8

Conclusions

8.1 A Unified Theory of Pseudorandomness

In the course of this survey, we have seen that a wide variety of
“pseudorandom objects” are very closely related, and indeed almost
equivalent when viewed appropriately: list-decodable codes, averag-
ing samplers, expander graphs, randomness extractors, (black-box)
pseudorandom generator constructions, and hardness amplifiers. The
power of these connections comes from the fact they allow us to
translate intuitions and techniques that are very natural for one of
these objects to others where they have been might be difficult to
discover. Indeed, we have seen several examples of this, such the
use of randommess extractors to construct near-optimal samplers
(Problem 6.5), the use of Parvaresh—Vardy codes to construct bipartite
expanders (Theorem 5.35) and lossless condensers (Theorem 6.34), and
the use of the Nisan—Wigderson pseudorandom generator construction
to construct extractors (Theorem 7.73).

Table 8.1 reviews the connections between these objects, by putting
them in our list-decoding framework. Recall that we can view each
of the objects as a function I': [N] x [D] — [M] and can characterize
their properties by bounding the sizes of sets of the form LISTp (7, «) =
{z :Pry[I'(z,y) € T| > a}, where T C [M]. (When a =1, we change

284

285

8.1 A Unified Theory of Pseudorandomness

[l (w)SoAod] 5 (W)o = 4 NG STosuopU0) (sS0[s80])

€e'9 ‘((3/w)8o))o =p oIed 3, uop <=yaicz-1)>|1 (fi‘x)uop pP+yc—y
LY ((¢/1)801 + W) = u M > [+ (D)7 L) LsIT stojdures Sunyrg
‘qoiq ‘((¢/1)801‘2/1)AT0d = (7 ‘NQ = ¥ aI1ed 9,U0p <=nwE-1)>|1 fi(z)dureg (39)
N=W T/N=> 3 > |(1°0)Ls11 T jo s1opuedxo

€€°g ‘Duo+1=v ‘MDo=a oxed 9,u0p <= MV > |l 1qu qy.fi ('5)
[Lu(u)Bol&1od] 5 (w)dod = 3=y | (eo1ape/m [ed0r) SOUJ X0q-§e[q

gL ‘w/1 =3 (w)&10d =19 M >+ (D)7) LSl () 2D CE)
[uk ‘(u)Sorh1od] 3 (w)p = 3 S1090R1IX0

€29 ‘((3/w)Soo =p oaed 3, uop M S+ (@D)7r) sl (fi*z)1xg (C))
((¢/1)801 + w)p = siordures SurSeroae

0g'g ‘((¢/1)801'3/D)A10d = 0 ‘Ne =3 oxed 3, uop M > e+ (p)7r)isr| f(z)dureg (=9)
S (3/1‘uSop)Alod =3 =1y (eo1apR/M TROO]) M >|@E+ ()7 'r)1sri| sieyrdure sseupiey

pLL | ‘(w)Aod=bg = ‘g=Db ‘(uSo)p =p | (3/1‘uSop)4od =1 <={(f)} =1 | ((A) duy‘f) xoq-¥oerq (3'4‘9)
(u)hrod = 31 “(v)O =bg = W > e+ (D)7 D) Lsrl S9POD B[qEPOIOP-4SI[

62 ‘Mu=2‘1)o=>~ (3/1‘u)410d <={(fsm)} =1 | ("(z)oug‘f) (Gre—=b/1-1)
‘doxg sIojoureIR PIEPURIS owL, Surpoos(] weqoL SUIpPood([-1SIT (fi‘x) 1 190[qO
"yC =3 PU® ‘g = ‘wG = JN ‘uG = N ‘Tensn sy ‘juejsuod aansod [[ews A[Lrerniqre e sojousp A rejourered oy, WD

10§ {0 <[> (fi‘w)J]"g: z} = (0‘L)ILSIT Jo sezis Supunoq Aq [py] « [@] x [N]:d swelqQ wopueropnesq Suumjdey T'g O[qEL

286 Conclusions

the inequality to an equality.) Other objects we have encountered,
such as dispersers (Definition 6.19), black-box hitting-set generator
constructions (Problem 7.8), and lossy condensers (Definition 6.32)
can also be cast in the framework, but we leave this as an exercise.

In addition to illustrating the connections between the objects,
Table 8.1 also brings out their differences. In some cases o = u(T') + ¢,
and in other cases o = 1. In some cases (samplers, extractors, PRG con-
structions), we consider all subsets T' C [M], and in other cases (codes,
hardness amplifiers, expanders, condensers), we only consider 7' that
are small and possibly have some additional structure, like being the
graph of a received word. (Typically, the only way the graph structure
is used is to determine that the size of T'is D.) In some cases, we want
efficient algorithms to construct LIST (T, «) (even polylogarithmic-time
local decoding algorithms), and in others, all we care about is its size.

The most common parameter ranges also vary quite widely among
the objects. The typical relation between M and N ranges from loga-
rithmic (codes) to polylogarithmic (hardness amplifiers) to a constant
power (samplers) to a constant multiplicative factor (expanders).
(Extractors, PRG constructions, and condensers all consider the full
range between polylogarithmic and a constant power.) The typical
value of D ranges from being a constant independent of N (expanders),
to being logarithmic in N (codes), to being polylogarithmic in N
(extractors, condensers, PRG constructions, hardness amplifiers).
Despite these differences, we have seen that the connections are
nevertheless quite powerful, and ideas or techniques developed for one
of these objects are often useful for the others.

The unified framework of Table 8.1 opens up a tantalizing possibil-
ity that we can also have a unified construction of all of these objects.
In what follows, we will argue that this is possible ignoring explic-
itness/efficiency considerations (including local list-decoding). The
bounds will be stated in terms of the tails of the binomial distribution:

Definition 8.1 (tails of binomial distributions). For ¢t e N,
w,c € (0,1), define

t
. 1
Bin(t, u,a) = Pr [t ;Xi > a] ,

8.1 A Unified Theory of Pseudorandomness 287

where the X;s are iid {0,1}-valued random variables such that
Pr[X; = 1] = u, and define

Bin(¢,pu,1) = Pr

t
1
=1

With this definition, we can give the following unified construction:

Theorem 8.2 (nonconstructive unified pseudorandom object).
For every N,M,D € N, there exists a function I': [N] x [D] — [M]
such that for every T' C [M] and every a € (0,1], we have

|LISTr (T,)|
. N M . K 1
< : . . < ——5 -
< mln{K eN (K> <\T|> Bin(D,u(T),a)™ < 4K2|T|2}

We leave the proof of Theorem 8.2 as an exercise and instead show

how many of the nonconstructive bounds we’ve seen for various pseu-
dorandom objects would simultaneously hold for the I' of Theorem 8.2
by setting parameters appropriately:

e The nonconstructive bounds for expanders (Theorem 4.4)
can be Obtained by setting M =N, a=1, u=u(T),
=|T|/(D (ignoring round-off errors), and noting that

) () mans
(Y [
(5 0)" "

= 2))k
< 1/(4K2|T\)

IN

provided g is sufficiently small. Thus, by Proposition 5.33,
I' defines a (v, (D — 2)) vertex expander for a sufficiently
small

288 Conclusions

More generally, we see that for any constants v, A,D >0
and sufficiently large N =M, T' will be a (yN,A)
expander provided that D > (H(y) + H(vA))/~vlog(1/vA),
where H(x)=zlog(1l/z) + (1 — z)log(1/(1 — x)) is the
binary entropy function.! (To see this, use the fact that
([3]}[\7) = 2UHB)+o(M)N a5 N — 0.)

e For the nonconstructive bound on extractors (Theo-
rem 6.14) and averaging samplers, we set a = u(T) + ¢
and use the bounds (%) < (Ne/K)X, (]\7/{) <2M_ and
Bin(D, u(T), u(T) + ¢) < exp(—Q(De?)) (by the Chernoff
Bound of Theorem 2.21). Then the condition of Theo-
rem 8.2 is satisfied provided that D > (¢/€?) - log(N/K) and
M < 2K D/c for a sufficiently large constant c.

To get the “strong” forms of pseudorandom objects, where
I'(z,y) = (y,I'(z,y)) for some function I’, we need to consider the
tails of sums of independent, but not necessarily identically distributed,
binomial random variables:

Definition 8.3 (tails of Poisson binomial distributions). For
t,N,u,a € (0,1), define

)

t
1
PBin(t,pu,a,n) = sup Pr [ZYZ > o

(Y1,..,Yr) ¢ i=1

and

PBin(t,u,1,m) = sup Pr
(Y1,...,Yz)

= Bin(¢, u, 1),

1 t
2 Yi=1
=1

where the suprema are taken over all sequences of independent
Bernoulli random variables Yi,...,Y; such that (1/t) - >>'_ E[Vi] < p,
and additionally E[Y;] is an integer multiple of 7 for every i.

I The discussion after Theorem 4.4 states a slightly stronger result, only requiring D >
(H(y) + H(vA))/(H(v) — YAH(1/7)), but this is based on choosing a graph that is the
union of D random perfect matchings, which does indeed have slightly better expansion
properties than the model we are using now, of choosing D random neighbors for each left
vertex.

8.1 A Unified Theory of Pseudorandomness 289

Theorem 8.4 (nonconstructive unified pseudorandom object).
For every N,q,D € N, there exists a function I : [N] x [D] — [¢] such
that if we define I'(z,y) = (y,I"(z,y)), then for every T C [D] X [q]
and every a € (0,1], we have

|LISTr (T,)|

) N Dq . K 1
< KeN: . - PBin(D, u(T),a, 1 < ———>.
<onfent () (i) PEROAD)01/9" < g

® Nonconstructive bounds for strong vertex expanders,
hitting samplers, and lossless condensers (matching the
bounds for the non-strong ones) follow by noting that
PBin(n,u,1,17) < Bin(n,u,1). Indeed, writing pu; for the
expectation of Bernoulli random variable Y;, then

1< t 1Y
;ZYizl :HWS (tZMz) <,
i=1 i=1 i=1

where the second-to-last inequality follows from the
Arithmetic Mean—Geometric Mean Inequality.

Pr

e Nonconstructive bounds for strong extractors and
averaging samplers (matching the bounds for the non-
strong ones) follow because the Chernoff Bound (Theo-
rem 2.21) also applies to nonidentical random variables:
PBin(D,u(T), u(T) + &,n) < exp(—Q(De?)) for every n > 0.

e Nonconstructive bounds for list-decodable codes (The-
orem 5.8) follow because the list-decodability of codes
involves taking T to be the graph of a received word
(cf. Proposition 5.29) and hence u(7T)=1/q, and
PBin(D,1/q,1 — §,1/q) = ¢"1«@DP)D /P To see the latter,
let E[Y;] = m;/q for m; € N such that), m; < D. so Y can
be viewed as the indicator for the event the R(i) € {1,...,m;}
for a uniformly random received word R:[D]— [q¢], and
Pr[>,Y; > 1 — 4] is the probability that the graph G(R) =
{(i,7(3)) : i € [D]} of the received word R intersects the set

290 Conclusions

T ={(i,j) :i € [D],j <m;} in more than (1 — §)D posi-
tions. For a set S C T’, the probability that G(R) N T' = S
is at most (1/¢)I%1 . (1 —1/¢)P~I5I. (This is exactly the
probability in case S contains only pairs (i,j) with D
distinct values of i, otherwise the probability is zero.) Thus,

; Ty s —s
PrYvis 1 _5] < X (BM)awra-1?
i s>(1-6)D

1 D }

< qu : Z <3>(q -1)
s>(1-6)D

B ¢1a(6.D)-D
-

Now, given this bound on PBin(-) and Proposition 5.29,
Theorem 8.4 gives us a (J,K) list-decodable code Enc:

[N] — [q]” provided that (}) - (4) - (qu:S,’:,D>'D)K < e
Using the bounds (%) < NK and (%q) < (eq)P, we see
that we get a list-decodable code provided that the rate
p=1logN/Dlogq is smaller than H,(6,D)— O(1/K) —
O((log KD)/(KDloggq). This matches the nonconstructive
bound for list-decodable codes (Theorem 5.8) up to the

dependence of the error term on the list size K.

Given the above, a natural long-term goal for the theory of
pseudorandomness is the following:

Open Problem 8.5. Can we give explicit constructions of functions
I" that nearly match the bounds of Theorems 8.2 and 8.47 Can this be
done with efficient (local) list-decoding algorithms?

8.2 Other Topics in Pseudorandomness

In this section, we survey some additional topics in the theory of
pseudorandomness that we did not cover in depth, each of which
could merit at least an entire section on its own. Sections 7.2 and 7.9

8.2 Other Topics in Pseudorandomness 291

contained a detailed survey of cryptographic pseudorandomness, so we
do not discuss it again here.

8.2.1 Pseudorandomness for Space-Bounded Computation

As discussed in Section 4.4, unlike for BPP and RP, we do know
very nontrivial derandomizations RL (and BPL). These deran-
domizations are obtained constructions of pseudorandom generators
G :{0,1}% — {0,1}™ such that no randomized (logm)-space algorithm
can distinguish G(Uy) from U,,. In order to get derandomizations that
are correct on every input x, we require pseudorandom generators
that fool nonuniform space-bounded algorithms. On the other hand,
since randomized space-bounded algorithms get their random bits
as a stream of coin tosses, we only need to fool space-bounded
distinguishers that read each of their input bits once, in order. Thus,
we consider distinguishers that are (oblivious, read-once) branching
programs, which maintain a state s; € [w] after reading ¢ input bits,
and determine the next state s;+1 € [w] as a function of s; and the
(i + 1)th input bit. The number w of available states at each time
step is called the width of the branching program, and corresponds to
a space bound of logw bits. A generator G : {0,1}4™) — {0,1}™ that
is computable in space O(d(m)) and such that G(Ugy,)) cannot be
distinguished from U, by oblivious, read-once branching programs of
width m implies that BPL C DSPACE(O(d(poly(m)))).

The fact that pseudorandom generators imply lower bounds
(Problem 7.1) applies to this context too, but fortunately we do know
exponential width lower bounds for oblivious, read-once branching pro-
grams (e.g., computing the inner-product modulo 2 of two ¢-bit strings
requires width 29(5)). On the other hand, we cannot simply plug
such lower bounds into the Nisan-Wigderson generator construction
(Theorem 7.24), because the reductions used do not preserve the read-
once property (and we do not know superpolynomial lower-bounds for
branching programs that can read each input bit many times).

Nevertheless, a series of papers starting with Ajtai, Komlds, and
Szemerédi [11] have given wunconditional pseudorandom generators
for space-bounded computation. The pseudorandom generator of

292 Conclusions

Nisan [299] uses a seed of length O(log?m) to produce m bits that are
pseudorandom to oblivious, read-once branching programs of width
m. At first, this only seems to imply that RL C L2, which already
follows from Savitch’s Theorem [349] that NL C L2. Nevertheless,
Nisan’s generator and its additional properties has been used in more
sophisticated ways to obtain highly nontrivial derandomizations of
RL. Specifically, Nisan [300] used it to show that every problem in RL
can be solved simultaneously in polynomial time and O(log*n) space,
and Saks and Zhou [344] used it to prove that RL C L%2. Another
important pseudorandom generator for space-bounded computation
is that of Nisan and Zuckerman [303], which uses a seed of length
O(logm) to produce log®m bits that are pseudorandom to oblivious,
read-once branching programs of width m. None of these results have
been improved in nearly two decades.

However, substantially better generators have been constructed
for restricted classes of oblivious read-once branching programs.
Specifically, there are pseudorandom generators or hitting-set gen-
erators (see Problem 7.8) stretching a seed of length O(logm)
to m bits that fool combinatorial rectangles (which check mem-
bership in a “rectangle” S X S2 X -+ X Sy /165m, Where each
S; {0,1}°8™) [136, 264, 31, 271, 179], branching programs of
width 2 and 3 [345, 73, 363, 179], constant-width regular branching
programs (where the transition function at each layer is regu-
lar) [82, 84], and constant-width permutation branching programs
(where each input string induces a permutation of the states at each
layer) [338, 250, 113, 373]. However, the following remains open:

Open Problem 8.6. Is there an explicit pseudorandom generator
G : {0, 1}0(1"g2 m) — {0,1}™ whose output distribution is pseudorandom
to oblivious, read-once branching programs of width 47

8.2.2 Derandomization vs. Lower Bounds

Derandomization from Uniform Assumptions. The construc-
tion of pseudorandom generators we have seen (Theorem 7.63) requires
nonuniform circuit lower bounds for functions in E, and it is of interest

8.2 Other Topics in Pseudorandomness 293

to find constructions that only require uniform hardness assumptions.
One way to obtain such results is to show that uniform hardness
assumptions imply nonuniform assumptions. Indeed, the Karp—Lipton
Theorems in complexity theory [235] show that certain strong uniform
lower bounds imply nonuniform lower bounds. For example, if an
EXP-complete problem cannot be solved by a uniform algorithm in
the second level of the polynomial-time hierarchy (like NP but with
two nondeterministic quantifiers, cf. Section 3.3), then it also cannot be
solved by polynomial-sized circuits. Subsequent strengthenings of the
Karp-Lipton Theorem (based on the theory of interactive proofs) show
that if EXP # MA (where MA is like NP but allows probabilistic ver-
ification of witnesses), then EXP ¢ P /poly [42]; consequently one gets
pseudorandom generators with arbitrary polynomial stretch (secure for
infinitely many input lengths) under the assumption EXP # MA [43].

Assuming the Karp—-Lipton Theorem cannot be further improved
(e.g., to show EXP ¢ P/poly < EXP # BPP), from a uniform
assumption such as EXP # BPP, we can only hope to construct
pseudorandom generators that are secure against uniform distinguish-
ers (because pseudorandom generators secure against nonuniform
distinguishers imply nonuniform lower bounds, by Problem 7.1).
In the context of cryptographic pseudorandom generators, uniform
results were typically developed together with or soon after the cor-
responding nonuniform results. Indeed, analogously to Theorem 7.11,
it is known that cryptographic pseudorandom generators that are
secure against uniform distinguishers exist if and only if there exist
one-way functions that are hard to invert by uniform algorithms [197].
For noncryptographic, mildly explicit pseudorandom generators as
in Theorem 7.63 and Corollary 7.64, an obstacle is that black-box
constructions (Definition 7.65) require nonuniform advice in the
reduction. (See discussion at the end of Section 7.7.2. This obstacle
is avoided in the case of cryptographic pseudorandom generators,
because the appropriate definition of black-box construction from
one-way functions gives the reduction oracle access to the one-way
function in addition to the distinguisher, since one-way functions are
supposed to be efficiently computable by definition.)

294 Conclusions

Thus, we must turn to non-black-box constructions, in which we
make more use of the fact that the hard function f is computable in E
and/or the fact that the distinguisher T is computable by an efficient
probabilistic algorithm, not just to deduce that G is mildly explicit
and Red” is efficient. In fact, f and T need not even be used as
oracles; we can make use of the code of the programs computing these
functions (e.g., to reduce f to an E-complete problem). While at first
it may seem difficult to take advantage of non-black-box constructions,
this was eventually accomplished by Impagliazzo and Wigderson [216].
They showed that if EXP # BPP, then there are mildly explicit pseu-
dorandom generators with polynomial stretch that are secure against
uniform probabilistic distinguishers (for infinitely many input lengths),
and hence BPP has subexponential-time average-case derandomiza-
tions (by Problem 7.9). (See [397] for a precise statement regarding the
construction of pseudorandom generators.) This is a uniform analogue
of the “low-end” nonuniform result in Corollary 7.64 (Item 3). Ana-
logues for the high-end bounds (Items 1, 2) remain open. For example:

Open Problem 8.7. Does EXP ¢ BPSUBEXP imply mildly
explicit generators G : {0,1}Ples(™) _, £0 1}™ whose input is pseu-
dorandom to every uniform probabilistic algorithm running in time m
(for infinitely many m)?

Such a result is known if we replace EXP by PSPACE [397].

For derandomizing AM instead of BPP, both high-end and
low-end uniform results have been obtained [195, 358]. These results
utilize hard functions in E, unlike the nonuniform results which only
require hard functions in NE N co-NE (cf. Theorem 7.68).

Derandomization Implies Circuit Lower Bounds. Since uni-
form hardness assumptions and PRGs against uniform distinguish-
ers only seem to imply average-case derandomizations (Problem 7.9),
it is tempting to conjecture that worst-case derandomizations imply
(or are even equivalent to) nonuniform circuit lower bounds. A result
of this type was first given implicitly by Buhrman, Fortnow, and

8.2 Other Topics in Pseudorandomness 295

Thierauf [86] and then explicitly and in stronger form by Impagli-
azzo, Kabanets, and Wigderson [212]. Specifically, these results show
that if MA (like NP, but with probabilistic verification of witnesses)
can be derandomized (e.g., MA = NP or even MA C NSUBEXP),
then NEXP ¢ P/poly. Derandomization of prBPP implies deran-
domization of MA, so this also implies that if prBPP = prP or
even prBPP C prSUBEXP, then NEXP ¢ P /poly. This result falls
short of giving a converse to Corollary 7.64 (Item 3) because the circuit
lower bounds are for NEXP rather than EXP. (Corollary 7.64, as well
as most of the other derandomization results we’ve seen, apply equally
well to prBPP as to BPP.) In addition, the result does not give expo-
nential circuit lower bounds even if we assume full derandomization
(prBPP = prP). However, Santhanam [347] shows that prBPP =
prP implies that for every constant k, there is a language in NP that
does not have circuits of size n*, which can be viewed as a “scaled down”
version of the statement that NE requires circuits of size 29 2
Thus, the following remain open:

Open Problem 8.8. Does prBPP =prP imply E ¢ P/poly
(equivalently EXP ¢ P /poly, by Problem 7.2)?

Open Problem 8.9. Does prBPP = prP imply that NEXP has a
problem requiring nonuniform boolean circuits of size 2¢*" on inputs
of length ¢7

By the result of [212] and Corollary 2.31, finding a determin-
istic polynomial-time algorithm for the prBPP-complete problem
[+¢e]-Approx Circuit Average implies superpolynomial circuit lower
bounds for NEXP. Unfortunately, we do not know a wide variety
of natural problems that are complete for prBPP (unlike NP).
Nevertheless, Kabanets and Impagliazzo [227] showed that finding
a deterministic polynomial-time algorithm for Polynomial Identity

2Indeed, by a standard “padding” or “translation” argument in complexity theory, if for
some constant k, every language in NP had circuits of size n¥, then every language in
NE would have circuits of size 20(")

296 Conclusions

Testing implies that either NEXP ¢ P /poly or that the Permanent
does not have polynomial-sized arithmetic circuits, both of which
are long-standing open problems in complexity theory. (See [1] for a
simpler and somewhat stronger proof.) Polynomial Identity Testing is
in co-RP, by Theorem 2.12, but is not known to be complete for any
randomized complexity class. Of course, it is also of interest to find
additional complete problems for prBPP:

Open Problem 8.10. Find combinatorial or algebraic complete
problems for any randomized complexity classes (e.g., prBPP, prRP,
prAM, BPP, RP, ZPP).

Derandomizations of prAM are also known to imply circuit lower
bounds, which are stronger than what the aforementioned results give
from derandomizations of prBPP in that they either yield exponential-
size bounds [38] or give lower bounds for nondeterministic circuits [39].

One interesting interpretation of many of these results is to show
that if derandomization is possible via any means (for all of prBPP or
prAM), then it can be done in a canonical way — via pseudorandom
generators (because these results show that derandomization implies
circuit lower bounds, which in turn imply pseudorandom generators
via Theorem 7.63). A recent work by Goldreich [163] directly proves
equivalences between various kinds of derandomizations of prBPP
(e.g., worst-case or average-case) and various forms of pseudoran-
dom generators, without going through circuit lower bounds. (See
Problem 7.10.)

Another reason for the interest in these results is that they suggest
derandomization as a potential approach to proving circuit lower
bounds. Indeed, derandomization results have played a role in some
state-of-the-art lower bounds, namely the result of Buhrman, Fortnow,
and Thierauf [86] that MAEXP (the exponential-time analogue of
MA) is not in P/poly, and the result of Williams [418, 419] that
NEXP is not in ACC (which is defined like AC® but also allowing
unbounded fan-in gates that test whether their inputs sum to zero
modulo m, for any constant m). The result of Kabanets and Impagli-
azzo [227] (along with [7]) has also been one of the motivations for

8.2 Other Topics in Pseudorandomness 297

the recent line of work on derandomizing Polynomial Identity Testing
for low-depth arithmetic circuits. (See the Notes and References of
Section 2.)

8.2.3 Hardness Amplification

As discussed in Section 7.6.1, hardness amplification is the task
of taking a computational problem that is mildly hard on average
and making it much more hard on average. Hardness amplifica-
tion was introduced by Yao, in oral presentations of his paper
[421]. Specifically, he suggested the “Direct Product” construction
fi(x1,..,xp) = (f(z1),-.., f(xr)) to convert a weak one-way function
f (one that is mildly hard to invert) into a standard “strong” one-way
function f’ (satisfying Definition 7.10), and an “XOR Lemma”
showing that if a Boolean function f is mildly hard to compute,
then f'(x1,...,25) = f(z1) ® f(x2) @ --- f(xx) is very hard on average
to compute. These were tools used in his proof that weak one-way
permutations imply pseudorandom generators. These results have
been generalized and strengthened in a number of ways:

Quantitative Bounds: It is of interest to have tight bounds on
the hardness of f’ as a function of the hardness of f and k. For
the Direct Product construction, if f is & average-case-hard, then
intuitively we expect f’ to be roughly (1 — (1 — 6)*) average-case-hard,
corresponding to the fact that an efficient algorithm trying to compute
f' should have probability at most 1 —§ of solving each of the k
instances correctly. Similarly, in the case of the XOR Lemma, we
expect that if f is (1 — §)/2 average-case-hard, then f’ should be
roughly (1 — §%)/2-average-case hard. Levin [259] proved a version
of the XOR Lemma that gives such a tight bound, and his proof
technique also extends to the Direct Product construction (see [171]).

Derandomization: Goldreich, Impagliazzo, Levin, Venkatesan, and
Zuckerman [166] gave derandomized hardness amplification results
for converting weak one-way permutations and weak regular one-way
functions into strong ones, where the inputs x; are not independent but
are generated in some pseudorandom way from a short seed that is the

298 Conclusions

input to f’. Impagliazzo and Wigderson [208, 215] gave derandomized
versions of the XOR Lemma and a Direct Product Lemma (for
hard-to-compute boolean functions). These results were used in the
first proof, due to [215], that P = BPP if E requires exponential-size
circuits. Recall that the proof we saw in Section 7 avoids hardness
amplification, and instead goes directly from worst-case hardness to
strong average-case hardness via locally list-decodable codes (following
[381]). Nevertheless, hardness amplification is still of interest because
it can be implemented in lower complexity than worst-case-to-average-
case amplification. Indeed, hardness amplification (starting from mild
average-case hardness) can be implemented in polynomial time with
oracle access to f, whereas Viola [411] has shown that black-box
worst-case-to-average-case amplification (per Definition 7.74) cannot
be implemented in the polynomial-time hierarchy (due to needing to
compute a list-decodable encoding of the truth table of f). Indeed,
another line of work has investigated hardness amplification for
functions in NP.

Hardness Amplification in NP: The study of this topic was
initiated in the work of O’Donnell [304]. The goal is to show that
if NP has a function f that is mildly hard on average, then it
has a function f’ that is very hard on average. Yao’s XOR Lemma
does not prove this because f being in NP does not imply that
f(xy,..,xp) = f(z1) @ - @ f(z) is also in NP, assuming that
NP # co-NP (which is commonly conjectured). Thus, O’Donnell
examines constructions of the form f'(x1,...,2x) = C(f(z1),..., f(zk)),
where C'is an efficiently computable and monotone combining function
(i.e., changing an input of C' from 0 to 1 cannot change the output
from 1 to 0). He characterizes the amplification properties of C in
terms of its “noise stability,” thereby connecting the study of hardness
amplification with the analysis of boolean functions (see [305] for more
on this topic). He uses this connection to find monotone functions C
with nearly optimal amplification properties, namely ones that will
ensure that the function f’ is roughly (1/2 — O(1/vk))-hard if it is
obtained by combining k evaluations of f. Contrast this bound with
the XOR Lemma, where C' is the (non-monotone) parity function and

8.2 Other Topics in Pseudorandomness 299

ensures that f’is (1/2 — 1/2%(")-hard. Healy, Vadhan, and Viola [202]
showed how to derandomize O’Donnell’s construction, so that the
inputs z1,...,z; can be generated in a correlated way by a much
shorter input to f’. This allows for taking k to be exponential in the
input length of f/; and for certain combining functions C, the function
/" is still in NP (using the ability of a nondeterministic computation
to compute exponential-sized ORs). As a result, assuming that f is
mildly hard for nonuniform algorithms running in time 2% (the
“high end”), they obtain f’ € NP that is (1/2 — 1/2)""*)-hard where
n' is the input length of f’. A quantitative improvement was given by
[273, 179], replacing 2()? with o'/ polylog(n’) "hyt it remains open to
achieve the optimal bound of 29",

Uniform Reductions: Another line of work has sought to give
hardness amplification results for uniform algorithms, similarly to
the work on derandomization from uniform assumptions described in
Section 8.2.2. Like with cryptographic pseudorandom generators, most
of the hardness amplification results in the cryptographic setting, such
as Yao’s original hardness amplification for one-way functions [421],
also apply to uniform algorithms. In the noncryptographic setting,
a difficulty is that black-box hardness amplification corresponds to
error-correcting codes that can be decoded from very large distances,
such as 1/2 — ¢ in the case of binary codes, and at these distances
unique decoding is impossible, so one must turn to list decoding and
use some nonuniform advice to select the correct decoding from the
list. (See Definition 7.74 and the discussion after it. For amplification
from mild average-case hardness rather than worst-case hardness, the
coding-theoretic interpretation is that the decoding algorithm only
needs to recover a string that is very close to the original message,
rather than exactly equal to the message [209, 390]; this also requires
list decoding for natural settings of parameters.) However, unlike
the case of pseudorandom generator constructions, here the number
of candidates in the list can be relatively small (e.g., poly(1l/e)),
so a reasonable goal for a uniform algorithm is to produce a list of
possible decodings, as in our definition of locally list-decodable codes
(Definition 7.54). As observed in [216, 397, 390], if we are interested in

300 Conclusions

amplifying hardness for functions in natural complexity classes such as
NP or E, we can use (non-black-box) “checkability” properties of the
initial function f to select a good decoding from the list, and thereby
obtain a fully uniform hardness amplification result.

Uniform local list-decoding algorithms for the Reed—Muller Code
were given by [35, 381] (as covered in Section 7), and were used to give
uniform worst-case-to-average-case hardness amplification results for
E and other complexity classes in [397]. Trevisan [390, 392] initiated
the study of uniform hardness amplification from mild average-case
hardness, giving uniform analogues of some of the hardness ampli-
fication results from [208, 304]. Impagliazzo, Jaiswal, Kabanets, and
Wigderson [210, 211] gave nearly optimal uniform Direct Product
Theorems and XOR Lemmas. The existing uniform amplification
results still do not quite match the nonuniform results in two respects.
First, the derandomizations are not quite as strong; in particular, it
is not known how to achieve an optimal “high end” result, converting
a function on n-bit inputs that is mildly average-case hard against
algorithms that run in time 22" into a function on O(n)-bit inputs
that is (1/2 — 1/2%M™)-hard against time 2™, (In the nonuniform
setting, this was achieved by [215].) Second, for hardness amplification
in NP, the existing uniform results only amplify a function that is
mildly hard against algorithms running in time ¢ to ones that are
(1/2 — 1/(logt)®M)-hard, rather than (1/2 —1/t*1)-hard, which
is achieved in the nonuniform case by [304, 202]. See [88] for a
coding-theoretic approach to closing this gap.

Other Cryptographic Primitives: There has also been a large
body of work on security amplification for other kinds of cryptographic
primitives and interactive protocols (where the goal of the adversary
is much more complex than just computing or inverting a function).
Describing this body of work is beyond the scope of this survey, so we
simply refer the interested reader to [119, 105, 388] and the references
therein.

A key component of many hardness amplification results mentioned
above is the Hardcore Theorem of Impagliazzo [208] and variants. In
its basic form, this theorem states that if a function f is mildly hard

8.2 Other Topics in Pseudorandomness 301

on average, then there is a hardcore set of inputs, of noticeable density,
on which the function is very hard on average. Thus, intuitively,
hardness amplification occurs when we evaluate a function many times
because we are likely to hit the hardcore set. Since Impagliazzo’s
original paper, there have been a number of papers giving quantitative
improvements to the Hardcore Theorem [243, 206, 45]. In addition
to its applications in hardness amplification, the Hardcore Theorem
has been shown to be closely related to “boosting” in machine learn-
ing [243], “dense model theorems” that have applications in additive
number theory and leakage-resilient cryptography [127, 329, 395],
computational analogues of entropy [49, 106, 145, 257, 329, 381, 401],
and “regularity lemmas” in the spirit of Szemerédi’s Regularity
Lemma in graph theory [396]. One downside of using the Hardcore
Theorem is that the (black-box) reductions in its proofs inherently
require a lot of nonuniform advice [274]. As shown by Holenstein [206],
this nonuniformity can often be avoided in cryptographic settings,
where one can efficiently sample random pairs (z, f(z)); his “uniform”
analogue of the Hardcore Theorem and variants have played a key
role in simplifying and improving the construction of cryptographic
pseudorandom generators from one-way functions [198, 206, 401].

8.2.4 Deterministic Extractors

As mentioned in Section 6.5, the study of deterministic extractors has
remained active even after the introduction of seeded extractors. One
reason is that many applications (such as in cryptography, distributed
computing, and Monte Carlo simulation) really require high-quality
random bits, we often only have access to physical sources of random-
ness, and the trick of enumerating the seeds of a seeded extractor does
not work in these contexts. Another is that deterministic extractors
for certain classes of sources often have other applications of interest
(even in contexts where we allow sources of truly random bits). For
these reasons, after nearly a decade of work on simulating BPP with
weak sources and seeded extractors, there was a resurgence of interest
in deterministic extractors for various classes of sources [90, 398].

302 Conclusions

One important class of sources are those that consist of a
small number of independent k-sources, first studied by Chor and
Goldreich [96] (following [346, 409], who gave extractors for several
independent unpredictable-bit sources). In addition to their motivation
for obtaining high-quality randomness, extractors for 2 independent
sources are of interest because of connections to communication
complexity and to Ramsey theory. (Textbooks on these topics are
[253] and [182], respectively, and their connections to extractors can be
found in [409, 96] and the references below.) In particular, a disperser
for 2 independent k-sources of length n is equivalent to a bipartite
Ramsey graph — a bipartite graph with N vertices on each side that
contains no K x K bipartite clique or K x K bipartite independent
set (for N = 2" and K = 2¥). Giving explicit constructions of Ramsey
graphs that approach K = O(log N) bound given by the probabilistic
method [132] is a long-standing open problem posed by Erdés [133].

Chor and Goldreich [96] gave extractors for 2 independent
k-sources when k >n/2 (e.g., inner-product modulo 2), and there
was no improvement in this bound for nearly 2 decades. Substantial
progress began again with the work of Barak, Impagliazzo, and
Wigderson [46], who used new results in arithmetic combinatorics to
construct extractors for a constant number of independent k-sources
when k = dn for an arbitrarily small constant § > 0. Specifically, they
used the Sum-Product Theorem over finite fields [79], which says that
for p prime and every subset A C I, whose size is not too close to
p, either the set A + A of pairwise sums or the set A - A of pairwise
products is of size significantly larger than |A|. Arithmetic (and
additive) combinatorics have now been found to be closely connected
to many topics in pseudorandomness and theoretical computer science
more broadly; see the survey of Trevisan [394] and the talks and
lecture notes from the minicourse [50].

A series of subsequent works improved [46] using techniques based
on seeded extractors and condensers, various forms of composition, and
other new ideas, achieving in particular explicit extractors for 3 sources
of min-entropy k = dn [47], extractors for a constant number of sources
of min-entropy k& = n% [318] (notably making no use of arithmetic com-
binatorics), and dispersers for 2 sources of min-entropy k = n°() [48].

8.2 Other Topics in Pseudorandomness 303

The latter result is a substantial improvement over the previous best
explicit construction of Ramsey graphs [141], which avoided cliques and
independent sets of size K = 2V™ and only applied to the nonbipartite
case. Even with all of this progress, the following remains open:

Open Problem 8.11. For every constant é > 0, construct an explicit
function Ext:{0,1}" x {0,1}" — {0,1} such that for every two
independent dn-sources X,Y, Ext(X,Y") is e-close to uniform on {0,1}.

Another line of work considers classes of sources defined by some
measure of “complexity,” for example capturing the complexity of gen-
erating a random sample of the source (from independent coin tosses).
Explicit extractors have been constructed for a variety of models of
space-bounded sources [69, 231, 246, 247, 398, 408]. In particular,
Kamp, Rao, Vadhan, and Zuckerman [231] show how to determin-
istically extract Q(n) bits from any source of min-entropy k= Q(n)
generated by a (nonuniform) algorithm with O(n) space; this results
exploits connections to extracting from multiple independent sources
(as discussed above) as well as from bit-fixing sources (see Section 6.5).
Trevisan and Vadhan [398] suggest to consider sources generated
by small Boolean circuits, and show that under strong complexity
assumptions (similar to, but stronger than, the one in Theorem 7.68),
there is a deterministic extractor computable in time poly(s) that
extracts randomness from sources of min-entropy k= (1 — Q(1))n
generated by circuits of size s, with error € = 1/s. It is necessary that
the extractor has higher computational complexity than the source,?
but the min-entropy and error bounds can potentially be much better:

Open Problem 8.12. Under plausible complexity assumptions, show
that there exists a deterministic extractor computable in time poly(s)
that extracts randomness from sources of min-entropy k generated
by circuits of size s, with error e, for k<n/2 and/or e =s"“),

Alternatively, give evidence that no such extractor exists.

3 Interestingly, for condensers, it no longer seems necessary that the extractor has higher
complexity than the source [120].

304 Conclusions

De and Watson [114] and Viola [414, 415] have recently obtained
unconditional extractors for restricted classes of sampling circuits,
such as NC? (where each output bit depends on a constant number of
input bits) [114, 414] ACP [414], even for sublinear min-entropy. These
results are based on a close connection between constructing extractors
for a class of circuits and finding explicit distributions that are hard
for circuits in the class to sample, the latter a topic that was also
studied for the purpose of proving data structure lower bounds [415].

It is also natural to look at sources that are low complexity in an
algebraic sense. The simplest such model is that of affine sources, which
are uniform over affine subspaces of F" for a finite field F. If the sub-
space has dimension k, then the source is a flat source of min-entropy
klog|F|. For the case of F = Zs, there are now explicit extractors for
affine sources of sublinear min-entropy k = O(n) [78, 422, 262] and dis-
persers for affine sources of subpolynomial min-entropy k = n°) [353].
For large fields F (i.e., |F| = poly(n)), there are extractors for subspaces
of every dimension k£ > 1 [147]. There have also been works on extrac-
tors for sources described by polynomials of degree larger than 1, either
as the output distribution of a low-degree polynomial map [123] or the
zero set of low-degree polynomial (i.e., an algebraic variety) [122].

We remark that several of the state-of-art constructions for
independent sources and affine sources, such as [47, 48, 353], are quite
complicated, using sophisticated compositions and/or machinery from
arithmetic combinatorics. It is of interest to find simpler constructions;
some progress has been made for affine sources in [60, 262] and for inde-
pendent sources in [62] (where the latter in fact gives a reductions from
constructing 2-source extractors to constructing affine extractors).

8.2.5 Algebraic Pseudorandomness

Algebraic Measures of Pseudorandomness. In this survey,
we have mostly focused on statistical and computational measures
of (pseudo)randomness, such as pairwise independence and com-
putational indistinguishability, respectively. It is also of interest to
consider more algebraic measures, because they can be often related to
statistical and/or computational measures, may be convenient for ana-

8.2 Other Topics in Pseudorandomness 305

lyzing algebraic constructions of pseudorandom objects, and can have
applications of their own (e.g., in additive or arithmetic combinatorics).

One of the most basic and important algebraic measures of pseu-
dorandomness is that of a small-bias space, introduced by Naor and
Naor [296]. Here a random variable X = (X7,...,X,,) taking values
in {0,1}" is said to be e-biased iff for every nonempty subset S C [n],
we have (1 — €)/2 < Pr[@®;esX; = 1] < (1 + €)/2. Naor and Naor [296]
presented an explicit generator G :{0,1}¢ — {0,1}" of seed length
d = O(log(n/e)) such that G(Uy) is e-biased; thus G is a pseudorandom
generator fooling all “parity tests.” (Simpler constructions with better
constants are in [19].) This generator has found a variety of applica-
tions, such as almost k-wise independent hash functions [296, 19] (cf.
Problem 3.4), pseudorandom generators for small-width branching
programs [345, 363, 179], derandomization of specific algorithms [296],
and almost-linear-length probabilistically checkable proofs [61, 59].

Small-bias generators have several equivalent formulations. When
viewed appropriately, they are equivalent to [linear error-correcting
codes (as in Problem 5.4) over Fy in which every nonzero codeword has
Hamming weight between (1 — £)/2 and (1 + €)/2 [296, 19]. They are
also equivalent to expanders with spectral expansion 1 — ¢ that have
algebraic structure of a Cayley graph over the group G =75 [24]. (In
general, when G is a group and S C G, the Cayley graph is |S|-regular
digraph on vertex set GG, where the neighbors of vertex g are {gs: s €
S}.) Finally, the small-bias property is equivalent to X being a distribu-
tion on the group G = Z all of whose nontrivial Fourier coefficients are
at most ¢ [296]. Specifically, the fact that the (1 — ¢)/2 < Pr[®;esX; =
1] < (1 +¢)/2 is equivalent to requiring that |E[x¢(X)]| <e, where
Xg(z) = (—1)®ies®i ig the Fourier character of G = Z} indexed by the
set S. (For background on Fourier analysis over finite groups, see the
book by Terras [387], and for a survey of applications in theoretical com-
puter science, see [115] and the references therein.) Thus, we see that
even in an algebraic context, different types of pseudorandom objects
(generators, codes, and expanders) are equivalent.

These different views of small-bias spaces suggest different general-
izations. One is that of linear codes over larger finite fields, which have
been studied extensively in coding theory and of which we’ve seen some

306 Conclusions

examples (Problem 5.4). Another is to consider Cayley graphs and
Fourier analysis over groups G other than Z%. Over abelian groups, this
generalization is fairly direct; the Fourier coefficients of a small-bias
space on a group G are exactly the eigenvalues of a corresponding Cay-
ley graph over the group G. For many abelian groups, including those
of the form G = Zj; for prime p, there are known explicit constructions
of small-bias generators with seed length O(loglog|G| + log(1/¢)),
corresponding to explicit Cayley expanders of spectral expansion 1 — &
and degree poly(log|G|,1/¢) [240, 9, 135, 40, 321, 21|. However, there
are benefits in working with nonabelian groups, as Cayley expanders
over abelian groups G require degree Q(logN), where N = |G| is
the number of vertices [24]. The logarithmic degree lower bound for
expanders over abelian groups also holds for the more general notion of
Schreier graphs, where the group G acts as permutations on the vertex
set V', and we connect a vertex v € V' to s(v) for every s € S for some
subset S C G. On the other hand, many of the algebraic constructions
of constant-degree expanders, including Ramanujan graphs and the
others described in Section 4.3.1, are obtained as Cayley graphs or
Schreier graphs over nonabelian groups. The spectral expansion of
these constructions can be analyzed via group representation theory,
which is more involved than Fourier analysis over abelian groups,
because it deals with matrix-valued (rather than scalar-valued)
functions. See the surveys by Hoory, Linial, and Wigderson [207]
and Lubotzky [276], the lecture notes of Tao [386], and the notes for
Section 4 for more on this and other approaches to analyzing the
expansion of Cayley and Schreier graphs.

In the above, we think of a small-bias generator (according to
the original definition) as producing pseudorandom elements of the
group G = Zy, and consider generalizations to different groups G. An
alternative view is that the small-bias generator produces a sequence
of bits, and the group G = Z% only arises in defining what it means for
the distribution on bit-strings to be pseudorandom. More generally,
we can take G = H™ for any finite group H, and consider a random
variable X = (X1,...,X,,) taking values in {0,1}" to be pseudorandom
if for every (hy,...,h,) € H", the distribution of hi'hy2---hXn is
statistically close to hf1h§2 ---hfn where R = (Ry, ..., R,) is uniformly

8.2 Other Topics in Pseudorandomness 307

distributed in {0,1}". This notion is of interest in part because the
function fy(z1,...,2,) = h7*---h¥» can be computed by a read-once
branching program of width |H| (see Section 8.2.1). Thus constructing
generators fooling such “group product programs” are a natural
warm-up to constructing pseudorandom generators for space-bounded
computation, and in fact are equivalent to constructing generators for
permutation branching programs in the case of constant width [250].
Yet another type of generalization is obtained by expanding the
class of distinguishers from linear functions (which over F are simply
parities) to higher-degree polynomials. A series of recent results has
shown that the sum of d small-bias spaces (over F" for any finite
field IF) cannot be distinguished from uniform by polynomials of degree
d [75, 270, 413]. These results were inspired by and influenced work on
the Gowers uniformity norms from arithmetic combinatorics [180, 181],
which can be viewed as providing a “higher-order Fourier analysis”
and have found numerous applications in theoretical computer science.

(See [394, 50].)

Explicit Constructions via Polynomial Evaluation. As we've
seen in this survey, algebra also provides powerful tools for construct-
ing pseudorandom objects whose definitions make no reference to
algebra. One particularly useful paradigm in such constructions is
polynomial evaluation. Specifically, we construct a pseudorandom
object I' : F* x E — F™, where F is a finite field and E C F? is a set
of evaluation points, by setting I'(f,y) = (f1(y),-.., fm(y)), where we
view f € F" as specifying a low-degree polynomial in ¢ variables, from
which we construct m related low-degree polynomials fi,..., f,, that
we evaluate at the seed y. Reed—Solomon and Reed—Muller Codes
(Constructions 5.14 and 5.16) correspond to the case where m =1
and we take f; = f to be a univariate or multivariate polynomial,
respectively.* In Parvaresh-Vardy Codes (Construction 5.21), we took
f to be a univariate polynomial and obtained the f;s by powering f
modulo an irreducible polynomial. In Folded Reed—Solomon Codes

4In our presentation of Reed—Solomon and Reed-Muller codes, we took E = F*, but many
of the properties of these codes also hold for appropriately chosen subsets of evaluation
points.

308 Conclusions

(Construction 5.23), f;(Y) = f(7*~'Y), so evaluating f; at y amounts
to evaluating f at the related point v*~'y. More generally, if our con-
struction I'(f,y) is obtained by evaluating f at points ¢1(y),...,gm(y)
for linear (or low-degree) functions gi,...,gm, we can also view it as
evaluating the polynomials f1 = f o g1,..., f;u = f © gm at the seed y.
Prior to Parvaresh—Vardy codes, constructions of this type were
used for extractors and pseudorandom generators. Specifically, Mil-
tersen and Vinodchandran [289] show that if we take f to describe
a multivariate polynomial (via low-degree extension) and evaluate it
on the points of a random axis-parallel line through ¥y, we obtain a
hitting-set generator construction against nondeterministic circuits
(assuming f has appropriate worst-case hardness for nondeterministic
circuits); this construction has played a key role in derandomizations
of AM under uniform assumptions [195, 358].° Ta-Shma, Zuck-
erman, and Safra [384] showed that a similar construction yields
randomness extractors with seed length (1 + O(1))logn for polyno-
mially small min-entropy and polynomial entropy loss. Shaltiel and
Umans [356, 399] showed that evaluating the t-variate polynomial f at
the points y,vy, Y%y, ...,¥" 'y, where v is a primitive element of the
field of size |F|' (which we associate with F*) yields both a very good
extractor construction and an optimal construction of pseudorandom
generators from worst-case hard functions. Notice that this construc-
tion is precisely a multivariate analogue of Folded Reed—Solomon
Codes (which came afterwards [188]). Recently, Kopparty, Saraf, and
Yekhanin [249] have introduced yet another useful way of obtaining
the “related polynomials” fi,..., f,,, namely by taking derivatives of
f; this has yielded the first codes with rate approaching 1 while being
locally (list-)decodable in sublinear time [249, 248] as well as codes
matching the optimal rate-distance tradeoff of Folded Reed—Solomon
Codes [193, 248]. All of this suggests that polynomial evaluation
may be a promising approach to obtaining a unified and near-optimal
construction of pseudorandom objects (Open Problem 8.5).

5 The constructions described here have some additional components in addition to the basic
polynomial evaluation framework I'(f,y) = (f1(v),..., fm(y)), for example the seed should
also specify the axis along which the line is parallel in [289] and a position in an “inner
encoding” in [384, 356, 399]. We ignore these components in this informal discussion.

