1 Overview

In the previous lecture we introduced streaming and sketching and discussed algorithms for the $F_0 = \text{support}(x)$ streaming problem. In this lecture we cover more streaming/sketching and discuss several applications.

- Power of random sign matrices
- ℓ_2-norm estimation
- Linear regression
- Dimensionality reduction

2 Turnstile Streaming Model

Recall that in the turnstile model, we have some high dimensional vector $x \in \mathbb{R}^n$, and each update is of the form $x_i \leftarrow x_i + v$. We wish to support queries $f(x)$ such as $f(x) = x_i$ or $f(x) = |\text{support}(x)|$. Obviously, we could store x in $O(n)$ space or the whole stream ($O(m)$ space), but our goal is to come up with algorithms that use much less space. We proved the following last time

Claim 1. Any deterministic algorithm for $f(x) = |\text{support}(x)|$ requires $\Omega(\min\{n, m\})$ space.

We also saw that we required a randomized/approximate algorithm to do better than $\Omega(\min\{n, m\})$. Today, we discuss different query functions and approaches to streaming/sketching problems.

3 ℓ_2-norm Estimation

We want to query $f(x) = \|x\|_2$. We have the following result, given in [1]: we cannot do better than $O(n)$ space for querying ℓ_2-norm unless we allow for randomization and approximation.

3.1 Linear Sketching

The idea is to pick some matrix $\Pi \in \mathbb{R}^{m \times n}$, and store $\mathbb{R}^m \ni y = \Pi x$ (for space savings, we want to choose $m << n$). Let Π_i denote the i'th column of Π. Then our update rule becomes

$$y \leftarrow y + v \cdot \Pi_i$$
Note that this allows us to support deletions. [2] show that any streaming algorithm (i.e., choice of query function) can be converted to a linear sketch algorithm to support deletions with a $O(\log n)$ increase in space.

3.2 Random Sign Matrix

How can this be used to recover ℓ_2-norms? We will use the AMS sketch, introduced in [1]. We will choose Π such that $\Pi_{i,j} = \frac{\sigma_{i,j}}{\sqrt{m}}$, where each $\sigma_{i,j}$ is chosen uniformly over $\{-1, +1\}$. Such a Π is called a random-sign matrix. Then, we will compute $\|y\|_2$ as an estimate of $\|x\|_2$. Before we go into the analysis, we will mention the general idea, which is used often in the analysis of streaming algorithms. Our goal is devise a randomized algorithm that, w.h.p., does not deviate from the true value (in this case $\|x\|_2$) by more than ϵ fraction of the true value. To do this, we will bound the expectation and variance of the difference between our estimate and the true value, and apply Chebyshev’s inequality.

3.3 Analysis

For readability, we drop the subscript from $\|x\|_2$ as it is assumed. Let $A = (1 \pm \epsilon)B \Leftrightarrow (1 - \epsilon)B \leq A \leq (1 + \epsilon)B$.

We can apply Chebyshev’s to see

$$P(||y||^2 - ||x||^2) > \epsilon||x||^2) < \frac{\text{E}(||y||^2 - ||x||^2)^2}{\epsilon^2||x||^4}$$

Now, by linearity of expectation, we have

$$\text{E}(||y||^2) = \sum_{r=1}^{m} \text{E}(y_r^2)$$

where

$$y_r = \frac{1}{\sqrt{m}} \left(\sum_{i=1}^{n} \sigma_{r,i} \cdot x_i \right) \implies y_r^2 = \frac{1}{m} \left(\sum_{i=1}^{n} \sigma_{r,i}^2 x_i^2 + \sum_{i \neq j} \sigma_{r,i} \sigma_{r,j} x_i x_j \right)$$

Since $\sigma_{i,j} = \pm 1$, $\sigma_{i,j}^2 = 1$. Also, note that $\text{E}[\sigma_{i,j}] = 0$. Hence,

$$\text{E}(y_r^2) = \frac{1}{m} \left(\sum_{i=1}^{n} x_i^2 + \sum_{i \neq j} \text{E}(\sigma_{r,i}) \text{E}(\sigma_{r,j}) x_i x_j \right) = \frac{1}{m} ||x||^2$$

where $\text{E}(\sigma_{i,j} \sigma_{k,l}) = \text{E}(\sigma_{i,j}) \text{E}(\sigma_{k,l})$ because each entry in Π is independent. This implies that

$$\text{E}(||y||^2) = \frac{m}{m} \sum_{r=1}^{m} ||x||^2 = ||x||^2 \implies \text{Var}(||y||^2) = \text{E}(||y||^2 - \text{E}(||y||^2)) = \text{E}(||y||^2 - ||x||^2)$$

Because the variance of independent random variables is additive, we have

$$\text{Var}(||y||^2) = \sum_{r=1}^{m} \text{Var}(y_r^2)$$
We can expand the terms on the RHS to see

$$\text{Var}(y^2_r) = \mathbb{E}(y^4_r) - (\mathbb{E}(y^2_r))^2 = \frac{1}{m^2} \mathbb{E} \left(\left(\sum_{i=1}^n \sigma_{r,i} x_i \right)^4 \right) - \|x\|^4 / m^2$$

Now, note that $\sigma_{i,j}^2 = 1 \implies \mathbb{E}(\sigma_{i,j}^2) = 1$ and $\mathbb{E}(\sigma_{i,j}^{2k+1}) = 0$. Hence, when we expand the sum to the 4th power, we can discard all terms with odd powers of $\sigma_{i,j}$. Then, we are left with

$$\frac{1}{m^2} \mathbb{E} \left(\left(\sum_{i=1}^n \sigma_{r,i} x_i \right)^4 \right) = \frac{1}{m^2} \left(\sum_i \mathbb{E}(\sigma_{r,i}^4) x_i^4 + 3 \sum_{i \neq j} \mathbb{E}(\sigma_{r,i}^2) \mathbb{E}(\sigma_{r,j}^2) x_i^2 x_j^2 \right)$$

$$= \frac{1}{m^2} \left(\sum_i x_i^4 + 3 \sum_{i \neq j} x_i^2 x_j^2 \right)$$

$$\leq \frac{1}{m^2} \left(\left(\sum_i x_i^2 \right)^2 + 2 \sum_{i \neq j} x_i^2 x_j^2 \right)$$

$$= \frac{1}{m^2} \left(\|x\|^4 + 2 \sum_{i \neq j} x_i^2 x_j^2 \right)$$

which implies that

$$\text{Var}(y^2_r) \leq \frac{1}{m^2} \left(\|x\|^4 + 2 \sum_{i \neq j} x_i^2 x_j^2 \right) - \|x\|^4 / m^2 = \frac{2}{m^2} \sum_{i \neq j} x_i^2 x_j^2 \leq \frac{2}{m^2} \left(\sum_i x_i^2 \right)^2 = 2 \|x\|^4 / m^2$$

so

$$\text{Var}(\|y\|^2) \leq \frac{2\|x\|^4}{m}$$

Now, we can return to the original inequality (from Chebyshev’s), to see

$$P(\|\|y\|^2 - \|x\|^2\| > \epsilon \|x\|^2) < \frac{\text{Var}(\|y\|^2)}{\epsilon^2 \|x\|^4} \leq \frac{2}{m \epsilon^2}$$

Hence, if we set $m = 6/\epsilon^2$, we get failure probability at most 1/3.

We conclude that using $m = O(1/\epsilon^2)$ words of space, our estimate $\|\Pi x\| = (1 \pm \epsilon)\|x\|^2$ with probability at least 2/3. How do we get success probability at least $1 - \delta$? The idea is to run $k = \log(1/\delta)$ independent trials (i.e., have k random sign matrices $\{\Pi^i\}_{i=1}^k$, $\Pi^i \in \mathbb{R}^{m \times n}$). Then, we will have k estimates $\|y^i\|$, and we output their median. For our algorithm to fail, i.e., $\|y\| \neq (1 \pm \epsilon)\|x\|$, we must have at least 1/2 of our trials fail. By the Chernoff bound, this probability decays exponentially in k. More formally,

$$\mathbb{E}(\# \text{success}) \geq \frac{2k}{3} \implies P(\frac{k}{2} \text{ succeed}) = \exp(-\Omega(k)) = \delta$$

Hence, to get failure probability at most $(1 - \delta)$ we use $\Theta(1/\epsilon^2 \log(1/\delta))$ space. [3] shows that this is optimal.
3.4 Space

Note that we did not discuss the cost of storing Π in the previous space analysis. If we have to store the whole matrix $\Pi \in \mathbb{R}^{m \times n}$, we would use strictly more space than just storing x. But note that in our analysis, all that we required was that the entries were independent. Actually, if we recall from the proof, we just needed 4-wise independence (the terms in $E(y^4)$ had at most 4 distinct $\sigma_{i,j}$, which needed to be independent so we could expand the expectations). Hence, we can use a 4-wise independent hash $h : [n] \rightarrow \{\pm 1\}$, which we can store in $\log n$ bits (≈ 1 word), and when we need $\sigma_{r,i}$ we just compute $h_r(i)$. Hence, we can store Π in $\Theta(\log(1/\delta) \log n)$ space.

3.5 Update Time

What is the update time? Since y is dense, we need to touch every entry when we update, of which there are $m = \Theta(1/\epsilon^2)$. We repeat $\log(1/\delta)$ times, giving us a total update time of $\Theta(1/\epsilon^2 \log(1/\delta))$. But we can do better by making Π sparse (i.e., having only one non-zero entry per column, whose position is chosen uniformly). [4] shows $E(\|y\|^2) = \|x\|^2$ and $\text{Var}(\|y\|^2) = O(1/m)\|x\|^4$ in this case, hence the analysis from before goes through. However, the update time is cut down to $O(\log(1/\delta))$ since we only need to touch one entry per column. This is called the Thorup-Zhang sketch. Note that it is strictly better than the AMS sketch. It remains an open problem if we can do better; we can show that using a linear sketch requires at least $O(\sqrt{\log(1/\delta)})$ update time.

4 Linear Regression

Recall the linear regression problem. We are given variables $\{a_i\}_{i=1}^d \in \mathbb{R}^n$, $b \in \mathbb{R}^d$. Let A be the matrix formed by taking a_i as its i’th row. We want to find a parameter vector $x \in \mathbb{R}^d$ such that $Ax \approx b$. Formally, our goal is to compute

$$x^* = \arg \min_{x \in \mathbb{R}^d} \|Ax - b\|_2$$

Recall from our problem set that we can write $x^* = (A^TA)^+A^Tb$, where A^+ denote the psuedo-inverse of A. It turns out that the bottleneck in this algorithm is computing $A^TA \in \mathbb{R}^{d \times d}$, which has d^2 entries, each of which require $O(n)$ time to compute (need to take the dot product of two, length n columns). This gives a running time of $O(nd^2)$. We will use linear sketching to store a smaller matrix that approximately preserves norms, due to [5].

Definition 2. We call Π an ϵ-subspace embedding for a linear subspace V if $V \in V$,

$$\|\Pi v\|^2 = (1 \pm \epsilon)\|v\|^2$$

Then, we can show the following

Claim 3. If Π is an ϵ-subspace embedding for span\{b, cols(A)\}, then $\tilde{x}^* = \arg \min_x \|\Pi Ax - \Pi b\|$ satisfies

$$\|A\tilde{x}^* - b\| \leq \frac{1 + \epsilon}{1 - \epsilon} \|Ax^* - b\|$$

where x^* is the true OPT.
Proof.

\[(1 - \epsilon)\|A\tilde{x}^* - b\| \leq \|\Pi A\tilde{x}^* - \Pi b\| \leq \|\Pi Ax^* - \Pi b\| \leq (1 + \epsilon)\|Ax^* - b\|
\]

and rearranging gives the desired result. \(\square\)

We did not consider the time it takes to compute \(\Pi A\). Since \(\text{dim}(V) = d\), we can choose an orthonormal basis for \(V\) and make them the columns of a matrix \(U \in \mathbb{R}^{n \times d}\). Then we will have \(U^TU = I\). Moreover, every \(v \in V\) can be written as \(Ux = v\) for some \(x \in \mathbb{R}^d\). Then, \(\forall x \in \mathbb{R}^d\), we have

\[
\|\Pi Ux\| = (1 \pm \epsilon)\|Ux\|^2 = (1 \pm \epsilon)\|x^TU^TUx\| = (1 \pm \epsilon)\|x\|^2
\]

This implies that the magnitudes of all of \((\Pi U)^T(\Pi U)\)'s eigenvalues are \((1 \pm \epsilon)\). If we use the operator norm (max absolute value of eigenvalues), we have

\[
\|((\Pi U)^T(\Pi U) - I\| < \epsilon
\]

Intuitively, under the assumptions here, \(\Pi\) approximately preserves orthonormal bases. Compare this with the previous section, where \(\Pi\) approximately preserved vectors. Now, we can compute

\[
P(\|\Pi U\|^2 - I\| > \epsilon) < \frac{\mathbb{E}(\|((\Pi U)^T(\Pi U) - I\|^2)}{\epsilon^2} \\
< \frac{\mathbb{E}(\|((\Pi U)^T(\Pi U) - I)^2}{\epsilon^2} \\
= \frac{1}{\epsilon^2}O \left(\frac{d^2}{m} \right)
\]

where the second step follows because the first numerator is the largest eigenvalue squared, and the second numerator is the sum of all eigenvalues squared. If we use the Thorup-Zhang sketch, and choose \(m = d^2/\epsilon^2\), we can make the failure probability at most a constant. We can decrease this probability by performing independent trials, as before. Now, since every column in \(\Pi\) has only 1 non-zero, to compute \(\Pi A\), we spend constant time adding unique non-zero in the corresponding column of \(\Pi\) for every non-zero entry in \(A\). Hence, computing \(\Pi A\) takes \(|\text{supp}(A)|\) time. See [8] and [9] for these results/analysis.

5 Dimensionality Reduction

The following theorem, known as the Johnson-Lindenstrauss lemma, was shown in [6].

Theorem 4. \(\forall X \subset \mathbb{R}^n, |X| = N, \exists \Pi \in \mathbb{R}^{m \times n}\) with \(m = O(1/\epsilon^2(\log N))\), such that

\[
\forall x, y \in X, \quad \|\Pi x - \Pi y\| = (1 \pm \epsilon)\|x - y\|
\]

Recently, [7] showed that \(m = \Omega(\min\{n, (\log N)/\epsilon^2\})\) is necessary. Note we take the min with \(n\) because we can always choose the identity matrix, which trivially satisfies the property.

We give an outline of the proof. Design a distribution \(D\) over \(\mathbb{R}^{m \times n}\) such that \(\forall z \in \mathbb{R}^n, \|z\| = 1,\) we have, for \(\Pi \sim D,\)

\[
P(|\|\Pi z\|^2 - 1| > \epsilon) < \delta
\]

5
Then, we can set $\delta = 1/\binom{N}{2}$, $z = \frac{x-y}{\|x-y\|}$, and union bound over all of the points in X. How do we get such a D? As usual, take D to be uniform over $\{1/\sqrt{m}, -1/\sqrt{m}\}^{m \times n}$ with $m = \Theta(1/\epsilon^2 \log(1/\delta))$. Then, instead of looking at the second moment (Chebyshev’s) as we did for streaming, we look at a larger moment. We won’t discuss the details, but they are conceptually similar to problem 2 of problem set 2.

6 Point Query

Now, we return to the turnstile model of updates $x_i \leftarrow x_i + v$. Our query function will be $f(x) = x_i$. Actually, we will have a lot of query function (one for each component of x), so let $f_i(x) = x_i$. Our goal is to produce an estimate of x_i. Specifically, we want $f_i(x) = x_i \pm \epsilon \|x\|^2$. Suppose we have some $\Pi \in \mathbb{R}^{m \times n}$ such that $\|\Pi_i\| = 1$ and $\langle \Pi_i, \Pi_j \rangle < \epsilon$. We will store $\text{sketch}(x) = \Pi x = y$ and we will output the estimate $\tilde{x}_i = (\Pi^T y)_i = (\Pi^T \Pi x)$. We can expand the matrix product to see

$$\tilde{x}_i = x_i + \sum_{j \neq i} \langle \Pi_i, \Pi_j \rangle x_j$$

But since the dot products are all within $\pm \epsilon$, we have $\tilde{x}_i = x_i \pm \epsilon \|x\|_1$. How do we construct such a Π? We can apply the JL lemma to $X = \{0, e_1, e_2, \ldots e_n\}$, which gives $m = O((1/\epsilon^2)(\log n))$.

References

