Harvard CS 121 and CSCI E-207
Lecture 11: Pushdown Automata and Context-Free Languages

Salil Vadhan

October 9, 2012

• Reading: Sipser, §2.2.
Pushdown Automata

= Finite automaton + “pushdown store”

• The pushdown store is a stack of symbols of unlimited size which the machine can read and alter only at the top.

Transitions of PDA are of form \((q, \sigma, \gamma) \mapsto (q', \gamma')\), which means:

If in state \(q\) with \(\sigma\) on the input tape and \(\gamma\) on top of the stack, replace \(\gamma\) by \(\gamma'\) on the stack and enter state \(q'\) while advancing the reading head over \(\sigma\).
(Nondeterministic) PDA for “even palindromes”

\[\{ww^R : w \in \{a, b\}^* \} \]

\[(q, a, \varepsilon) \mapsto (q, a) \quad \text{Push a’s} \]
\[(q, b, \varepsilon) \mapsto (q, b) \quad \text{and b’s} \]
\[(q, \varepsilon, \varepsilon) \mapsto (r, \varepsilon) \quad \text{switch to other state} \]
\[(r, a, a) \mapsto (r, \varepsilon) \quad \text{pop a’s matching input} \]
\[(r, b, b) \mapsto (r, \varepsilon) \quad \text{pop b’s matching input} \]

So the precondition \((q, \sigma, \gamma)\) means that

- the next \(|\sigma|\) symbols (0 or 1) of the input are \(\sigma\) and
- the top \(|\gamma|\) symbols (0 or 1) on the stack are \(\gamma\)
(Nondeterministic) PDA for “even palindromes”

\[
\{ww^R : w \in \{a, b\}^*\}
\]

- \((q, a, \varepsilon) \mapsto (q, a)\) \text{Push a’s}
- \((q, b, \varepsilon) \mapsto (q, b)\) \text{and b’s}
- \((q, \varepsilon, \varepsilon) \mapsto (r, \varepsilon)\) \text{switch to other state}
- \((r, a, a) \mapsto (r, \varepsilon)\) \text{pop a’s matching input}
- \((r, b, b) \mapsto (r, \varepsilon)\) \text{pop b’s matching input}

Need to test whether stack empty: push $ at beginning and check at end.

- \((q_0, \varepsilon, \varepsilon) \mapsto (q, \$)\)
- \((r, \varepsilon, \$) \mapsto (q_f, \varepsilon)\)
Language recognition with PDAs

A PDA accepts an input string

If there is a computation that starts

• in the start state
• with reading head at the beginning of string
• and the stack is empty

and ends

• in a final state
• with all the input consumed

A PDA computation becomes “blocked” (i.e. “dies”) if

• no transition matches both the input and stack
Formal Definition of a PDA

- \(M = (Q, \Sigma, \Gamma, \delta, q_0, F) \)

 - \(Q \) = states
 - \(\Sigma \) = input alphabet
 - \(\Gamma \) = stack alphabet
 - \(\delta \) = transition function
 \[
 Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \rightarrow P(Q \times (\Gamma \cup \{\varepsilon\})).
 \]
 - \(q_0 \) = start state
 - \(F \) = final states
Computation by a PDA

• \(M \) accepts \(w \) if we can write \(w = w_1 \cdots w_m \), where each \(w_i \in \Sigma \cup \{ \varepsilon \} \), and there is a sequence of states \(r_0, \ldots, r_m \) and stack strings \(s_0, \ldots, s_m \in \Gamma^* \) that satisfy

1. \(r_0 = q_0 \) and \(s_0 = \varepsilon \).

2. For each \(i \), \((r_{i+1}, \gamma') \in \delta(r_i, w_{i+1}, \gamma) \) where \(s_i = \gamma t \) and \(s_{i+1} = \gamma' t \) for some \(\gamma, \gamma' \in \Gamma \cup \{ \varepsilon \} \) and \(t \in \Gamma^* \).

3. \(r_m \in F \).

• \(L(M) = \{ w \in \Sigma^* : M \) accepts \(w \} \).
PDA for \(\{ w \in \{a, b\}^* : \#_a(w) = \#_b(w) \} \)
Equivalence of CFGs and PDAs

Thm: The class of languages recognized by PDAs is the CFLs.

I: For every CFG G, there is a PDA M with $L(M) = L(G)$.

II: For every PDA M, there is a CFG G with $L(G) = L(M)$.
Proof that every CFL is accepted by some PDA

Let \(G = (V, \Sigma, R, S) \)

We’ll allow a generalized sort of PDA that can push \textit{strings} onto stack.

E.g., \((q, a, b) \mapsto (r, cd)\)
Proof that every CFL is accepted by some PDA

Let $G = (V, \Sigma, R, S)$

We’ll allow a generalized sort of PDA that can push *strings* onto stack.

E.g., $(q, a, b) \rightarrow (r, cd)$

Then corresponding PDA has just 3 states:

$q_{\text{start}} \sim \text{start state}$

$q_{\text{loop}} \sim \text{“main loop” state}$

$q_{\text{accept}} \sim \text{final state}$

Stack alphabet $= V \cup \Sigma \cup \{$$\}$
CFL \Rightarrow PDA, Continued: The Transitions of the PDA

Transitions:

- $\delta(q_{\text{start}}, \varepsilon, \varepsilon) = \{(q_{\text{loop}}, S\$$)\}$

 “Start by putting $S\$$ on the stack, and go to q_{loop}”

- $\delta(q_{\text{loop}}, \varepsilon, A) = \{(q_{\text{loop}}, w)\}$ for each rule $A \rightarrow w$

 “Remove a variable from the top of the stack and replace it with a corresponding righthand side”

- $\delta(q_{\text{loop}}, \sigma, \sigma) = \{(q_{\text{loop}}, \varepsilon)\}$ for each $\sigma \in \Sigma$

 “Pop a terminal symbol from the stack if it matches the next input symbol”

- $\delta(q_{\text{loop}}, \varepsilon, \$$) = \{(q_{\text{accept}}, \varepsilon)\}.$

 “Go to accept state if stack contains only $\$$.”
Example

• Consider grammar G with rules $\{S \rightarrow aSb, S \rightarrow \varepsilon\}$

 (so $L(G) = \{a^n b^n : n \geq 0\}$)

• Construct PDA

 $M = (\{q_{\text{start}}, q_{\text{loop}}, q_{\text{accept}}\}, \{a, b\}, \{a, b, S, \$\}, \delta, q_{\text{start}}, \{q_{\text{accept}}\})$

 Transition Function δ:

• Derivation $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

 Corresponding Computation:
Proof That For Every PDA M there is a CFG G Such That $L(M) = L(G)$

• First modify PDA M so that
 • Single accept state.
 • All accepting computations end with empty stack.
 • In every step, push a symbol or pop a symbol but not both.
Design of the grammar G equivalent to PDA M

- Variables: A_{pq} for every two states p, q of M.

- Goal: A_{pq} generates all strings that can take M from p to q, beginning & ending w/empty stack.

- Rules:
 - For all states p, q, r, $A_{pq} \rightarrow A_{pr}A_{rq}$.
 - For states p, q, r, s and $\sigma, \tau \in \Sigma$, $A_{pq} \rightarrow \sigma A_{rs}\tau$ if there is a stack symbol γ such that $\delta(p, \sigma, \varepsilon)$ contains (r, γ) and $\delta(s, \tau, \gamma)$ contains (q, ε).
 - For every state p, $A_{pp} \rightarrow \varepsilon$.

- Start variable: $A_{q\text{start}q\text{accept}}$.
Sketch of Proof that the Grammar is Equivalent to the PDA

• **Claim:** $A_{pq} \Rightarrow^* w$ if and only if w can take M from p to q, beginning & ending w/empty stack.

⇒ Proof by induction on length of derivation.

⇐ Proof by induction on length of computation.

• Computation of length 0 (base case): Use $A_{pp} \rightarrow \varepsilon$.

• Stack empties sometime in middle of computation: Use $A_{pq} \rightarrow A_{pr}A_{rq}$.

• Stack does not empty in middle of computation: Use $A_{pq} \rightarrow \sigma A_{rs} \tau$.
Closure Properties of CFLs

- **Thm:** The CFLs are the languages accepted by PDAs

- **Thm:** The CFLs are closed under
 - Union
 - Concatenation
 - Kleene *
 - Intersection with a regular set
The intersection of a CFL and a regular set is a CFL

Pf sketch: Let \(L_1 \) be CF and \(L_2 \) be regular

\[
L_1 = L(M_1), \quad M_1 \text{ a PDA}
\]

\[
L_2 = L(M_2), \quad M_2 \text{ a DFA}
\]

\[
Q_1 = \text{state set of } M_1
\]

\[
Q_2 = \text{state set of } M_2
\]

Construct a PDA with state set \(Q_1 \times Q_2 \) which keeps track of computation of both \(M_1 \) and \(M_2 \) on input.
Q: Why doesn’t this argument work if M_1 and M_2 are both PDAs?

In fact, the intersection of two CFLs is not necessarily CF.

And the complement of a CFL is not necessarily CF

Q: How to prove that languages are not context free?
Pumping Lemma for CFLs (aka Yuvecksy’s Theorem ;)

Lemma: If L is context-free, then there is a number p (the pumping length) such that any $s \in L$ of length at least p can be divided into $s = uvxyz$, where

1. $uv^i xy^i z \in L$ for every $i \geq 0$,
2. $v \neq \varepsilon$ or $y \neq \varepsilon$, and
3. $|vxy| \leq p$.
Using the Pumping Lemma to Prove Non-Context-Freeness

\(\{a^n b^n c^n : n \geq 0 \} \) is not CF.

What are \(v, y \)?

- Contain 2 kinds of symbols
- Contain only one kind of symbol

⇒ **Corollary:** CFLs not closed under intersection (why?)

⇒ **Corollary:** CFLs not closed under complement (why?)