Math 104: Homework 2 solutions

1. \(A = (0, \infty) \): Since this is an open interval, the minimum is undefined, and since the set is not bounded above, the maximum is also undefined. \(\inf A = 0 \) and \(\sup A = \infty \).

\(B = \left\{ \frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N} \right\} \): This set does not have a minimum, since for any element \(\frac{1}{m} + \frac{1}{n} \), there is a smaller element \(\frac{1}{m+1} + \frac{1}{n} \). The maximum element is 2, which is attained for \(m = n = 1 \). Hence \(\max B = 2 \). \(B \) is a bounded below by 0. However, for \(\epsilon > 0 \), there exists \(c \in \mathbb{N} \) such that \(1/c < \epsilon \), by the Archimedean property. Thus by putting \(m = n = 2c \), we see that there exists \(b \in B \) such that \(b < \epsilon \). Hence, \(\epsilon \) is not a lower bound. Hence 0 is the greatest lower bound, and thus \(\inf B = 0 \).

\(C = \{ x^2 - x - 1 : x \in \mathbb{R} \} \): By completing the square, this can be written as \(\{ (x - \frac{1}{2})^2 - \frac{5}{4} | x \in \mathbb{R} \} \). We know that \((x - \frac{1}{2})^2 \geq 0 \) by Theorem 3.2(iv). Hence \(\min C = -\frac{5}{4} \) which is attained for \(x = \frac{1}{2} \). Since the values of \(C \) are not bounded above, the maximum does not exist. Hence \(\inf C = -\frac{5}{4} \) and \(\sup C = \infty \).

\(D = [0, 1] \cup [2, 3] \): Since this set is composed of closed intervals, we have \(\min D = 0 \) and \(\max D = 3 \). Hence \(\inf D = 0 \) and \(\max D = 3 \), and thus \(\inf D = 0 \) and \(\sup D = 3 \).

\(E = \bigcup_{n=1}^{\infty} [2n, 2n+1] \): The first interval in this union is \([2, 3] \), and there are an infinite number of consecutive intervals in the positive direction. Hence \(\min E = 2 \), but the maximum does not exist. Thus \(\inf E = 2 \) and \(\sup E = \infty \).

\(F = \cap_{n=1}^{\infty} (1 - \frac{1}{n}, 1 + \frac{1}{n}) \): We begin by showing that \(F = \{1\} \). Choose any \(x > 1 \). Then \(x = 1 + \epsilon \) for \(\epsilon > 0 \). Hence, by the Archimedean property, there exists \(n \in \mathbb{N} \) such that \(\frac{1}{n} < \epsilon \). Hence \(x \notin (1 - \frac{1}{n}, 1 + \frac{1}{n}) \), and thus \(x \notin F \). Similarly if \(x < 1 \), then \(x = 1 - \epsilon \), and and there exists an \(n \) such that \(x \notin (1 - \frac{1}{n}, 1 + \frac{1}{n}) \).

However, \(1 \in (1 - \frac{1}{n}, 1 + \frac{1}{n}) \) for all \(n \in \mathbb{N} \). Thus \(F = \{1\} \), and hence \(\min F = \max F = \inf F = \sup F = 1 \).

2. (a) To begin, we show that \(\sup A + \sup B \) is an upper bound for \(S \). Any element in \(S \) can be written as \(a + b \) for \(a \in A \), and \(b \in B \). However, since \(\sup A \) is an upper bound for \(A \), then \(a \leq \sup A \). Similarly, \(b \leq \sup B \), and thus \(a + b \leq \sup A + \sup B \).

We now wish to show that \(\sup A + \sup B \) is the least upper bound for \(S \). Assume that \(t \) is a upper bound for \(S \), but that \(t < \sup A + \sup B \). Then for some \(\epsilon > 0 \), \(t = \sup A + \sup B - \epsilon \). Now, since \(\sup A \) is the supremum of \(A \), there exists \(a \in A \) such that \(a > \sup A - \frac{\epsilon}{2} \). (If this was not the case, then \(\sup A - \frac{\epsilon}{2} \) would be an upper bound for \(A \).) Similarly, there exists \(b \in B \) such that \(b > \sup B - \frac{\epsilon}{2} \). But \(a + b \in S \), and

\[
a + b > \left(\sup A - \frac{\epsilon}{2} \right) + \left(\sup B - \frac{\epsilon}{2} \right) = t.
\]
Hence \(t \) is not an upper bound, which is a contradiction. Thus if \(t \) is an upper bound, it must satisfy \(t \geq \sup A + \sup B \).

\(\sup A + \sup B \) is an upper bound for \(S \), and it is the least upper bound. Hence \(\sup S = \sup A + \sup B \).

(b) This could be proved by repeating the above argument but with lower bounds instead of upper bounds. However, an alternative method is to define negated sets \(-A = \{-a|a \in A\}, -B = \{-b|b \in B\}, \) and \(-S = \{-s|s \in S\}\).

We see that \(-S\) can be constructed as the set of sums \(a' + b' \) where \(a' \in -A \) and \(b' \in -B \). Thus, by applying the above result, we know that \(\sup(-S) = \sup(-A) + \sup(-B) \). However, by Corollary 4.5, for any set \(C \), \(\sup(-C) = -\inf C \). Hence \(-\inf S = -\inf A - \inf B \) and thus \(\inf S = \inf A + \inf B \).

3. This result is not true. As a counterexample, choose \(A = B = \{-2, 1\} \). Then \(\sup A = \sup B = 1 \), and hence \(\sup A \cdot \sup B = 1 \). However \(M = \{-2, 1, 4\} \) and hence \(\sup M = 4 \) which is not equal to 1.

Note that the counterexample relies on having two negative terms that multiply together to give a large positive term. If we restrict \(A \) and \(B \) to be subsets of the positive real line, \((0, \infty)\), then the result \(\sup M = \sup A \cdot \sup B \) would hold, and could be proved following similar logic to the previous exercise.

4. (a) By dividing through by \(n \), we obtain

\[
\left(\frac{3n}{n+3} \right)^2 = \left(\frac{3}{1 + \frac{3}{n}} \right)^2
\]

and since \(\frac{1}{n} \to 0 \) as \(n \to \infty \), we see that

\[
\left(\frac{3n}{n+3} \right)^2 \to \left(\frac{3}{1} \right)^2 = 9.
\]

(b) By making use of Example 1 in Section 1, we can write

\[
\frac{1 + 2 + \ldots + n}{n^2} = \frac{n(n+1)/2}{n^2} = \frac{n+1}{2n} = \frac{1+\frac{1}{n}}{2} \to \frac{1}{2}
\]

as \(n \to \infty \).
(c) We first write
\[
\frac{a^n - b^n}{a^n + b^n} = \frac{1 - \left(\frac{b}{a}\right)^n}{1 + \left(\frac{b}{a}\right)^n} = \frac{1 - c^n}{1 + c^n}
\]
where \(c = b/a\). Since \(a > b > 0\), we know that \(1 > c > 0\). Thus \(c^n \to 0\) as \(n \to \infty\) by Theorem 9.7(b), and hence \((a^n - b^n)/(a^n + b^n) \to 1\) as \(n \to \infty\).

(d) Although \(2^n\) rapidly becomes much bigger than \(n^2\), we must be careful to show this rigorously. One method is to use the binomial theorem to expand for \(n \geq 3\) according to
\[
2^n = (1 + 1)^n = 1^n + n \cdot 1^{n-1} \cdot 1 + \frac{n(n-1)}{2} \cdot 1^{n-2} \cdot 1^2 + \frac{n(n-1)(n-2)}{6} \cdot 1^{n-3}1^3 + \ldots
\]
and hence, by neglecting all but one term,
\[
2^n > \frac{n(n-1)(n-2)}{6}.
\]
Now, for \(n \geq 3\), we know that \((n-1) > \frac{n}{2}\) and \((n-2) > \frac{n}{4}\), and hence
\[
2^n > \frac{n^3}{24}
\]
and therefore \(2^n > n^3/24\). Thus for \(n \geq 3\), \(0 < n^2/2^n < 24/n\), and thus \(n^2/2^n \to 0\) as \(n \to \infty\) by the Squeezing Lemma.

(e) This can be carried out by introducing a factor that completes the square:
\[
\sqrt{n + 1} - \sqrt{n} = \left(\sqrt{n + 1} - \sqrt{n}\right) \frac{\sqrt{n + 1} + \sqrt{n}}{\sqrt{n + 1} + \sqrt{n}}
\]
\[
= \left(\sqrt{n + 1} - \sqrt{n}\right) \frac{\sqrt{n + 1} + \sqrt{n}}{\sqrt{n + 1} + \sqrt{n}}
\]
\[
= \frac{(n + 1) - n}{\sqrt{n + 1} + \sqrt{n}}
\]
\[
= \frac{1}{\sqrt{n + 1} + \sqrt{n}}.
\]
Since \(\sqrt{n} \to \infty\) as \(n \to \infty\), we must have \(\sqrt{n + 1} - \sqrt{n} \to 0\) as \(n \to \infty\).

5. (a) Let \(s_n = \frac{\sqrt{2}}{n}\) for all \(n \in \mathbb{N}\). We know that \(s_n\) is irrational, since if \(s_n = p/q\) for some integers \(p\) and \(q\), then \(\sqrt{2} = p/(qn)\), but \(\sqrt{2}\) has been shown to be irrational. Now consider an \(\epsilon > 0\). We see that
\[
|s_n - 0| = \frac{\sqrt{2}}{n}
\]
and thus if \(n > \sqrt{2}\epsilon\), then \(|s_n - 0| < \epsilon\). Hence \(s_n \to 0\) as \(n \to \infty\).
There are many ways this could be achieved, such as defining s_n as the first digits of π, so that the first few terms would be $3, 3.1, 3.14, 3.141, 3.1415, 3.14159$. However, here a method is presented which shows explicitly how to construct all the numbers in a sequence, and show that they converge to an irrational.

Define $s_n = p_n/q_n$ and put $p_1 = 1$ and $q_1 = 1$. Now, define the rest of the sequence recursively by putting

$$p_{n+1} = p_n + 2q_n, \quad q_{n+1} = p_n + q_n.$$

It is straightforward to see that if $p_n > 0$ and $q_n > 0$, then $p_{n+1} > 0$ and $q_{n+1} > 0$, so by mathematical induction $s_n > 0$ and $q_n \neq 0$ for all n. The first few terms are

The last of these is $1.4142156862 \ldots$ which differs from $\sqrt{2}$ by 2.12×10^{-6}. Here, we prove that s_n does indeed converge to $\sqrt{2}$. Suppose that s_n differs from $\sqrt{2}$ by an amount Δ_n, so that

$$\frac{p_n}{q_n} - \sqrt{2} = \Delta_n.$$

Then consider how much s_{n+1} differs from $\sqrt{2}$:

$$\Delta_{n+1} = \frac{p_{n+1}}{q_{n+1}} - \sqrt{2}$$

$$= \frac{p_n + 2q_n}{p_n + q_n} - \sqrt{2}$$

$$= \frac{\frac{p_n}{q_n} + 2}{\frac{p_n}{q_n} + 1} - \sqrt{2}$$

$$= \frac{\Delta_n + \sqrt{2} + 2}{\Delta_n + \sqrt{2} + 1} - \sqrt{2}$$

$$= \frac{\Delta_n + \sqrt{2} + 2 - \sqrt{2}(\Delta_n + \sqrt{2} + 1)}{\Delta_n + \sqrt{2} + 1}$$

$$= \frac{(1 - \sqrt{2})\Delta_n}{\Delta_n + \sqrt{2} + 1}.$$

Since p_n/q_n is positive, we know from Eq. 1 that $\Delta_n + \sqrt{2} > 0$. We also know that $1 < \sqrt{2} < 3/2$ since $1^2 = 1 < 2$ and $(3/2)^2 = 9/4 > 2$. Hence $-1/2 <$
1 − √2 < 0. Using these inequalities,

\[|\Delta_{n+1}| = |\Delta_n| \cdot \left| \frac{1 - \sqrt{2}}{\Delta_n + \sqrt{2} + 1} \right| \]

\[\leq |\Delta_n| \cdot \left| \frac{1/2}{1} \right| \]

\[\leq \frac{|\Delta_n|}{2}. \]

Hence by mathematical induction, \(|\Delta_n| \leq |\Delta_1|(1/2)^{n-1} \), and thus by Theorem 9.7(b), \(|\Delta_n| \to 0 \) as \(n \to \infty \). Hence Eq. 1 shows that \(s_n = p_n/q_n \to \sqrt{2} \) as \(n \to \infty \).

6. We can rewrite a term in the sequence as a product of fractions,

\[s_n = \left(\frac{1}{n} \right) \left(\frac{2}{n} \right) \ldots \left(\frac{n}{n} \right). \]

Each of these fractions is less than or equal to one, and the first is equal to \(\frac{1}{n} \). Thus \(s_n \leq \frac{1}{n} \). Now choose \(\epsilon > 0 \). We see that

\[|s_n - 0| = s_n \leq \frac{1}{n} \]

and thus we see that for all \(n > \epsilon^{-1} \), \(|s_n - 0| < \epsilon \). Hence \(\lim_{n \to \infty} s_n = 0 \).

7. An arbitrary polynomial can be written as a sum

\[p(x) = \sum_{j=0}^{k} a_j x^j \]

where \(a_j \in \mathbb{R} \) and \(a_k \neq 0 \). To begin, we show by induction that if \(s_n \to s \) as \(n \to 0 \), then \((s_n)^j \to s^j \) for all \(j \in \mathbb{N} \cup \{0\} \). Consider the base case when \(j = 0 \). Since \((s_n)^0 = 1 \) for all \(n \), this is a constant sequence, and thus converges to 1, which is equal to \(s^0 \).

Now assume the result is true for \(j \) and consider the case for \(j + 1 \). We can define \((s_n)^{j+1} = (s_n)^j \cdot s_n \) and thus by Theorem 9.4, we know that \((s_n)^j \cdot s_n \to s^j \cdot s = s^{j+1} \) as \(n \to \infty \). Hence the induction step holds, and by mathematical induction \((s_n)^j \to s^j \) for all \(j \in \mathbb{N} \cup \{0\} \).

Now, if \(a_j \) is a constant, then we know that \(a_j (s_n)^j \to a_j s^j \) by Theorem 9.2. Finally, by applying Theorem 9.3, we see that \(p(s_n) \to p(s) \) as \(n \to \infty \).
8. We begin by proving that \(s_n = f(n) \) which is defined according to

\[
f(n) = 2 - (2 - t)2^{1-n}.
\]

Consider the case when \(n = 1 \):

\[
f(1) = 2 - (2 - t)2^{1-1} = 2 - (2 - t) = t
\]

and thus \(s_1 = f(1) \). Now assume that the result is true for \(n \) and consider the case for \(n + 1 \):

\[
s_{n+1} = 1 + \frac{s_n}{2}
\]

\[
= 1 + 1 - \frac{(2 - t)2^{1-n}}{2}
\]

\[
= 2 - (2 - t)2^{1-(n+1)}.
\]

and thus \(s_{n+1} = f(n + 1) \). Hence by mathematical induction, \(s_n = f(n) \) for all \(n \in \mathbb{N} \).

Now, by Theorem 9.7(b), we know that \(a^n \to 0 \) if \(|a| < 1\). Hence, by using Theorems 9.2 and 9.3 about the scaling and addition of sequences we know that \(s_n \to 2 - (2 - t) \cdot 0 = 2 \).