Lecture 5:
Regular Expressions

Salil Vadhan

September 18, 2012

• **Reading:** Sipser, §1.3.
Regular Expressions

• Let $\Sigma = \{a, b\}$. The regular expressions over Σ are certain expressions formed using the symbols $\{a, b, (,), \varepsilon, \emptyset, \cup, \circ, *\}$

• We use red for the strings under discussion (the object language) and black for the ordinary notation we are using for doing mathematics (the metalanguage).

• Construction Rules (= inductive/recursive definition):
 1. $a, b, \varepsilon, \emptyset$ are regular expressions (of size 1)
 2. If R_1 and R_2 are REs (of size s_1 and s_2), then
 $(R_1 \circ R_2)$, $(R_1 \cup R_2)$, and (R_1^*) are REs
 (of sizes $s_1 + s_2 + 1$, $s_1 + s_2 + 1$, and $s_1 + 1$, respectively).

• Examples:

 $(a \circ b)$
 $((((a \circ (b^*)) \circ c) \cup ((b^*) \circ a))^*)$
 (\emptyset^*)
What REs Do

• Regular expressions (which are strings) represent languages (which are sets of strings), via the function L:

$$(1) \quad L(a) = \{a\}$$
$$(2) \quad L(b) = \{b\}$$
$$(3) \quad L(\varepsilon) = \{\varepsilon\}$$
$$(3) \quad L(\emptyset) = \emptyset$$

$$(4) \quad L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$$
$$(5) \quad L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$$
$$(6) \quad L((R_1^*)) = L(R_1)^*$$

• Example:

$$L(((a^*) \circ (b^*)))$$

• $L(\cdot)$ is called the semantics of the expression.
Syntactic Shorthand

- Omit many parentheses, because union and concatenation of languages are associative. For example,

for any languages L_1, L_2, L_3:

$$(L_1L_2)L_3 = L_1(L_2L_3)$$

and therefore for any regular expressions R_1, R_2, R_3,

$$L((R_1 \circ (R_2 \circ R_3))) = L(((R_1 \circ (R_2 \circ R_3)))$$

- Omit \circ symbol

- Drop the distinction between red and black, between object language and metalanguage.
Semantic equivalence

The following are equivalent:

\[((ab)c) \quad (a(bc)) \quad abc\]

or strictly speaking

\[((a \circ b) \circ c) \quad (a \circ (b \circ c))\]

• **Equivalent** means:

 “same semantics—same $L(\cdot)$-value—maybe different syntax”
More syntactic sugar

- By convention, * takes precedence over ◦, which takes precedence over ∪.

 So \(a \cup bc^* \) is equivalent to \((a \cup (b \circ (c^*)) \)).

- \(\Sigma \) is shorthand for \(a \cup b \) (or the analogous RE for whatever alphabet is in use).
Examples of Regular Languages

Strings ending in \(a = \Sigma^* a \)

Strings containing the substring \(abaab = ? \)

\((aa \cup ab \cup ba \cup bb)^* = ?\)

Strings with even # of \(a \)'s = \((b \cup ab^*a)^* = b^*(ab^*ab^*)^* \)

Strings with \(\leq \) two \(a \)'s = ?

Strings of form \(x_1x_2 \cdots x_k, k \geq 0, \text{ each } x_i \in \{aab, aaba, aaa\} = ? \)

Decimal numerals, no leading zeroes

\[= 0 \cup ((1 \cup \ldots \cup 9)(0 \cup \ldots \cup 9)^*) \]

All strings with an even # of \(a \)'s and an even # of \(b \)'s

\[= (b \cup ab^*a)^* \cap (a \cup ba^*b)^* \]

but this isn’t a regular expression
Equivalence of REs and FAs

Recall: we call a language **regular** if there is a finite automaton that recognizes it.

Theorem: For every regular expression R, $L(R)$ is regular.

Proof: Induct on the construction of regular expressions (“structural induction”).

Base Case: R is a, b, ε, or \emptyset

- accepts $\{\sigma\}$
- accepts \emptyset
- accepts $\{\varepsilon\}$
Equivalence of REs and FAs, continued

Inductive Step: If R_1 and R_2 are REs and $L(R_1)$ and $L(R_2)$ are regular (inductive hyp.), then so are:

$L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$

$L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$

$L((R_1^*)) = L(R_1)^*$

(By the closure properties of the regular languages).

Proof is constructive (actually produces the equivalent finite automaton, not just proves its existence).
Example Conversion of a RE to a FA

\[(a \cup \varepsilon)(aa \cup bb)^*\]
The Other Direction

Theorem: For every regular language \(L \), there is a regular expression \(R \) such that \(L(R) = L \).

Proof: Next time.