1 Overview

In the last lecture we talked about set cover:

- Sets $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$.
- S has cost c_S.
- Goal: Cover all of $[n]$ with minimal cost.

One algorithm is the greedy algorithm: while there exists an uncovered element, pick S minimizing $\# \text{ new elements covered by } S$.

In this lecture we

- Finish study approximation algorithms via dual fitting.
- Learn about LP Integrality Gaps
- Define poly-time approximation schemes (PTAS, FPTAS, FPRAS)

2 Approximation algorithms via dual fitting

2.1 Greedy algorithm for set cover

Theorem 1. The greedy algorithm is an $O(\log n)$ approximation.

The unweighted case is proven in [1] and [2]. The weighted case is proven in [3].

Proof. We consider the following LP relaxation for set cover.

- **Primal:** minimize $\sum_S a_S x_S$ with the constraints $\forall i \in [n], \sum_{i \in S} X_S \geq 1$, and $\forall S, x_S \geq 0$.
- **Dual:** maximize $\sum_{e=1}^n$, with the constraints $\forall S, \sum_{e \in S} y_e \leq c_S$ and $\forall e, y_e \geq 0$.

We will build the primal solution, and show how we can maintain the dual solution. When we take set S into our cover:

1. Set $x_S \leftarrow 1$ in primal.
2. For each newly covered element e, set $y_e = \frac{c_S}{\# \text{ elements newly covered by } S}$.

We see that $\text{cost}_P(x) = \text{cost}(y)$. It is clear that this procedure makes x feasible.

Claim 2. $\frac{y}{\Pi_c}$ is feasible.

Proof. We need to show that $\forall S$, $\sum_{e \in S} y_e \leq c_S H_n$. Let us order the elements of S by when they are first covered, e_1, e_2, \ldots, e_k (where $|S| = k$). Note that e_i is not necessarily covered by S. Right before e_i was covered, we could have chosen S at price $\frac{c_S}{k-i+1}$, so that $y_{e_i} \leq \frac{c_S}{k-i+1}$. Hence,

$$\sum_{e \in S} y_e \leq c_S \sum_{i=1}^{k} \frac{1}{i} = c_S H_k \leq c_S H_n.$$

Hence, the greedy algorithm gives a log n approximation.

2.2 Vertex cover

We now consider the vertex cover problem. The input is an undirected graph $G = (V, E)$, where $|V| = n$ and $|E| = m$. We want to pick the minimal $S \subseteq V$ such that each edge $e \in E$ is incident upon at least one vertex of S. Note that vertex cover is a special case of set cover, where each vertex corresponds to a set, and each edge to an element in the universe.

There is a greedy algorithm for vertex cover. Namely, while there is an uncovered edge $e = (u, v)$, we add both u and v to the vertex cover.

Claim 3. The greedy algorithm gives a 2-approximation.

Proof. There is a simple proof, as detailed in the CS 124 notes. We will present another proof using primal-dual approach. We consider the following LP relaxation:

- **Primal**: Minimize $\sum_{v=1}^{n} x_v$ where $\forall e = (u, v)$, $x_u + x_v \geq 1$ and $x \geq 0$.
- **Dual**: Maximize $\sum_{e \in E} y_e$ where $\forall v \in V$, $\sum_{v \in e} y_e \leq 1$ and $y \geq 0$.

We again use dual fitting. When greedy covers an edge $e = (u, v) \in E$, set $x_u \leftarrow 1$ and $x_v \leftarrow 1$, and set $y_e \leftarrow 1$. These give feasible solutions. Moreover, primal cost is at most twice the dual cost, so this is a 2-approximation.

3 LP Integrality Gaps

The question we want to answer is, what is the limit of using a given LP relaxation?

In our proofs, we achieve $\text{cost} \leq \alpha \text{OPT}(LP)$. But if there is some gap $\beta \text{OPT}_{LP} \leq \text{OPT}(IP)$ for some particular instance, then we cannot hope to achieve $\alpha < \beta$ via LP relaxation. We call β the integrality gap.
Example 4. Consider vertex cover. We had the constraint that $\forall u, x_u \geq 0$. This should have been $x_u = \{0, 1\}$, but we relaxed it to $x_u \geq 0$. This can cause some problems. For instance, consider the complete graph on n-vertices, K_n. Then, we can assign $x_u \leftarrow \frac{1}{2}$, and in fact, this is an optimal solution. Hence, $\text{OPT}(LP) = \frac{n}{2}$. However, with integer programming, $\text{OPT}(IP) = n - 1$, since we must take all but 1 vertex. This gives an integrality gap of 2.

Example 5. Consider set cover. We define $n = 2^q - 1$ for some $q > 0$. The elements of the universe are in correspondence with elements of $\mathbb{F}_2^q \setminus \{0\}$. Then, sets are also in correspondence with elements of \mathbb{F}_2^q: if $\alpha \in \mathbb{F}_2^q$, $S_\alpha = \{e : \langle \alpha, e \rangle = 1\}$.

First consider the fractional solution. Each element is contained in exactly half the sets. Hence, we can take $x_u = \frac{2}{m}$ for all m (i.e., $\frac{1}{\# \text{ sets containing } e}$), so $\text{OPT}(LP) \leq 2$.

For the integer solution, suppose we have a solution with $q - 1$ sets, $S_{\alpha_1}, \ldots, S_{\alpha_{q - 1}}$. Then, $\bigcap_{i=1}^{q-1} S_{\alpha_{q-1}} = \{0\}$, a dimension zero vector space. But
\[
\bigcap_{i=1}^{q-1} S_{\alpha_{q-1}} = \{e : \forall i \in 1, \ldots, q - 1, \langle \alpha_i, e \rangle = 0\}
\]
has codimension at most $q - 1$, so it has dimension at least 1. We conclude that the gap is $q/2 = O(\log n)$.

Remark 6. The integrality problem shows that the relaxation we considered cannot achieve a certain approximation gap. A stronger statement would be to show that unless $\mathbf{P} = \mathbf{NP}$, we cannot achieve a better approximation gap. These theorems typically use the PCP theorem.

4 Polynomial time approximation schemes

We consider minimization problems.

Definition 7. A problem m admits a PTAS (polynomial time approximation scheme) if $\forall \epsilon \in (0, 1)$ fixed, and for all problem size n, we can achieve a $(1 + \epsilon)$-approximation in time $O(n^{f(1/\epsilon)})$.

Definition 8. A problem m admits a FPTAS (fully polynomial time approximation scheme) if $\forall \epsilon \in (0, 1)$ fixed, and for all problem size n, we can achieve a $(1 + \epsilon)$-approximation in time $O\left(poly\left(\frac{n^\epsilon}{\epsilon}\right)\right)$.

Definition 9. A problem m admits a FPRAS (fully polynomial time randomized approximation scheme) if $\forall \epsilon \in (0, 1)$ fixed, and for all problem size n, we can achieve a $(1 + \epsilon)$-approximation in time $O\left(poly\left(\frac{n^\epsilon}{\epsilon}\right)\right)$ with probability at least $\frac{2}{3}$.

Remark 10. By running a FPRAS multiple times and taking medians, we can reduce the error probability to be arbitrarily small.

We will provide a PTAS/FPTAS for knapsack and a FPRAS for counting solutions to DNF [4].

4.1 Knapsack Problem

We have a knapsack with capacity W and given items with weights w_1, \ldots, w_n and values v_1, \ldots, v_n. We want to pack our knapsack to maximize the total value $\sum_{i=1}^{n} v_i x_i$ with constraints $\sum_{i=1}^{n} w_i x_i \leq W$.
W with \(x_i \in \{0, 1\} \). This problem is \(\text{NP} \)-hard. There are dynamic programming solutions for the knapsack problem. For example, there is a \(O(nW) \) algorithm. We set
\[
f(i, b) = \begin{cases}
0 & \text{if } i = 0 \\
\max(f(i - 1, b), v_i + f(i - 1, b - w_i)) & \text{if } b - w_i \geq 0
\end{cases}
\]
This does not violate the \(\text{NP} \)-hardness result, since \(W \) takes only \(\log W \) bits to specify, so the algorithm is exponential in the size of the problem.

Another dynamic programming approach gives time \(O(nV) \), where \(V = \sum_{i=1}^{n} v_i \). Namely, we define
\[
f(i, p) = \text{min weight to get value exactly } v \text{ using only items from } \{1, \ldots, i\}.
\]
Suppose we relax the last constraint to \(0 \leq x_i \leq 1 \). Then, we would sort the items in decreasing order by \(\frac{v_i}{w_i} \) and fill knapsack in this order (put as much of item \(i \) as you can before starting to pack item \(i + 1 \)). This algorithm can be bad, when, for example, \(v_1 = 1 + \epsilon, w_1 = 1, v_w = W, w_2 = W \). This is only a \(W \)-approximation.

But let us now consider a modified greedy algorithm that avoid this bad case. Namely, we take either the output of greedy algorithm or we take the most valuable item, depending on which has greater value.

Claim 11. The above algorithm is a 2-approximation.

Proof.

Lemma 12. Suppose the greedy algorithm takes items
\[
\frac{v_1}{w_1} \geq \frac{v_w}{w_2} \geq \cdots \geq \frac{v_{k-1}}{w_{k-1}}
\]
and we have no room for the \(k \)-th item. Then, \(\sum_{i=1}^{k} v_i \geq \text{OPT} \).

Proof. The sum \(\sum_{i=1}^{k} v_i \) is even larger than the fractional knapsack’s optimal solution, which is at least the optimum of the integral knapsack problem.

Now, \(\sum_{i=1}^{k} v_i = (v_1 + \ldots + v_{k-1}) + v_k \geq \text{OPT} \) by the lemma. Hence, one of \(v_1 + \ldots + v_{k-1} \) or \(v_k \) is at least \(\frac{\text{OPT}}{2} \) as desired.

Observation 13. If no item has value \(> \epsilon \text{OPT} \), then the greedy algorithm achieves \(\geq (1 - \epsilon)\text{OPT} \).

Observation 14. At most \(\left\lfloor \frac{1}{\epsilon} \right\rfloor \) items in optimal solution have value \(> \epsilon \text{OPT} \).

Now, we present a PTAS algorithm for the knapsack problem. We first guess the set \(S \) consisting of the elements in the optimal solution of value at least \(\epsilon \text{OPT} \). Then, \(|S| \leq \left\lfloor \frac{1}{\epsilon} \right\rfloor \). We then remove all items remaining which have value bigger than anything in \(S \). Finally, we run the greedy algorithm on what is left, and our knapsack will contain \(S \) and whatever the greedy algorithm chooses. We can do this for all \(O(n^{1/\epsilon}) \) possible subsets of size at most \(\frac{1}{\epsilon} \), so the running time is \(O(n^{1/\epsilon} \text{poly}(n)) \).

Claim 15. The profit achieved by this scheme is \(\geq (1 - \epsilon)\text{OPT} \).
Proof. Suppose we guess S correctly. Then, $\text{OPT} = v(S) + \text{OPT}'$, where $v(S)$ is the value of packing S and OPT' is the best packing of items of value at most ϵOPT. Our scheme then achieve $v(S) + \text{greedy on rest}$.

Now let us analyze how the greedy algorithm performs. We know that $v_k \leq \epsilon \text{OPT}$ (recall that v_k is the value of the k-th and last element that the fractional greedy algorithm tries to include). Also, we know that the greedy output plus v_k is at least OPT' by Lemma 12. Hence, greedy achieves a profit of at least $\text{OPT}' - \epsilon \text{OPT}$, so our scheme achieves at least $(1 - \epsilon) \text{OPT}$.

References

