Harvard CS 121 and CSCI E-207
Lecture 8: Pumping and Other Aspects of Regular Languages

Salil Vadhan

September 27, 2012

• Reading: Sipser, §1.4.
Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the pumping length) such that every string $s \in L$ of length at least p can be divided into $s = xyz$, where $y \neq \varepsilon$ and for every $n \geq 0$, $xy^n z \in L$.

$n = 1$

\[
\begin{array}{ccc}
x & y & z \\
\end{array}
\]

$n = 0$

\[
\begin{array}{cc}
x & z \\
\end{array}
\]

$n = 2$

\[
\begin{array}{cccc}
x & y & y & z \\
\end{array}
\]

\vdots

- Why is the part about p needed?
- Why is the part about $y \neq \varepsilon$ needed?
Pumping Lemma Example

• Consider

\[L = \{ x : x \text{ has an even # of } a \text{'s and an odd # of } b \text{'s} \} \]

• Since \(L \) is regular, pumping lemma holds.
 (i.e, every sufficiently long string \(s \) in \(L \) is “pumpable”)

• For example, if \(s = aab \), we can write \(x = \varepsilon \), \(y = aa \), and \(z = b \).
Pumping the even \(a\)'s, odd \(b\)'s language

• Claim: \(L\) satisfies pumping lemma with pumping length \(p = 4\).

• Proof:

• **Q:** Can the Pumping Lemma be used to prove that \(L\) is regular?
Proof of Pumping Lemma

(Another fooling argument)

• Since L is regular, there is a DFA M recognizing L.

• Let $p = \#$ states in M.

• Suppose $s \in L$ has length $l \geq p$.

• M passes through a sequence of $l + 1 > p$ states while accepting s (including the first and last states): say, q_0, \ldots, q_l.

• Two of these states must be the same: say, $q_i = q_j$ where $i < j$.
Pumping, continued

• Thus, we can break s into x, y, z where $y \neq \varepsilon$ (though x, z may equal ε):

$$ x \quad y \quad z $$

$$ \uparrow \quad \uparrow $$

M in state q_i \hspace{1cm} M in state $q_j = q_i$

• If more copies of y are inserted, M “can’t tell the difference,” i.e., the state entering y is the same as the state leaving it.

• So since $xyz \in L$, then $xy^n z \in L$ for all n.

Proof also shows (why?):

• We can take $p = \#$ states in smallest DFA recognizing L.

• Can guarantee division $s = xyz$ satisfies $|xy| \leq p$ (or $|yz| \leq p$).
Use PL to Show Languages are **NOT** Regular

Claim: \(L = \{ a^n b^n : n \geq 0 \} = \{ \varepsilon, ab, aabb, aaabbb, \ldots \} \) is not regular.

Proof by contradiction:
- Suppose that \(L \) is regular.
- So \(L \) has some pumping length \(p > 0 \).
- Consider the string \(s = a^p b^p \). Since \(|s| = 2p > p\), we can write \(s = xyz \) for some strings \(x, y, z \) as specified by lemma.
- Claim: No matter how \(s \) is partitioned into \(xyz \) with \(y \neq \varepsilon \), we have \(xy^2z \notin L \).
- This violates the conclusion of the pumping lemma, so our assumption that \(L \) is regular must have been false.
Strings of exponential lengths are a nonregular language

Claim: $L = \{ w : |w| = 2^n \text{ for some } n \geq 0 \}$ is not regular.

Proof:
“Regular Languages Can’t Do Unbounded Counting”

Claim: \(L = \{w : w \text{ has the same number of } a\text{'s and } b\text{'s}\} \) is not regular.

Proof #1:

- Use pumping lemma on \(s = a^p b^p \) with \(|xy| \leq p \) condition.
“Regular Languages Can’t Do Unbounded Counting”

Claim: $L = \{ w : w \text{ has the same number of } a\text{'s and } b\text{'s} \}$ is not regular.

Proof #1:

• Use pumping lemma on $s = a^pb^p$ with $|xy| \leq p$ condition.

Proof #2:

• If L were regular, then $L \cap a^*b^*$ would also be regular.
Reprise on Regular Languages

Which of the following are necessarily regular?

- A finite language
- A union of a finite number of regular languages
- A union of a countable number of regular languages
- \(\{x : x \in L_1 \text{ and } x \not\in L_2\} \), \(L_1 \) and \(L_2 \) are both regular
- A cofinite language (a set is cofinite if its complement is finite)
- The reversal of a regular language
Algorithmic questions about regular languages

Given $X = a$ regular expression, DFA, or NFA, how could you tell if:

- $x \in L(X)$, where x is some string?
- $L(X) = \emptyset$?
- $x \in L(X)$ but $x \notin L(Y)$?
- $L(X) = L(Y)$, where Y is another RE/FA?
- $L(X)$ is infinite?
- There are infinitely many strings that belong to both $L(X)$ and $L(Y)$?