“Computability”

• Defined in terms of Turing machines

• Computable = recursive/decidable (sets, functions, etc.)

• In fact an abstract, universal notion

• Many other computational models yield exactly the same classes of computable sets and functions

• Power of a model = what is computable using the model (extensional equivalence)

• Not programming convenience, speed (for now...), etc.

• All translations between models are constructive
TM Extensions That Do Not Increase Its Power

- **Variants of TMs, Church-Turing Thesis 1**
- **Reading:** Sipser, § 3.2, § 3.3.

TM Extensions That Do Not Increase Its Power

- TMs with a 2-way infinite tape, unbounded to left and right

\[
\cdots \sqcup a b a a \cdots
\]

Proof that TMs with 2-way infinite tapes are no more powerful than the 1-way infinite tape variety:

“Simulation.” Convert any 2-way infinite TM into an equivalent 1-way infinite TM “with a two-track tape.”

\[
\begin{array}{cccccccc}
\cdots & c & a & \sqcup & b & a & \sqcup & b & a & a & \cdots \\
-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
\end{array}
\]

Tape of 2-way infinite TM \(M \)

\[
\begin{array}{c}
b \\
\hline
a
\end{array} = \langle b, a \rangle
\]

Corresponding tape of 1-way infinite TM \(M' \)
Recall the Formal Definition of a TM:

A (deterministic) Turing Machine (TM) is a 7-tuple
\((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\), where:

- \(Q\) is a finite set of states, containing
 - the start state \(q_0\)
 - the accept state \(q_{\text{accept}}\)
 - the reject state \(q_{\text{reject}}\) \((\neq q_{\text{accept}})\)

- \(\Sigma\) is the input alphabet
- \(\Gamma\) is the tape alphabet
 - Contains \(\Sigma\)
 - Contains “blank” symbol \(\square \in \Gamma - \Sigma\)

- \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\) is the transition function.
Formalization of the Simulation of 2-way infinite tape TM

Formally, $\Gamma' = (\Gamma \times \Gamma) \cup \{\$\}$.

M' includes, for every state q of M, two states:

$\langle q, 1 \rangle \sim "q, but we are working on upper track"

$\langle q, 2 \rangle \sim "q, but we are working on lower track"

e.g. If $\delta_M(q, a_1) = (p, b, L)$ then $\delta_{M'}(\langle q, 1 \rangle, \langle a_1, a_2 \rangle) = (\langle p, 1 \rangle, \langle b, a_2 \rangle, R)$.

Also need transitions for:

• Lower track
• U-turn on hitting endmarker
• Formatting input into “2-tracks”
Describing Turing Machines

Formal Description

• 7-tuple or state diagram
• Most of the course so far

Implementation Description

• Prose description of tape contents, head movements
• Omit details of states and transition functions (but do convince yourself that a TM can do what you’re describing!)
• This lecture, next lecture, ps6

High-Level Description

• Starting in a couple of lectures...
More extensions

• Adding **multiple** tapes does not increase power of TMs

(Convention: First tape used for I/O, like standard TM; Second tape is available for scratch work)
Simulation of multiple tapes

• Simulate a k-tape TM by a one-tape TM whose tape is split (conceptually) into $2k$ tracks:

 • k tracks for tape symbols

 • k tracks for head position markers (one in each track)

<table>
<thead>
<tr>
<th>$$</th>
<th>a</th>
<th>□</th>
<th>b</th>
<th>c</th>
<th>□</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(Sipser does different simulation.)
Simulation steps

- To simulate one move of the k-tape TM:
Speed of the Simulation

• Note that the “equivalence” in ability to compute functions or decide languages does not mean comparable speed.
 e.g. A standard TM can decide \(L = \{ w\#w : w \in \Sigma^* \} \) in time \(O(|w|^2) \). But there is an \(O(|w|) \)-time 2-tape decider.

• Let \(T_M : \Sigma^* \rightarrow \mathbb{N} \) measure the amount of time a decider \(M \) uses on an input. That is, \(T_M(w) \) is the number of steps TM \(M \) takes to halt on input \(w \).

• General fact about multitape to single-tape slowdown:
 Theorem: If \(M \) is a multitape TM that takes time \(T(w) \) when run on input \(w \), then there is a 1-tape machine \(M' \) and a constant \(c \) such that \(M' \) simulates \(M \) and takes at most \(c T(w)^2 \) steps on input \(w \).
Equivalent Formalisms

Many other formalisms for computation are equivalent in power to the TM formalism:

- TMs with 2-dimensional tapes
- Random-access TMs
- General Grammars
- 2-stack PDAs, 2-counter machines
- Church’s λ-calculus (μ-recursive functions)
- Markov algorithms
- Your favorite programming language (C, Python, OCaml, ...)
- In any formalism, each formalized algorithm is expressible as a bit string, number, ...
The Church-Turing Thesis

The equivalence of each to the others is a mathematical theorem.

That these formal models of algorithms capture our intuitive notion of algorithms is the Church–Turing Thesis.

• Church’s thesis = partial recursive functions,
Turing’s thesis = Turing machines

• The Church–Turing Thesis is an extramathematical proposition, not subject to formal proof.
Nondeterministic TMs

• Like TMs, but $\delta : Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L, R\})$

• It mainly makes sense to think of NTMs as recognizers

$L(M) = \{w : M \text{ has some accepting computation on input } w\}$

Example: NTM to recognize
$\{w : w \text{ is the binary notation for a product of two integers } \geq 2\}$
NTMs recognize the same languages as TMs

- Given a NTM M, we must construct a TM M' that determines, on input w, whether M has an accepting computation on input w.

- M' systematically tries
 - all one-step computations
 - all two-step computations
 - all three-step computations
 - \vdots
Enumerating Computations by Dovetailing

- There is a bounded number of k-step computations, for each k.
 (because for each configuration there is only a constant number of “next” configurations in one step)

- Ultimately M' either:
 - discovers an accepting computation of M, and accepts itself,
 - or searches forever, and does not halt.
Dovetailing Details

• Suppose that the maximum number of different transitions for a given \((q, a)\) is \(C\).

• Number those transitions \(1, \ldots, C\) (or less)

• Any computation of \(k\) steps is determined by a sequence of \(k\) numbers \(\leq C\) (the “nondeterministic choices”).

• How \(M'\) works: 3 tapes

 #1 Original input to \(M\)
 #2 Simulated tape of \(M\)
 #3 \(1213 \ldots\) Nondeterministic choices for \(M'\)
Simulating one step of M

- Each major phase of the simulation by M' is to simulate one finite computation by M, using tape #3 to resolve nondeterministic ambiguities.

- Between major phases, M'
 - erases tape #2 and copies tape #1 to tape #2
 - Replaces string in $\{1, \ldots, C\}^*$ on tape #3 with the lexicographically next string to generate the next set of nondeterministic choices to follow.

- **Claim:** $L(M') = L(M)$

- **Q:** Slowdown?