrates the issue. Consider a network
consisting of a clique on n−1 nodes, plus one additional ver-
tex u that is connected to a single vertex v of the clique. The
weight of edge (u, v) is c0

n−1
for some constant c0 > 0, and

the weight of every other edge is 1. The influence of seed set
S0 = {u} is precisely 1+ c0, since u is always influenced and
the remainder of the network is influenced precisely if influ-
ence spreads from node u to node v. However, to estimate
this influence by sampling, one must take enough samples
to observe the event that u influences v; this requires θ(n)
samples. Motivated by this, one might think to take θ(n)
samples when estimating the influence of any given seed set.



However, if we were estimating the influence of a node from
the clique, say S0 = {v}, then each sample would take θ(n)
time and space, since each node of the clique is guaranteed
to be influenced. Taking a linear number of samples would
thus lead to quadratic time and space, which is prohibitively
expensive.

The primary issue raised by this example is that simu-
lation costs are heterogeneous. Estimating the influence of
node u requires many samples, but these samples can (on
average) be executed cheaply – they almost always finish in
constant time. On the other hand, simulating the influence
of node v is very costly, but very few samples are required
to conclude that v has high influence. To implement a scal-
able estimation procedure, we will design a sampling proto-
col that accounts for this cost heterogeneity. The high-level
approach is to first use a small number of (potentially expen-
sive) samples, and determine whether the outcomes of these
simulations suffice to generate a good influence estimate. If
so then the algorithm terminates; if not, it will increase the
number of samples and try again. We will show that the
intuition from the example above holds in general: many
samples are required for estimation precisely when samples
have low average cost, so the iterative approach has low cost
in aggregate. The formal proof requires some care in the im-
plementation details. For instance, it will be useful to run
simulations with a cap on the number of nodes traversed,
to more cheaply estimate the probability that the influence
value is above a given threshold.

The remainder of this section describes the modified sam-
pling process, and establishes its improved query perfor-
mance via probabilistic theory arguments. Then, in Section
4, we will show how to actually implement the sampling
procedure in a highly parallelizable fashion, so that (a) the
cost of simulating the influence function is approximately
proportional to the number of nodes influenced, and (b) no
significant computational or memory overhead is imposed,
beyond the query complexity bounds we establish below.

3.1 Frugal estimation of influence
Given seed nodes S in a graph G, our goal is to estimate

hG(S), the expected influence of S. If we write I for the
random variable denoting the set of nodes influenced, then
we can write hG(S) = E[I] =

∑n
t=1 P[I > t]. We can then

approximate this quantity using a standard Riemann sum:

π =
∑

t∈{1,(1+ε),(1+ε)2,...,n}

ε

1 + ε
· t · P[I > t]. (1)

We then observe that π is a close approximation to hG(S):
hG(S) ≤ π ≤ (1 + ε)hG(S). Thus, from this point onwards,
we will focus on approximating π rather than hG(S). The
reason we choose to approximate (1) is that, in a simula-
tion of influence, the event [I > t] can be determined before
the simulation completes; for example, one can imagine ter-
minating the simulation after t nodes have been influenced.
Thus, by separating π into its constituent terms, we can
hope to estimate them more cheaply by appropriately cap-
ping the length of simulations.

Frugal sampling. Write πt = P[I > t]. To approximate
π, it will suffice to approximate each πt. We will approx-
imate πt by sampling graphs from G. How many samples
are needed? Intuitively, when t is small and π is large, it
is likely that the influence will often be larger than t, and
hence few samples are required to estimate πt. On the other

hand, if π is small but t is large, many samples may be re-
quired; however, because π is small, we expect most samples
to generate few queries. We formalize this intuition in the
following lemma. For a given L > 0 indicating a number
of samples from G, we will use πt(L) to denote the random
variable indicating the fraction of sampled graphs in which
the set reaches at least t nodes. The lemma shows that if L
is large enough, then πt(L) is a good estimate of πt.

Lemma 1. For any t > 0, τ ≥ π, and L ≥ 8t log3 n
τε2

,

P
[
|πt(L)− πt| >

ε · τ
t · log1+ε n

]
≤

1

n2
. (2)

Proof. Define λ so that ετ
t log1+ε n

= λπt. Note that πt ≤
π/t ≤ τ/t, from the definition of π.

Suppose that πt <
ετ

t log2 n
, so that λ > 1. By Chernoff

bounds, the event in (2) occurs with probability at most

exp

(
−πt · L ·

ετ

tπt logn
· 1

2

)
<

1

n2
.

Next suppose πt lies between ετ
t log2(n)

and τ
t
, so λ ≤ 1.

By the multiplicative Chernoff bound, the probability of the
event in (2) is at most

exp

(
−πt · L ·

(
ετ

tπt logn

)2
1

4

)
≤ exp

(
−2τ logn

πtt

)
≤ 1

n2

as required.

Since Lemma 1 holds for each t > 0, a union bound implies

that
∣∣∣∑t

ε
1+ε
· t · πt(L) − π

∣∣∣ < log1+ε(n) · ετ
log1+ε n

= ετ

with probability at least 1 − 1/n. This yields the following
corollary, which bounds the error of an empirical estimate
of π that uses L simulations to estimate πt for each t.

Corollary 2. If τ ≥ π and L ≥ 8t log3 n
τε2

for all t > 0

then, w.h.p.,
∣∣∣∑t

ε
1+ε
· t · πt(L)− π

∣∣∣ ≤ ετ.
3.2 The algorithm

We can now describe our simulation algorithm, which we
call Influence Estimator (InfEst). The major component
of the algorithm is a simple verifier: given a guess τ of the
true influence of a set S, the verifier estimates the influence
using

∑
t

ε
1+ε
·t·πt(Lt) with an appropriately chosen Lt, and

accepts if this value is close to τ . An immediate consequence
of Corollary 2 is that when the verifier receives π as a guess it
accepts, with high probability. The InfEst algorithm then
simply iterates over guesses of τ until the verifier accepts.
We formally describe the algorithm below.

ALGORITHM VerifyGuess: The algorithm for verifying

whether a guess of influence value is correct

Input: An edge weighted graph G = (V,E,w), initial seed set
S ⊆ V and guess τ

1 for t ∈ {τ, (1 + ε)τ, (1 + ε)2τ, . . . , n} do
2 Sample L = 8t log3 n

τε2
instances of the graph;

3 If
∑
t

ε
1+ε
· t · πt(L) ≥ (1− 2ε)τ return 1.

4 return 0

Note that InfEst iterates over guesses τ from large to
small. This is crucial: our bound in Lemma 1 requires that



ALGORITHM InfEst: The approximation algorithm for esti-

mating the spread for the independent cascade model

Input: An edge weighted graph G = (V,E,w), initial seed set
S ⊆ V , precision ε

1 for τ ∈ {n, n/(1 + ε), n/(1 + ε)2, . . . , |S|} do
2 If VerifyGuess(G,S, τ) = 1 return τ
3 return 1 // w.h.p. we don’t reach this point.

τ ≥ π, and hence we can establish correctness as long as τ
is an over-estimate of influence. Employing this reasoning
leads to the following result.

Theorem 3. For any ε ∈ (0, 1
4
), InfEst provides a (1 +

8ε) approximation to hG(S), with high probability.

Proof. Consider an iteration of InfEst with τ > 1
1−3ε

π.
Then Corollary 2 implies∑
t

ε

1 + ε
· t · πt(L) < π + ετ < (1− 3ε)τ + ετ < (1− 2ε)τ.

So w.h.p. VerifyGuess will return 0 and InfEst will not
terminate on this iteration. Next suppose π ≤ τ ≤ (1 + ε)π.
In this case, Corollary 2 implies that∑

t

ε

1 + ε
· t · πt(L) ≥ π − ετ ≥ 1

1 + ε
τ − ετ ≥ (1− 2ε)τ.

So InfEst will terminate w.h.p. before the first iteration
in which τ < π. We conclude that the algorithm always
terminates on an iteration in which τ is within a factor of

1
1−3ε

of π. The fact that π is within a factor of (1 + ε) of

hG(S), plus the fact that ε < 1
4
, completes the proof.

We next establish an upper bound on the sum of influ-
ences over all simulations executed by InfEst. We omit the
proof, which is very similar to the proof of Proposition 6 in
Section 4. The main idea is that each subsequent iteration of
InfEst increases the number of simulations executed, but
later iterations are only performed if π is small, in which
case the observed influences will likely be low.

Proposition 4. For any ε ∈ (0, 1
4
), the sum of observed

influences over all simulations executed by InfEst is at most
8(1+ε)n log5(n)

ε2
, with high probability.

4. DISTRIBUTED INFLUENCE ESTIMATION
Theorem 3 and Proposition 4 establish that InfEst can

obtain an ε-approximation to the influence of S, using a se-
quence of samples of total aggregate size O(n · polylog(n) ·
ε−2). How should these samples be collected? One option
is a sequential implementation: perform the samples one
at a time, and for each one simulate influence by way of a
Breadth-First Search (BFS) crawl of the network. The total
execution time and memory requirements would then closely
match the bound from Proposition 4, but this cost would be
suffered sequentially. Our goal is to describe a more par-
allelizable implementation that obtains similar bounds on
memory and total computation cycles.

Parallelizing samples. We begin by making a simple ob-
servation. InfEst involves log1+ε(n) calls to VerifyGuess.
Each call then repeatedly samples an instance of the graph
and determines, for each sample, whether the number of

nodes reachable from S is greater than a quantity t. Each
of these samples in VerifyGuess could be taken in parallel,
with outcomes aggregated in the summation from line 4 of
VerifyGuess. Moreover, the multiple calls to VerifyGuess

from InfEst can themselves be parallelized; aggregation in-
volves determining the maximal τ for which VerifyGuess

returns 1. In this way, InfEst can be implemented as
O(n log5(n)ε−2) parallel calls to a subroutine that explores
the component reachable from set S in a random graph real-
ization. We can treat this subroutine as a black box; indeed,
in some scenarios (such as when influence is almost always
low) a sequential implementation of the exploration subrou-
tine may be satisfying. For more general applicability, how-
ever, we will also show how to implement such a sampling
oracle in a more parallelized fashion.

4.1 Sampling in MapReduce
We now describe an implementation of SampleOracle,

a method for sampling of L instances of the independent
cascade model. The oracle must return the fraction of these
instances in which the number of nodes reachable from a
seed set S is at least some threshold t. We note that there is
a known algorithm for determining the size of a connected
component in an undirected network, developed by Karloff
et al. [23]. However, because networks are directed in our
context, we cannot apply their approach directly.

Algorithm SampleOracle is based on the natural MapRe-
duce algorithm for breadth-first search [29]. The algorithm
takes place in “epochs.” During epoch d > 0, the following
operations are performed:

1. Infection: Each node that was newly infected in the
previous epoch attempts to infect each of its out-neighbors.

2. Node-level Aggregation: For each node v that was suc-
cessfully infected at least once, and had not yet been
infected, record the node as having been infected.

3. Sample-level Aggregation: Increment a counter for the
number of nodes infected within a sample. If the num-
ber of reached nodes is greater than t or if no new
nodes were infected, terminate the sample.

The details of SampleOracle are listed below.
From the above description, one can observe that Sam-

pleOracle directly implements the discovery of L spanning
trees, corresponding to L realizations of the network, up to
the size of the component reachable from S (if less than t)
or to a size that is at least t (otherwise). The correctness of
the algorithm is then immediate.

Proposition 5. Algorithm SampleOracle returns the
fraction of L graph realizations in which the component reach-
able from S has size at least t.

Implementation and Memory Requirements. Sam-
pleOracle maintains sets of 〈key; value〉 tuples of two types:

1. node tuples: Correspond to the nodes infected thus far
in a given sample. An infected node v ∈ V in sample
` ∈ [L], will be represented by a tuple 〈v; (`, new)〉,
where new = True if v was first infected in the previ-
ous epoch and new = False otherwise.



ALGORITHM SampleOracle: A BFS MapReduce Algorithm

Input: Seed set S ⊆ V ; Number of samples L; threshold t;
oracle query access: Q(·, ·), such that Q(u, i) = (v, wuv)
where v is the i’th out-neigbor of u.

/* Initialization: */
1 for ` = 1, . . . , L do
2 Set initial set of reached nodes: R0(`) = S
3 Label sample ` “incomplete” Label each u ∈ R0(`) as “new”

4 d← 1
5 while Not all samples complete do
6 foreach ` ∈ [L] s.t. sample ` is labelled “incomplete” do
7 Td(`)← ∅
8 foreach u ∈ Rd−1(`) s.t. u is labelled “new” do
9 for i← 1 to min{|N−(u)|, t} do

10 v, wuv ← Q(u, i)
11 Infect v w.p. wuv .
12 If successful, add a “new”-labeled v to Td(`).
13 Add an “old”-labelled u to Td(`).

/* Aggregation: */
14 for `← 1 to L do
15 Rd(`)← ∅
16 foreach unique v ∈ Td(`) do
17 If there is an “old” labelled v in Td(`), add an “old”

labelled v to Rd(`), otherwise, add a “new” labelled
v to Rd(`).

/* Sample-level aggregation */
18 If |Rt(`)| ≥ t or all nodes in Rt(`) are labelled “old”,

declare sample ` completed.
19 d← d+ 1

20 return |{` ∈ [L] : |Rt(`)| ≥ t}|/L

2. sample-counter tuples: Correspond to completed sam-
ples. Each sample-counter tuple is of the form 〈`, r`〉,
where ` is the sample identifier, and r` is the number
of nodes reached during that sample. These tuples are
generated in line 18 of the algorithm.

A key property of SampleOracle is that it does not gen-
erate too many tuples in total over all L samples generated.
To obtain the desired bounds, we must analyze the number
of tuples generated as a function of the size of the generated
spanning tree. This will connect its memory requirements to
the lower bound from Proposition 4. A complication is that
we cannot assume that the trees generated have size at most
t, since a given sample can grow significantly larger than t
during the epoch on which its size first exceeds t. We must
therefore bound the number of tuples needed to implement
a sample that spans an arbitrary fraction of the network.
Recall the definitions of π, πt, and πt(L) from Section 3.

Proposition 6. Suppose SampleOracle is invoked with

L ≤ 8t log3 n
ε2τ

for some τ ≥ π. Then with probability at least
1−1/n, the total number of tuples generated by the algorithm

is at most 8
(
1+ε
ε2

)
m3/2 log4m.

Proof. We will actually prove the result assuming L =
8n log3 n
ε2π

, which can only be greater than the bound imposed
in the statement of the proposition. Since the number of
tuples generated by the algorithm stochastically increases
with L, this will imply the proposition.

Lemma 1 implies that for any k ∈ [1, n],

Pr

[
|πk(L)− πk| >

επ

k log1+ε n

]
<

1

n2
.

In other words, with probability at least 1− 1
n2 , we have

πk(L) · L ≤ πk · L+
επ

k
· L ≤ 8

(n
k

)
(log3 n)

(
1 + ε

ε2

)
where in the second inequality we used that π ≥ k·πk, which
follows from the definition of π. Taking a union bound over
choices of k, we have that

πk(L) · L ≤ 8
(n
k

)
(log3 n)

(
1 + ε

ε2

)
(3)

for all k ∈ {1, . . . , n}, with probability at least 1− 1/n.
Write Y (`) for the number of tuples generated over the

course of sample `. We must have Y (`) ≤ m, since each edge
of the graph can have at most one associated tuple. Suppose
that k = |Rt(`)| nodes are reached by the spanning tree
generated in sample `. Then we must have Y (`) ≤ k2, since
each tuple uniquely corresponds to an attempted infection
of some node v ∈ Rt(`) by some other node u ∈ Rt(`). In
summary, we have Y (`) ≤ min{m, k2}.

Counting up over all L samples, and using πk(L) as an
upper bound on the fraction of spanning trees of size exactly
k, the total number of tuples generated is at most∑

k∈{1,(1+ε),(1+ε)2,...,n}

πk(L) · L ·min{m, k2}

≤ 8n log3 n

(
1 + ε

ε2

)∑
k

min{m/k, k}

≤ 8m3/2 log4m

(
1 + ε

ε2

)
as required.

We note that our breadth-first traversal method gives an
exact estimate of the number of nodes infected in each sam-
ple. There are known methods for decreasing the number
of tuples generated (e.g., [22]), at the expense of adding an
additional multiplicative factor to the approximation ratio.
If the tradeoff is deemed desireable in a given setting, our
methodology is compatible with such implementations.

4.2 The MRC Framework
The algorithm SampleOracle fits within a theoretical

class of distributed algorithms known as MRC, which was
developed to formalize MapReduce algorithms [23]. An algo-
rithm in the MRC class is composed of sequence of rounds.
In each round, a procedure called a mapper traverses the
set of tuples, one by one, and produces a new multiset of
〈key, value〉 tuples. Then, a module called a shuffler dis-
patches each set of tuples with the same key k to a separate
algorithmic component called a reducer, which can process
these keys in a sequential manner. Each reducer runs in
parallel on its set of tuples, and then outputs a new set of
keys that would be use in the next map-reduce round. The
output of the algorithm is required to be correct with prob-
ability at least 2/3. There are three further requirements:
first, the number of map-reduce rounds in polylogarithmic
in the size of the input m. Second, although the reducers
may run for polynomial time, their alotted space should be
sublinear in m, and third, at most a sublinear number of
reducers are allowed to execute in parallel. The latter two
restrictions imply that the total space taken by the tuples
output by the reducers is O(m2−2ε) for some ε > 0.

SampleOracle satisfies the total space requirement of
the MRC class, by Proposition 6. Moreover, one can imploy



random hashing methods to map (node,sample) pairs to re-
ducers in such a way that a sublinear number of reducers
is required, and each receives a sublinear number of tuples.
This hashing method was employed in [23]; we elaborate on
the details in the full version of the paper. Finally, if every
realization of G has polylogarithmic diameter, then it fol-
lows that SampleOracle will complete in a polylogarithmic
number of rounds. While this property is not guaranteed to
hold for arbitrary G, it has been observed empirically that
long chains of influence are rare [16], and hence it is natural
to consider cases in which the tree of influence spread has
low diameter. We obtain the following result.

Proposition 7. If, in every realization of G, the compo-
nent of nodes reachable from S has polylogarithmic diameter,

then algorithm SampleOracle invoked with with 8n log3 n
ε2π

falls within the class MRC.

Our earlier discussion of the parallel implementation of
InfEst implies a reduction: if SampleOracle can be im-
plemented by an MRC algorithm, then InfEst can also be
implemented as an MRC algorithm. This follows directly
from the fact that InfEst is a polylogarithmic number of
iterations over the sampling procedure. We note that this
reduction does not immediately imply an MRC implementa-
tion of InfEst for the problem of sampling influence in gen-
eral, as the polylogarithmic diameter requirement of Propo-
sition 7 may not hold for all realizations of the independent
cascades process on a given network. We leave the develop-
ment of new MRC sampling methods for influence processes
on general networks as a direction for future research.

5. THE COMPLEXITY OF CONTAGION
We devote this section to the complexity of contagion. We

assume the network is stored on some hypothetical disk, and
lower bound the number of queries to the disk required to
estimate (within some specified precision) the influence of
a given set. To establish these lower bounds we judiciously
construct graphs that are a priori unknown to the algorithm
designer, so that, for specific a node u, approximating its
influence (the expected spread in G as a result of selecting it
to be the single initial seed) beyond a certain approximation
ratio requires a relatively high number of queries to the link
server. We obtain these bounds using the following well-
known result due to Nisan [32]:

Lemma 8. Let ϕ =
∨m
i=1 zi be an OR function, given by

the disjunction of m Boolean variables z1, . . . , zm. Then
(randomly) determining the value of ϕ with a confidence
level of 1−δ requires at least m(1−2δ) queries on the values.

Our reductions from the OR problem will have the fol-
lowing overall structure. Given a formula ϕ =

∨m
i=1 zi,

and an assignment a ∈ {0, 1}m, we will construct a graph
Ga = (V,E) with a designated node u ∈ V , where the struc-
ture of the graph will crucially depend on the particular as-
signment a. As we will argue, for any two assignments to
the formula a,b ∈ {0, 1}m, such that a satisfies the OR for-
mula, whereas b does not (i.e., b is the all zeros vector), the
resulting expected spread values in the graphs Ga and Gb
would exhibit a large gap. We note that a similar approach
was taken by Bar-Yossef and Mashiach [1] for the task of
locally computing the PageRank of a webpage.

u

v1

y11 · · · y1k

· · · vm

ym1 · · · ymk

Figure 1: The construction for the lower bound.

Theorem 9. Let ε ∈ [0, 1/3), δ ∈ [0, 1/2), and consider
the independent cascade influence model in directed graphs.
Then for large enough n, there exists a graph G = (V,E,w),
and a distinguished node u ∈ V , for which estimating the
influence function hG({u}) to a factor in the range [(1 −
ε), (1+ε)] with probability (confidence) at least 1−δ requires
Ω((1− 2δ)

√
n) queries to the link server.

Proof. We create the rooted tree depicted in Figure 1.
Formally, the graph Gϕ contains the set of nodes: V =
{u}∪{vi : i ∈ [m]}∪{yij : i, j ∈ [m]}. Each node vi, for i =
1, . . . ,m, corresponds to variable zi. For each i = 1, . . . ,m
we draw an edge (u, vi). Also, for each i such that zi = 1,
we add m edges: (vi, yi1), . . . , (vi, yim). Finally, we set all
of the edge weights to 1. The following observation then
follows from the construction and the definition of the spread
process, which gives the lower bound almost immediately:

Observation 10. Let a be an assignment to the OR for-
mula ϕ. Then, hGϕ(u) = 1 +m · (|z|+ 1).

We can now prove the theorem. Suppose by way of con-
tradiction that the theorem is false, and there exists an al-
gorithm A that, for any graph G = (V,E) with n nodes,

provides an estimate h̃G(v) with relative error at most ε,
with probability at least 1 − δ, that makes o(

√
n) = o(m)

queries to the link server. We now construct an algorithm
B that computes the value of ϕ with o(m) queries.

Given an assignment a to the formula ϕ =
∨m
i=1 zi, con-

struct the corresponding graph Ga as described above.1 Al-
gorithm B will then simulate an execution of algorithm A,
by acting as a link server, as follows. Upon the query of
node u by algorithm A, the set of nodes {v1, . . . , vm} will be
returned to it. Upon the query of a node vi, the simulation
will query bit zi, and will return the set {yi1, . . . , yim}∪{u}
if zi = 1, and {u} otherwise. Finally, if A queries the sim-
ulated link server on a node yij , the singleton {vi} will be

returned. Letting h̃Ga(u) denote the resulting estimated ex-
pected influence of node u after t steps, algorithm B returns
0 if h̃Ga(u) ≤ (1− ε)2m+ 2, and 1 otherwise.

Now, if a does not satisfy ϕ (the OR formula is not satis-
fied), by Observation 10, hGa(u) = m+1. And so with prob-

ability at least 1− δ, h̃Ga(u) ≤ (1 + ε)(m+ 1) < 4m/3 + 2,
in which case B will return 0, as required. Similarly, if
a satisfies ϕ, with probability at least 1 − δ, h̃Ga(u) ≥
(1 − ε)hGa(u) > 2

3
(2m − o(1)) = 4m

3
− o(1), and so the

algorithm would return 1 in that case, as required. Having
shown the correct estimation of the value of ϕ with proba-
bility at least 1− δ, while using o(

√
n) = o(m), results in a

contradiction to Lemma 8.

1Note that our simulation does not need to construct the
entire graph in advance; rather, it suffices to generate the
adjacency lists on the fly, upon each query.



Network n m Type Avg. degree

wiki-Vote 7,115 103,689 Directed 14.6
Epinions 75,879 508,837 Directed 6.7
Slashdot 82,168 948,464 Directed 11.5
Youtube 1,134,890 2,987,624 Undirected 2.6

6. EXPERIMENTS
We present empirical validation of our methods and re-

sults from experiments on real and synthetic large network
data sets. We experimented with a distributed implementa-
tion of InfEst as discussed in Section 3, as well as several
heuristics based on this approach. We will be comparing
against the benchmark of sampling from the influence pro-
cess Θ(n logn) times; we will refer to this benchmark algo-
rithm as MonteCarlo. Our main conclusion from running
the experiments is that InfEst can handle very large data
sets efficiently while maintaining its theoretical guarantees.

6.1 Experimental setup
We tested our algorithms on real social networks, as well

as on synthetic ones that are based on well-studied genera-
tive models. For all of datasets, we considered three methods
for setting the edge weights2:

• Method E1: Each edge is assigned a weight drawn
uniformly from [0, 1];

• Method E2: Each edge is assigned a weight drawn
uniformly from {0.1, 0.01} (see [24]);

• Method E3: The edge probability of an edge (u, v) was
set to the inverse of v’s in-degree (as in [24]);

In our tests the seed sets were chosen uniformly from the
vertex set V . We ran experiments on the following networks.

Real networks. In our experiments, we have made use
of several well-studied real online social networks of vary-
ing size: wiki-Vote, Epinions, Slashdot, and the YouTube
network. All these networks are obtained from the SNAP
database [28]. We summarize statistics in Table 6.1.

Synthetic networks. To test the effects of network size
and topology on the algorithm, we tested our methods on
networks that were constructed based on standard genera-
tive models for social networks. We used the following gen-
erative models:

• Small-world graphs: We generated small-world net-
works [39] using a ring lattice of degree 200, then
rewiring each edge with probability 0.3.

• The Barabási-Albert model: We constructed preferen-
tial attachment networks with out-degree 10.

• Kronecker Graphs: This generative model was pro-
posed by Leskovec et al. [27]. We generated graphs by
starting with 4 vertices and repeatedly applying the
Kronecker product.

• Configuration model We employed the configuration
model [40] using a power law degree sequence, match-
ing those of our Barabási-Albert networks.

2For the graphs we experimented with that are undirected
we set the edge weights separately for each direction.
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Figure 2: Running times of Algorithm InfEst and Monte-
Carlo on various datasets (y-axes are in logarithmic scale).
The results depicted correspond to method E1; similar re-
sults were obtained for E2, and E3.

Computational setup. We ran our experiments on a
Linux server equipped with two Intel E5-2697v2 CPUs, each
with 24 cores, 30 MB of cache, and 128GB of RAM. Running
time is measured in the number of CPU cycles needed, and
not actual time units. This allows for flexibility in running
experiments on multiple machines with different configura-
tions. Experiments were implemented in Python 2.7.

6.2 Running time
Performance on real-world datasets. The goal of our
first experiment was to compare between the running time of
InfEst and MonteCarlo. In order to test the efficacy of
InfEst in terms of running times, we carried out the follow-
ing experiment. For a given network, and fixed value of k, we
measured the number of CPU cycles needed to complete the
execution of InfEst on a uniformly random sampled seed
set S of size k. For the purpose of the experiments, we set the
precision parameter ε of InfEst to be ε = 1/2. Our goal was
to compare the number of CPU cycles required by InfEst
and MonteCarlo. On large graphs however, it is infeasi-
ble to take the n logn samples required by MonteCarlo.
We therefore interpolated the necessary running time of the
MonteCarlo algorithm by measuring the number of CPU
cycles needed to sample s = 1,000 instances of the indepen-
dent cascade processes, and scaling it by n logn/s. We also
considered a variant of MonteCarlo that takes n samples,
for comparison purposes. We took varying values of k/n
in the range [0.01, 0.6], and five seed sets for each k. The
results of this set of experiments are depicted in Figure 2.

The required running time for MonteCarlo is dramat-
ically larger than InfEst: in the best case MonteCarlo
requires 10 times the CPU cycles of InfEst (on Wiki-vote
with the smallest value of k) and in the worst example
(YouTube on large k) it requires as many as a 10, 000 times.
Notice that whereas the running time of MonteCarlo mono-
tonically increases with the size of the seed set, the running
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Figure 3: Ratios of the Running time of MonteCarlo to that of InfEst in synthetic datasets.

time of InfEst almost always decreases monotonically. This
is due to the fact that for higher influence values, InfEst
stops at earlier iterations of its outer loop.

Performance on synthetic datasets. To further reason
about the running time of Algorithm InfEst, we studied
its performance on random graphs when varying n and k.
For each of the graph models, we created a single graph of
size n, for n ∈ {1k, . . . , 5k}. For each graph we sampled
five initial seed sets of size k, where k/n ∈ {0.01, . . . , 0.1},
and ran both InfEst and MonteCarlo algorithm (again,
with interpolation). The results are depicted in Figure 3 (as
before, we plot the results for E1 and omit the very similar
results obtained with the other methods).

Almost all graphs display a monotonic increase in the ratio
of the running times when increasing n. The only exception
is the Barabási-Albert model in which there is a drop in the
ratio when going from n = 4k to n = 5k. In this model
we checked larger values of n from 10k until n = 25k and
saw that there was a monotonic increase with n and k. To
explain the general growing trend in all models, we have fur-
ther investigated the mean influence function for various val-
ues of k, under these graph models, and have found that very
high values are reached for even low values of k. This causes
the running time of MonteCarlo to increases steadily as
n grows. In contrast, the running time of InfEst, remains
stable – as for the real datasets. Second, running time ratios
are largely constant across varying values of k/n (fixing n);
this can also be explained by the above observation about
the value of the influence function.

6.3 Approximation
In the next set of experiments we investigated how the

approximation ratio of InfEst is affected by the size of
the seed set k. We ran InfEst on our small and medium
datasets, with five samples of initial seed sets of varying
sizes, and ε ∈ {0.1, 0.2, 0.25}. We calculated the approxi-
mation ratio with respect to the true value, as computed by
MonteCarlo.3 Figure 4 depicts the results on method E2.

As can be seen in both of the plots in Figure 4, the ap-
proximation ratios fluctuate within the range [1, 1.2], which
suggests that in practice InfEst provides an estimate that
is more accurate than what is predicted by our theoretical

3Note that due to its lack of scalability, we could not run the
MonteCarlo algorithm on very large datasets (e.g., 100k
nodes and above).
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Figure 4: Approximation ratios obtained by Alg. InfEst

guarantee (Theorem 3). Moreover, the curves show that the
approximation tends to monotonically decrease with ε.

6.4 Heuristics
Until this point we only discussed algorithms with prov-

able guarantees. In practice one may be interested in heuris-
tics that do not have guarantees but do well in practice. The
biggest problem with estimating the performance of heuris-
tics for computationally intensive problems is that it is of-
ten impossible to analyze the performance guarantee of the
heuristic, since the optimal solution is infeasible. The prov-
able guarantees of InfEst however, enable us to benchmark
heuristics: since one cannot run the optimal number of sam-
ples required to estimate influence, an alternative would be
to run InfEst and analyze the approximation of the heuris-
tic against that. We performed several heuristics.

Convergence of influence. As a first step we examined
the convergence of influence on a relatively small data set.
We sampled a single random node, and estimated the value
of its influence, by taking varying numbers of samples of the
spread process. We ran this test on the Wiki-Vote dataset,
with methods E1, E2, and E3. Results are in Figure 5.

Heuristic implementations. We explored heuristic im-
plementations of InfEst. We tested three heuristics:

1. InfEst′(y): A variant of InfEst in which we set L = y
in each iteration of VerifyGuess.
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Figure 5: Estimates on the wiki-Votes of the function hG(v)
for a random v ∈ V as a function of the number of samples of
the independent cascade process (y-axes given in logarithmic
scale). Note that different nodes were selected for each test.
The shaded region in the plot depicts the standard error.

2. InfEst′′(x, y): Set L = y in VerifyGuess, and also
start the outer loop of InfEst with τ set to the mean
of x samples of the influence process (instead of n).

3. MonteCarlo′(z): Monte Carlo with z samples.

In the experiments we set the scaling factor to 0.1. For the
purpose of the experiment, we tested InfEst′ and InfEst′′

with x = y = 10 and ran MonteCarlo′, with z = 20.
We used small and medium graphs to estimate the true

value of the influence function with high precision using
MonteCarlo, so that we can measure the actual estima-
tion error of the heuristics. We ran the test on the Wiki-
Vote dataset and Epinions data sets. For varying values of
k, we took five random seed sets of size k, and ran all of the
above algorithms for each them. We then calculated the ap-
proximation ratio and running time (in CPU cycles) of each
heuristic with respect to the outcome of MonteCarlo.

Figure 6 depicts our results for the Wiki-Vote and Epin-
ions datasets, when using the E1 edge probability method.
As illustrated in the figure, both of the InfEst-based heuris-
tics tend to give comparable approximation ratios to those
MonteCarlo’(20). In particular, for the significantly larger
Epinions dataset, MonteCarlo’(20) displayed an overall
inferior performance, in terms of estimation, relative to the
InfEst’(20) and InfEst”(20,20), which seemed to have given
stable approximation ratios. This is likely due to the high
variance in the spread process in this more massive network.
This more noisy behavior of the spread process can also be
seen in the more noticeable error bars.

Regarding running time, MonteCarlo’(20) outperformed
the other two heuristics. This is to be expected: InfEst is
designed to be parallelizable, and hence incurs overhead be-
yond a straight Monte Carlo simulation. However, in most
cases the ratio of the running time of MonteCarlo’(20)
to that of InfEst”(20,20) was around 10. We view this as
an acceptable amount of overhead, given the added robust-
ness in approximation ratio and the parallelizability of the
InfEst methodology.
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