Harvard CS 121 and CSCI E-207
Lecture 10: Ambiguity, Pushdown Automata

Salil Vadhan

October 4, 2012

• Reading: Sipser, §2.2.
Another example of a CFG (with proof)

- \(L = \{ x \in \{a, b\}^* : x \text{ has the same # of } a\text{'s and } b\text{'s} \} \).
More examples of CFGs

- Arithmetic Expressions

\[G_1: \]
\[E \rightarrow x \mid y \mid E \ast E \mid E + E \mid (E) \]

\[G_2: \]
\[E \rightarrow T \mid E + T \]
\[T \rightarrow T \ast F \mid F \]
\[F \rightarrow (E) \mid x \mid y \]

Q: Which is “preferable”? Why?
Parse Trees

Derivations in a CFG can be represented by parse trees.

Examples:

Each parse tree corresponds to many derivations, but has unique leftmost derivation.
Parsing

Parsing: Given $x \in L(G)$, produce a parse tree for x. (Used to ‘interpret’ x. Compilers parse, rather than merely recognize, so they can assign semantics to expressions in the source language.)

Ambiguity: A grammar is **ambiguous** if some string has two parse trees.

Example:
Context-free Grammars and Automata

What is the fourth term in the analogy:

Regular Languages : Finite Automata

as

Context-free Languages : ???
Regular Grammars

Hint: There is a special kind of CFGs, the regular grammars, that generate exactly the regular languages.

A CFG is **(right-)regular** if any occurrence of a nonterminal on the RHS of a rule is as the rightmost symbol.

Turning a DFA into an equivalent Regular Grammar

- Variables are states.
- Transition $\delta(P, \sigma) = R$ becomes $P \rightarrow \sigma R$
- If P is accepting, add rule $P \rightarrow \varepsilon$
Regular Grammars (cont.)

Example of DFA \implies Regular Grammars:

$$\{ x : x \text{ has an even } \# \text{ of } a \text{'s and an even } \# \text{ of } b \text{'s} \}.$$
Context-free Grammars and Automata

What is the fourth term in the analogy:

Regular Languages : Finite Automata

as

Context-free Languages : ???
Sheila Greibach, AB Radcliffe ’60 summa cum laude

Inverses of Phrase Structure Generators

Pushdown Automata

= Finite automaton + “pushdown store”
• The pushdown store is a stack of symbols of unlimited size which the machine can read and alter only at the top.

Transitions of PDA are of form \((q, \sigma, \gamma) \mapsto (q', \gamma')\), which means:

If in state \(q\) with \(\sigma\) on the input tape and \(\gamma\) on top of the stack, replace \(\gamma\) by \(\gamma'\) on the stack and enter state \(q'\) while advancing the reading head over \(\sigma\).
(Nondeterministic) PDA for “even palindromes”

\[\{ w w^R : w \in \{ a, b \}^* \} \]

\[
(q, a, \varepsilon) \mapsto (q, a) \quad \text{Push } a\text{'s}
\]

\[
(q, b, \varepsilon) \mapsto (q, b) \quad \text{and } b\text{'s}
\]

\[
(q, \varepsilon, \varepsilon) \mapsto (r, \varepsilon) \quad \text{switch to other state}
\]

\[
(r, a, a) \mapsto (r, \varepsilon) \quad \text{pop } a\text{'s matching input}
\]

\[
(r, b, b) \mapsto (r, \varepsilon) \quad \text{pop } b\text{'s matching input}
\]

So the precondition \((q, \sigma, \gamma)\) means that

- the next \(|\sigma|\) symbols (0 or 1) of the input are \(\sigma\) and
- the top \(|\gamma|\) symbols (0 or 1) on the stack are \(\gamma\)
(Nondeterministic) PDA for “even palindromes”

\[\{ w w^R : w \in \{a, b\}^* \} \]

- \((q, a, \varepsilon) \mapsto (q, a) \) Push a’s
- \((q, b, \varepsilon) \mapsto (q, b) \) and b’s
- \((q, \varepsilon, \varepsilon) \mapsto (r, \varepsilon) \) switch to other state
- \((r, a, a) \mapsto (r, \varepsilon) \) pop a’s matching input
- \((r, b, b) \mapsto (r, \varepsilon) \) pop b’s matching input

Need to test whether stack empty: push \$ at beginning and check at end.

- \((q_0, \varepsilon, \varepsilon) \mapsto (q, \$) \)
- \((r, \varepsilon, \$) \mapsto (q_f, \varepsilon) \)
Language recognition with PDAs

A PDA accepts an input string

If there is a computation that starts

- in the start state
- with reading head at the beginning of string
- and the stack is empty

and ends

- in a final state
- with all the input consumed

A PDA computation becomes “blocked” (i.e. “dies”) if

- no transition matches both the input and stack
Formal Definition of a PDA

- \(M = (Q, \Sigma, \Gamma, \delta, q_0, F) \)

 \(Q = \) states

 \(\Sigma = \) input alphabet

 \(\Gamma = \) stack alphabet

 \(\delta = \) transition function

 \(\delta : Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \rightarrow P(Q \times (\Gamma \cup \{\varepsilon\})) \).

 \(q_0 = \) start state

 \(F = \) final states
Computation by a PDA

- M accepts w if we can write $w = w_1 \cdots w_m$, where each $w_i \in \Sigma \cup \{\varepsilon\}$, and there is a sequence of states r_0, \ldots, r_m and stack strings $s_0, \ldots, s_m \in \Gamma^*$ that satisfy

1. $r_0 = q_0$ and $s_0 = \varepsilon$.

2. For each i, $(r_{i+1}, \gamma') \in \delta(r_i, w_{i+1}, \gamma)$ where $s_i = \gamma t$ and $s_{i+1} = \gamma' t$ for some $\gamma, \gamma' \in \Gamma \cup \{\varepsilon\}$ and $t \in \Gamma^*$.

3. $r_m \in F$.

- $L(M) = \{w \in \Sigma^* : M$ accepts $w\}$.
PDA for \(\{ w \in \{a, b\}^* : \#_a(w) = \#_b(w) \} \)