Math 104: Homework 9 (due April 15)

1. Ross exercise 28.4

2. Suppose that \(f_n \) is a sequence of real-valued functions defined on an interval \([a, b]\) that converges uniformly to a function \(f \). Let \(x_0 \in [a, b] \), and suppose that

\[
\lim_{x \to x_0} f_n(x) = l_n
\]

for all \(n \in \mathbb{N} \).

(a) Prove that \(l_n \) is a Cauchy sequence, and hence that it converges to a limit \(l \).

(b) Prove that \(\lim_{x \to x_0} f(x) = l \).

3. (a) Let \(f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function, where \(f(0) = 0 \) and \(f''(x) \geq 0 \) for all \(x > 0 \). Prove that \(f(x)/x \) is increasing for \(x > 0 \).

(b) If \(f : \mathbb{R} \to \mathbb{R} \) is twice differentiable, \(f(0) = 0 \) and if \(f(x)/x \) is increasing for all \(x > 0 \), show that \(f''(x) \geq 0 \) for some \(x > 0 \), but not necessarily for all \(x > 0 \).

[Hint: consider \(f(x) = x(1 - e^{-x}) \).]

4. Ross exercise 29.17

5. Let \(f(x) = |x|^3 \). Compute \(f'(x), f''(x) \), and show that \(f^{(3)}(0) \) does not exist.

6. Ross exercise 30.1

7. Suppose that \(f \) is differentiable at a point \(a \). Define

\[
L_1(a, h) = \frac{f(a + h) - f(a - h)}{2h},
\]

\[
L_2(a, h) = \frac{-f(a + 2h) + 8f(a + h) - 8f(a - h) + f(a - 2h)}{12h}.
\]

(a) Prove that \(\lim_{h \to 0} L_i(a, h) = f'(a) \) for \(i = 1, 2 \).

(b) Consider the case when \(f(x) = x^5 \). How does \(|L_i(a, h) - f'(a)| \) behave as \(h \to 0 \) for \(i = 1, 2, 3 \)? Is there a difference in the rate of convergence?