
BIOINFORMATICS Vol. 00 no. 00 2006
Pages 1–5

PROMO : A Method for identifying modules in
protein interaction networks
Omer Tamuz∗, Yaron Singer∗, Roded Sharan

School of Computer Science, Tel Aviv University, Tel Aviv, Israel

ABSTRACT
Motivation: A major goal of systems biology is the dissection
of protein machineries within the cell. The recent availability
of genome-scale protein interaction networks provides a key
resource for addressing this challenge. Current approaches
to the problem are based on devising a scoring scheme for
putative protein modules and applying a heuristic search for
high-scoring modules.
Results: Here we develop a branch and bound approach to
perform an exhaustive scan of the search space.We show that
such a search is possible and enables detecting modules that
are missed by previous approaches. The modules we iden-
tify are shown to be significantly coherent in their functional
annotations and expression patterns. Our algorithm, PROMO,
is shown to outperform the state-of-the-art MCODE and to
provide results that are more in line with current biological
knowledge.
Contact: omert@wise.tau.ac.il

1 INTRODUCTION
A major goal of systems biology is understanding how intri-
cate networks of molecular interactions give rise to biological
form and function. Recent technological advances enable a
global mapping of protein-protein interactions (PPIs) within
the cell, and provide an opportunity for addressing this chal-
lenge. A key step in interpreting such data is the elucidation
of protein machinery, or modules, within the cell.

Many authors have studied the problem of identifying
modules within a PPI network. The Molecular Complex
Detection algorithm (MCODE) (Bader and Hogue, 2003) is
the most commonly used method for module detection (see,
e.g., LaCount et al. (2005); Rual et al. (2005)). It weighs verti-
ces based on the densities of their neighborhoods and launches
greedy local searches for dense network regions. A similar
algorithm by Altaf-Ul-Amin et al. (2006) grows modules in
a greedy fashion while ensuring that vertices that are added
to the module are densely connected to it. The NetworkBlast
algorithm of Sharan et al. (2005a) is based on a maximum
likelihood scoring scheme. Each candidate set of proteins is

∗These authors contributed equally

assigned a likelihood ratio score that measures its fit to a pro-
tein complex model vs. the chance that its connections arise
at random. A greedy algorithm is used for identifying high-
scoring modules. Other proposed algorithms apply various
clustering techniques for module detection (King et al., 2004;
Maciag et al., 2006; Spirin and Mirny, 2003).

Our goal here is to provide a general strategy for identify-
ing high scoring modules in a PPI network, given a linear
scoring scheme of interest (i.e., a scheme that decomposes
over the edges and non-edges of the network). The algorithm
we propose, PROtein Module Optimizer (PROMO), is based
on an efficient branch and bound search that scans through all
possible protein modules that score above a certain threshold.
While the problem we aim at solving is NP-complete, we
show that on current PPI data it can be solved in minutes. We
compare the performance of our exhaustive approach to the
state-of-the-art MCODE algorithm, and show its superiority.

2 METHODS
2.1 Overview
We have developed an efficient algorithm for identifying
optimal-scoring modules in a given network under a linear
scoring scheme. The algorithm receives as input a PPI net-
work, whose nodes represent proteins and whose edges
represent protein-protein interactions and are assigned with
confidence scores. The module identification problem is recast
to that of identifying a subnetwork M within the weighted
network such that the sum of weights of node pairs within
M is maximum. A branch-and-bound approach is applied to
identify the optimum solution.

2.2 Algorithm
Let G = (V, E, w) be a PPI network, with V representing
the set of proteins, E representing the set of PPIs, and w :
V × V → R a weight function. The module identification
problem can be formulated as that of finding a vertex subset
V ′ ⊆ V such that its weight, W (V ′) =

∑

u,v∈V ′ w(u, v), is
maximum. While this problem is known to be computationally
hard (generalizing the problem of finding a maximum clique
in a graph (Garey and Johnson, 1979)), we show that it can be
efficiently tackled using a branch-and-bound approach.

© Oxford University Press 2006. 1

Tamuz et al

Branch-and-bound is a well known exhaustive optimization
technique (Lawler and Wood, 1966). It includes a branching
mechanism, which divides the parameter space into sub-
spaces, and a bounding mechanism,which calculates an upper
bound to the score of the possible solutions in a subspace and
compares it to a lower bound–the score of the best solution
found so far.

In our case, the search space is the collection of all subsets of
V . For v ∈ V , branching is naturally achieved by partitioning
the set of all possible solutions to those that include or exclude
v. A subset A of the parameter space is therefore a division of
the set of vertices V into three subsets: Vin, Vout and Vmaybe,
where all the solutions in A include the vertices in Vin, do not
include the vertices in Vout and perhaps include the vertices
in Vmaybe = V \ (Vin ∪ Vout). Bounding can be naively
performed by considering only the positive edges which might
be in a solution, but can be significantly improved, as we show
below.

A schematic description of the algorithm is appended below.
Key to the success of a branch-and-boundmethodology are:

(i) obtaining a good initial lower bound; (ii) tight estimation
of the upper bound; and (iii) efficient branching strategy. To
obtain an initial solution we use a greedy approach.

The upper bound can be made tighter through the following
observation: given a vertex v ∈ Vmaybe the edges between
v and vertices in Vin are “bound together” in the sense that
either all of them are in the optimal solution, or all are not.
Therefore, they can be treated as a single edge, weighted as
the sum of the weights. Also, the total contribution of a vertex
cannot be negative. Thus, for a vertex v ∈ Vmaybe, a naive
branch-and-bound approach quantifies its contribution to the
upper bound by:

∑

u∈Vin

max{0, w(u, v)}+
1

2

∑

u∈Vmaybe

max{0, w(u, v)} (1)

In PROMO we use:

max







0,
∑

u∈Vin

w(v, u) +
1

2

∑

u∈Vmaybe

max(0, w(v, u))







(2)
where the 1/2 factor is due to the fact that each edge is
accounted for by both its incident vertices. Since for all
v ∈ Vmaybe, 1 ≥ 2 we obtain a tighter bound.

Finally, the branching strategy relies on the following
insight: In calculating the upper bound, positive weights bet-
ween vertices in Vmaybe are the only ones considered, thus
leading to overestimation of the contribution of vertices to
the actual best score in a subspace A. Clearly, we wish to
ensure that the algorithm processes the vertices in an order
that will yield the fastest decrease in the upper bound, and
yet the algorithm will not be trapped in subspaces for which
the best score is lower than the optimum. This motivated us

to sort the vertices by the difference between their contribu-
tion to the upper bound and to the best score. More precisely,
since we cannot readily compute the best score, we resort to
computing the expected difference in contributions. Clearly,
such differences arise due to our uncertainty regarding which
vertices in Vmaybe will be eventually included in the optimum
solution.

The contribution of each vertex v ∈ Vmaybe to the upper
bound is given by Eq. 2. To compute the expected contribution
to the best score we make a simplifying assumption: the proba-
bility that a vertex v ∈ Vmaybe is included in the best solution
equals to the ratio of the sum of weights of positive edges inci-
dent to it and the overall sum of weights, in absolute values, of
edges incident to it. Formally, let w(v, v) =

∑

u∈Vin
w(u, v)

then:

pv ≡ Pr(v ∈ Vopt) =

∑

u∈Vmaybe:w(u,v)>0 w(u, v)
∑

u∈Vmaybe
|w(u, v)|

It follows that the expected contribution of v to the best score
is: pv ·

∑

u∈V puw(u, v). To save on running time, we use a
simpler formula for sorting the vertices which is obtained by
setting pv = 1 for all v ∈ Vmaybe.

Algorithm 1 The PROMO algorithm for module identifica-
tion.

PROMO(V ,L,Ubest)
return Recursion(φ,V ,Ubest)

Recursion(Vin, Vmaybe,Ubest)
if Vmaybe = φ

if W (Vin) > W (Ubest)
return Vin

else if UpperBound(Vin, Vmaybe) > W (Ubest)
choose v ∈ Vmaybe

Vmaybe ← Vmaybe \ {v}
Ubest ← Recursion(Vin, Vmaybe, Ubest)
Ubest ← Recursion(Vin ∪ {v}, Vmaybe, Ubest)

return Ubest

2.3 Module scoring
We use the maximum likelihood scoring scheme presented
in Sharan et al. (2005b). Briefly, a module is assigned a like-
lihood ratio score, which measures its fit to a protein complex
model vs. the chance that the module’s connections arise at
random. The protein complex model assumes that every two
proteins in a complex should interact, independently of all
other pairs, with high probability β. The random model assu-
mes that the PPI graph was chosen uniformly at random from
the collection of all graphs with the same vertex degrees as
the ones observed. This induces a probability of occurrence
puv for each edge (u, v) of the graph. Under this model each

2

PROMO : Identifying modules in PPI networks

vertex pair receives a log likelihood ratio score which measu-
res its fit to a protein module model vs. a random background.
Given a module U , the likelihood ratio score factors over the
vertex pairs in the module:

L(V) =
∑

(u,v)∈E

log
βPr(Ouv |Tuv) + (1− β)Pr(Ouv |Fuv)

puvPr(Ouv |Tuv) + (1− puv)Pr(Ouv |Fuv)
,

(3)
where Ouv denotes the set of experimental observations on the
interaction between u and v, Tuv denotes the event that u and
v truly interact, and Fuv denotes the event the u and v do not
interact. The computation of Pr(Ouv |Tuv) and Pr(Ouv |Fuv)
is based on the reliability assigned to the interaction between
u and v (see Sharan et al. (2005b) for further details).

2.4 Module significance assessment and filtering
To assess the significance of the modules output by the algo-
rithm, we compare their scores to those obtained on random
networks. Specifically, we construct 100 random graphs with
the same vertex degrees as in the original network, and apply
our module discovery algorithm to each of them. For each
root vertex v ∈ V we record the best module obtained for it
in each of the random runs. For each possible module size s,
we collect all random modules of size s, and use their score
distribution to determine a p-value for each real module of
that size. We retain only modules with p < 0.01.

To avoid highly overlapping modules, we used an iterative
procedure to filter the significant modules identified. Each
iteration, the highest scoring module is output and all other
modules that overlap it by more than 50% are removed. The
amount of overlap is measured w.r.t. the smaller of the two
modules compared.

2.5 Algorithmic speedups
We combined several speedups into the algorithm that are
motivated by our assumptions regarding protein modules.
First, we assume that a module should induce a connected sub-
network. Second, we assume that within a module every two
proteins are at most l connections apart (l = 2 in our imple-
mentation). This restriction can be imposed by assigning−∞
weights to vertex pairs that have distance> l. This assumption
also allows us to focus the search on the l-neighborhood of
each protein.

The method we have described guarantees the discovery of
the highest-scoring module in the network. However, if two
significant modules overlap, even by only a small amount,
only one of them will be discovered. To circumvent this
problem and allow the identification of a large number of
significant modules we use the following heuristic: For each
root vertex v, we apply the branch-and-bound algorithm in
an iterative manner to its l-neighborhood. Each iteration, we
identify the highest scoring module S in the current graph,

YAL011W

YAL002W

YAL007C

YAL015C

YAL009W

YAL004W

YAL013WYAL014C

YAL005C

YAL012W

YAL001C

YAL010C

YAL003W

Fig. 1. Sample PROMO complex.

remove the vertices in S \ {v} and continue on the reduced
graph.

3 RESULTS
We applied PROMO to analyze the PPI network of yeast,
which is one of the largest and most established networks in
public databases (dip, 2006). In Fig. 2 we compare running
times of PROMO vs. estimated running times (computed by
extrapolation) of a full exhaustive search and a “naive” branch
and bound algorithm employing the naive upper bound and no
vertex sorting. It seems that while the naive branch and bound
is exponential in the size of the searched graph, PROMO is
exponential in the size of the optimal module (Fig 3).

Our application to the network yielded 65 significant, non-
redundant modules. We considered only modules of size 8 or
larger, but the results reported below remained relatively the
same for higher thresholds. We compared our performance
to that of the state-of-the-art MCODE approach (Bader and
Hogue, 2003). MCODE was executed via its cytoscape plu-
gin (cyt, 2006) with default parameters, except for the node
score cutoff. For the latter we tried both the default value
(0.2) and a smaller value (0.05) that avoids huge clusters.
Fig. 4 shows the distributions of module sizes for PROMO
and MCODE .

To evaluate the quality of the solutions we used informa-
tion on protein cellular processes from the gene ontology
(GO) (Consortium, 2000), protein complex association from
the MIPS database (mip, 2006) and gene expression measu-
rements. In each test, we calculated a score and compared it
with those obtained for random sets of proteins of the same
size as the module, and derived an empirical p-value for the

3

Tamuz et al

0 200 400 600 800 1000

0

200

400

600

800

1000

Graph Size

lo
g 2 N

o.
 o

f E
va

lu
at

io
ns

Fig. 2. Running times of naive search (circles), naive branch and
bound (diamonds) and PROMO (squares) vs. the size of the searched
graph.

0 5 10 15 20
−5

0

5

10

15

20

25

30

35

40

Optimal Complex Size

lo
g 2 N

o.
 o

f E
va

lu
at

io
ns

Fig. 3. Running time of PROMO vs. the size of the optimal module.

module. These p-values were further FDR corrected for mul-
tiple testing. Finally, we report the fraction of significant
modules (p ≤ 0.01).

To compute the functional enrichment of a module we sco-
red it against each of the GO terms using a hypergeometric
score. The lowest p-value obtained was used in the subsequent
computations. The expression coherency of a module was
measured as the mean pairwise Pearson correlation between
the expression vectors of the module’s genes.

To assess the quality of the modules w.r.t. known comple-
xes in MIPS, we first computed an enrichment score for each
module, in an analogous manner to the way functional enrich-
ment was computed. We defined the specificity of the solution
as the fraction of MIPS enriched modules. The sensitivity

5 10 15 20 25
0

5

10

15

20

25

30

35

PROMO
0 50 100

0

10

20

30

40

50

60

MCODE 0.05
0 100 200

0

2

4

6

8

10

12

14

16

18

20

MCODE 0.2

Fig. 4. Module sizes for PROMO and MCODE.

was measured as the fraction of MIPS categories for which a
module was enriched with that category.

The performances of the two algorithms w.r.t. these mea-
sures are summarized in Table 1. Evidently, PROMO pro-
duces results that are more aligned with known biological
annotations.

4 CONCLUSIONS
PROMO is an exhaustive, yet practical approach for explo-
ring the landscape of protein modules in a network. Unlike
previous approaches, it guarantees optimal solutions, and
succeeds in uncovering modules that are missed by current
approaches. The modules identified by the algorithm are
shown to be highly functional and expression coherent, and
to match known complexes.

REFERENCES
(2006). Cytoscape. http://www.cytoscape.org/.
(2006). The DIP database. http://dip.doe-mbi.ucla.edu/.
(2006). The MIPS database. http://mips.gsf.de/.
Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., and

Kanaya, S. (2006). Development and implementation of an
algorithm for detection of protein complexes in large interaction
networks. BMC Bioinformatics, 7, 207.

Bader, G. and Hogue, C. (2003). An automated method for finding
molecular complexes in large protein interaction networks. BMC
Bioinformatics, 4.

Consortium, T. G. O. (2000). Gene ontology: Tool for the unification
of biology. Nature Genetics, 25, 25–9.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractabi-
lity: A Guide to the Theory of NP-Completeness. W. H. Freeman
and Co., San Francisco.

King, A., Przulj, N., and Jurisica, I. (2004). Protein com-
plex prediction via cost-based clustering. Bioinformatics, 20,
3013–3020.

4

PROMO : Identifying modules in PPI networks

Method Functional Expression MIPS MIPS
enrichment coherency specificity sensitivity

PROMO 0.97 0.64 0.16 0.82
MCODE 0.05 0.87 0.31 0.17 0.71
MCODE 0.2 (default) 0.94 0.41 0.11 0.89

Table 1. A comparison of module identification algorithms.

LaCount, D. et al. (2005). A protein interaction network of the
malaria parasite plasmodium falciparum. Nature, 438, 103–7.

Lawler, E. and Wood, D. (1966). Branch-and-bound methods: a
survey. Operations Research, pages 699–719.

Maciag, K., Altschuler, S., Slack, M., Krogan, N., Emili, A., Green-
blatt, J., Maniatis, T., and Wu, L. (2006). Systems-level analyses
identify extensive coupling among gene expression machines.
Molecular Systems Biology, 2.

Rual, J.-F. et al. (2005). Towards a proteome-scale map of the human
protein-protein interaction network. Nature, 437, 1173–8.

Sharan, R., Suthram, S., Kelley, R., Kuhn, T., McCuine, S., Uetz,
P., Sittler, T., Karp, R., and Ideker, T. (2005a). Conserved patterns
of protein interaction in multiple species. Proc. Natl. Acad. Sci.
USA, 102, 1974–1979.

Sharan, R., Suthram, S., Kelley, R., Kuhn, T., McCuine, S., Uetz, P.,
Sittler, T., Karp, R., and Ideker, T. (2005b). Conserved patterns
of protein interaction in multiple species. Proc. Natl. Acad. Sci.
USA, 102, 1974–1979.

Spirin, V. and Mirny, L. (2003). Protein complexes and functional
modules in molecular networks. Proc. Natl. Acad. Sci. USA, 100,
12123–12128.

5

