Math 104: Homework 5 (due March 2)

1. (a) By using the integral test, or otherwise, prove that
\[\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p} \]
converges if and only if \(p > 1 \).
(b) **Optional for the enthusiasts.** Suppose \((a_n)\) is a non-increasing sequence of positive real numbers, and that \(\sum a_n \) converges. By considering the Cauchy criterion, or otherwise, prove that \(na_n \to 0 \) as \(n \to \infty \). By considering part (a), show that the converse result is not true.

2. Consider the following functions defined for \(x, y \in \mathbb{R} \):
\[d_1(x, y) = (x - y)^2, \quad d_2(x, y) = \sqrt{|x - y|}, \quad d_3(x, y) = |x^2 - y^2|, \quad d_4(x, y) = |x - 2y| \]
For each function, determine whether it is a metric or not.

3. Ross exercise 13.3

4. Consider two-dimensional space \(\mathbb{R}^2 \), with positions written as \(u = (u_1, u_2) \), and the Euclidean norm defined as \(||u|| = (u_1^2 + u_2^2)^{1/2} \). The Poincaré disk model consists of the points \(S = \{ u : ||u|| < 1 \} \), with metric
\[d(u, v) = \cosh^{-1} \left[1 + \frac{2||u - v||^2}{(1-||u||^2)(1-||v||^2)} \right] \]
for all \(u, v \in S \). Define \(r = \cosh^{-1} 1/4 \). Draw the Poincaré disk, and then calculate and draw the neighborhoods \(N_r(u) \) for \(u = (0,0) \), \((1/2,0)\), and \((3/4,0)\). [This can be done analytically, although if you prefer, you can also make use of a computer.]

5. Suppose that \(d_1 \) and \(d_2 \) are equivalent metrics for a set \(S \). Prove that if a sequence \((s_n) \) converges to \(s \) with respect to \(d_1 \), then it also converges with respect to \(d_2 \).

6. Suppose that \((p_n) \) is a Cauchy sequence in a set \(S \) with metric \(d \), and that some subsequence \((p_{nk}) \) converges to a point \(p \in S \). Prove that the full sequence \((p_n) \) converges to \(p \).

7. Suppose that \((p_n) \) and \((q_n) \) are Cauchy sequences in a set \(S \) with metric \(d \). Define \((a_n) = d(p_n, q_n) \). Show that the sequence \((a_n) \) converges. It may be useful to consider the triangle inequality
\[d(p_n, q_n) \leq d(p_n, p_m) + d(p_m, q_m) + d(q_m, q_n) \]
which is true for all \(n \) and \(m \).

8. **Optional for the enthusiasts.** Consider two-dimensional space \(\mathbb{R}^2 \) as in Exercise 4. Define an alternative norm as \(||u||_S = (u_1^2 + u_2^2 + u_1 u_2)^{1/2} \). Prove that the function \(d_S(u, v) = ||u - v||_S \) is a metric, and that it is equivalent to the Euclidean metric.