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Abstract
In this paper we study optimization from samples of convex functions. There are many scenarios
in which we do not know the function we wish to optimize but can learn it from data. In such
cases, we are interested in bounding the number of samples required to optimize the function. Our
main result shows that in general, the number of samples required to obtain a non-trivial approxi-
mation to the optimum of a convex function is exponential in its dimension, even when the function
is PAC-learnable. We also obtain strong lower bounds for strongly convex and Lipschitz contin-
uous functions. On the positive side, we show that there are interesting classes of functions and
distributions for which the sample complexity is polynomial in the dimension of the function.
Keywords: Convex optimization, PAC learning, sample complexity

1. Introduction

In this paper we consider the problem of optimizing a convex function from training data. The
traditional approach in optimization assumes that the algorithm designer either knows the function
or has access to an oracle that allows evaluating the function. In many cases, however, we do not
know the true function we aim to optimize, but can observe its behavior.

One example is when we aim to find a route that minimizes travel time between two locations
in a city. One reasonable approach is to collect data on times traveled on routes in the city, construct
a weighted graph which represents congestion between intersections, and find a shortest path on
the weighted graph. A different application is that of influence maximization, where the goal is to
select a small set of individuals that can initiate a large cascade in a social network. A reasonable
approach here is to collect data about past cascades, fit the observations to a model that predicts
influence between individuals, and find the set of individuals whose selection will generate the
largest cascade according to the learned model. Finally, we can imagine a federal agency interested
in reducing greenhouse emissions by taxing gas and subsidizing public transportation. To do so, the
agency can collect data on gas prices, public transport costs, and greenhouse emissions from a large
number of cities and decide on taxes and subsidies by optimizing a function learned from data.

In all the above examples, optimizing the function learned from data seems like a natural ap-
proach. The crux however is that when we optimize a function learned from data, the guarantees on
optimization apply to the function learned from data, and not the true function we aim to optimize.
The following example shows that this approach can actually lead to arbitrarily bad approximations.
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1.1. Optimizing a function learned via ERM can lead to an arbitrarily bad approximation

A natural approach to optimize a function f : [0, 1]n → [0, 1] from samples is to observe samples,
learn a surrogate f̃ , and return a solution x̃ ∈ argminx f̃(x). While this seems reasonable, it can
easily result in an arbitrarily bad approximation. To illustrate this, consider the canonical Empirical
Risk Minimization (ERM) approach to learning the following convex function:

f(x) = max
(

0, 1− 1ᵀ
[n/2]x

)
,

where 1[n/2] denotes the {0, 1}-vector with ith entry equal to 1 if i ∈ [n/2] = {1, . . . , n/2}, and
0 otherwise. It is easy to see that for samples {(xi, f(xi))}mi=1 when {xi}mi=1 are independently
drawn from the uniform distribution over [0, 1]n, we have that with high probability f(xi) = 0 for
all m samples, when m is polynomial in n. A surrogate learned via ERM for these samples can be:

f̃(x) = max
(

0, 1− 1ᵀ
{n/2+1,...,n}x

)
since f̃(xi) = 0 with high probability for all m samples as well. Note that a minimizer of f̃ is
x̃ = 1{n/2+1,...,n}, but that f(x̃) = 1 whereas the optimal solution is f(x) = 0, where x can be
obtained by any point xi from the samples. The moral is that learning a surrogate via ERM and
optimizing it can result in an arbitrarily poor approximation, even when the problem can be easily
optimized from samples.1

1.2. Optimization from samples

In cases where the function is not known but where sampled data is available, our problem becomes
that of optimization from samples. A similar framework was recently introduced in the context of
submodular functions (Balkanski et al., 2017) (see Section 1.5 for further discussion).

Definition 1 A class of functions F is ε-optimizable from samples over distribution D if for every
f ∈ F and δ ∈ (0, 1), given poly(n, 1/δ, 1/ε) i.i.d. samples {(xi, f(xi))}mi=1 where xi ∼ D,
there exists an (not necessarily polynomial time) algorithm that returns a solution x̃ such that, with
probability at least 1− δ over the samples,

f(x̃)−min
x
f(x) ≤ ε.

We say that F is optimizable from samples if there exists a distribution D such that F is ε-
optimizable from samples over D for all ε > 0. 2 As we later show there are interesting classes
of functions that can be optimized from polynomially-many samples using polynomial-time algo-
rithms. The question is therefore not whether one can optimize a function from samples, but rather
what are the classes of functions for which this is possible. We will consider the class of convex
functions, as we know these functions can be efficiently optimized within an arbitrary degree of
precision. Per our above discussion on optimizing a surrogate function learned from samples, it
seems reasonable to further our restriction to classes that are PAC-learnable.

Can convex functions that are PAC learnable be optimized from training data?

1. Note that it is not true that any ERM method leads to an arbitrarily poor approximation. An algorithm that returns a
surrogate f̃ = f is trivially an ERM and the optima of the surrogate are an optimal approximation to the true optima.
Our impossibility result implies that such an ERM algorithm would require observing exponentially-many samples.

2. Notice that we can never hope to obtain optimization from samples for every distribution. The distribution which
always returns the same point for example, will never allow optimization from samples.
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1.3. Main result

The main result in this paper is an impossibility. We show that there is a class of convex functions
that is PAC-learnable and that cannot be optimized from samples. Notice that a consequence of this
statement is that there is no learning algorithm that can produce a surrogate whose optimum is a
reasonable approximation to the true optimum. More formally, we prove the following theorem.

Theorem There exists a class of convex functions F , where f : [0, 1]n → [0, 1] for f ∈ F ,
that is (ε, δ)-PAC learnable and such that, for any distribution D, no algorithm can obtain an
approximation strictly better than 1/2− o(1) for the problem of minimizing f , for all f ∈ F , given
poly(n) i.i.d. samples of f drawn from D, with probability 1/poly(n) over the samples.

The lower bound (Section 2) is information-theoretic and is not due to computational con-
straints. This result is tight since finding a 1/2 approximation is trivial in this domain. We also
show lower bounds for strongly convex and Lipschitz continuous convex functions. In Section 3,
we show that this class of functions is PAC-learnable. On the positive side, it is not difficult to
show that linear functions and polynomials can be optimized from samples under some assumption
(Section 4).

1.4. Technical overview

At a high level, we construct a family of convex functions F where each function is defined by
some partition P of [n] = {1, . . . , n}, and its value crucially depends on P . The inapproximability
comes from showing that polynomially-many samples do not contain enough information to learn
the partition that defines the function generating the samples. We then argue that any non-trivial
optimization guarantee is impossible to obtain when an algorithm cannot learn the partition.

The class of functions that we construct and the intuition for why these functions are hard to
optimize from samples are relatively simple. The challenging part of the analysis is in the design
of interdependent conditions that allow us to formally show that the impossibility result holds over
any distribution generating the samples. We state three conditions called indistinguishability, gap,
and balance which rely on a randomized collection of partitions, instead of a random partition from
a fixed collection. This collection of partitions must then be constructed carefully so that the three
conditions are satisfied.

Another interesting technical challenge is in showing that the class of functions we use for
the lower bound is PAC learnable. To do so, we develop a learning algorithm which combines
classification and linear regression. The labels of the samples needed for the classification step are
not known and we develop two techniques to get around this issue.

1.5. Related work

Optimization from samples of submodular functions. The question of optimization from sam-
ples was recently introduced in the context of submodular functions (Balkanski et al., 2016, 2017).
In general, for the canonical problem of maximizing a monotone submodular function under a
cardinality constraint, it is impossible to obtain any reasonable approximation given polynomially-
many samples drawn from any distribution (Balkanski et al., 2017). On the positive side, when the
functions have bounded curvature, good approximations are achievable (Balkanski et al., 2016).
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Although there are interesting connections between convexity and submodularity, the differ-
ences remain apparent in this work. On a conceptual level, it is well known that maximization of
a monotone submodular function under a cardinality constraint and unconstrained maximization of
a non-monotone submodular function require exponentially-many value queries. In addition, the
notion of learnability for submodular functions is that of PMAC learnability (Balcan and Harvey,
2011; Feldman et al., 2013; Feldman and Kothari, 2014) which produces a surrogate that approx-
imates a submodular function within some constant-factor approximation. Hassidim and Singer
(2016) show that obtaining a constant factor approximation for maximization with such a surrogate
requires exponentially-many queries. For these reasons, impossibility results for optimization from
samples may seem more plausible in the submodular case than in the convex one. In particular,
since learning is often cast as a convex optimization problem, impossibility results for optimization
from samples seem counter-intuitive.

From a technical perspective, in comparison to (Balkanski et al., 2017), the differences arise
from the departure from constrained monotone optimization to unconstrained non-monotone op-
timization, which requires novel functions and partitions. The novelty in the partitions is that we
construct a randomized collection of partitions instead of having a fixed collection. Finally, note that
there is a trivial 1/2 upper bound in the unconstrained case whereas the lower bound is arbitrarily
close to 1 in the constrained case.

Online learning and stochastic convex optimization. The goal of online learning and stochastic
convex optimization is also to optimize a function given past observations. The main difference with
online learning is that a unique decision has to be made offline given a collection of observations
instead of online after each observation. The variant of online learning where the loss functions are
convex, online convex optimization, has attracted a lot of attention (Shalev-Shwartz et al., 2012;
Hazan et al., 2007; Hazan, 2015). Even more closely related is bandit convex optimization, where
the feedback at each iteration consists only of the value of the decision instead of the entire convex
function (Flaxman et al., 2005; Bubeck and Eldan, 2015; Agarwal et al., 2010). Although online
learning is tailored to many applications, optimization from samples is relevant in situations where
the observations are either not the result of previous optimization attempts or only observed after a
long period of time. In stochastic convex optimization, the goal is to minimize a convex function
that is the expected value of a random objective f drawn from some unknown distribution given
samples f1, . . . , fm from the distribution (Shalev-Shwartz et al., 2009; Feldman, 2016).

PAC-learning and convex optimization. The problem of learning a function given sampled data
of this function was formalized by Valiant (1984) in a seminal paper as PAC-learning. Given or-
acle access to a convex function, there exists a myriad of algorithms to optimize this function. In
some sense, optimization from samples synthesizes such learning and optimization by aiming to
approximately minimize a convex function given sampled data of this function.

Information-theoretic lower bounds. Information-theoretic lower bounds have been shown in
the value query model for various settings (Mirrokni et al., 2008; Vondrák, 2013; Ene et al., 2013).
Informally, a main step of the argument of these lower bounds goes by contradiction and relies on
the algorithm being able to make an additional query if it was able to optimize the function. In the
samples model, it is not possible to make an additional query and novel frameworks to construct
lower bounds are needed.
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2. Impossibility of convex optimization from samples

In this section we show that there exists a class of convex functions that cannot be optimized from
samples. As discussed above, the main idea is to create partitions of [n] that can be used to define a
class of functions whose optima crucially depend on the partitions. We begin by proving a general
hardness lemma in Section 2.1. The lemma shows that when two specific technical conditions on
a class of functions are met, then optimization from samples of such functions is impossible. In
Section 2.2 we explicitly construct the class of functions and prove that the necessary conditions
for the general hardness lemma are met. We then show that one can modify the construction so that
functions in this class are strongly convex and Lipschitz continuous in Section 2.3.

2.1. A general hardness lemma

The hardness lemma shows that a family of functions F cannot be optimized from samples if there
exists a randomized subfamily of functions F ′ ⊆ F that satisfies two conditions. The first condition
asserts that the functions in F ′ cannot be distinguished from samples with high probability. The
second condition is that, with high probability, there exists no fixed solution x which performs well
on all functions in F ′ simultaneously. By combining the two conditions, we show that for any
algorithm, there exists at least one function f ∈ F such that the algorithm minimizes f poorly from
samples.

Lemma 2 Let F be a family of functions and F ′ = {f1, . . . , fm} ⊆ F be a randomized subfamily
of these functions. Assume the following two conditions hold:

1. Indistinguishability. For all x, with probability 1− e−Ω(n1/3) over F ′, for all fi, fj ∈ F ′,

fi(x) = fj(x);

2. α-gap. Let x?i be a minimizer of fi. With probability 1−e−Ω(n1/3) overF ′, for all x ∈ [0, 1]n,

E
fi∼U(F ′)

[fi(x)− fi (x?i )] ≥ α;

Then, F is not α-optimizable from strictly less than e−Ω(n1/3) samples over any distribution D.

Note that for the indistinguishability property to hold, we need to consider a randomized family
of functions F ′. The ordering of the quantifiers for these two properties is crucial. They both hold
with high probability over the randomization of F ′, but the gap is for all x simultaneously whereas
the indistinguishability is for any individual x.
Proof At a high level, by using the indistinguishability condition and switching from the random-
ization of F to the randomization of x ∼ D, we claim that there exists F ′ such that f i(x) = f j(x)
for all fi, fj ∈ F ′ with high probability over x ∼ D. By a union bound this holds for all samples x.
Thus, for such a family of functions F ′ = {f1, . . . , fm}, the choices of an algorithm that is given
samples from fi for i ∈ [m] are independent of i. By the α-gap condition, this implies that there
exists at least one function fi for which a solution x returned by the algorithm is at least α away
from a minimizer of fi.

We first claim that for any distribution D, there exists a family of functions F ⊆ F such that
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• with probability 1− e−Ω(n1/3) over x ∼ D, fi(x) = fj(x) for all fi, fj ∈ F , and

• for all x ∈ [0, 1]n, Efi∼U(F ) [fi(x)− fi (x?i )] ≥ α.

Let the indicator variable 1I(F ′,x) indicate if fi(x) = fj(x) for all fi, fj ∈ F ′ and, for all x′ ∈
[0, 1]n, Efi∼U(F ′) [fi(x

′)− fi (x?i )] ≥ α. Let p = infx PF ′ [I(F ′,x)]. Then, since
∑

F⊆F P[F ′ =
F ]1I(F,x) = PF ′ [I(F ′,x)], by linearity of integration:∑
F⊆F

P[F ′ = F ]

∫
· · ·
∫

[0,1]n
1I(F,x) P[x ∼ D]dx =

∫
· · ·
∫

[0,1]n
P[x ∼ D]P

F ′
[I(F ′,x)]dx ≥ p.

Thus, there exists at least one F = {f1, . . . , fm} such that

P
x∼D

[I(F,x)] =

∫
· · ·
∫

[0,1]n
1I(F,x) · P[x ∼ D]dx ≥ p.

Since p = 1− e−Ω(n1/3) by a union bound on the indistinguishability and gap properties, the claim
holds for F . Then, by a union bound over the samples, fi(x) = fj(x) for all fi, fj ∈ F and for
all samples x with probability 1 − e−Ω(n1/3), and we assume this is the case, as well as the gap
condition, for the remaining of the proof.

It follows that the choices of the algorithm given samples from fi, i ∈ [m], are independent of
i. Pick i ∈ [m] uniformly at random and consider the (possibly randomized) vector x returned by
the algorithm. Since x is independent of i and by the α-gap condition,

E
i∼U({1,...,m})

[fi(x)− fi (x?i )] ≥ α.

Thus, there exists at least one fi ∈ F such that for fi, the algorithm is at least an additive factor α
away from fi(x

?
i ).

2.2. The construction

We now describe a class of functions F and a randomized subfamily F ′ ⊂ F that respects the
conditions of Lemma 2. Each function fP ∈ F is defined in terms of a partition P of [n]. We first
construct a randomized collection of partitions P and the convex function fP corresponding to a
partition P ∈ P . We then show that the randomized family of functions F ′ := {fP : P ∈ P}
satisfies the indistinguishability and α-gap conditions.

The partition. When considering suitable partitions P , there is an inherent tension between the
indistinguishability and α-gap conditions. On the one hand, P and F ′ cannot be too large to satisfy
the indistinguishability property. On the other hand, they cannot be small if we want to obtain a
meaningful gap. To reconcile this tension, we consider partitions of [n] into four sets A1, A2, B1,
and B2 of equal size and define the random collection of partitions P as follows:

P := {(A1,1, A2,1, B1, B2), . . . , (A1,n, A2,n, B1, B2)}

where [n] is first partitioned into a set A of size n/2 and two sets B1, B2 of size n/4 uniformly at
random. Then, we generate n i.i.d. uniformly random partitions of A into two sets A1,i, A2,i of size
n/4. The main idea of these partitions is that we construct functions fP such that the algorithm
may learn A,B1, and B2, but it cannot learn A1 and A2 from samples fP (x) with high probability,
as illustrated in Figure 1.
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A1 A2 B1 B2

A

[n]

Figure 1: The partition P of the set [n] into four sets A1, A2, B1, B2 of equal size. An algorithm
cannot learn the parts that are dashed, A1 and A2, from samples.

The functions. For a partition P = (A1, A2, B1, B2), the function fP is defined as

fP (x) := max
(
wᵀ
Ax− 2n−1/3,wᵀ

Bx
)

+
1

2

where wA and wB are defined such that

wA,i :=


2
n if i ∈ A1

− 2
n if i ∈ A2

0 otherwise

wB,i :=


2
n if i ∈ B1

− 2
n if i ∈ B2

0 otherwise

It is easy to see that fP is convex for all P since it is the maximum of two linear functions.
The main idea of this construction is that with a random partition P , the values wᵀ

Ax and wᵀ
Bx

concentrate around 0. Thus, the samples are likely to always be equal to wᵀ
Bx due to the −2n−1/3

term (Lemma 3). The algorithm therefore cannot learn the partition of A into A1 and A2. But if the
algorithm does not learn A1, A2, then for the vector x returned by the algorithm, wᵀ

Ax is likely to
have value around 0 (Lemma 6), whereas wᵀ

Ax
? = −1/2.

Indistinguishability and α-gap. Lemma 3 shows the indistinguishability condition and we obtain
the gap condition by combining Lemma 5 and Lemma 6 forF ′ = {fP : P ∈ P}. The main theorem
then follows immediately from Lemma 2.

Lemma 3 Fix a vector x, then w.p. 1− e−Ω(n1/3) over P , for all P ∈ P , fP (x) = wᵀ
Bx + 1/2.

Proof We show that wᵀ
Ax and wᵀ

Bx are concentrated close to 0. Fix x and consider some partition
P ∈ P . By Hoeffding’s inequality, PP

[
wᵀ
Ax ≥ n−1/3

]
≤ 2e−n

1/3/3, so wᵀ
Ax−2n−1/3 ≤ −n−1/3,

with probability 1 − e−Ω(n1/3). By a union bound, this holds for all P ∈ P with probability
1 − e−Ω(n1/3). Similarly, PP

[
wᵀ
Bx ≤ −n−1/3

]
≤ 2e−n

1/3/3 and wᵀ
Bx ≥ −n−1/3 for all P ∈ P

with probability 1− e−Ω(n1/3). Thus max
(
wᵀ
Ax− 2n−1/3,wᵀ

Bx
)

+ 1
2 = wᵀ

Bx + 1
2 .

In order to show that the α-gap condition holds, we need an additional property C over P which
we call balanced. This property requires that an index i ∈ A is in A1 for roughly half of the
partitions P in P . Informally, this implies that an algorithm which knows P but not P ∈ P does
not know if an xi, with i ∈ A, has a negative or positive contribution to the value of the function.
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Definition 4 P is β-balanced if for all i ∈ A, (1− β)n/2 ≤ |{j : i ∈ A1,j}| ≤ (1 + β)n/2.

This assumption holds with high probability for β = n−1/3 by a simple application of Chernoff
bound and a union bound (see proof in Appendix B).

Lemma 5 The random collection of partitions P is n−1/3-balanced with probability 1−e−Ω(n1/3).

When P is n−1/3-balanced, we obtain a 1/2− o(1)-gap.

Lemma 6 Assume P is n−1/3-balanced and x?,P is a minimizer of fP . Then, for all x,

E
P∼U(P)

[
fP (x)− fP

(
x?,P

)]
≥ 1

2

(
1− n−1/3

)
.

Proof At a high level, the balance condition implies that for all i ∈ A, wA,ixi is close to 0 in
expectation over P drawn uniformly at random from P while wA,ix

?,P
i = −2/n. The lemma then

follows by linearity of expectation.
For i ∈ A, let Xi = xi if i ∈ A1 and Xi = 1 − xi if i ∈ A2. Observe that by the balance

property (Lemma 5), with P ∼ U(P),

E
P

[Xi] =
1

n

 ∑
j : i∈A1,j

xi +
∑

j : i∈A2,j

(1− xi)

 ≥ (1− n−1/3)
1

2
(xi + (1− xi)) = (1− n−1/3)

1

2
.

Thus, by linearity of expectation,

E
P∼U(P)

[
wᵀ
Ax
]

=
2

n

∑
i∈A

E
P∼U(P)

[Xi]−
1

2
≥
(

1− n−1/3
) 1

2
− 1

2
,

and EP∼U(P)

[
fP (x)

]
≥
(
1− n−1/3

)
/2 while EP∼U(P)

[
fP
(
x?,P

)]
= 0.

A tight lower bound. By combining Lemmas 2, 3, 5, and 6, we obtain the inapproximability
result for any α ≤ 1/2 − o(1). The above inapproximability result is tight since the center of the
unit cube is a 1/2 approximation, and can trivially be obtained without observing any samples.

Proposition 7 Let f : [0, 1]n → [0, 1] be convex. Then,

f((1/2, . . . , 1/2))− min
x∈[0,1]n

f(x) ≤ 1/2.

Proof Let x? be a minimizer of f . By convexity,

f ((1/2, . . . , 1/2)) = f

(
1

2
x? +

1

2
(1− x?)

)
≤ 1

2
f(x?) +

1

2
f(1− x?) ≤ 1

2
f(x?) +

1

2
.

Thus, f ((1/2, . . . , 1/2))− f(x?) ≤ 1/2− f(x?)/2 ≤ 1/2.

Theorem 8 The class of convex functions F is not 1/2 − o(1)-optimizable from samples from any
distribution D for the problem minx f(x). Furthermore, this bound is tight.
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Figure 2: From left to right: fP ((x, y)), fPρ ((x, y)), and fPλ ((x, y)), which are respectively convex,
ρ-Lipschitz continuous convex, and λ-strongly convex, for the case n = 2.

2.3. Impossibility for strongly convex and Lipschitz continuous convex functions

A natural question is whether there are natural assumptions we can make on the class of convex
functions that enable optimization from samples. Unfortunately, we show lower bounds even if
we assume strong convexity and Lipschitz continuity. We complement these results with simple
upper bounds obtained by the center of the unit cube x = (1/2, . . . , 1/2). The inapproximability
for such functions can be shown via simple adjustments to the functions fP constructed in the
previous section. These adjustments are illustrated in Figure 2. We use the same random collection
of partition P for the analysis and show that the indistinguishability and α-gap conditions hold for
the adjusted classes of functions for some new α. The proofs are deferred to Appendix B.2.

We adjust the family of functions F to obtain a family of λ strongly convex functions Fλ as
follows, fPλ (x) := (1− λn/4) · fP (x) + λ‖x− (1/2, . . . , 1/2)‖2.

Theorem 9 The class of λ-strongly convex functionsFλ is not (1−o(1))(1/2−3λn/8)-optimizable
from samples from any distribution D for the problem minx f(x). In addition, let f be a λ-strongly
convex function, then f((1/2, . . . , 1/2)) is a (1− λn/8)-approximation to minx f(x).

Similarly, we adjust the class of functions F to obtain a class of ρ-Lipschitz continuous convex
functions Fρ as follows, fPρ (x) = ρ ·

√
n/2 · fP (x) if ρ ≤

√
2/n and fPρ (x) = fP (x) otherwise.

Theorem 10 The class of ρ-Lipschitz convex functions Fρ is not (1− o(1)) min(1/2, ρ
√
n/2
√

2)-
optimizable from samples from any distribution D for the problem minx f(x). In addition, let f be
a ρ-Lipschitz function f((1/2, . . . , 1/2)) is a min(1/2, ρ

√
n/2)-approximation to minx f(x).

3. Learnability of the hard functions

In this section, we show that learnability and convexity are not sufficient conditions for optimization
from samples. We show this by designing a learning algorithm for the class of convex functions F
constructed in the previous section. More precisely, we show that this class of functions is PAC
learnable with the absolute loss function (or any other ρ-Lipschitz loss function, for bounded ρ).
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Definition 11 (PAC learnability with absolute loss) A class of functions F is PAC learnable if
there exist a function mF : (0, 1)2 → N and a learning algorithm with the following property: For
every ε, δ ∈ (0, 1), for every distribution D, and every function f ∈ F , when running the learning
algorithm on m ≥ mH(ε, δ) i.i.d. samples (x, f(x)) with x ∼ D, the algorithm returns a function
f̃ such that, with probability at least 1− δ (over the choice of the m training examples),

E
x∼D

[∣∣∣f̃(x)− f(x)
∣∣∣] ≤ ε.

Recall that the functions we wish to learn are f(x) = max
(
wᵀ
Ax− 2n−1/3,wᵀ

Bx
)

+1/2. Each
term in the max operator is linear and thus trivially learnable (see Theorem 30). The difficulty with
learning these functions is the max operator over the two linear functions wA − 2n−1/3 and wB .
The main idea behind our approach to learning with the max operator is to combine classification
with linear regression. Intuitively, the classification step indicates which term of wᵀ

Ax or wᵀ
Bx is

largest, and the linear regression step learns the two linear functions (Section 3.1). The challenge
with using this approach is that the label of the samples is not known for the classification, i.e.,
given (x, f(x)), we do not know if f(x) = wᵀ

Ax − 2n−1/3 + 1/2 or if f(x) = wᵀ
Bx + 1/2. To

overcome this, we develop two different approaches to deal with this labeling difficulty and discuss
their tradeoffs (Section 3.2). The proofs in this section are deferred to Appendix C

3.1. Learning with labeled samples

We describe the learning algorithm assuming that we are given labeled samples and discuss how
to obtain labeled samples in the next section. This learning algorithm, called CR and formally
described in Algorithm 1, combines a classification step to learn the label of a fresh vector x with
a linear regression step to learn two linear functions, one for each label. Let A = {x : f(x) =
wᵀ
Ax− 2n−1/3 + 1/2} and B = {x : f(x) = wᵀ

Bx + 1/2}. The classification we wish to learn is
C(x) = 1 if x ∈ A and C(x) = −1 if x ∈ B. The linear regression tasks consist of learning wA

and wB given mA and mB samples in A and B.

Algorithm 1 CR, a learning algorithm for f given labeled samples which uses Classification and
linear Regression.
Input: labeled samples S = {(xi, f(xi), li)}mi=1, a fresh sample x

if |{(xi, f (xi)) : i ∈ [m], li = 1}| ≤ mδε/8 then
C̃ ← x 7→ −1 Label all fresh samples x with l = 1

else if |{(xi, f (xi)) : i ∈ [m], li = −1}| ≤ mδε/8 then
C̃ ← x 7→ 1 Label all fresh samples x with l = −1

else
C̃ ← ERMc ({(xi, li)}mi=1) Train a classifier for labeling

end if
f̃A ← ERM‖w‖1≤2 ({(xi, f (xi)) : i ∈ [m], li = 1}) Linear regression on samples labeled 1

f̃B ← ERM‖w‖1≤2 ({(xi, f (xi)) : i ∈ [m], li = −1}) Linear regression on samples labeled -1

if C̃(x) = 1 then return f̃A(x) endif
if C̃(x) = −1 then return f̃B(x) endif

We restrict the linear regression to be over w with bounded `1 norm to obtain good general-
ization guarantees. If the number of samples mA or mB is too small to obtain guarantees on mA

10
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and mB being close to their expected size in order to obtain guarantees on f̃A and f̃B , then we
either classify all fresh samples as −1 or 1 respectively. We denote by ERMc and ERM‖w‖1≤2 the
empirical risk minimization algorithm for classification with halfspaces and linear regression over
vectors with `1 norm bounded by 2.

The analysis of the sample complexity of Lemma 12 consists of three steps and is the main
technical challenge in this section.

1. We begin by giving the sample complexities of the classification step (Lemma 31) and the
linear regression step (Lemma 32) in isolation, which follow easily from known results using
the VC-dimension and the Rademacher complexity, two of the most common tools to bound
the generalization error of a learning algorithm, which we review in Appendix C.1;

2. Then, we argue that we either have enough samples mA and mB to obtain good guarantees
on f̃A and f̃B or that we can use the classifier C̃ which always labels −1 or 1 if mA or mB ,
respectively, is small;

3. Finally, we derive the generalization error of our algorithm by combining four cases depend-
ing on the classification C(x) and on the condition that the classification is correct.

Lemma 12 For any ε, δ ∈ (0, 1], given m = O
(
ε−2δ−1

(
n+ log

(
δ−1
)))

labeled samples, the

CR algorithm returns a function f̃ s.t. with probability 1−δ over samples Ex∼D

∣∣∣f̃(x)− f(x)
∣∣∣ ≤ ε.

3.2. Obtaining the labeled samples

The CR learning algorithm assumes that it is given labeled samples. Determining the label of a
sample (x, f(x)) is a main conceptual component of this section. We describe two approaches with
different tradeoffs.

F is PAC learnable. This approach, formally described in Algorithm 2, consists of searching for
the “best” labeling A and B of the samples by partitioning the samples S into a training set S1

and a testing set S2. We train functions f̃A,B over the training set for all possible labelings A,B of
the training set and evaluate which labeling A?, B? is best over the testing set and return f̃A?,B? .
This approach successfully shows that F is PAC learnable. In terms of computation, however, this
learner is not efficient since it compares exponentially-many possible labelings.

Algorithm 2 A learning algorithm for F .
Input: Samples S = {(xi, f (xi))}mi=1, a fresh sample x, a training set size m1

(S1,S2)← ({(xi, f (xi)) : i ≤ m1} , {(xi, f (xi)) : i > m1}) training and testing set

L ← {(A,B) : A,B partition S1} all labelings of training set

for (A,B) ∈ L do f̃A,B ← CR ({(xi, f (xi) ,1i∈A) : (xi, f (xi)) ∈ S1}) end for
A?,B? ← argmin(A,B)∈L

∑
(xi,f(xi))∈S2

∣∣∣f̃A,B (xi)− f (xi)
∣∣∣ best labeling

return f̃A?,B? (x)

Theorem 13 For any ε, δ > 0. Let f̃ be the function returned by Algorithm 2. Then, with proba-
bility 1− δ, Ex∼D

∣∣∣f̃(x)− f(x)
∣∣∣ ≤ ε with sample complexity O

(
ε−4δ−1

(
n+ log

(
δ−1
)))

.

11
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Efficient PAC learner for ε-convex functions. The second approach, described in Algorithm 3
holds for a slightly more general class of functions, which are ε-convex, i.e., almost convex. The
idea is to simply encode the labeling of a sample (x, f(x)) into its value f(x). This encoding
can be done by setting the i-th decimal place of f(x) to either 0 or 1. For example, assume
max

(
wᵀ
Ax− 2n−1/3,wᵀ

Bx
)

+ 1
2 = 0.12345. Then, with i = 4, f(x) = 0.12305 if x ∈ A

and f(x) = 0.12315 if x ∈ B. The decoding is then trivial. We obtain a slightly different class
of functions F ′ with this encoding. This class of functions F ′ can be efficiently PAC learned with
this approach, but it is only ε-convex, for arbitrarily small ε > 0. The proof immediately follows by
decoding the samples and then applying Lemma 12.

Algorithm 3 An efficient learning algorithm for F ′.
Input: Samples S = {(xi, f (xi))}mi=1, a fresh sample x

for (xi, f (xi)) ∈ S do li ← DECODE (f (xi)) end for
return CR ({(xi, f (xi) , li)}mi=1) (x)

Theorem 14 For any ε, δ > 0. Let f̃ be the function returned by Algorithm 3. Then, with probability
1− δ, Ex∼D

∣∣∣f̃(x)− f(x)
∣∣∣ ≤ ε with sample complexity O

(
ε−2δ−1

(
n+ log

(
δ−1
)))

.

Note that the hardness result for optimization from samples still holds for F ′. Even if the
algorithm knows the label of the samples, since all the samples are in B with high probability, the
algorithm still cannot learn any information about the partition of A into A1 and A2. In addition,
F ′ is also still optimizable in the value query model. Although in general ε-convex functions may
be inapproximable (Singer and Vondrák, 2015), this class can be efficiently optimized when ε is
sufficiently small ε (Belloni et al., 2015).

Learnability and optimization guarantees. To conclude, the results in this section imply that:

• There exists a class of convex functions that is PAC learnable but not optimizable from sam-
ples. The learning algorithms required to learn this class may be computationally inefficient;

• For any ε > 0, there exists a class of ε-convex functions that is PAC learnable but not optimiz-
able from samples. The learning algorithm that learns this class is computationally efficient.

4. Optimization of polynomials from samples

In Appendix D, we discuss the special case of multivariate polynomials and the notion of recover-
ability, i.e. approximating a function within arbitrarily good precision everywhere using poly-many
samples. We give a simple condition on the samples for which recoverability, and thus optimiza-
tion from samples, is possible for polynomials. We conclude by noting that recoverability is not a
necessary condition for optimization from samples.

12
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Sébastien Bubeck and Ronen Eldan. Multi-scale exploration of convex functions and bandit convex
optimization. CoRR, abs/1507.06580, 2015.

Carl De Boor and Amos Ron. On multivariate polynomial interpolation. Constructive Approxima-
tion, 6(3):287–302, 1990.

Alina Ene, Jan Vondrák, and Yi Wu. Local distribution and the symmetry gap: Approximability
of multiway partitioning problems. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 306–325. SIAM, 2013.

Vitaly Feldman. Generalization of erm in stochastic convex optimization: The dimension strikes
back. In Advances in Neural Information Processing Systems, pages 3576–3584, 2016.

Vitaly Feldman and Pravesh Kothari. Learning coverage functions and private release of marginals.
In COLT, pages 679–702, 2014.
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Appendix A. Concentration Bounds

Lemma 15 (Chernoff Bound) Let X1, . . . , Xn be independent indicator random variables such
that P[Xi = 1] = 1/2. Let X =

∑n
i=1Xi and µ = E[X]. For 0 < δ < 1,

P[|X − µ| ≥ δµ] ≤ 2e−µδ
2/3.

Lemma 16 (Hoeffding’s inequality) Let X1, . . . , Xn be independent random variables with val-
ues in [0, b]. Let X = 1

m

∑m
i=1Xi and µ = E[X]. Then for every 0 < ε < 1,

P [|X − µ| ≥ ε] ≤ 2e−2mε2/b2 .

Appendix B. Missing analysis from Section 2

B.1. Missing concentration bound in analysis from Section 2.1

Lemma 5 The random collection of partitionsP is n−1/3-balanced with probability 1−e−Ω(n1/3).

Proof By Chernoff bound, with µ = n/2 and δ = n−1/3,

P
P

[∣∣∣|{j : i ∈ A1,j}| −
n

2

∣∣∣ ≥ n−1/3 · n
2

]
≤ 2e−n

1/3/6

By a union bound, the claim holds for all i ∈ A with probability 1− e−Ω(n1/3).

B.2. Missing analysis from Section 2.3

A natural question that arises from the hardness result of optimizing general convex functions from
samples is if there exists well-behaved families of convex functions which are optimizable from
samples. We provide additional hardness results for strongly convex functions and Lipschitz con-
tinuous convex functions. We complement these results with simple upper bounds obtained by the
center of the unit cube x = (1/2, . . . , 1/2).

Definition 17 A function f is

• λ-strongly convex, if for all x,y and α ∈ [0, 1],

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y)− λ

2
α(1− α)‖x− y‖2;

• ρ-Lipschitz continuous, if for all x,y, |f(x)− f(y)| ≤ ρ‖x− y‖.

We obtain inapproximability for such functions with simple adjustments to the functions con-
structed for the main impossibility result. These adjustments are illustrated in Figure 2. We use
the same partition P and show that the indistinguishable and gap α properties hold for the adjusted
classes of functions for some new α.
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B.2.1. STRONG CONVEXITY

In our setting, we have λ ≤ 8/n for λ-strongly convex functions (Lemma 20). We obtain a
max((1−o(1))(1/2−3λn/8), 0) lower bound (Theorem 9) and an 1−λn/8 upper bound (Lemma 20)
We begin with useful simple known results for strongly convex functions.

Lemma 18 (Shalev-Shwartz and Ben-David (2014)) The function f(x) = λ‖x‖2 is 2λ-strongly
convex. In addition, if f is λ-strongly convex and g is convex, then f + g is λ-strongly convex.

We adjust the family of functions F to a family of λ strongly convex functions Fλ,

fPλ (x) :=

(
1− λn

4

)
· fP (x) + λ‖x− 1/2‖2.

It is immediate from Lemma 18 that fPλ is λ strongly convex. We show that the indistinguishable
and gap α = max((1− o(1))(1/2− 3λn/8), 0) properties are satisfied.

Lemma 19 The class of λ-strongly convex functions Fλ is not max((1− o(1))(1/2− 3λn/8), 0)-
optimizable from samples from any distribution D for the problem minx f(x).

Proof The only dependence of fPλ (x) on P is the fP (x) term. Thus, since F satisfies the indistin-
guishability condition (Lemma 3), so does F ′. For the gap condition, define xP such that xPi = 0
if i ∈ A1 ∪ B1 and xPi = 1 if i ∈ A2 ∪ B2, so fPλ

(
xP
)

= (1− λn/4) · 0 + λn/4 = λn/4. Thus,
by the gap condition for fP (Lemma 6), for all x, we get

E
P∼U(P)

[
fPλ (x)− fPλ

(
xP
)]

≥ E
P∼U(P)

[(
1− λn

4

)
fP (x) + λ‖x− 1/2‖2

]
− λn

4

≥
(

1− λn

4

)((
1− n−1/3

) 1

2
− 2n−1/3

)
− λn

4

=(1− o(1))

(
1

2
− 3λn

8

)
.

Combining the indistinguishable and max((1−o(1))(1/2−3λn/8), 0)-gap conditions with Lemma 2
completes the proof.

We complement the hardness result with a simple upper bound.

Proposition 20 Let f be a λ-strongly convex function. Then, f((1/2, . . . , 1/2)) is a 1 − λn/8-
approximation to minx f(x). In addition, it must be the case that λ ≤ 8/n.

Proof By the definition of λ-strongly convex, with x = (0, . . . , 0), y = (1, . . . , 1), and α = 1/2,

f((1/2, . . . , 1/2)) ≤ 1

2
f(x) +

1

2
f(y)− λ

2

1

4
‖x− y‖2 ≤ 1− λn

8
.

In addition, since f((1/2, . . . , 1/2)) ≥ 0, it must be the case that λ ≤ 8/n in this setting.

Theorem 9 The class of λ-strongly convex functionsFλ is not (1−o(1))(1/2−3λn/8)-optimizable
from samples from any distribution D for the problem minx f(x). In addition, let f be a λ-strongly
convex function, then f((1/2, . . . , 1/2)) is a (1− λn/8)-approximation to minx f(x).
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B.2.2. LIPSCHITZ CONTINUOUS

We turn our attention to ρ-Lipschitz continuous convex functions. The results for these functions are
similar to the results for strongly convex functions, we obtain an (1 − o(1)) min(1/2, ρ

√
n/2
√

2)
lower bound and a min(1/2, ρ

√
n/2) upper bound. Again, we begin with simple results for Lips-

chitz continuous convex functions.

Lemma 21 A linear function f(x) = wᵀx + b is ‖w‖-Lipschitz. In addition, let f1 and f2 be
functions that are ρ-Lipschitz. Then, the functions max(f1(x), f2(x)) and γf1(x) are ρ-Lipschitz
and γρ-Lipschitz respectively.

Proof The result for linear functions is from (Shalev-Shwartz and Ben-David, 2014). By the def-
inition of ρ-Lipschitz, observe that |max(f1(x), f2(x)) − max(f1(y), f2(y))| ≤ maxi |fi(x) −
fi(x)| ≤ ρ‖x− y‖ and that |γf1(x)− γf1(x)| ≤ γ|f1(x)− f1(y)| ≤ γρ‖x− y‖.

We adjust F to ρ Lipschitz continuous convex functions Fρ as follows.

fPρ (x) =

{
ρ ·
√

n
2 · f

P (x) if ρ ≤
√

2
n

fP (x) otherwise

It is immediate from Lemma 21 that fP is
√

2/n-Lipschitz continuous convex and that fPρ is
ρ-Lipschitz continuous convex. The main result for Lipschitz functions follows from showing the
indistinguisability and gap α conditions.

Lemma 22 The class of ρ-Lipschitz convex functions Fρ is not (1 − o(1)) min(1/2, ρ
√
n/2
√

2)-
optimizable from samples from any distribution D for the problem minx f(x).

Proof The only dependence of fPρ on P is the fP term. Thus, since F satisfies the indistinguisha-
bility condition (Lemma 3), so does F ′. If ρ >

√
2/n, the ρ-gap property follows immediately by

the definition and the gap condition for fP (Lemma 6). Otherwise, by Lemma 6, for all x, we get

E
P∼U(P)

[
fPρ (x)− fPρ (x?,P )

]
≥ E
P∼U(P)

[
ρ ·
√
n

2
· fP (x)

]
≥ρ ·

√
n

2
·
((

1− n−1/3
) 1

2
− 2n−1/3

)
=(1− o(1))

ρ
√
n

2
√

2

Combining the indistinguishable and (1−o(1)) min(1/2, ρ
√
n/2
√

2)-gap conditions with Lemma 2
completes the proof.

We complement the hardness result for Lipschitz continuous functions with an upper bound.

Proposition 23 Let f be a ρ-Lipschitz continuous function. Then, the center of the unit cube,
(1/2, . . . , 1/2), is a min(1/2, ρ

√
n/2)-approximation to minx f(x).
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Proof Let x? ∈ [0, 1]n be the optimal solution. Then, by definition of ρ-Lipschitz continuous,

f ((1/2, . . . , 1/2))− f(x∗) ≤ ρ ‖(1/2, . . . , 1/2)− x?‖ ≤ ρ ‖(1/2, . . . , 1/2)− 1‖ ≤ ρ
√
n

2
.

Theorem 10 The class of ρ-Lipschitz convex functions Fρ is not (1−o(1)) min(1/2, ρ
√
n/2
√

2)-
optimizable from samples from any distribution D for the problem minx f(x). In addition, let f be
a ρ-Lipschitz function f((1/2, . . . , 1/2)) is a min(1/2, ρ

√
n/2)-approximation to minx f(x).

Appendix C. Missing analysis from Section 3

We begin by reviewing known results for classification and linear regression using the VC-dimension
and the Rademacher complexity (Section C.1). We then construct a learning algorithm called CR
which combines classification and regression and which assumes that it is given labeled samples
(Section C.2). Finally, we describe the two possible approaches to labeling samples (Section C.3)

C.1. VC-dimension and Rademacher complexities essentials

We review learning results needed for the analysis. These results use the VC-dimension and the
Radmeacher complexity, two of the most common tools to bound the generalization error of a
learning algorithm. We formally define the VC-dimension and the Rademacher complexity using
definitions from (Shalev-Shwartz and Ben-David, 2014). We begin with the VC-dimension, which
is for classes of binary functions. We first define the concepts of restriction to a set and of shattering,
which are useful to define the VC-dimension.

Definition 24 (Restriction of H to A). Let H be a class of functions from X to {0, 1} and let
A = {a1, . . . , am} ⊂ X . The restriction of H to A is the set of functions from A to {0, 1} that can
be derived fromH. That is,

HA = {(h(a1), . . . , h(am)) : h ∈ H},

where we represent each function from A to {0, 1} as a vector in {0, 1}|A|.

Definition 25 (Shattering). A hypothesis classH shatters a finite set A ⊂ X if the restriction ofH
to A is the set of all functions from A to {0, 1}. That is, |HA| = 2|A|.

Definition 26 (VC-dimension). The VC-dimension of a hypothesis classH is the maximal size of a
set S ⊂ X that can be shattered by H. If H can shatter sets of arbitrarily large size we say that H
has infinite VC-dimension.

Next, we define the Rademacher complexity, which is for more complex classes of functions
than binary functions, such as real-valued functions.
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Definition 27 (Rademacher complexity). Let σ be distributed i.i.d. according to Pr[σi = 1] =
Pr[σi = −1] = 1/2. The Rademacher complexity R(A) of set of vectors A ⊂ Rm is defined as

R(A) :=
1

m
E
σ

[
sup
a∈A

m∑
i=1

σiai

]
.

This first result bounds the generalization error of a class of binary functions in terms of the
VC-dimension of these classifiers.

Theorem 28 (Shalev-Shwartz and Ben-David (2014)) Let H be a hypothesis class of functions
from a domain X to {−1, 1} and f : X 7→ {−1, 1} be some “correct” function. Assume that
the VC-dimension of H is d. Then, there is an absolute constant C such that with m ≥ C(d +
log(1/∆))/δ2 i.i.d. samples x1, . . . ,xm ∼ D,∣∣∣∣∣ P

x∼D
[h(x) 6= f(x)]− 1

m

m∑
i=1

1h(xi)6=f(xi)

∣∣∣∣∣ ≤ δ
for all h ∈ H, with probability 1−∆ over the samples.

We use the class of halfspaces for classification, for which we know the VC-dimension.

Theorem 29 (Shalev-Shwartz and Ben-David (2014)) The class of functions {x 7→ sign(wᵀx)+
b : w ∈ Rn, b ∈ R} has VC dimension n+ 1.

The following result combines the generalization error of a class of functions in terms of its
Rademacher complexity with the Rademacher complexity of linear functions over a ρ-Lipschitz
loss function.

Theorem 30 ( Shalev-Shwartz and Ben-David (2014)) Suppose thatD is a distribution overX×
Y such that with probability 1 we have that ‖x‖∞ ≤ R. Let H = {w ∈ Rd : ‖w‖1 ≤ B} and let
`(w, (x, y)) = φ(wᵀx, y) such that for all y ∈ Y , a 7→ φ(a, y) is an ρ-Lipschitz function and such
that maxa∈[−BR,BR] |φ(a, y)| ≤ c. Then, for any δ ∈ (0, 1), with probability of at least 1− δ over
the choice of an i.i.d. sample of size m,

LD(w) ≤ LS(w) + 2ρBR

√
2 log(2d)

m
+ c

√
2 log(2/δ)

m

for all w ∈ H.

C.2. Missing analysis from Section 3.1

We describe the learning algorithm assuming that we are given labeled samples and discuss how to
obtain labeled samples in the next section. This learning algorithm combines a classification step
to learn the label of a fresh vector x with a regression step to learn two linear functions, one for
each label. The analyses of the classification step (Lemma 31) and the regression step (Lemma 32)
in isolation are immediate from the above known results. The interesting aspect of this learning
algorithm is how to combine them (Lemma 12). Recall that the class of functions we wish to learn,
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f(x) = max
(
wᵀ
Ax− 2n−1/3,wᵀ

Bx
)

+
1

2
.

Let A = {x : f(x) = wᵀ
Ax − 2n−1/3 + 1/2} and B = {x : f(x) = wᵀ

Bx + 1/2}. The
classification we wish to learn is C(x) = 1 if x ∈ A and C(x) = −1 if x ∈ B.

Lemma 31 Given a collection of labeled samples S = {(xi, f(xi), li)}mi=1, consider the classifier
C̃ such that

(w̃, b̃) = min
w∈Rn,b∈R

m∑
i=1

1sign(wᵀxi+b) 6=li

and C̃(x) = sign(w̃ᵀx + b̃). Then, there is an absolute constant c such that with m ≥ c(n + 1 +

log(1/δ))/∆2 i.i.d. samples x1, . . . ,xm ∼ D, Px∼D

[
C̃(x) 6= C(x)

]
≤ ∆ with probability 1 − δ

over the samples.

Proof Observe that with w = wA −wB and b = −2n−1/3, we obtain the true classifier C with 0
loss. Thus, if w ∈ Rn and b ∈ R are minimizers, then

∑m
i=1 1sign(wᵀxi+b) 6=C(xi) = 0 . We then

combine Theorems 28 and 29 to conclude the proof.

Next, we consider the linear regression tasks of learning wA and wB givenmA andmB samples
in A and B. Define the distribution DA such that P[x ∼ DA] = P[x ∼ D : x ∈ A] and define DB
similarly. Define x′ ∈ Rn+1 to be x′i = xi for i ≤ n and x′n+1 = 1.

Lemma 32 Let w̃A ∈ Rn+1 be such that ‖w̃A‖1 ≤ 2 and such that the hypothesis function w̃ᵀ
Ax
′

is a linear function that minimizes the empirical risk according to the absolute loss, i.e.,

w̃A = min
w∈Rn+1

∑
x∈SA

|wᵀx′ − f(x)|,

where SA is a collection of mA i.i.d. samples drawn from DA then

E
x∼DA

[
|w̃ᵀ

Ax
′ − f(x)|

]
≤ 4

√
2 log(2(n+ 1))

mA
+ 2

√
2 log(2/δ)

mA

Proof Observe that w′ such that w′i = wA,i for i ≤ n and w′n+1 = 1/2 − 2n−1/3 has 0 empirical
loss since it corresponds to the true underlying function. We then conclude the proof by applying
Theorem 30 and noting that in this setting, R = 1, B = 2, ρ = 1 (absolute loss is 1-Lipschitz),
c = 2, and d = n+ 1 are sufficient.

We obtain identical guarantees for w̃B ∈ Rn+1.

Lemma 12 For any ε, δ ∈ (0, 1], given m = O
(
ε−2δ−1

(
n+ log

(
δ−1
)))

labeled samples, the

CR algorithm returns a function f̃ s.t. with probability 1−δ over samples Ex∼D

∣∣∣f̃(x)− f(x)
∣∣∣ ≤ ε.
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Proof The proof consists of two steps. We begin by arguing that either the number of samples
labeled A and B are concentrated close to their expected sizes or we can immediately bound ε or δ.
We then derive the generalization error of our algorithm by combining four cases depending on the
classification C(x) of x into A or B and on if this classification is correct.

Divide the probability of failure δ over the samples into three components: the probability δS
that the number of samples mA and mB are not satisfying, the probability δC that the guarantees
for the classification algorithm do not hold (not to be mixed up with ∆ from Lemma 31), and the
probability δL that the guarantees for the regression algorithms do not hold. We bound each of these
by δ/3 and obtain a probability of failure δ by a union bound. Let p be the probability that x ∈ A
assuming x ∼ D and ∆ be the probability of misclassification. We wish to obtain a number of
samples mA and mB close to their mean, if this is not the case we bound the loss.

If mA < mp/2 or mB < mp/2. If the number of samples labeled A is small, mA ≤ mδε/8,
then we classify all samples by B, i.e. C̃(x) = −1 for all x. There are then two cases, either p is
small, p ≤ εδ/4 and we incur a small loss on ε or p is large and we consider this as failure and incur
a small loss on δ. In the first case, p ≤ εδ/4, then get probability of misclassification ∆ ≤ εδ/4 of
C̃ which is always −1. We will use this bound on ∆ to bound ε in the next step. In the other case,
p ≥ εδ/4, then we consider that failure of the choice of the samples and incur a loss on δ which we
bound. By Chernoff bound, with µ = mp and Xi = 1i∈A indicating if the ith sample is labeled A,

P [X ≤ mδε/8] ≤ P

[
|
∑
i

Xi −mp| ≥ mp/2

]
≤ 2e−

mp
12 ≤ 2e−

mδε
48 .

So with m ≥ 48
δε log 6

δ , we can bound the probability of failure δS over the m samples with δS =
P [X ≤ mδε/8] ≤ δ/3. We treat the case mB ≤ mδε/8 similarly.

If mA ≥ mδε/8, we claim that mA ≥ mp/2 with small probability of failure. If p ≤ δε/4, then
mA ≥ mp/2. Otherwise, if p ≥ δε/4, by Chernoff bound,

P [X ≥ mp/2] ≤ P

[
|
∑
i

Xi −mp| ≥ mp/2

]
≤ 2e−

mp
12 ≤ 2e−

mεδ
48

So with m ≥ 48
εδ log 6

δ , we can bound the probability of failure δS over the m samples with δS =
P [X < mp/2] ≤ δ/3. We treat the case mB ≥ mδε/8 similarly.

We conclude that if mA < mp/2 or mB < mp/2, then we have bounded the loss incurred by
these cases either with ε or δ.

Combining classification and linear regression. Let ∆A be the probability of misclassification
for x ∼ D : x ∈ A, i.e.

∆A = P
x∼D:x∈A

[
C̃(x) = −1

]
and define ∆B similarly. Thus, ∆Ap + ∆B(1 − p) = ∆. We decompose the performance of the
learning algorithm into four cases depending on the classification C̃(x) of x into A or B and on if
this classification is correct.
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• In the case where the classification is incorrect, we get

P
x∼D

[x ∈ A] · P
x∼DA

[
C̃(x) = −1

]
· E
x∼DA : C̃(x)=−1

[
|f̃(x)− f(x)|

]
= P

x∼D
[x ∈ A] · P

x∼DA

[
C̃(x) = −1

]
· E
x∼DA : C̃(x)=−1

[
|w̃ᵀ

Bx
′ − f(x)|

]
≤p ·∆A · 2

since ‖w̃B‖1 ≤ 2. Similarly,

P
x∼D

[x ∈ B] · P
x∼DB

[
C̃(x) = 1

]
· E
x∼DB : C̃(x)=1

[
|f̃(x)− f(x)|

]
≤ (1− p) ·∆B · 2.

• In the case where the classification is correct, we get

P
x∼D

[x ∈ A] · P
x∼DA

[
C̃(x) = 1

]
· E
x∼DA : C̃(x)=1

[
|f̃(x)− f(x)|

]
≤ P

x∼D
[x ∈ A] · E

x∼DA

[
|w̃ᵀ

Ax
′ − f(x)|

]
≤p · E

x∼DA

[
|w̃ᵀ

Ax
′ − f(x)|

]
and similarly,

P
x∼D

[x ∈ B] · P
x∼DB

[
C̃(x) = −1

]
· E
x∼DB : C̃(x)=−1

[
|f̃(x)− f(x)|

]
≤(1− p) · E

x∼DB

[
|w̃ᵀ

Bx
′ − f(x)|

]
Combining these four cases together, we obtain
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E
x∼D

[∣∣∣f̃(x)− f(x)
∣∣∣] ≤ 2∆Ap+ p E

x∼DA

[
|w̃ᵀ

Ax
′ − f(x)|

]
+ 2∆B(1− p) + (1− p) E

x∼DB

[
|w̃ᵀ

Bx
′ − f(x)|

]
≤ 2∆ + p

4

√
2 log(2(n+ 1))

mA
+ 2

√
2 log(2/δL)

mA


+ (1− p)

4

√
2 log(2(n+ 1))

mB
+ 2

√
2 log(2/δL)

mB


≤ 2∆ + p

(
4

√
4 log(2(n+ 1))

pm
+ 2

√
4 log(2/δL)

pm

)

+ (1− p)

(
4

√
4 log(2(n+ 1))

(1− p)m
+ 2

√
4 log(2/δL)

(1− p)m

)

≤ 2∆ + 8

√
log(2(n+ 1))

m
+ 4

√
log(2/δL)

m

+ 8

√
log(2(n+ 1))

m
+ 4

√
2 log(2/δL)

m

≤ 2∆ + 16

√
log(2(n+ 1))

m
+ 8

√
log(2/δL)

m

with probability 1 − δL = 1 − δ/3. The first inequality decomposes the error into the four cases
discussed previously. The second inequality is since ∆Ap + ∆B(1 − p) = ∆ and by Lemma 32.
The third inequality is since by the previous argument that eithermA ≥ mp/2, or C̃ never classifies
a sample as A, or we consider it as failure δ. The last two inequalities are simple algebraic manipu-
lations. By Lemma 31, the probability ∆ of misclassification can be such that ∆ ≤ ε/4 with sample

complexity 1
ε2

(c(n+ 1 + log(2/δC)). We get 16

√
log(2(n+1))

m + 8

√
log(2/δL)

m ≤ ε/2 with sample

complexitym ≥ 1
ε2

(128 log(2(n+ 1)) + 32 log(6/δ)). Thus, we obtain E
x∼D

[∣∣∣f̃(x)− f(x)
∣∣∣] ≤ ε

with probability 1− δ.

C.3. Missing analysis from Section 3.2

Definemte andmtr to be the sizes of the testing and training sets respectively. The empirical testing
error of f̃A,B is

LSte

(
f̃A,B

)
=

1

mte

mte∑
i=1

(
f̃A,B(x)− f(x)

)
and its expected error is

LD

(
f̃A,B

)
= E

x∼D

[
f̃A,B(x)− f(x)

]
We set the size of the training set to be mtr = cε−2δ−1(n+ log(δ−1).
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Lemma 33 With probability 1− δ, for all (A,B) partitioning Str,∣∣∣LD (f̃A,B)− LSte (f̃A,B)∣∣∣ ≤ ε
with sample complexity

mte ≥ 8(mtr + log(1/δte)/ε
2 = O

((
mtr + log

(
1

δ

))
1

ε2

)
.

Proof Fix A,B. By Hoeffding’s inequality where Xi = f̃A,B(xi) − f(xi), m = mte, µ =

LD

(
f̃A,B

)
, and b = 2.

P
[∣∣∣LD (f̃A,B)− LSte (f̃A,B)∣∣∣ > ε

]
≤ 2e−mteε

2/8

By a union bound over all 2|mtr| pairs (A,B), the above holds with probability at most emtr−mteε
2/8.

Thus, we get the desired bound with mte ≥ 8(mtr + log(1/δte)/ε
2.

Theorem 13 For any ε, δ > 0. Let f̃ be the function returned by Algorithm 2. Then, with
probability 1− δ, Ex∼D

∣∣∣f̃(x)− f(x)
∣∣∣ ≤ ε with sample complexity O

(
ε−4δ−1

(
n+ log

(
δ−1
)))

.

Proof Note that,

LD

(
f̃A,B(x)

)
≤ LSte

(
f̃A,B(x)

)
+ ε1 Lemma 33

≤ LSte
(
f̃A?,B?(x)

)
+ ε1 By algorithm

≤ LD
(
f̃A?,B?(x)

)
+ 2ε1 Lemma 33

≤ 2ε1 + ε2 Lemma 12

and the sample complexity is O(ε−4δ−1(n + log(δ−1))) by combining the sample complexities of
Lemma 12 and 33.

Appendix D. Missing analysis from Section 4

D.1. Recoverability

In this section, we discuss the special case of multivariate polynomials and the notion of recover-
ability, i.e. approximating a function within arbitrarily good precision everywhere using poly-many
samples. We characterize a condition on the samples for which recoverability, and thus optimization
from samples, is possible for polynomials. We conclude the section by noting that recoverability is
not a necessary condition for optimization from samples.
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Definition 34 We say that a function f is ε-recoverable over distributionD if given poly(n, 1/δ, 1/ε)
i.i.d. samples (x, f(x)) with x ∼ D, there exists a (not necessarily polynomial time) algorithm
which outputs f̃ such that for all x,

|f(x)− f̃(x)| < ε

with probability 1− δ over the samples.

Recoverable functions are trivially optimizable from samples.

Proposition 35 If a function f is ε/2-recoverable given samples S, then it is (not necessarily in
polynomial time) ε-optimizable from samples S.

Proof A minimizer x̃? of any function f̃ which ε/2-recovers f is an ε approximation to a minimizer
x? of f :

f (x̃?) ≤ f̃ (x̃?) + ε/2 ≤ f̃ (x?) + ε/2 ≤ f (x?) + ε,

where the first and third inequalities are since f̃ ε/2-recovers f and the second since x̃? if a mini-
mizer of f̃ .

D.2. Multivariate polynomials with full rank matrix of samples are optimizable

The class of multivariate polynomials of degree d is the class of functions such that

f(x) =
∑

(j1,...,jk):∑n
k=1 jk≤d,

jk∈{0,...,d},∀k

αj

n∏
k=1

xjkk

with αj ∈ R for all j. There exists an extensive literature on polynomial interpolation (De Boor and
Ron, 1990; Gasca, 1990; Ben-Or and Tiwari, 1988) where the goal is to find a polynomial f̃ which
”fits” a collection of m points S = {(x, f(x))} and to characterize when there is such a unique
polynomial. An approach to that problem is to write the points in a system of linear equations
Mα = f .

The matrix of samples M is an m × c matrix, where c is the number of terms in f , defined
as Mij =

∏n
k=1 x

jk
k for the ith sample x. The vector α is a c dimensional vector consisting of

the c parameters αj of the function f which we aim to learn. The vector f is the value of the ith
sample x, fi = f(x). Note that there always exists at least one solution α to this system of linear
equations, which corresponds to f , and that if M is invertible, then its solution α corresponding to
f is unique, so f is 0-recoverable from S. By Theorem 35, f is thus optimizable from samples S .
For a polynomial f which is optimizable in polynomial time in the value query model, we obtain
that f is efficiently optimizable from samples.

Theorem 36 Assume that the matrix M of samples S of a polynomial f is full rank, then a mini-
mizer of f can be computed from samples S.
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1 1 0 0 0 0 0 · · · 0 0
1 0 1 0 0 0 0 · · · 0 0
0 1 0 1 0 0 0 · · · 0 0
1 0 0 0 1 0 0 · · · 0 0
0 1 0 0 0 1 0 · · · 0 0

...
1 0 0 0 0 0 0 · · · 0 1

Table 1: The matrix of samples M of rank n− 1 for the hardness result for linear functions.

One might hope that ifM is almost full rank then f might be approximately optimizable from S.
We show that this is not the case, even for linear functions, which are the special case of multivariate
polynomials of the form f(x) =

∑n
j=1 αjxj . Note that M is full rank it has rank n, We show

that even if M has rank n − 1, then we cannot obtain non-trivial guarantees for optimizing linear
functions.

Theorem 37 There exist a class of linear functions F and a collection of samples S such that the
matrix M of samples has rank n− 1 and such that F is not 1/2-optimizable from samples S.

Proof We build two linear functions f1 and f2 which are indistinguishable from a collection of
samples S and which have a 1/2-gap. In addition, S has rank n− 1.

Consider the following collection S of n − 1 samples, with associated matrix M of samples
illustrated in Table D.2. These samples are x1 = (1, 1, 0, . . . , 0), and for i > 1, xi defined as
xi(mod 2)+1 = 1, xi+1 = 1 and xj = 0 otherwise. It is easy to see that the matrix M of samples has
rank n− 1. We consider the following two functions f1(x) = v1x + 1/2 and f2(x) = v2x + 1/2,

v1
j =

{
1/n if j (mod 2) = 0

−1/n otherwise
v2
j =

{
−1/n if j (mod 2) = 0

1/n otherwise

The samples all have value 1/2 for both functions. Thus these two functions are indistinguish-
able from S. Finally, note that for any x, f1(x) = 1 − f2(x) and that both f1 and f2 have a
minimizer of value 0. Thus any (possibly randomized) vector x returned by the algorithm is such
that either f1(x) ≥ 1/2 or f2(x) ≥ 1/2.

We conclude by noting that this bound is (exactly) tight since the 1/2 upper bound from Propo-
sition 7 applies.

D.3. Recoverability is not necessary for optimization from samples

We have seen that recoverability is a condition that can be used successfully to show that multivariate
polynomials can be optimized from samples. A natural follow-up question is whether recoverability
is necessary for optimizable from samples. Similarly as for combinatorial optimization from sam-
ples (Balkanski et al., 2017), there exist functions that are not recoverable but are optimizable from
samples.

Proposition 38 There exist convex functions which are not 1/2-recoverable over the uniform dis-
tribution D, but that are such that a minimizer can always be computed from samples.
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Proof Consider the two functions from Section 1.1,

f1(x) = max
(

0, 1− 1ᵀ
[n/2]x

)
and f2(x) = max

(
0, 1− 1ᵀ

{n/2+1,...,n}x
)

The vector (1, . . . , 1) is always a minimizer for these two functions. With probability at least
1 − e−Ω(n1/3), f1(x) = f2(x) = 0 for all samples x drawn from the uniform distribution by a
Chernoff bound. Thus f1 and f2 are indistinguishable from samples from D. Consider x = 1[n/2].
Note that f1(x) = 0 and f2(x) = 1. Thus for any learned function f̃ , either |f̃(x)− f1(x)| ≥ 1/2
or |f̃(x)− f2(x)| ≥ 1/2, and {f1, f2} is not 1/2-recoverable.

Thus, recoverability is not necessary for optimization from samples.
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