
6
Randomness Extractors

Randomness extractors are functions that extract almost-uniform bits
from sources of biased and correlated bits. The original motivation for
extractors was to simulate randomized algorithms with weak random
sources as might arise in nature. This motivation is still compelling,
but extractors have taken on a much wider significance in the years
since they were introduced. They have found numerous applications
in theoretical computer science beyond this initial motivating one,
in areas from cryptography to distributed algorithms to hardness of
approximation. More importantly from the perspective of this survey,
they have played a major unifying role in the theory of pseudoran-
domness. Indeed, the links between the various pseudorandom objects
we are studying in this survey (expander graphs, randomness extrac-
tors, list-decodable codes, pseudorandom generators, samplers) were
all discovered through work on extractors (even though now we find it
more natural to present these links in the language of list decoding, as
introduced in Section 5.3).

166

6.1 Motivation and Definition 167

6.1 Motivation and Definition

6.1.1 Deterministic Extractors

Typically, when we design randomized algorithms or protocols, we
assume that all algorithms/parties have access to sources of perfect
randomness, i.e., bits that are unbiased and completely independent.
However, when we implement these algorithms, the physical sources of
randomness to which we have access may contain biases and correla-
tions. For example, we may use low-order bits of the system clock, the
user’s mouse movements, or a noisy diode based on quantum effects.
While these sources may have some randomness in them, the assump-
tion that the source is perfect is a strong one, and thus it is of interest
to try and relax it.

Ideally, what we would like is a compiler that takes any algorithm
A that works correctly when fed perfectly random bits Um, and pro-
duces a new algorithm A′ that will work even if it is fed random bits
X ∈ {0,1}n that come from a “weak” random source. For example, if
A is a BPP algorithm, then we would like A′ to also run in probabilis-
tic polynomial time. One way to design such compilers is to design a
randomness extractor Ext : {0,1}n→ {0,1}m such that Ext(X) is dis-
tributed uniformly in {0,1}m.

IID-Bit Sources. A simple version of this question was already
considered by von Neumann. He looked at sources that consist of
boolean random variables X1,X2, . . . ,Xn ∈ {0,1} that are independent
but biased. That is, for every i, Pr [Xi = 1] = δ for some unknown δ.
How can such a source be converted into a source of independent, unbi-
ased bits? Von Neumann proposed the following extractor: Break all
the variables in pairs and for each pair output 0 if the outcome was
01, 1 if the outcome was 10, and skip the pair if the outcome was 00
or 11. This will yield an unbiased random bit after 1/(2δ(1 − δ)) pairs
on average.

Independent-Bit Sources. Lets now look at a bit more interesting
class of sources in which all the variables are still independent but the
bias is no longer the same. Specifically, for every i, Pr [Xi = 1] = δi and

168 Randomness Extractors

0 < δ ≤ δi ≤ 1 − δ for some constant δ > 0. How can we deal with such
a source?

It can be shown that when we take a parity of � bits from such
an independent-bit source, the result approaches an unbiased coin
flip exponentially fast in �, i.e., |Pr

[⊕�
i=1Xi = 1

] − 1/2| = 2−Ω(�). The
result is not a perfect coin flip but is as good as one for almost all
purposes.

Let’s be more precise about the problems we are studying. A source
on {0,1}n is simply a random variable X taking values in {0,1}n. In
each of the above examples, there is an implicit class of sources being
studied. For example, IndBitsn,δ is the class of sources X on {0,1}n
where the bits Xi are independent and satisfy δ ≤ Pr[Xi = 1] ≤ 1 − δ.
We could define IIDBitsn,δ to be the same with the further restric-
tion that all of the Xis are identically distributed, i.e., Pr[Xi = 1] =
Pr[Xj = 1] for all i, j, thereby capturing von Neumann sources.

Definition 6.1 (deterministic extractors). 1 Let C be a class of
sources on {0,1}n. An ε-extractor for C is a function Ext : {0,1}n→
{0,1}m such that for every X ∈ C, Ext(X) is “ε-close” to Um.

Note that we want a single function Ext that works for all sources
in the class. This captures the idea that we do not want to assume
we know the exact distribution of the physical source we are using,
but only that it comes from some class. For example, for IndBitsn,δ,
we know that the bits are independent and none are too biased, but
not the specific bias of each bit. Note also that we only allow the
extractor one sample from the source X. If we want to allow mul-
tiple independent samples, then this should be modelled explicitly in
our class of sources; ideally we would like to minimize the independence
assumptions used.

We still need to define what we mean for the output to be ε-close
to Um.

1 Such extractors are called deterministic or seedless to contrast with the probabilistic or
seeded randomness extractors we will see later.

6.1 Motivation and Definition 169

Definition 6.2.For random variables X and Y taking values in U , their
statistical difference (also known as variation distance) is ∆(X,Y) =
maxT⊂U |Pr[X ∈ T] − Pr[Y ∈ T]|. We say that X and Y are ε-close if
∆(X,Y) ≤ ε.

Intuitively, any event in X happens in Y with the same proba-
bility ±ε. This is perhaps the most natural measure of distance for
probability distributions (much more so than the �2 distance we used
in the study of random walks). In particular, it satisfies the following
natural properties.

Lemma 6.3(properties of statistical difference). Let X,Y,Z,X1,
X2,Y1,Y2 be random variables taking values in a universe U . Then,

(1) ∆(X,Y) ≥ 0, with equality iff X and Y are identically dis-
tributed,

(2) ∆(X,Y) ≤ 1, with equality iff X and Y have disjoint sup-
ports,

(3) ∆(X,Y) = ∆(Y,X),
(4) ∆(X,Z) ≤ ∆(X,Y) + ∆(Y,Z),
(5) for every function f , we have ∆(f(X),f(Y)) ≤ ∆(X,Y),
(6) ∆((X1,X2),(Y1,Y2)) ≤ ∆(X1,Y1) + ∆(X2,Y2) if X1 and X2,

as well as Y1 and Y2, are independent, and
(7) ∆(X,Y) = 1

2 · |X − Y |1, where | · |1 is the �1 distance. (Thus,
X is ε-close to Y iff we can transform X into Y by “shifting”
at most an ε fraction of probability mass.)

We now observe that extractors according to this definition give us
the “compilers” we want.

Proposition 6.4. Let A(w;r) be a randomized algorithm such that
A(w;Um) has error probability at most γ, and let Ext : {0,1}n→
{0,1}m be an ε-extractor for a class C of sources on {0,1}n. Define
A′(w;x) = A(w;Ext(x)). Then for every source X ∈ C, A′(w;X) has
error probability at most γ + ε.

170 Randomness Extractors

This application identifies some additional properties we’d like from
our extractors. We’d like the extractor itself to be efficiently computable
(e.g., polynomial time). In particular, to get m almost-uniform bits
out, we should need at most n = poly(m) bits from the weak random
source.

We can cast our earlier extractor for sources of independent bits in
this language:

Proposition 6.5. For every constant δ > 0, every n,m ∈ N, there is
a polynomial-time computable function Ext : {0,1}n→ {0,1}m that is
an ε-extractor for IndBitsn,δ, with ε = m · 2−Ω(n/m).

In particular, taking n = m2, we get exponentially small error with
a source of polynomial length.

Proof. Ext breaks the source into m blocks of length �n/m� and out-
puts the parity of each block.

Unpredictable-Bit Sources (aka Santha–Vazirani Sources).
Another interesting class of sources, which looks similar to the pre-
vious example is the class UnpredBitsn,δ of unpredictable-bit sources.
These are the sources that for every i, every x1, . . . ,xn ∈ {0,1} and some
constant δ > 0, satisfy

δ ≤ Pr[Xi = 1 | X1 = x1,X2 = x2, . . . ,Xi−1 = xi−1] ≤ 1 − δ

The parity extractor used above will be of no help with this source since
the next bit could be chosen in a way that the parity will be equal to 1
with probability δ. Indeed, there does not exist any nontrivial extractor
for these sources — the best we can do is output the first bit:

Proposition 6.6. For every n ∈ N, δ > 0, and fixed extraction func-
tion Ext : {0,1}n→ {0,1} there exists a source X ∈ UnpredBitsn,δ such
that either Pr [Ext(X) = 1] ≤ δ or Pr [Ext(X) = 1] ≥ 1 − δ. That is,
there is no ε-extractor for UnpredBitsn,δ for ε < 1/2 − δ.

6.1 Motivation and Definition 171

The proof is left as an exercise (Problem 6.6).
Nevertheless, as we will see, the answer to the question whether we

can simulate BPP algorithms with unpredictable sources will be “yes”!
Indeed, we will even be able to handle a much more general class of
sources, introduced in the next section.

6.1.2 Entropy Measures and General Weak Sources

Intuitively, to extract m almost-uniform bits from a source, the source
must have at least “m bits of randomness” in it. (In particular, its
support cannot be much smaller than 2m.) Ideally, this is all we would
like to assume about a source. Thus, we need some measure of how much
randomness is in a random variable; this can be done using various
notions of entropy described below.

Definition 6.7 (entropy measures). Let X be a random variable.
Then

• the Shannon entropy of X is:

HSh(X) = E
x

R←X

[
log

1
Pr [X = x]

]
.

• the Rényi entropy of X is:

H2(X) = log

(
1

E
x

R←X
[Pr [X = x]]

)
= log

1
CP(X)

, and

• the min-entropy of X is:

H∞(X) = min
x

{
log

1
Pr [X = x]

}
,

where all logs are base 2.

Rényi entropy H2(X) should not be confused with the binary
entropy function H2(δ) from Definition 5.6. Indeed, the q-ary entropy
Hq(δ) is equal to the Shannon entropy of a random variable that equals
1 with probability 1 − δ and is uniformly distributed in {2, . . . , q} with
probability δ.

172 Randomness Extractors

All the three measures satisfy the following properties we would
expect from a measure of randomness:

Lemma 6.8 (properties of entropy). For each of the entropy mea-
sures H ∈ {HSh ,H2,H∞} and random variables X,Y , we have:

• H(X) ≥ 0, with equality iff X is supported on a single
element,

• H(X) ≤ log |Supp(X)|, with equality iff X is uniform on
Supp(X),

• if X,Y are independent, then H((X,Y)) = H(X) + H(Y),
• for every deterministic function f , we have H(f(X)) ≤ H(X),

and
• for every X, we have H∞(X) ≤ H2(X) ≤ HSh(X).

To illustrate the differences between the three notions, consider a
source X such that X = 0n with probability 0.99 and X = Un with
probability 0.01. Then HSh(X) ≥ 0.01n (contribution from the uniform
distribution), H2(X) ≤ log(1/0.992) < 1 and H∞(X) ≤ log(1/0.99) < 1
(contribution from 0n). Note that even though X has Shannon entropy
linear in n, we cannot expect to extract bits that are close to uniform or
carry out any useful randomized computations with one sample from X,
because it gives us nothing useful 99% of the time. Thus, we should use
the stronger measures of entropy given by H2 or H∞.

Then why is Shannon entropy so widely used in information theory
results? The reason is that such results typically study what happens
when you have many independent samples from the source (whereas we
only allow one sample). In the case of many samples, it turns out that
the source is “close” to one where the min-entropy is roughly equal
to the Shannon entropy. Thus the distinction between these entropy
measures becomes less significant. Moreover, Shannon entropy satisfies
many nice identities that make it quite easy to work with. Min-entropy
and Rényi entropy are much more delicate.

6.1 Motivation and Definition 173

We will consider the task of extracting randomness from sources
where all we know is a lower bound on the min-entropy:

Definition 6.9. A random variable X is a k-source if H∞(X) ≥ k, i.e.,
if Pr [X = x] ≤ 2−k.

A typical setting of parameters is k = δn for some fixed δ, e.g.,
0.01. We call δ the min-entropy rate. Some different ranges that are
commonly studied (and are useful for different applications): k =
polylog(n), k = nγ for a constant γ ∈ (0,1), k = δn for a constant
δ ∈ (0,1), and k = n − O(1). The middle two (k = nγ and k = δn) are
the most natural for simulating randomized algorithms with weak ran-
dom sources.

Examples of k-sources:

• k random and independent bits, together with n − k fixed
bits (in an arbitrary order). These are called oblivious bit-
fixing sources.

• k random and independent bits, and n − k bits that depend
arbitrarily on the first k bits. These are called adaptive bit-
fixing sources.
• Unpredictable-bit sources with bias parameter δ. These are

k-sources with k = log(1/(1 − δ)n) = Θ(δn).
• Uniform distribution on a set S ⊂ {0,1}n with |S| = 2k.

These are called flat k-sources.

It turns out that flat k-sources are really representative of general
k-sources.

Lemma 6.10. Every k-source is a convex combination of flat k-sources
(provided that 2k ∈ N), i.e., X =

∑
piXi with 0 ≤ pi ≤ 1,

∑
pi = 1 and

all the Xi are flat k-sources.

That is, we can think of any k-source as being obtained by first selecting
a flat k-source Xi according to some distribution (given by the pis) and

174 Randomness Extractors

then selecting a random sample from Xi. This means that if we can
compile probabilistic algorithms to work with flat k-sources, then we
can compile them to work with any k-source.

Proof. Let X be a k-source on [N]. We can view X as partitioning a
circle of unit circumference into N (half-open) intervals, where the tth
interval has length exactly Pr[X = t]. (If we associate the points on the
circle with [0,1), then the tth interval is [Pr[X < t],Pr[X ≤ t]).) Now
consider a set S of K points spaced evenly on the circle. Then since
each interval is half-open and has length at most 1/K, each interval
contains at most one point from S, so the uniform distribution on the
set T (S) = {t : S ∩ It �= ∅} is a flat k-source. Moreover, if we perform a
uniformly random rotation of S on the circle to obtain a rotated set R

and then choose a uniformly random element of T (R), the probability
that we output any value t ∈ [N] is exactly the length of It, which equals
Pr[X = t]. Thus we have decomposed X as a convex combination of flat
k-sources. (Specifically, X =

∑
T pT UT , where the sum is over subsets

T ⊆ [N] of size K, and pT = PrR[T (R) = T].)

We also sketch another proof of Lemma 6.10 that can be more
easily generalized to other classes of sources. We can view a random
variable X taking values in [N] as an N -dimensional vector, where
X(i) is the probability mass of i. Then X is a k-source if and only if
X(i) ∈ [0,2−k] for every i ∈ [N] and

∑
i X(i) = 1. The set of vectors

X satisfying these linear inequalities is a convex polytope in RN . By
basic linear programming theory, all of the points in the polytope are
convex combinations of its vertices, which are defined to be the points
that make a maximal subset of the inequalities tight. By inspection, the
vertices of the polytope of k-sources are those sources where X(i) = 2−k

for 2k values of i and X(i) = 0 for the remaining values of i; these are
simply the flat k-sources.

6.1.3 Seeded Extractors

Proposition 6.6 tells us that it is impossible to have deterministic
extractors for unpredictable sources. Here we consider k-sources, which
are more general than unpredictable sources, and hence it is also

6.1 Motivation and Definition 175

impossible to have deterministic extractors for them. The impossibility
result for k-sources is stronger and simpler to prove.

Proposition 6.11. For any Ext : {0,1}n→ {0,1} there exists an
(n − 1)-source X so that Ext(X) is constant.

Proof. There exists b ∈ {0,1} so that |Ext−1(b)| ≥ 2n/2 = 2n−1. Then
let X be the uniform distribution on Ext−1(b).

On the other hand, if we reverse the order of quantifiers, allowing the
extractor to depend on the source, it is easy to see that good extractors
exist and in fact a randomly chosen function will be a good extractor
with high probability.

Proposition 6.12. For every n,k,m ∈ N, every ε > 0, and every flat
k-source X, if we choose a random function Ext : {0,1}n→ {0,1}m with
m = k − 2log(1/ε) − O(1), then Ext(X) will be ε-close to Um with
probability 1 − 2−Ω(Kε2), where K = 2k.

(In this section, we will make extensive use of the convention that
capital variables are 2 raised to the power of the corresponding lower-
case variable, such as K = 2k above.)

Proof. Choose our extractor randomly. We want it to have following
property: for all T ⊂ [M], |Pr[Ext(X) ∈ T] − Pr[Um ∈ T]| ≤ ε. Equiva-
lently, |{x ∈ Supp(X) : Ext(x) ∈ T}|/K differs from the density µ(T)
by at most ε. For each point x ∈ Supp(X), the probability that
Ext(x) ∈ T is µ(T), and these events are independent. By the Chernoff
Bound (Theorem 2.21) for each fixed T , this condition holds with prob-
ability at least 1 − 2−Ω(Kε2). Then the probability that condition is
violated for at least one T is at most 2M2−Ω(Kε2), which is less than 1
for m = k − 2log(1/ε) − O(1).

Note that the failure probability is doubly-exponentially small in k.
Naively, one might hope that we could get an extractor that’s good for
all flat k-sources by a union bound. But the number of flat k-sources

176 Randomness Extractors

is
(
N
K

) ≈ NK (where N = 2n), which is unfortunately a larger double-
exponential in k. We can overcome this gap by allowing the extractor
to be “slightly” probabilistic, i.e., allowing the extractor a seed con-
sisting of a small number of truly random bits in addition to the weak
random source. We can think of this seed of truly random bits as a
random choice of an extractor from family of extractors. This leads to
the following crucial definition:

Definition 6.13 (seeded extractors). A function Ext : {0,1}n ×
{0,1}d→ {0,1}m is a (k,ε)-extractor if for every k-source X on {0,1}n,
Ext(X,Ud) is ε-close to Um.

(Sometimes we will refer to extractors Ext : [N] × [D]→ [M] whose
domain and range do not consist of bit-strings. These are defined in the
natural way, requiring that Ext(X,U[D]) is ε-close to U[M].)

The goal is to construct extractors that minimize d and maximize m.
We prove the following theorem.

Theorem 6.14. For every n ∈ N, k ∈ [0,n] and ε > 0, there exists
a (k,ε)-extractor Ext : {0,1}n × {0,1}d→ {0,1}m with m = k + d −
2log(1/ε) − O(1) and d = log(n − k) + 2log(1/ε) + O(1).

One setting of parameters to keep in mind (for our application of
simulating randomized algorithms with a weak source) is k = δn, with δ

a fixed constant (e.g., δ = 0.01), and ε a fixed constant (e.g., ε = 0.01).

Proof. We use the Probabilistic Method. By Lemma 6.10, it suffices for
Ext to work for flat k-sources. Choose the extractor Ext at random.
Then the probability that the extractor fails is at most the number of
flat k-sources times the probability Ext fails for a fixed flat k-source.
By the above proposition, the probability of failure for a fixed flat k-
source is at most 2−Ω(KDε2), since (X,Ud) is a flat (k + d)-source) and
m = k + d − 2log(1

ε) − O(1). Thus the total failure probability is at
most (

N

K

)
· 2−Ω(KDε2) ≤

(
Ne

K

)K

2−Ω(KDε2).

6.1 Motivation and Definition 177

The latter expression is less than 1 if Dε2 ≥ c log(Ne/K) = c·
(n − k) + c′ for constants c,c′. This is equivalent to d ≥ log(n − k) +
2log(1

ε) + O(1).

It turns out that both bounds (on m and d) are individually tight
up to the O(1) terms.

Recall that our motivation for extractors was to simulate random-
ized algorithms given only a weak random source, so allowing a truly
random seed may seem to defeat the purpose. However, if the seed is
of logarithmic length as in Theorem 6.14, then instead of selecting it
randomly, we can enumerate all possibilities for the seed and take a
majority vote.

Proposition 6.15. Let A(w;r) be a randomized algorithm for
computing a function f such that A(w;Um) has error probability
at most γ (i.e., Pr[A(w;Um) �= f(w)] ≤ γ]), and let Ext : {0,1}n ×
{0,1}d→ {0,1}m be a (k,ε)-extractor. Define

A′(w;x) = maj
y∈{0,1}d

{A(w;Ext(x,y))}.

Then for every k-source X on {0,1}n, A′(w;X) has error probability
at most 2 · (γ + ε).

Proof. The probability that A(w;Ext(X,Ud)) is incorrect is not more
than the probability A(w;Um) is incorrect plus ε, i.e., γ + ε, by
the definition of statistical difference. Then the probability that
majy A(w,Ext(X,y)) is incorrect is at most 2 · (γ + ε), because each
error of majy A(w;Ext(x,y)) corresponds to A(w;Ext(x,Ud)) erring
with probability at least 1/2.

Note that the enumeration incurs a 2d factor slowdown in the sim-
ulation. Thus, to retain running time poly(m), we want to construct
extractors where (a) d = O(logn); (b) Ext is computable in polynomial
time; and (c) m = nΩ(1).

We remark that the error probability in Proposition 6.15 can actu-
ally be made exponentially small by using an extractor that is designed
for slightly lower min-entropy. (See Problem 6.2.)

178 Randomness Extractors

We note that even though seeded extractors suffice for simulating
randomized algorithms with only a weak source, they do not suffice
for all applications of randomness in theoretical computer science. The
trick of eliminating the random seed by enumeration does not work, for
example, in cryptographic applications of randomness. Thus the study
of deterministic extractors for restricted classes of sources remains a
very interesting and active research direction. We, however, will focus
on seeded extractors, due to their many applications and their connec-
tions to the other pseudorandom objects we are studying.

6.2 Connections to Other Pseudorandom Objects

As mentioned earlier, extractors have played a unifying role in the
theory of pseudorandomness, through their close connections with a
variety of other pseudorandom objects. In this section, we will see two
of these connections. Specifically, how by reinterpreting them appropri-
ately, extractors can be viewed as providing families of hash functions,
and as being a certain type of highly expanding graphs.

6.2.1 Extractors as Hash Functions

Proposition 6.12 says that for any subset S ⊂ [N] of size K, if we choose
a completely random hash function h : [N]→ [M] for M K, then h

will map the elements of S almost-uniformly to [M]. Equivalently, if
we let H be distributed uniformly over all functions h : [N]→ [M] and
X be uniform on the set S, then (H,H(X)) is statistically close to
(H,U[M]), where we use the notation UT to denote the uniform distri-
bution on a set T . Can we use a smaller family of hash functions than
the set of all functions h : [N]→ [M]? This gives rise to the following
variant of extractors.

Definition 6.16 (strong extractors). Extractor Ext : {0,1}n ×
{0,1}d→ {0,1}m is a strong (k,ε)-extractor if for every k-source
X on {0,1}n, (Ud,Ext(X,Ud)) is ε-close to (Ud,Um). Equivalently,
Ext′(x,y) = (y,Ext(x,y)) is a standard (k,ε)-extractor.

6.2 Connections to Other Pseudorandom Objects 179

The nonconstructive existence proof of Theorem 6.14 can be
extended to establish the existence of very good strong extractors:

Theorem 6.17. For every n,k ∈ N and ε > 0 there exists a
strong (k,ε)-extractor Ext : {0,1}n × {0,1}d→ {0,1}m with m = k −
2log(1/ε) − O(1) and d = log(n − k) + 2log(1/ε) + O(1).

Note that the output length is m ≈ k instead of m ≈ k + d; intu-
itively a strong extractor needs to extract randomness that is indepen-
dent of the seed and thus can only get the k bits from the source.

We see that strong extractors can be viewed as very small families of
hash functions having the almost-uniform mapping property mentioned
above. Indeed, our first explicit construction of extractors is obtained
by using pairwise independent hash functions.

Theorem 6.18 (Leftover Hash Lemma). If H = {h : {0,1}n→
{0,1}m} is a pairwise independent (or even 2-universal) family of hash
functions where m = k − 2log(1/ε), then Ext(x,h) def= h(x) is a strong
(k,ε)-extractor. Equivalently, Ext(x,h) = (h,h(x)) is a standard (k,ε)-
extractor.

Note that the seed length equals the number of random bits required
to choose h

R←H, which is at least n by Problem 3.5.2 This is far
from optimal; for the purposes of simulating randomized algorithms we
would like d = O(logn). However, the output length of the extractor is
m = k − 2log(1/ε), which is optimal up to an additive constant.

Proof. Let X be an arbitrary k-source on {0,1}n, H as above, and
H

R←H. Let d be the seed length. We show that (H,H(X)) is ε-close
to Ud × Um in the following three steps:

(1) We show that the collision probability of (H,H(X)) is close
to that of Ud × Um.

2 Problem 3.5 refers to pairwise independent families, but a similar argument shows that
universal families require Ω(n) random bits. (Instead of constructing orthogonal vectors,
we construct vectors that have nonpositive dot product.)

180 Randomness Extractors

(2) We note that this is equivalent to saying that the �2 distance
between (H,H(X)) and Ud × Um is small.

(3) Then we deduce that the statistical difference is small, by
recalling that the statistical difference equals half of the �1

distance, which can be (loosely) bounded by the �2 distance.

Proof of (1): By definition, CP(H,H(X)) = Pr[(H,H(X)) =
(H ′,H ′(X ′))], where (H ′,X ′) is independent of and identically
distributed to (H,X). Note that (H,H(X)) = (H ′,H ′(X)) if and only
if H = H ′ and either X = X ′ or X �= X ′ but H(X) = H(X ′). Thus

CP(H,H(X)) = CP(H) · (CP(X) + Pr[H(X) = H(X ′) | X �= X ′])

≤ 1
D
·
(

1
K

+
1
M

)
≤ 1 + ε2

DM
.

To see the penultimate inequality, note that CP(H) = 1/D because
there are D hash functions, CP(X) ≤ 1/K because H∞(X) ≥ k, and
Pr [H(X) = H(X ′) |X �= X ′] ≤ 1/M by 2-universality.

Proof of (2):

‖(H,H(X)) − Ud × Um‖2 = CP(H,H(X)) − 1
DM

≤ 1 + ε2

DM
− 1

DM
=

ε2

DM
.

Proof of (3): Recalling that the statistical difference between two
random variables X and Y is equal to 1

2 |X − Y |1, we have:

∆((H,H(X)),Ud × Um) =
1
2
· |(H,H(X)) − Ud × Um|1

≤
√

DM

2
· ‖(H,H(X)) − Ud × Um‖

≤
√

DM

2
·
√

ε2

DM

=
ε

2
.

Thus, we have in fact obtained a strong (k,ε/2)-extractor.

6.2 Connections to Other Pseudorandom Objects 181

The proof above actually shows that Ext(x,h) = h(x) extracts with
respect to collision probability, or equivalently, with respect to the
�2-norm. This property may be expressed in terms of Rényi entropy
H2(Z) def= log(1/CP(Z)). Indeed,we candefineExt : {0,1}n×{0,1}d −→
{0,1}m to be a (k,ε) Rényi-entropy extractor if H2(X) ≥ k implies
H2(Ext(X,Ud)) ≥m − ε (or H2(Ud,Ext(X,Ud)) ≥m + d − ε for strong
Rényi-entropy extractors). Then the above proof shows that pairwise-
independent hash functions yield strong Rényi-entropy extractors.

In general, it turns out that an extractor with respect to
Rényi entropy must have seed length d ≥ min{m/2,n − k} − O(1) (as
opposed to d = O(logn)); this explains why the seed length in the above
extractor is large. (See Problem 6.4.)

6.2.2 Extractors versus Expanders

Extractors have a natural interpretation as graphs. Specifically, we can
interpret an extractor Ext : {0,1}n × {0,1}d −→ {0,1}m as the neigh-
bor function of a bipartite multigraph G = ([N], [M],E) with N = 2n

left-vertices, M = 2m right-vertices, and left-degree D = 2d,3 where the
rth neighbor of left-vertex u is Ext(u,r). Typically n%m, so the graph
is very unbalanced. It turns out that the extraction property of Ext
is related to various “expansion” properties of G. In this section, we
explore this relationship.

Let Ext : {0,1}n × {0,1}d −→ {0,1}m be a (k,ε)-extractor and
G = ([N], [M],E) the associated graph. Recall that it suffices to
examine Ext with respect to flat k-sources: in this case, the extractor
property says that given a subset S of size K = 2k on the left, a
random neighbor of a random element of S should be close to uniform
on the right. In particular, if S ⊂ [N] is a subset on the left of size K,
then |N(S)| ≥ (1 − ε)M . This property is just like vertex expansion,
except that it ensures expansion only for sets of size exactly K, not
any size ≤K. Recall that we call such a graph an (= K,A) vertex
expander (Definition 5.32). Indeed, this gives rise to the following
weaker variant of extractors.

3 This connection is the reason we use d to denote the seed length of an extractor.

182 Randomness Extractors

Definition 6.19 (dispersers). A function Disp : {0,1}n × {0,1}d→
{0,1}m is a (k,ε)-disperser if for every k-source X on {0,1}n,
Disp(X,Ud) has a support of size at least (1 − ε) · 2m.

While extractors can be used to simulate BPP algorithms with a
weak random source, dispersers can be used to simulate RP algorithms
with a weak random source. (See Problem 6.2.)

Then, we have:

Proposition 6.20. Let n,m,d ∈ N, K = 2k ∈ N, and ε > 0. A func-
tion Disp : {0,1}n × {0,1}d→ {0,1}m is a (k,ε)-disperser iff the
corresponding bipartite multigraph G = ([N], [M],E) with left-degree
D is an (= K,A) vertex expander for A = (1 − ε) ·M/K.

Note that extractors and dispersers are interesting even when
M K, so the expansion parameter A may be less than 1. Indeed,
A < 1 is interesting for vertex “expanders” when the graph is highly
imbalanced. Still, for an optimal extractor, we have M = Θ(ε2KD)
(because m = k + d − 2log(1/ε) − Θ(1)), which corresponds to
expansion factor A = Θ(ε2D). (An optimal disperser actually gives
A = Θ(D/ log(1/ε)).) Note this is smaller than the expansion factor of
D/2 in Ramanujan graphs and D − O(1) in random graphs; the reason
is that those expansion factors are for “small” sets, whereas here we
are asking for sets to expand to almost the entire right-hand side.

Now let’s look for a graph-theoretic property that is equivalent
to the extraction property. Ext is a (k,ε)-extractor iff for every set
S ⊂ [N] of size K,

∆(Ext(US ,U[D]),U[M]) = max
T⊂[M]

|Pr[Ext(US ,U[D]) ∈ T]

− Pr[U[M] ∈ T]| ≤ ε,

where US denotes the uniform distribution on S. This inequality
may be expressed in graph-theoretic terms as follows. For every

6.2 Connections to Other Pseudorandom Objects 183

set T ⊂ [M], ∣∣∣Pr
[
Ext(US ,U[D]) ∈ T

] − Pr
[
U[M] ∈ T

]∣∣∣ ≤ ε

⇔
∣∣∣∣e(S,T)
|S|D − |T |

M

∣∣∣∣ ≤ ε

⇔
∣∣∣∣e(S,T)

ND
− µ(S)µ(T)

∣∣∣∣ ≤ εµ(S),

where e(S,T) is the number of edges from S to T (as in Definition 4.13).
Thus, we have:

Proposition 6.21. A function Ext : {0,1}n × {0,1}d→ {0,1}m is a
(k,ε)-extractor iff the corresponding bipartite multigraph G = ([N],
[M],E) with left-degree D has the property that |e(S,T)/ND−
µ(S)µ(T)| ≤ εµ(S) for every S ⊂ [N] of size K and every T ⊂ [M].

Note that this is very similar to the Expander Mixing Lemma
(Lemma 4.15), which states that if a graph G has spectral expansion λ,
then for all sets S,T ⊂ [N] we have∣∣∣∣e(S,T)

ND
− µ(S)µ(T)

∣∣∣∣ ≤ λ
√

µ(S)µ(T).

It follows that if λ
√

µ(S)µ(T) ≤ εµ(S) for all S ⊂ [N] of size K and
all T ⊂ [N], then G gives rise to a (k,ε)-extractor (by turning G into a
D-regular bipartite graph with N vertices on each side in the natural
way). It suffices for λ ≤ ε ·√K/N for this to work.

We can use this connection to turn our explicit construction of spec-
tral expanders into an explicit construction of extractors. To achieve
λ ≤ ε ·√K/N , we can take an appropriate power of a constant-degree
expander. Specifically, if G0 is a D0-regular expander on N vertices with
bounded second eigenvalue, we can consider the tth power of G0, G =
Gt

0, where t = O(log((1/ε)
√

N/K)) = O(n − k + log(1/ε)). The degree
of G is D = Dt

0, so d = logD = O(t). This yields the following result:

Theorem 6.22. For every n,k ∈ N and ε > 0, there is an
explicit (k,ε)-extractor Ext : {0,1}n × {0,1}d −→ {0,1}n with
d = O(n − k + log(1/ε)).

184 Randomness Extractors

Note that the seed length is significantly better than in the
construction from pairwise-independent hashing when k is close to
n, say k = n − O(n) (i.e., K = N1−o(1)). The output length is n,
which is much larger than the typical output length for extractors
(usually m n). Using a Ramanujan graph (rather than an arbitrary
constant-degree expander), the seed length can be improved to
d = n − k + 2log(1/ε) + O(1), which yields an optimal output length
n = k + d − 2log(1/ε) − O(1).

Another way of proving Theorem 6.22 is to use the fact that a
random step on an expander decreases the �2 distance to uniform, like
in the proof of the Leftover Hash Lemma. This analysis shows that
we actually get a Rényi-entropy extractor; and thus explains the large
seed length d ≈ n − k.

The following table summarizes the main differences between
“classic” expanders and extractors.

Table 6.1. Differences between “classic” expanders and extractors.

Expanders Extractors

Measured by vertex or spectral
expansion

Measured by min-entropy/
statistical difference

Typically constant degree Typically logarithmic or
poly-logarithmic degree

All sets of size at most K expand All sets of size exactly (or at
least) K expand

Typically balanced Typically unbalanced, bipartite
graphs

6.2.3 List Decoding View of Extractors

In this section, we cast extractors into the same list-decoding frame-
work that we used to capture list-decodable codes, samplers, and
expanders (in Section 5.3). Recall that all of these objects could be
syntactically described as functions Γ : [N] × [D]→ [M], and their
properties could be captured by bounding the sizes of sets of the
form LISTΓ(T,ε) def= {x : Pry[Γ(x,y) ∈ T] > ε} for T ⊂ [M]. We also

6.2 Connections to Other Pseudorandom Objects 185

considered a generalization to functions f : [M]→ [0,1] where we
defined LISTΓ(f,ε) def= LISTΓ(f,ε) = {x : Ey[f(Γ(x,y))] > ε}.

Conveniently, an extractor Ext : {0,1}n × {0,1}d→ {0,1}m already
meets the syntax of a function Γ : [N] × [D]→ [M] (matching our
convention that N = 2n, D = 2d, M = 2m). The extraction property
can be described in the list-decoding framework as follows:

Proposition 6.23. Let Γ = Ext : [N] × [D]→ [M], let K = 2k ∈ N,
and ε ∈ [0,1].

(1) If Ext is a (k,ε) extractor, then for every f : [M]→ [0,1], we
have

|LISTΓ(f,µ(f) + ε)| < K.

(2) Suppose that for every T ⊂ [M], we have

|LISTΓ(T,µ(T) + ε)| ≤K.

Then Ext is a (k + log(1/ε),2ε) extractor.

Proof.

(1) Suppose for contradiction that |LISTΓ(f,µ(f) + ε)| ≥K.
Let X be uniformly distributed over LISTΓ(f,µ(f) + ε).
Then X is a k-source, and

E[f(Ext(X,U[D]))] = E
x

R←X

[f(Ext(x,U[D]))]

> µ(f) + ε

= E[f(U[M])] + ε.

By Problem 6.1, this implies that Ext(X,U[D]) and U[M]
are ε-far, contradicting the hypothesis that Ext is a (k,ε)
extractor.

(2) Let X be any (k + log(1/ε))-source. We need to show that
Ext(X,U[D]) is 2ε-close to U[M]. That is, we need to show
that for every T ⊂ [M], Pr[Ext(X,U[D]) ∈ T] ≤ µ(T) + 2ε.

186 Randomness Extractors

So let T be any subset of [M]. Then

Pr[Ext(X,U[D]) ∈ T]

≤ Pr[X ∈ LIST(T,µ(T) + ε)]

+Pr[Ext(X,U[D]) ∈ T |X /∈ LIST(T,µ(T) + ε)]

≤ |LIST(T,µ(T) + ε)| · 2−(k+log(1/ε)) + (µ(T) + ε)

≤K · 2−(k+log(1/ε)) + µ(T) + ε

= µ(T) + 2ε.

The proposition does not give an exact list-decoding characterization
of extractors, as the two parts are not exactly converses of each other.
One difference is the extra log(1/ε) bits of entropy and the factor of 2
in ε appearing in Part 6.23. These are typically insignificant differences
for extractors; indeed even an optimal extractor loses Θ(log(1/ε)) bits
of entropy (cf. Theorem 6.14). A second difference is that Part 6.23
shows that extractors imply bounds on |LIST(f,µ(f) + ε)| even for
fractional functions f , whereas Part 6.23 only requires bounds on
|LIST(T,µ(T) + ε)| to deduce the extractor property. This only makes
the result stronger, and indeed we will utilize this below.

Notice that the conditions characterizing extractors here are iden-
tical to the ones characterizing averaging samplers in Proposition 5.30.
Actually, the condition in Part 6.23 is the one characterizing averaging
samplers, whereas the condition in Part 6.23 is the one characterizing
boolean averaging samplers. Thus we have:

Corollary 6.24. Let Ext : [N] × [D]→ [M] and Samp : [N]→ [M]D

be such that Ext(x,y) = Samp(x)y. Then:

(1) If Ext is a (k,ε) extractor, then Samp is a (K/N,ε) averaging
sampler, where K = 2k.

(2) If Samp is a (K/N,ε) boolean averaging sampler, then Ext
is a (k + log(1/ε),2ε) extractor.

(3) If Samp is a (δ,ε) boolean averaging sampler, then Samp is
a (δ/ε,2ε) averaging sampler.

6.2 Connections to Other Pseudorandom Objects 187

Thus, the only real difference between extractors and averaging
samplers is one of perspective, and both perspectives can be useful.
For example, in samplers, we measure the error probability δ = K/N =
2k/2n, whereas in extractors we measure the min-entropy threshold k

on its own. Thus, the sampler perspective can be more natural when
δ is relatively large compared to 1/N , and the extractor perspective
when δ becomes quite close to 1/N . Indeed, an extractor for min-
entropy k = o(n) corresponds to a sampler with error probability δ =
1/2(1−o(1))n, which means that each of the n bits of randomness used
by the sampler reduces the error probability by almost a factor of 2!

We can now also describe the close connection between strong
extractors and list-decodable codes when the alphabet size/output
length is small.

Proposition 6.25. Let Ext : [N] × [D]→ [M] and Enc : [N]→ [M]D

be such that Ext(x,y) = Enc(x)y, and let K = 2k ∈ N.

(1) If Ext is a strong (k,ε) extractor, then Enc is
(1 − 1/M − ε,K) list-decodable.

(2) If Enc is (1 − 1/M − ε,K) list-decodable, then Ext is a
(k + log(1/ε),M · ε) strong extractor.

Proof.

(1) Follows from Corollaries 5.31 and 6.24.
(2) Let X be a (k + log(1/ε))-source and Y = U[D]. Then the

statistical difference between (Y,Ext(X,Y)) and Y × U[M]
equals

∆((Y,Ext(X,Y)),Y × U[M])

= E
y

R←Y

[∆(Ext(X,y),U[M])]

= E
y

R←Y

[∆(Enc(X)y,U[M])]

≤ M

2
E

y
R←Y

[
max

z
Pr[Enc(X)y = z] − 1/M

]
,

188 Randomness Extractors

where the last inequality follows from the �1 formulation of
statistical difference.
So if we define r ∈ [M]D by setting ry to be the value z

maximizing Pr[Enc(X)y = z] − 1/M , we have:

∆((Y,Ext(X,Y)),Y × U[M])

≤ M

2
· (Pr[(Y,Enc(X)Y) ∈ Tr] − 1/M),

≤ M

2
· (Pr[X ∈ LIST(Tr,1/M + ε)] + ε)

≤ M

2
· (2−(k+log(1/ε)) · K + ε)

≤M · ε.

Note that the quantitative relationship between extractors and
list-decodable codes given by Proposition 6.25 deteriorates extremely
fast as the output length/alphabet size increases. Nevertheless, the
list-decoding view of extractors as given in Proposition 6.23 turns out
to be quite useful.

6.3 Constructing Extractors

In the previous sections, we have seen that very good extractors
exist — extracting almost all of the min-entropy from a source with
only a logarithmic seed length. But the explicit constructions we have
seen (via universal hashing and spectral expanders) are still quite far
from optimal in seed length, and in particular cannot be used to give
a polynomial-time simulation of BPP with a weak random source.

Fortunately, much better extractor constructions are known —
ones that extract any constant fraction of the min-entropy using
a logarithmic seed length, or extract all of the min-entropy using
a polylogarithmic seed length. In this section, we will see how to
construct such extractors.

6.3.1 Block Sources

We introduce a useful model of sources that has more structure than
an arbitrary k-source:

6.3 Constructing Extractors 189

Definition 6.26. A random variable X = (X1,X2, . . . ,Xt) is a (k1,k2,
. . . ,kt) block source if for every x1, . . . ,xi−1, Xi|X1=x1,...,Xi−1=xi−1 is a
ki-source. If k1 = k2 = · · · = kt = k, then we call X a t × k block source.

Note that a (k1,k2, . . . ,kt) block source is also a (k1 + · · · + kt)-
source, but it comes with additional structure — each block is
guaranteed to contribute some min-entropy. Thus, extracting random-
ness from block sources is an easier task than extracting from general
sources.

The study of block sources has a couple of motivations.

• They are a natural and plausible model of sources in their
own right. Indeed, they are more general than unpredictable-
bit sources of Section 6.1.1: if X ∈ UnpredBitsn,δ is broken
into t blocks of length � = n/t, then the result is a t × δ′�
block source, where δ′ = log(1/(1 − δ)).

• We can construct extractors for general weak sources by
converting a general weak source into a block source. We
will see how to do this later in the section.

We now illustrate how extracting from block sources is easier than
from general sources. The idea is that we can extract almost-uniform
bits from later blocks that are essentially independent of earlier blocks,
and hence use these as a seed to extract more bits from the earlier
blocks. Specifically, for the case of two blocks we have the following:

Lemma 6.27. Let Ext1 : {0,1}n1 × {0,1}d1 → {0,1}m1 be a (k1,ε1)-
extractor, and Ext2 : {0,1}n2 × {0,1}d2 → {0,1}m2 be a (k2,ε2)-
extractor with m2 ≥ d1. Define Ext′((x1,x2),y2) = (Ext1(x1,y1),z2),
where (y1,z2) is obtained by partitioning Ext2(x2,y2) into a prefix y1

of length d1 and a suffix z2 of length m2 − d1.
Then for every (k1,k2) block source X = (X1,X2) taking values

in {0,1}n1 × {0,1}n2 , it holds that Ext′(X,Ud2) is (ε1 + ε2)-close to
Um1 × Um2−d1 .

190 Randomness Extractors

Proof. Since X2 is a k2-source conditioned on any value of X1 and Ext2
is a (k2,ε2)-extractor, it follows that (X1,Y1,Z2) = (X1,Ext2(X2,Ud2))
is ε2-close to (X1,Um2) = (X1,Ud1 ,Um2−d1).

Thus, (Ext1(X1,Y1),Z2) is ε2-close to (Ext1(X1,Ud1),Um2−d1),
which is ε1-close to (Um1 ,Um2−d1) because X1 is a k1-source and Ext1
is a (k1,ε1)-extractor.

By the triangle inequality, Ext′(X,Ud2) = (Ext1(X1,Y1),Z2) is
(ε1 + ε2)-close to (Um1 ,Um2−d1).

The benefit of this composition is that the seed length of Ext′

depends only one of the extractors (namely Ext2) rather than being
the sum of the seed lengths. (If this is reminiscent of the zig–zag
product, it is because they are closely related — see Section 6.3.5).
Thus, we get to extract from multiple blocks at the “price of one.”
Moreover, since we can take d1 = m2, which is typically much larger
than d2, the seed length of Ext′ can even be smaller than that of Ext1.

The lemma extends naturally to extracting from many blocks:

Lemma 6.28. For i = 1, . . . , t, let Exti : {0,1}ni × {0,1}di → {0,1}mi

be a (ki,εi)-extractor, and suppose that mi ≥ di−1 for every i = 1, . . . , t,
where we define d0 = 0. Define Ext′((x1, . . . ,xt),yt) = (z1, . . . ,zt), where
for i = t, . . . ,1, we inductively define (yi−1,zi) to be a partition of
Exti(xi,yi) into a di−1-bit prefix and a (mi − di−1)-bit suffix.

Then for every (k1, . . . ,kt) block source X = (X1, . . . ,Xt) taking
values in {0,1}n1 × ·· ·{0,1}nt , it holds that Ext′(X,Udt) is ε-close to
Um for ε =

∑t
i=1 εi and m =

∑t
i=1(mi − di−1).

We remark that this composition preserves “strongness.” If each of
the Extis correspond to strong extractors in the sense that their seeds
are prefixes of their outputs, then Ext′ will also correspond to a strong
extractor. If in addition d1 = d2 = · · · = dt, then this construction can
be seen as simply using the same seed to extract from all blocks.

Already with this simple composition, we can simulate BPP with
an unpredictable-bit source (even though deterministic extraction
from such sources is impossible by Proposition 6.6). As noted above,
by breaking an unpredictable-bit source X with parameter δ into

6.3 Constructing Extractors 191

blocks of length �, we obtain a t × k block source for t = n/�, k = δ′�,
and δ′ = log(1/(1 − δ)).

Suppose that δ is a constant. Set � = (10/δ′) logn, so that X

is a t × k block source for k = 10logn, and define ε = n−2. Let-
ting Ext : {0,1}� × {0,1}d→ {0,1}d+m be the (k,ε) extractor using
universal hash functions (Theorem 6.18), we have:

d = O(�) = O(logn) and

m = k − 2log
1
ε
− O(1) > k/2

Composing Ext with itself t times as in Lemma 6.27, we obtain
Ext′ : {0,1}t·� × {0,1}d→ {0,1}d+t·m such that Ext′(X,Ud) is ε′-
close to uniform, for ε′ = 1/n. (Specifically, Ext′((x1, . . . ,xt),h) =
(h,h(x1), . . . ,h(xt)).) This tells us that Ext′ essentially extracts half of
the min-entropy from X, given a random seed of logarithmic length.
Plugging this extractor into the construction of Proposition 6.15 gives
us the following result.

Theorem 6.29. For every constant δ > 0, we can simulate BPP
with an unpredictable-bit source of parameter δ. More precisely, for
every L ∈ BPP and every constant δ > 0, there is a polynomial-time
algorithm A and a polynomial q such that for every w ∈ {0,1}∗ and
every source X ∈ UnpredBitsq(|w|),δ, the probability that A(w;X) errs
is at most 1/|w|.

6.3.2 Reducing General Sources to Block Sources

Given the results of the previous section, a common approach to
constructing extractors for general k-sources is to reduce the case of
general k-sources to that of block sources.

One approach to doing this is as follows. Given a k-source X of
length n, where k = δn, pick a (pseudo)random subset S of the bits of
X, and let W = X|S be the bits of X in those positions. If the set S

is of size �, then we expect that W will have at least roughly δ� bits of
min-entropy (with high probability over the choice of S). Moreover,
W reveals at most � bits of information, so if � < δn, intuitively there

192 Randomness Extractors

should still be min-entropy left in X. (This is justified by Lemma 6.30
below.) Thus, the pair (W,X) should be a block source. This approach
can be shown to work for appropriate ways of sampling the set S, and
recursive applications of it formed the original approach to construct-
ing good extractors (and is still useful in various contexts today). The
fact mentioned above, that conditioning on a string of length � reduces
min-entropy by at most � bits, is given by the following lemma (which
is very useful when working with min-entropy).

Lemma 6.30 (chain rule for min-entropy). If (W,X) are two
jointly distributed random variables, where (W,X) is a k-source and
|Supp(W)| ≤ 2�, then for every ε > 0, it holds that with probability at
least 1 − ε over w

R←W , X|W=w is a (k − � − log(1/ε))-source.

The proof of this lemma is left as an exercise (Problem 6.1).
This is referred to as the “chain rule” for min-entropy by anal-

ogy with the chain rule for Shannon entropy, which states that
HSh(X|W) = HSh(W,X) − HSh(W), where the conditional Shan-
non entropy is defined to be HSh(X|W) = E

w
R←W

[HSh(X|W=w)].
Thus, if HSh(W,X) ≥ k and W is of length at most �, we have
HSh(X|W) ≥ k − �. The chain rule for min-entropy is not quite as
clean; we need to assume that W has small support (rather than just
small min-entropy) and we lose log(1/ε) bits of additional min-entropy.
(The log(1/ε) bits of entropy can be saved by using an appropriate
notion of conditional min-entropy; see Problems 6.7 and 6.8.)

Another approach, which we will follow, is based on the observation
that every source of high min-entropy rate (namely, greater than 1/2)
is (close to) a block source, as shown by the lemma below. Thus, we
will try to convert arbitrary sources into ones of high min-entropy rate.

Lemma 6.31. If X is an (n − ∆)-source of length n, and X = (X1,X2)
is a partition of X into blocks of lengths n1 and n2, then for every ε > 0,
(X1,X2) is ε-close to some (n1 − ∆,n2 − ∆ − log(1/ε)) block source.

Consider ∆ = αn for a constant α < 1/2, and n1 = n2 = n/2. Then
each block contributes min-entropy at least (1/2 − α)n. The proofs of
Lemmas 6.30 and 6.31 are left as exercises (Problem 6.1).

6.3 Constructing Extractors 193

6.3.3 Condensers

The previous section left us with the problem of converting a general
k-source into one of high min-entropy rate. We will do this via the
following kind of object:

Definition 6.32. A function Con : {0,1}n × {0,1}d→ {0,1}m is a
k→ε k′ condenser if for every k-source X on {0,1}n, Con(X,Ud) is
ε-close to some k′-source. Con is lossless if k′ = k + d.

If k′/m > k/n, then the condenser increases the min-entropy rate,
intuitively making extraction an easier task. Indeed, condensers with
k′ = m are simply extractors themselves.

Like extractors, it is often useful to view condensers graph-
theoretically. Specifically, we think of Con as the neighbor function of
a bipartite multigraph G with N = 2n left vertices, left degree D = 2d,
and M = 2m right vertices.

The lossless condensing property of Con turns out to be equivalent
to G having vertex expansion close to the degree:

Proposition 6.33. Let n,d,m ∈ N, K = 2k ∈ N, and ε > 0. A function
Con : {0,1}n × {0,1}d→ {0,1}m is a k→ε k + d lossless condenser if
and only if the corresponding bipartite multigraph G = ([N], [M],E)
of left degree D is an (= K,(1 − ε)D) vertex expander.

Proof. ⇒: Let S ⊂ [N] be any set of size K. Then US is a
k-source, so Con(US ,Ud) is ε-close to a (k + d)-source. This
implies that |Supp(Con(US ,Ud))| ≥ (1 − ε) · 2k+d. Noting that
Supp(Con(US ,Ud)) = N(S) completes the proof.
⇐: By Lemma 6.10, it suffices to prove that for every subset

S ⊂ [N] of size K, it holds that Con(US ,Ud) is ε-close to a (k + d)-
source. By expansion, we know that |N(S)| ≥ (1 − ε) · KD. Since
there are only KD edges leaving S, by redirecting εKD of the edges,
we can ensure that they all go to KD distinct vertices in [M]. The
uniform distribution on these KD vertices is a (k + d)-source that is
ε-close to Con(US ,Ud).

194 Randomness Extractors

Recall that vertex expansion normally corresponds to the disperser
property (see Proposition 6.20), which is weaker than extraction and
condensing. Indeed, vertex expansion generally does not guarantee
much about the distribution induced on a random neighbor of a set
S, except that its support is large. However, in case the expansion is
very close to the degree (A = (1 − ε) · D), then the distribution must
be nearly flat (as noted in the above proof).

By applying Proposition 6.33 to the expanders based on Parvaresh–
Vardy codes (Theorem 5.35), we get the following lossless condenser:

Theorem 6.34. For every constant α > 0, for all positive integers
n ≥ k and all ε > 0, there is an explicit

k→ε k + d

lossless condenser Con : {0,1}n × {0,1}d→ {0,1}m with d =
O(logn + log(1/ε)) and m = (1 + α)k + O(log(n/ε)).

Note that setting α to be a small constant, we obtain an output
min-entropy rate arbitrarily close to 1.

Problem 6.5 gives a simple extractor Ext for high min-entropy rate
when the error parameter ε is constant. Applying that extractor to the
output of the above condenser, we obtain extractors with a seed length
of d = O(logn) that extract Ω(k) almost-uniform bits (with constant
error ε) from sources of any desired min-entropy k. In the next section,
we will use the above condenser to give an efficient construction of
extractors for arbitrary values of ε.

We remark that the fact that having output min-entropy rate
bounded away from 1 is not inherent for lossless condensers. Non-
constructively, there exist lossless condensers with output length m =
k + d + log(1/ε) + O(1), and Open Problem 5.36 about expanders
can be restated in the language of lossless condensers as follows:

Open Problem 6.35. Give an explicit construction of a k→ε k + d

lossless condenser Con : {0,1}n × {0,1}d→ {0,1}m with d = O(logn),
m = k + d + O(1), and ε = 0.01.

6.3 Constructing Extractors 195

If we had such a condenser, then we could get extractors that
extract all but O(1) bits of the min-entropy by then applying extractors
based on spectral expanders (Theorem 6.22).

6.3.4 The Extractor

In this section, we will use the ideas outlined in the previous section —
namely condensing and block-source extraction — to construct an
extractor that is optimal up to constant factors.

Theorem 6.36. For all positive integers n ≥ k and all ε > 0, there
is an explicit (k,ε) extractor Ext : {0,1}n × {0,1}d→ {0,1}m with
m ≥ k/2 and d = O(log(n/ε)).

We will use the following building block, constructed in Problem 6.9.

Lemma 6.37. For every constant t > 0 and all positive integers
n ≥ k and all ε > 0, there is an explicit (k,ε) extractor Ext :
{0,1}n × {0,1}d→ {0,1}m with m ≥ k/2 and d = k/t + O(log(n/ε)).

The point is that this extractor has a seed length that is an
arbitrarily large constant factor (approximately t/2) smaller than its
output length. Thus, if we use it as Ext2 in the block-source extraction
of Lemma 6.27, the resulting seed length will be smaller than that of
Ext1 by an arbitrarily large constant factor. (The seed length of the
composed extractor Ext′ in Lemma 6.27 is the same of that as Ext2,
which will be a constant factor smaller than its output length m2,
which we can take to be equal to the seed length d1 of Ext1.)

Overview of the Construction. Note that for small min-
entropies k, namely k = O(log(n/ε)), the extractor we want is already
given by Lemma 6.37 with seed length d smaller than the output
length m by any constant factor. (If we allow d ≥m, then extraction
is trivial — just output the seed.) Thus, our goal will be to recursively
construct extractors for large min-entropies using extractors for smaller
min-entropies. Of course, if Ext : {0,1}n × {0,1}d→ {0,1}m is a (k0,ε)

196 Randomness Extractors

extractor, say with m = k0/2, then it is also a (k,ε) extractor for every
k ≥ k0. The problem is that the output length is only k0/2 rather than
k/2. Thus, we need to increase the output length. This can be achieved
by simply applying extractors for smaller min-entropies several times:

Lemma 6.38. Suppose Ext1:{0,1}n × {0,1}d1 → {0,1}m1 is a (k1,ε1)
extractor and Ext2 : {0,1}n × {0,1}d2 → {0,1}m2 is a (k2,ε2) extractor
for k2 = k1 − m1 − log(1/ε3). Then Ext′ : {0,1}n × {0,1}d1+d2 →
{0,1}m1+m2 defined by Ext′(x,(y1,y2)) = (Ext1(x,y1),Ext2(x,y2)) is a
(k1,ε1 + ε2 + ε3) extractor.

The proof of this lemma follows from Lemma 6.30. After condi-
tioning a k1-source X on W = Ext1(X,Ud1), X still has min-entropy
at least k1 − m1 − log(1/ε3) = k2 (except with probability ε3), and
thus Ext2(X,Ud2) can extract an additional m2 almost-uniform bits.

To see how we might apply this, consider setting k1 = 0.8k and
m1 = k1/2, ε1 = ε2 = ε3 = ε ≥ 2−0.1k, k2 = k1 − m1 − log(1/ε3) ∈
[0.3k,0.4k], and m2 = k2/2. Then we obtain a (k,3ε) extractor Ext′

with output length m = m1 + m2 > k/2 from two extractors for
min-entropies k1,k2 that are smaller than k by a constant factor, and
we can hope to construct the latter two extractors recursively via the
same construction.

Now, however, the problem is that the seed length grows by
a constant factor in each level of recursion (e.g., if d1 = d2 = d in
Lemma 6.38, we get seed length 2d rather than d). Fortunately, block
source extraction using the extractor of Lemma 6.37 gives us a method
to reduce the seed length by a constant factor. (The seed length of the
composed extractor Ext′ in Lemma 6.27 is the same of that as Ext2,
which will be a constant factor smaller than its output length m2,
which we can take to be equal to the seed length d1 of Ext1. Thus, the
seed length of Ext′ will be a constant factor smaller than that of Ext1.)
In order to apply block source extraction, we first need to convert our
source to a block source; by Lemma 6.31, we can do this by using the
condenser of Theorem 6.34 to make its entropy rate close to 1.

One remaining issue is that the error ε still grows by a con-
stant factor in each level of recursion. However, we can start with

6.3 Constructing Extractors 197

polynomially small error at the base of the recursion and there are only
logarithmically many levels of recursion, so we can afford this blow-up.

We now proceed with the proof details. It will be notationally
convenient to do the steps in the reverse order from the description
above — first we will reduce the seed length by a constant factor via
block-source extraction, and then apply Lemma 6.38 to increase the
output length.

Proof of Theorem 6.36. Fix n ∈ N and ε0 > 0. Set d = c log(n/ε0)
for an error parameter ε0 and a sufficiently large constant c to be
determined in the proof below. (To avoid ambiguity, we will keep
the dependence on c explicit throughout the proof, and all big-Oh
notation hides universal constants independent of c.) For k ∈ [0,n], let
i(k) be the smallest nonnegative integer i such that k ≤ 2i · 8d. This
will be the level of recursion in which we handle min-entropy k; note
that i(k) ≤ logk ≤ logn.

For every k ∈ [0,n], we will construct an explicit Extk :
{0,1}n × {0,1}d→ {0,1}k/2 that is a (k,εi(k)) extractor, for an
appropriate sequence ε0 ≤ ε1 ≤ ε2 · · · . Note that we require the seed
length to remain d and the fraction of min-entropy extracted to remain
1/2 for all values of k. The construction will be by induction on i(k).

Base Case: i(k) = 0, i.e., k ≤ 8d. The construction of Extk follows
from Lemma 6.37, setting t = 9 and taking c to be a sufficiently large
constant.

Inductive Case: We construct Extk for i(k) ≥ 1 from extractors
Extk′ with i(k′) < i(k) as follows. Given a k-source X of length n,
Extk works as follows.

(1) We apply the condenser of Theorem 6.34 to convert X into
a source X ′ that is ε0-close to a k-source of length (9/8)k +
O(log(n/ε0)). This requires a seed of length O(log(n/ε0)).

(2) We divide X ′ into two equal-sized halves (X1,X2). By
Lemma 6.31, (X1,X2) is 2ε0-close to a 2 × k′ block source for

k′ = k/2 − k/8 − O(log(n/ε0)).

198 Randomness Extractors

Note that i(k′) < i(k). Since i(k) ≥ 1, we also have
k′ ≥ 3d − O(log(n/ε0)) ≥ 2d, for a sufficiently large choice
of the constant c.

(3) Now we apply block-source extraction as in Lemma 6.27.
We take Ext2 to be a (2d,ε0) extractor from Lemma 6.37
with parameter t = 16, which will give us m2 = d output
bits using a seed of length d2 = (2d)/16 + O(log(n/ε0)).
For Ext1, we use our recursively constructed Extk′ , which
has seed length d, error εi(k′), and output length k′/2 ≥ k/6
(where the latter inequality holds for a sufficiently large
choice of the constant c, because k > 8d > 8c log(1/ε)).

All in all, our extractor so far has seed length at most
d/8 + O(log(n/ε0)), error at most εi(k)−1 + O(ε0), and output
length at least k/6. This would be sufficient for our induction except
that the output length is only k/6 rather than k/2. We remedy this
by applying Lemma 6.38.

With one application of the extractor above, we extract at least
m1 = k/6 bits of the source min-entropy. Then with another
application of the extractor above for min-entropy threshold
k2 = k − m1 − log(1/ε0) = 5k/6 − log(1/ε0), by Lemma 6.38, we
extract another (5k/6 − log(1/ε0))/6 bits and so on. After four applica-
tions, we have extracted all but (5/6)4 · k + O(log(1/ε0)) ≤ k/2 bits of
the min-entropy. Our seed length is then 4 · (d/8 + O(log(n/ε0))) ≤ d

and the total error is εi(k) = O(εi(k)−1).
Solving the recurrence for the error, we get εi = 2O(i) · ε0 ≤

poly(n) · ε0, so we can obtain error ε by setting ε0 = ε/poly(n). As far
as explicitness, we note that computing Extk consists of four evalua-
tions of our condenser from Theorem 6.34, four evaluations of Extk′

for values of k′ such that i(k′) < (i(k) − 1), four evaluations of the
explicit extractor from Lemma 6.37, and simple string manipulations
that can be done in time poly(n,d). Thus, the total computation time
is at most 4i(k) · poly(n,d) = poly(n,d).

Repeatedly applying Lemma 6.38 using extractors from
Theorem 6.36, we can extract any constant fraction of the min-entropy
using a logarithmic seed length, and all the min-entropy using a
polylogarithmic seed length.

6.3 Constructing Extractors 199

Corollary 6.39. The following holds for every constant α > 0.
For every n ∈ N, k ∈ [0,n], and ε > 0, there is an explicit (k,ε)
extractor Ext : {0,1}n × {0,1}d→ {0,1}m with m ≥ (1 − α)k and
d = O(log(n/ε)).

Corollary 6.40. For every n ∈ N, k ∈ [0,n], and ε > 0, there is
an explicit (k,ε) extractor Ext : {0,1}n × {0,1}d→ {0,1}m with
m = k − O(log(1/ε)) and d = O(logk · log(n/ε)).

We remark that the above construction can be modified to yield
strong extractors achieving the same output lengths as above (so the
entropy of the seed need not be lost in Corollary 6.40).

A summary of the extractor parameters we have seen is in the
following table.

Table 6.2. Parameters for some constructions of (k,0.01) extractors.

Method Seed Length d Output Length m

Optimal and Nonconstructive log(n − k) + O(1) k + d − O(1)
Necessary for BPP

Simulation
O(logn) kΩ(1)

Spectral Expanders O(n − k) n
Pairwise Independent

Hashing
O(n) k + d − O(1)

Corollary 6.39 O(logn) (1 − γ)k,
any constant γ > 0

Corollary 6.40 O(log2 n) k − O(1)

While Theorem 6.36 and Corollary 6.39 give extractors that are
optimal up to constant factors in both the seed length and output
length, it remains an important open problem to get one or both of
these to be optimal to within an additive constants while keeping the
other optimal to within a constant factor.

Open Problem 6.41. Give an explicit construction of (k,0.01) extrac-
tors Ext : {0,1}n × {0,1}d→ {0,1}m with seed length d = O(logn)
and output length m = k + d − O(1).

200 Randomness Extractors

By using the condenser of Theorem 6.34, it suffices to achieve
the above for high min-entropy rate, e.g., k = 0.99n. Alternatively,
a better condenser construction would also resolve the problem.
(See Open Problem 6.35.) We note that there is a recent construc-
tion of extractors with seed length d = O(logn) and output length
m = (1 − 1/polylog(n))k (improving the output length of m = Ω(k) of
Corollary 6.39, in the case of constant or slightly subconstant error).

Open Problem 6.42. Give an explicit construction of (k,0.01) extrac-
tors Ext : {0,1}n × {0,1}d→ {0,1}m with seed length d = logn + O(1)
and m = Ω(k) (or even m = kΩ(1)).

One of the reasons that these open problems are significant is that,
in many applications of extractors, the resulting complexity depends
exponentially on the seed length d and/or the entropy loss k + d − m.
(An example is the simulation of BPP with weak random sources given
by Proposition 6.15.) Thus, additive constants in these parameters
corresponds to constant multiplicative factors in complexity.

Another open problem is more aesthetic in nature. The construc-
tion of Theorem 6.36 makes use of the condenser of Theorem 6.36, the
Leftover Hash Lemma (Theorem 6.18) and the composition techniques
of Lemmas 6.27 and 6.38 in a somewhat complex recursion. It is of
interest to have a construction that is more direct. In addition to the
aesthetic appeal, such a construction would likely be more practical
to implement and provide more insight into extractors. In Chapter 7,
we will see a very direct construction based on a connection between
extractors and pseudorandom generators, but its parameters will
be somewhat worse than Theorem 6.36. Thus the following remains
open:

Open Problem 6.43. Give a “direct” construction of (k,ε) extractors
Ext : {0,1}n × {0,1}d→ {0,1}m with seed length d = O(log(n/ε)) and
m = Ω(k).

6.3 Constructing Extractors 201

6.3.5 Block-Source Extraction versus the Zig–Zag Product

To further highlight the connections between extractors and expanders,
here we describe how the block-source extraction method of
Section 6.3.1 (which we used in the main extractor construction
of Theorem 6.36) is closely related to the zig–zag graph product
of Section 4.3.2.3 (which we used in the expander construction of
Theorem 4.39).

Recall the block-source extraction method of Lemma 6.27: We
define Ext′ : {0,1}n1+n2 × {0,1}d2 → {0,1}m1 by Ext′((x1,x2),y2) =
Ext1(x1,Ext2(x2,y2)). (Here we consider the special case that m2 = d1.)

Viewing the extractors as bipartite graphs, the left-vertex set is
[N1] × [N2] and the left-degree is D2. A random step from a vertex
(x1,x2) ∈ [N1] × [N2] corresponds to taking a random step from x2 in
G2 to obtain a right-hand vertex y1 ∈ {0,1}m2 , which we view as an
edge label y for G1. We then move to the yth neighbor of x1.

This is just like the first two steps of the zig–zag graph product.
Why do we need a third step in the zig–zag product? It is because of
the slightly different goals in the two settings. In a (spectral) expander,
we consider an arbitrary initial distribution that does not have too
much (Rényi) entropy, and need to add entropy to it. In a block-source
extractor, our initial distribution is constrained to be a block source
(so both blocks have a certain amount of min-entropy), and our goal
is to produce an almost-uniform output (even if we end up with less
bits than the initial entropy).

Thus, in the zig–zag setting, we must consider the following
extreme cases (that are ruled out for block sources):

• The second block has no entropy given the first. Here, the
step using G2 will add entropy, but not enough to make
y1 close to uniform. Thus, we have no guarantees on the
behavior of the G1-step, and we may lose entropy with
it. For this reason, we keep track of the edge used in the
G1-step — that is, we remember b1 such that x1 is the b1th
neighbor of z1 = Ext(x1,y1). This ensures that the (edge-
rotation) mapping (x1,y1) �→ (z1, b1) is a permutation and
does not lose any entropy. We can think of b1 as a “buffer”

202 Randomness Extractors

that retains any extra entropy in (x1,y1) that did not get
extracted into z1. So a natural idea is to just do block source
extraction, but output (z1, b1) rather than just z1. However,
this runs into trouble with the next case.

• The first block has no entropy but the second block is
completely uniform given the first. In this case, the G2 step
cannot add any entropy and the G1 step does not add any
entropy because it is a permutation. However, the G1 step
transfers entropy into z1. So if we add another expander-step
from b1 at the end, we can argue that it will add entropy.
This gives rise to the 3-step definition of the zig–zag product.

While we analyzed the zig–zag product with respect to spectral
expansion (i.e., Rényi entropy), it is also possible to analyze it in
terms of a condenser-like definition (i.e., outputting distributions
ε-close to having some min-entropy). It turns out that a variant
of the zig–zag product for condensers leads to a construction of
constant-degree bipartite expanders with expansion (1 − ε) · D for
the balanced (M = N) or nearly balanced (e.g., M = Ω(N)) case.
However, as mentioned in Open Problems 4.43, 4.44, and 5.36, there
are still several significant open problems concerning the explicit
construction of expanders with vertex expansion close to the degree,
achieving expansion D − O(1) in the nonbipartite case, and achieving
a near-optimal number of right-hand vertices.

6.4 Exercises

Problem 6.1 (Min-entropy and Statistical Difference).

(1) Prove that for every two random variables X and Y ,

∆(X,Y) = max
f
|E[f(X)] − E[f(Y)]| = 1

2
· |X − Y |1,

where the maximum is over all [0,1]-valued functions f .
(Hint: first identify the functions f that maximize
|E[f(X)] − E[f(Y)]|.)

6.4 Exercises 203

(2) Suppose that (W,X) are jointly distributed random variables
where (W,X) is a k-source and |Supp(W)| ≤ 2�. Show that
for every ε > 0, with probability at least 1 − ε over w

R←W ,
we have X|W=w is a (k − � − log(1/ε))-source.

(3) Suppose that X is an (n − ∆)-source taking values in {0,1}n,
and we let X1 consist of the first n1 bits of X and X2 the
remaining n2 = n − n1 bits. Show that for every ε > 0,
(X1,X2) is ε-close to some (n1 − ∆,n2 − ∆ − log(1/ε))
block source.

Problem 6.2 (Simulating Randomized Algorithms with Weak
Sources).

(1) Let A(w;r) be a randomized algorithm for computing
a function f using m random bits such that A(w;Um)
has error probability at most 1/3 (i.e., for every
w, Pr[A(w;Um) �= f(w)] ≤ 1/3) and let Ext:{0,1}n×
{0,1}d→ {0,1}m be a (k,1/7)-extractor. Define A′(w;x) =
majy∈{0,1}d{A(w;Ext(x;y)} (breaking ties arbitrarily).
Show that for every (k + t)-source X, A′(w;X) has error
probability at most 2−t.

(2) Let A(w;r) be a randomized algorithm for deciding a
language L using m random bits such that A(w;Um) has
one-sided error probability at most 1/2 (i.e., if w ∈ L, then
Pr[A(w;Um) = 1] ≥ 1/2 and if w /∈ L, then Pr[A(w;Um) =
1] = 0) and let Disp: {0,1}n × {0,1}d→ {0,1}m be a (k,1/3)-
disperser. Show how to decide L with one-sided error at most
2−t given a single sample from a (k + t)-source X (with no
other randomness) and running A and Disp each 2d times.

Problem 6.3 (Almost-Universal Hashing). A family H of func-
tions mapping domain [N] to [M] is said to have collision probability

204 Randomness Extractors

at most δ if for every x1 �= x2 ∈ [N], we have

Pr
H

R←H
[H(x1) = H(x2)] ≤ δ.

H has is ε-almost universal if it has collision probability at most
(1 + ε)/M . (Note that this is a relaxation of the notion of ε-almost
pairwise independence from Problem 3.4.)

(1) Show that if a family H = {h : [N]→ [M]} is ε2-almost
universal, Ext(x,h) def= h(x) is a (k,ε) strong extractor for
k = m + 2log(1/ε) + O(1), where m = logM .

(2) Use Problem 3.4 to deduce that for every n ∈ N,
k ≤ n, and ε > 0, there is a (k,ε) strong extractor
Ext : {0,1}n × {0,1}d→ {0,1}m with d = O(k + log(n/ε))
and m = k − 2log(1/ε) − O(1).

(3) Given a family H of functions mapping [N] to [M], we can
obtain a code Enc : [N]→ [M]|H| by Enc(x)h = h(x), and
conversely. Show that H has collision probability at most δ

iff Enc has minimum distance at least 1 − δ.
(4) Use the above connections and the list-decoding view

of extractors (Proposition 6.23) to prove the Johnson
Bound for small alphabets: if a code Enc : [N]→ [M]n̂

has minimum distance at least 1 − 1/M − γ/M , then it is
(1 − 1/M − √γ,O(M/γ)) list-decodable.

Problem 6.4 (Rényi extractors). Call a function Ext :
{0,1}n × {0,1}d→ {0,1}m a (k,ε) Rényi extractor if for every
source X on {0,1}n of Rényi entropy at least k, it holds that
Ext(X,Ud) has Rényi entropy at least m − ε.

(1) Prove that a (k,ε) Rényi extractor is also a (k,O(
√

ε))
extractor.

(2) Show that for every n,k,m ∈ N with m ≤ n and ε > 0,
there exists a (k,ε) Rényi extractor Ext : {0,1}n × {0,1}d→
{0,1}m with d = O(min{n−k+ log(1/ε),m/2+ log(n/ε)}).

6.4 Exercises 205

(3) Show that if Ext : {0,1}n × {0,1}d→ {0,1}m is a (k,1)
Rényi extractor, then d ≥ min{n − k,m/2} − O(1). (Hint:
consider a k-source that is uniform over {x : ∃yExt(x,y) ∈ T}
for an appropriately chosen set T .)

Problem 6.5 (Extractors versus Samplers). Use the connection
between extractors and averaging samplers to do the following:

(1) Prove that for all constants ε,α > 0, there is a constant β < 1
such that for all n, there is an explicit (βn,ε) extractor Ext :
{0,1}n × {0,1}d→ {0,1}m with d ≤ logn and m ≥ (1 − α)n.

(2) Prove that for every m ∈ N, ε,δ > 0, there exists a (non-
constructive) (δ,ε) averaging sampler Samp : {0,1}n→
({0,1}m)t using n = m + 2log(1/ε) + log(1/δ) + O(1)
random bits and t = O((1/ε2) · log(1/δ)) samples.

(1) Suppose we are given a constant-error BPP algorithm that
uses r = r(n) random bits on inputs of length n. Show how,
using the explicit extractor of Theorem 6.36, we can reduce
its error probability to 2−� using O(r) + � random bits,
for any polynomial � = �(n). (Note that this improves the
r + O(�) given by expander walks for �% r.) Conclude that
every problem in BPP has a randomized polynomial-time
algorithm that only errs for 2q0.01

choices of its q = q(n)
random bits.

Problem 6.6 (Extracting from Unpredictable-Bit Sources).

(1) Let X be a source taking values in {0,1}n such that
for all x,y, Pr[X = x]/Pr[X = y] ≤ (1 − δ)/δ. Show that
X ∈ UnpredBitsn,δ.

(2) Prove that for every function Ext: {0,1}n→ {0,1} and
every δ > 0, there exists a source X ∈ UnpredBitsn,δ

with parameter δ such that Pr[Ext(X) = 1] ≤ δ or

206 Randomness Extractors

Pr[Ext(X) = 0] ≥ 1 − δ. (Hint: for b ∈ {0,1}, consider
X that is uniform on Ext−1(b) with probability 1 − δ and is
uniform on Ext−1(b) with probability δ.)

(3) (*) Show how to extract from sources in UnpredBitsn,δ

using a seeded extractor with a seed of constant length.
That is, the seed length should not depend on the length
n of the source, but only on the bias parameter δ and the
statistical difference ε from uniform desired. The number of
bits extracted should be Ω(δn).

Problem 6.7 (Average Min-Entropy). While there is no single
“correct” definition of conditional min-entropy, in this problem you
will explore one definition that is useful and has nice properties. For
two jointly distributed random variables (X,Y) define

H∞(Y |X) = log

(
1

E
x

R←X
[maxy Pr[Y = y|X = x]]

)
.

(1) Prove that H∞(Y |X) = log(1/maxP Pr[P (X) = Y]), where
the maximum is over functions P from the domain of X

to the domain of Y . So average min-entropy captures the
unpredictability of Y from X.

(2) Show that if H∞(Y |X) ≥ k, then with probability at least
1 − ε over x

R← X, we have H∞(Y |X=x) ≥ k − log(1/ε).
(3) Show that H∞(Y) ≥ H∞(Y |X) ≥ H∞(X,Y) −

log |Supp(X)|.
(4) Use the previous two items to deduce Problem 6.1, Part 6.1.
(5) Give an example showing that H∞(Y |X) can be much

smaller than H∞(Y) − H∞(X). Specifically, construct n-bit
random variables where H∞(Y) = n but H∞(Y |X) and
H∞(X) are both O(1).

Problem 6.8 (Average Min-Entropy Extractors). A function
Ext : {0,1}n × {0,1}d→ {0,1}m is a (k,ε) average min-entropy

6.4 Exercises 207

extractor if for every two jointly distributed random variables (X,Y)
such that X takes values in {0,1}n and H∞(X|Y) ≥ k, we have
(Ext(X,Ud),Y) is ε-close to (Um,Y), where Ud and Um are taken to be
independent of (X,Y). By Problem 6.7, Part 6.7, it follows that if Ext
is a (k,ε) extractor, then it is a (k + log(1/ε),2ε) average min-entropy
extractor. Below, you will show how to avoid the log(1/ε) entropy loss
from this reduction.

(1) (*) Show that if Ext : {0,1}n × {0,1}d→ {0,1}m is a
(k,ε)-extractor with k ≤ n − 1, then for every t > 0, Ext
is a (k − t,2t+1 · ε)-extractor. (Hint: for a statistical test
T ⊆ {0,1}m, relate the (k − t)-sources X maximizing the
distinguishing advantage |Pr[Ext(X,Ud) ∈ T] − Pr[Um ∈ T]|
to the k-sources maximizing the distinguishing advantage.)

(2) Show that if Ext : {0,1}n × {0,1}d→ {0,1}m is a (k,ε)-
extractor, then Ext is a (k,3ε) average min-entropy extractor.

(3) Use these results and Problem 6.3 to improve Corollary‘6.40,
and construct, for every n ∈ N, k ≤ n, and ε > 0, an
explicit (k,ε) extractor Ext : {0,1}n × {0,1}d→ {0,1}m
with seed length d = O((logk) · (log(n/ε))) and output
length m = k + d − 2log(1/ε) − O(1).

Problem 6.9 (The Building-Block Extractor). Prove
Lemma 6.37: Show that for every constant t > 0 and all pos-
itive integers n ≥ k and all ε > 0, there is an explicit (k,ε)-
extractor Ext: {0,1}n × {0,1}d→ {0,1}m with m ≥ k/2 and
d = k/t + O(log(n/ε)). (Hint: convert the source into a block
source with blocks of length k/O(t) + O(log(n/ε)).)

Problem 6.10 (Encryption and Deterministic Extraction). A
(one-time) encryption scheme with key length n and message length
m consists of an encryption function Enc: {0,1}n × {0,1}m→ {0,1}�
and a decryption function Dec: {0,1}n × {0,1}�→ {0,1}m such that
Dec(k,Enc(k,u)) = u for every k ∈ {0,1}n and u ∈ {0,1}m. Let K be

208 Randomness Extractors

a random variable taking values in {0,1}n. We say that (Enc,Dec)
is (statistically) ε-secure with respect to K if for every two messages
u,v ∈ {0,1}m, we have ∆(Enc(K,u),Enc(K,v)) ≤ ε. For example, the
one-time pad, where n = m = � and Enc(k,u) = k ⊕ u = Dec(k,u) is
0-secure (a.k.a perfectly secure) with respect to the uniform distri-
bution K = Um. For a class C of sources on {0,1}n, we say that the
encryption scheme (Enc,Dec) is ε-secure with respect to C if Enc is
ε-secure with respect to every K ∈ C.

(1) Show that if there exists a deterministic ε-extractor
Ext: {0,1}n→ {0,1}m for C, then there exists an 2ε-secure
encryption scheme with respect to C.

(2) Conversely, use the following steps to show that if there
exists an ε-secure encryption scheme (Enc,Dec) with
respect to C, where Enc: {0,1}n × {0,1}m→ {0,1}�, then
there exists a deterministic 2ε-extractor Ext:{0,1}n→
{0,1}m−2log(1/ε)−O(1) for C, provided m ≥ logn + 2log
(1/ε) + O(1).
(a) For each fixed key k ∈ {0,1}n, define a source Xk on
{0,1}� by Xk = Enc(k,Um), and let C′ be the class
of all these sources (i.e., C′ = {Xk : k ∈ {0,1}n}).
Show that there exists a deterministic ε-extractor
Ext′ : {0,1}�→ {0,1}m−2log(1/ε)−O(1) for C′, provided
m ≥ logn + 2log(1/ε) + O(1).

(b) Show that if Ext′ is a deterministic ε-extractor for C′
and Enc is ε-secure with respect to C, then Ext(k) =
Ext′(Enc(k,0m)) is a deterministic 2ε-extractor for C.

Thus, a class of sources can be used for secure encryption iff it is
deterministically extractable.

Problem 6.11 (Extracting from Symbol-Fixing Sources*). A
generalization of a bit-fixing source is a symbol-fixing source X taking
values in Σn for some alphabet Σ, where subset of the coordinates of X

are fixed and the rest are uniformly distributed and independent ele-
ments of Σ. For Σ = {0,1,2} and k ∈ [0,n], give an explicit ε-extractor

6.5 Chapter Notes and References 209

Ext : Σn→ {0,1}m for the class of symbol-fixing sources on Σn with
min-entropy at least k, with m = Ω(k) and ε = 2−Ω(k). (Hint: use a
random walk on a consistently labelled 3-regular expander graph.)

6.5 Chapter Notes and References

Surveys on randomness extractors and their applications are given by
Nisan and Ta-Shma [301] and Shaltiel [352, 354].

The study of randomness extraction goes back to von Neu-
mann [416], who gave the deterministic extractor described in the text
for IID-bit sources. (See [130, 307] for improvements in the extraction
rate.) The study of extraction was renewed by Blum [69], who showed
how to extend von Neumann’s method to extract perfectly uniform
bits from a source generated by a finite-state Markov chain. Santha
and Vazirani [346] proposed the model of unpredictable-bit sources,
suggested that an extractor need only produce an output that is sta-
tistically close to uniform (rather than perfectly uniform), and proved
that there is no deterministic extractor for a single unpredictable-bit
source even under this relaxation (Proposition 6.6; the proof we give
in Problem 6.6 is from [334]). Vazirani and Vazirani [407] showed
that nevertheless every problem in BPP can be solved in polynomial
time given a single unpredictable-bit source (Theorem 6.29.) Chor and
Goldreich [96] generalized this result to block sources, in the process
introducing min-entropy to the literature on randomness extraction.
Cohen and Wigderson [107] showed how to simulate BPP with any
source of sufficiently high min-entropy rate. This was strengthened to
any constant entropy rate by Zuckerman [426], and polynomially small
entropy rate in [343, 28].

The notion of seeded extractor we focus on in this section (Defi-
nitions 6.13,6.16) was introduced by Nisan and Zuckerman [303], who
also gave the first construction of extractors with polylogarithmic seed
length (building on [426]). A form of the Leftover Hash Lemma (for
flat distributions, and where the quality of the output distribution
is measured with entropy rather than statistical difference) was
first proven by Bennett, Brassard, and Robert [63]. The version in
Theorem 6.18 is due to Impagliazzo, Levin, and Luby [197], and the

210 Randomness Extractors

proof we give is due to Rackoff [217]. The connection between the
Leftover Hash Lemma and the Johnson Bound in Problem 3.4 is
due to Ta-Shma and Zuckerman [383], with the equivalence between
almost-universal hashing and minimum distance being from [67]. The
extractor parameters of Problem 3.4 were first obtained in [155, 372].

The study of deterministic extractors has also remained active,
motivated by applications in cryptography and other settings where
enumerating seeds does not work. Bit-fixing sources, first studied
in [63, 98, 409], received particular attention for their applications
to maintaining security when an adversary learns some bits of a
cryptographic secret key [90]. (There has been work on protecting
against even more severe forms of leakage, surveyed in [175].) The
deterministic extractor for symbol-fixing sources in Problem 6.11 is
from [232]. Problem 6.10 (encryption requires deterministic extraction)
is due to Bosley and Dodis [77]. For a discussion of deterministic
extraction for other models of sources, see Section 8.2.

The relevance of bipartite expanders to simulating randomized
algorithms with weak sources is due to Cohen and Wigderson [107],
who studied dispersers and generalizations of them (as graphs rather
than functions). The expander-based extractor of Theorem 6.22 is due
to Goldreich and Wigderson [174]. The connection between extractors
and list-decodable codes emerged in the work of Trevisan [389], and
the list-decoding view of extractors (Proposition 6.23) was crystallized
by Ta-Shma and Zuckerman [383]. The equivalence between extractors
and averaging samplers (Corollary 6.24) is due to Zuckerman [427]
(building on previous connections between other types of samplers and
expanders/dispersers [365, 107]).

The notion of entropy was introduced by Shannon in his seminal
paper [361] that gave rise to the field of information theory. The many
properties of Shannon entropy and related quantities and their appli-
cations to communications theory are covered in the textbook [110].
Therefore, the fact that Shannon entropy converges to min-entropy (up
to a vanishing statistical distance) when we take independent samples
is called the Asymptotic Equipartition Property. Rényi entropy
(indeed the entropies Hα for all α ∈ (0,∞)) were introduced in [335].

6.5 Chapter Notes and References 211

The fact that every k-source is a convex combination of flat k-sources
(Lemma 6.10) is implicit in [96]. Our proof is due to Kalai [230].

The optimal nonconstructive bounds for extractor parameters
(Theorem 6.14) were identified by Radhakrishnan and Ta-Shma [315],
who proved a matching lower bound on seed length and upper bound
on output length.

The method for extracting from block sources given by Lemmas 6.27
and 6.28 was developed over a series of works [96, 410, 426]; the form
we use is from [303]. The first method described in Section 6.3.2 for
converting general weak sources to block sources is from the original
papers of Nisan and Zuckerman [426, 303] (see [402] for a tighter
analysis). The observation that high min-entropy sources can be
partitioned into block sources, and the benefits of this for constructing
extractors, is due to Goldreich and Wigderson [174]. Lossless con-
densers were first introduced by Raz and Reingold [319] (formulated in
a slightly different manner), and the general definition of condensers
is from Reingold, Shaltiel, and Wigderson [328]. The equivalence of
lossless condensing and vertex expansion close to the degree is from
Ta-Shma, Umans, and Zuckerman [382]. The extractor construction of
Section 6.3.4 is due to Guruswami, Umans, and Vadhan [192]. (Earlier
papers had results similar to Theorem 6.36 with some restrictions on
the parameters, such as k = Ω(n) [427] and 1/ε subpolynomial [272].)
Recently, Dvir, Kopparty, Saraf, and Sudan [124] constructed extrac-
tors that have logarithmic seed length and extract a 1 − O(1) fraction
of the min-entropy (for constant or slightly subconstant error).

The zig–zag product for extractors and condensers described in
Section 6.3.5 is from [332, 92].

Problem 6.2 (achieving exponentially small error when simulating
BPP with a weak source) is from [426].

