Harvard CS 121 and CSCI E-207
Lecture 3: Finite Automata

Salil Vadhan

September 11, 2012

Reading: Sipser, §1.1 and §1.2.
(Deterministic) Finite Automata

Example: Home Stereo

- $P =$ power button (ON/OFF)

- $S =$ source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.

- Starts OFF, in CD mode.

- A computational problem: does a given a sequence of button presses $w \in \{P, S\}^*$ leave the system with the radio on?
The Home Stereo DFA
Formal Definition of a DFA

- A DFA M is a 5-Tuple $(Q, \Sigma, \delta, q_0, F)$

 Q : Finite set of states
 Σ : Alphabet
 δ : “Transition function”, $Q \times \Sigma \rightarrow Q$
 q_0 : Start state, $q_0 \in Q$
 F : Accept (or final) states, $F \subseteq Q$

- If $\delta(p, \sigma) = q$,
 then if M is in state p and reads symbol $\sigma \in \Sigma$
 then M enters state q (while moving to next input symbol)

- Home Stereo example:
Another Visualization

M accepts string x if

1. After starting M in the start[initial] state with head on first square,
2. when all of x has been read,
3. M winds up in a final state.
Examples

• **Bounded Counting:** A DFA for

\[\{ x : x \text{ has an even # of } a\text{'s and an odd # of } b\text{'s} \} \]

Transition function \(\delta \):

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_1)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_0)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_3)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(q_2)</td>
<td>(q_1)</td>
</tr>
</tbody>
</table>

i.e.
\[\delta(q_0, a) = q_1, \text{ etc.} \]

\(\bigcirc \) = start state \(\text{ό} \) = final state

\(Q = \{ q_0, q_1, q_2, q_3 \} \quad \Sigma = \{ a, b \} \quad F = \{ q_2 \} \)
Another Example, to work out together

- Pattern Recognition: A DFA that accepts $\{ x : x \text{ has } aab \text{ as a substring} \}$.
Another Example

• Pattern Recognition: A DFA that accepts \(\{ x : x \text{ has } ababa \text{ as a substring} \} \).
Another Example

- A DFA that accepts $\{ x : x \text{ has } ababa \text{ as a substring} \}$.

You are going through a constructive process

string \rightarrow DFA

that is automated in every text editor!

Really a compiler that generates DFA code from an input string pattern
Formal Definition of Computation

\[M = (Q, \Sigma, \delta, q_0, F) \text{ accepts } w = w_1w_2 \cdots w_n \in \Sigma^* \text{ (where each } w_i \in \Sigma) \text{ if there exist } r_0, \ldots, r_n \in Q \text{ such that} \]

1. \(r_0 = q_0, \)

2. \(\delta(r_i, w_{i+1}) = r_{i+1} \) for each \(i = 0, \ldots, n - 1, \) and

3. \(r_n \in F. \)

The language recognized (or accepted) by \(M, \) denoted \(L(M), \) is the set of all strings accepted by \(M. \)

Example:
Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

• Inductively define \(\delta^* : Q \times \Sigma^* \rightarrow Q \) by
 \(\delta^*(q, \varepsilon) = q \),
 \(\delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma) \).

• Intuitively, \(\delta^*(q, w) = \) "state reached after starting in \(q \) and reading the string \(w \)".

• \(M \) accepts \(w \) if \(\delta^*(q_0, w) \in F \).

Determinism: Given \(M \) and \(w \), the states \(r_0, \ldots, r_n \) are uniquely determined. Or in other words, \(\delta^*(q, w) \) is well defined for any \(q \) and \(w \): There is precisely one state to which \(w \) “drives” \(M \) if it is started in a given state.
The impulse for nondeterminism

A language for which it is hard to design a DFA:

$$\{x_1x_2 \cdots x_k : k \geq 0 \text{ and each } x_i \in \{aab, aaba, aaa\}\}.$$

But it is easy to imagine a “device” to accept this language if there sometimes can be several possible transitions!
Nondeterministic Finite Automata

An NFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

- \(Q, \Sigma, q_0, F\) are as for DFAs
- \(\delta : Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow P(Q)\).

When in state \(p\) reading symbol \(\sigma\), can go to any state \(q\) in the set \(\delta(p, \sigma)\).

- there may be more than one such \(q\), or
- there may be none (in case \(\delta(p, \sigma) = \emptyset\)).

Can “jump” from \(p\) to any state in \(\delta(p, \varepsilon)\) without moving the input head.
Computations by an NFA

\[N = (Q, \Sigma, \delta, q_0, F) \] accepts \(w \in \Sigma^* \) if we can write \(w = y_1 y_2 \cdots y_m \) where each \(y_i \in \Sigma \cup \{\varepsilon\} \) and there exist \(r_0, \ldots, r_m \in Q \) such that

1. \(r_0 = q_0 \),
2. \(r_{i+1} \in \delta(r_i, y_{i+1}) \) for each \(i = 0, \ldots, m - 1 \), and
3. \(r_m \in F \).

Nondeterminism: Given \(N \) and \(w \), the states \(r_0, \ldots, r_m \) are not necessarily determined.
Example of an NFA

\[N = \left(\{ q_0, q_1, q_2, q_3 \}, \{ a, b \}, \delta, q_0, \{ q_0 \} \right), \text{ where } \delta \text{ is given by:} \]

<table>
<thead>
<tr>
<th>State</th>
<th>Transition on a</th>
<th>Transition on b</th>
<th>Transition on (\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>({ q_1 })</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>({ q_2 })</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>({ q_0 })</td>
<td>({ q_0, q_3 })</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>({ q_0 })</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
Tree of computations

Tree of computations of NFA N on string $aabaab$:
How to simulate NFAs?

• NFA accepts w if there is at least one accepting computational path on input w

• But the number of paths may grow exponentially with the length of w!

• Can exponential search be avoided?
NFAs vs. DFAs

NFAs seem more “powerful” than DFAs. Are they?