Strings and Languages

• **Symbol** \(a, b, \ldots \)

• **Alphabet** A finite, nonempty set of symbols
 usually denoted by \(\Sigma \)

• **String** (informal) Finite number of symbols “put together”
 e.g. \(abba, b, bb \)

 Empty string denoted by \(\varepsilon \)

• \(\Sigma^* = \text{set of all strings over alphabet } \Sigma \)
 e.g. \(\{a, b\}^* = \{\varepsilon, a, b, aa, ab, \ldots\} \)
More on Strings

- **Length** of a string x is written $|x|$

 $$|abba| = 4$$

 $$|a| = 1$$

 $$|\varepsilon| = 0$$

The set of strings of length n is denoted Σ^n.

Concatenation

• Concatenation of strings

Written as $x \cdot y$, or just xy

Just follow the symbols of x by the symbols of y

$x = abba$, $y = b \Rightarrow xy = abbab$

$x\varepsilon = \varepsilon x = x$ for any x

• The reversal x^R of a string x is x written backwards.

If $x = x_1x_2\cdots x_n$, then $x^R = x_nx_{n-1}\cdots x_1$.
Formal Inductive Definitions

- Like recursive data structures and recursive procedures when programming.

- **Strings** and their **length**:

 - **Base Case**: ε is a string of length 0.

 - **Induction**: If x is a string of length n and $\sigma \in \Sigma$, then $x\sigma$ is a string of length $n + 1$.

 (i.e. start with ε and add one symbol at a time, like $\varepsilon aaba$, but we don’t write the initial ε unless the string is empty)

- Like how one would program a string type, eg in OCaml:

  ```ocaml
type string = Epsilon | Append of string * char
  ```
Inductive definitions of string operations

• The concatenation of x and y, defined by induction on $|y|$.

 $[|y| = 0]$ \quad $x \cdot \varepsilon = x$

 $[|y| = n + 1]$ write $y = z\sigma$ for some $|z| = n$, $\sigma \in \Sigma$
 define $x \cdot (z\sigma) = (x \cdot z)\sigma$,

• Like how one might program concatenation, eg in OCaml:

  ```ocaml
  let rec concatenate (a:string) (b:string) : string =
    match b with
    | Epsilon -> a
    | Append(s, c) -> Append(concatenate a s, c)
  ```

• Such definitions are formally justified using the same Principle of Mathematical Induction used in proofs by induction.
Inductive definitions of string operations

• **Facts:** For all strings x, y, z,

 1. $(x \cdot y) \cdot z = x \cdot (y \cdot z) \Rightarrow$ we can drop parentheses and write xyz.

 2. $\varepsilon \cdot x = x$,

• The **reversal** of x, defined by induction on $|x|$:

• Like recursive procedures to compute these operations.
Structural Induction

When doing proofs about inductively defined objects, it is often useful to perform induction on the size of the object.

Proposition: \((xy)^R = y^Rx^R\) for every \(x, y \in \Sigma^*\)

Proof by induction on \(|y|\):

Base Case: \(|y| = 0\). Then \(y = \varepsilon\)

Induction Hypothesis: Assume \((uv)^R = v^R u^R\) for all \(u, v\) such that \(|v| \leq n\)
Proof, continued

Induction Step: Let $|y| = n + 1$, and say $y = z\sigma$, where $|z| = n$, $\sigma \in \Sigma$. Then:
Proofs by Induction

To prove $P(n)$ for all $n \in \mathbb{N}$:

1. “Base Case”: Prove $P(0)$.

2. “Induction Hypothesis”: Assume that $P(k)$ holds for all $k \leq n$ (where n is fixed but arbitrary)

3. “Induction Step”: Given induction hypothesis, prove that $P(n + 1)$ holds.

If we prove the Base Case and the Induction Step, then we have proved that $P(n)$ holds for $n = 0, 1, 2, \ldots$ (i.e., for all $n \in \mathbb{N}$)
Proofs vs. Programs

• There is a close parallel between formal mathematical proofs and computer programs (so doing proofs should make you a better programmer).

• BUT we generally write proofs to be read by people, not computers. Thus we use English prose and omit some low-level formalism when not needed to express our reasoning clearly.

• If it were just one step in a more complex proof, it would usually be OK to justify \((xy)^R = y^Rx^R\) by writing

\[
\begin{align*}
(x_1x_2\cdots x_{n-1}x_ny_1y_2\cdots y_{m-1}y_m)^R &= y_my_{m-1}\cdots y_2y_1x_nx_{n-1}\cdots x_2x_1 \\
&= y^Rx^R.
\end{align*}
\]
Detail and Formalism

You can omit some formal details (only) when:

- You are making a clear and correct claim,
- They are not the main point of what you’re proving,
- You (and your reader) would be able to fill in the details if asked.
Languages

A language L over alphabet Σ is a set of strings over Σ (i.e. $L \subseteq \Sigma^*$)

Computational problem: given $x \in \Sigma^*$, is $x \in L$?

Every YES/NO problem can be cast as a language.

Examples of simple languages:

- All words in the *American Heritage Dictionary* $\{a, aah, aardvark, \ldots, zyzzva\}$.
- \emptyset
- Σ^*
- Σ
- $\{x \in \Sigma^* : |x| = 3\} = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}$
More complicated languages

• The set of strings $x \in \{a, b\}^*$ such that x has more a’s than b’s.

• The set of strings $x \in \{0, 1\}^*$ such that x is the binary representation of a prime number.

• All ‘C’ programs that do not go into an infinite loop.

• $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 - L_2$ if L_1 and L_2 are languages.
The highly abstract and metaphorical term “language”

• A language can be either finite or infinite

• A language need not have any “internal structure”
Be careful to distinguish

ε The empty string (a string)

\emptyset The empty set (a set, possibly a language)

$\{\varepsilon\}$ The set containing one element, which is the empty string (a language)

$\{\emptyset\}$ The set containing one element, which is the empty set (a set of sets, maybe a set of languages)
(Deterministic) Finite Automata

Example: Home Stereo

- \(P = \) power button (ON/OFF)

- \(S = \) source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.

- Starts OFF, in CD mode.

- A computational problem: does a given a sequence of button presses \(w \in \{P, S\}^* \) leave the system with the radio on?
The Home Stereo DFA