- **Reading:** Sipser, §4.2 “The Diagonalization Method,” pages 174–178 (from just before Definition 4.12 until just before Corollary 4.18) and §1.4.
Countable Unions of Countable Sets

Proposition: The union of countably many countable sets is countable.

Proof:
Are there uncountable sets?
(Infinite but not countably infinite)

Theorem: $P(\mathcal{N})$ is uncountable
(The set of all sets of natural numbers)

Proof by contradiction:
(i.e. assume that $P(\mathcal{N})$ is countable and show that this results in a contradiction)

- Suppose that $P(\mathcal{N})$ were countable.
- Then there is an enumeration of all subsets of \mathcal{N} say $P(\mathcal{N}) = \{S_0, S_1, \ldots\}$
Diagonalization

<table>
<thead>
<tr>
<th>(j = 0)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_0)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>(S_1)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(S_2)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>(S_3)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"Y" in row \(i \), column \(j \) means \(j \in S_i \)

- Let \(D = \{i \in \mathcal{N} : i \in S_i\} \) be the diagonal.
- \(D = YNNYY \ldots = \{0, 3, \ldots\} \)
- Let \(\overline{D} = \mathcal{N} - D \) be its complement.
- \(\overline{D} = NYYYN \ldots = \{1, 2, \ldots\} \)
- **Claim:** \(\overline{D} \) is omitted from the enumeration, contradicting the assumption that every set of natural numbers is one of the \(S_i \)s.
- **Pf:** \(\overline{D} \) is different from each row because they differ at the diagonal.
Cardinality of Languages

• An alphabet Σ is finite by definition

• **Proposition:** Σ^* is countably infinite.
 Proof:

• So every language is either finite or countably infinite

• $P(\Sigma^*)$ is uncountable, being the set of subsets of a countable infinite set.
 i.e. There are uncountably many languages over any alphabet

Q: Even if $|\Sigma| = 1$?
Existence of Non-regular Languages

Theorem: For every alphabet Σ, there exists a non-regular language over Σ.

Proof:

- There are only countably many regular expressions over Σ.
 - \Rightarrow There are only countably many regular languages over Σ.
- There are uncountably many languages over Σ.
- Thus at least one language must be non-regular.

In fact, “almost all” languages must be non-regular.
Existence of Non-regular Languages

Theorem: For every alphabet Σ, there exists a non-regular language over Σ.

Q: Could we do this proof using DFAs instead?

Q: Can we get our hands on an explicit non-regular language?
Goal: Explicit Non-Regular Languages

It appears that a language such as

\[L = \{ x \in \Sigma^* : |x| = 2^n \text{ for some } n \geq 0 \} \]

\[= \{ a, b, aa, ab, ba, bb, aaaa, \ldots , bbbb, aaaaaaaa, \ldots \} \]

can’t be regular because the “gaps” in the set of possible lengths become arbitrarily large, and no DFA could keep track of them.

But this isn’t a proof!

Approach:

1. Prove some general property \(P \) of all regular languages.
2. Show that \(L \) does not have \(P \).
Pumping Lemma (Basic Version)

If \(L \) is regular, then there is a number \(p \) (the pumping length) such that every string \(s \in L \) of length at least \(p \) can be divided into \(s = xyz \), where \(y \neq \varepsilon \) and for every \(n \geq 0 \), \(xy^nz \in L \).

\[
\begin{array}{c|c|c|c}
 n = 1 & x & y & z \\
 n = 0 & x & z \\
 n = 2 & x & y & y & z \\
 \ldots & \\
\end{array}
\]

• Why is the part about \(p \) needed?

• Why is the part about \(y \neq \varepsilon \) needed?
Pumping Lemma Example

• Consider

\[L = \{ x : x \text{ has an even # of } a's \text{ and an odd # of } b's \} \]

• Since \(L \) is regular, pumping lemma holds.

 (i.e, every sufficiently long string \(s \) in \(L \) is “pumpable”)

• For example, if \(s = aab \), we can write \(x = \varepsilon, y = aa, \) and \(z = b \).
Pumping the even a’s, odd b’s language

• Claim: L satisfies pumping lemma with pumping length $p = 4$.

• Proof:

• **Q**: Can the Pumping Lemma be used to prove that L is regular?