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Abstract. We initiate a complexity-theoretic treatment of hardness amplification
for collision-resistant hash functions, namely the transformation of weakly
collision-resistant hash functions into strongly collision-resistant ones in the
standard model of computation. We measure the level of collision resistance
by the maximum probability, over the choice of the key, for which an efficient
adversary can find a collision. The goal is to obtain constructions with short
output, short keys, small loss in adversarial complexity tolerated, and a good
trade-off between compression ratio and computational complexity. We provide
an analysis of several simple constructions, and show that many of the parameters
achieved by our constructions are almost optimal in some sense.

Keywords. collision resistance, hash functions, hardness amplification, combin-
ers

1 Introduction

Constructing collision-resistant hash functions is a central problem in cryptography,
both from the foundational and the practical points of view. The goal is to construct
length-decreasing functions for which it is infeasible to find two distinct inputs with

the same output. This problem has received much attention over the past two decades.
Still, coming up with constructions that are efficient enough to be of use in practice
and at the same time enjoy rigorous security guarantees (say, based on the hardness
of some well-studied problem) has turned out to be elusive. We also seem unable to
construct collision-resistant functions from potentially simpler primitives, c.f. [25]. The
problem is highlighted by the repeated attacks on the popular MD4, MD5 and SHA1
hash functions (refer to [20] and references therein).
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Given this state of affairs, it is natural to ask whether one can “bootstrap” collision
resistance by constructing “full-fledged” collision-resistant hash functions (CRHF)
from “weak” ones. That is, are there general mechanisms for transforming hash
functions, for which it is “somewhat easy” (but not completely trivial) to find collisions,
into one for which it is infeasible to find collisions? In addition to providing rigorous
ways to improve the collision resistance of hash functions, such mechanisms could in
themselves suggest methodologies for constructing hash functions “from scratch”.

Several works propose design principles for hash functions, e.g. [17,4, 14, 3].
These mechanisms can indeed be regarded as “hardness amplification” mechanisms
for collision-resistant hash functions. However, with the exception of [4], which
concentrates on increasing the domain size of the hash function, all the analyses
provided for these mechanisms use idealized models of computation, such as modeling
the underlying building blocks as random functions. Consequently, we do not currently
have constructions that are guaranteed to provide some level of collision resistance
in the standard model of computation, under the sole assumption that the underlying
building blocks have some weaker collision resistance properties. (Recently, the closely
related problem of constructing “combiners” for hash functions has been studied in the
standard model [2, 19]; we discuss this problem in more detail below.)

This state of the art should be contrasted with the “sister problem” of constructing
one-way functions. Here we have a well-established theory of hardness amplification
[27] (see also [11]). That is, we have concrete notions of “strength” of one-way
functions, and constructions that are guaranteed to provide “strong” one-way functions
based on the sole assumption that the underlying building block is a “weak” one-way
function. Several lower bounds for “black-box” hardness amplification are also known,
e.g. [23,15].

We note that collision resistance often exhibits very different properties than one-
wayness. For one, constructing collision-resistant hash functions calls for different
design principles (e.g. the proposed expander-based one-way function of [10] is very
bad as a collision-resistant function). Furthermore, both practice and theory indicate
that collision resistance is considerably harder to achieve than one-wayness, e.g. [6, 26,
25]. Still, except for some specific points highlighted within, we show that it is possible
to translate much of the analysis used in the study of amplification of one-wayness to
the setting of collision resistance.

1.1 This work.

We initiate a study of amplification of collision resistance, in a standard reductionist
complexity-theoretic framework. That is, we first provide a measure for the “level”
of collision resistance of hash functions. We then consider some constructions and
quantitatively analyze the amount in which they amplify the collision resistance, along
with a number of efficiency parameters (discussed below).

Model for hash functions. Following [4], we model hash functions asfamily of
functions, where a function in the family is specified vikey Security is analyzed
for the case where the key is chosen at random (from the space of keys) and made
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public. We point out several advantages of this approach. Refer to [21] for a more
detailed discussion. First, it allows for a natural modeling of the adversary as an
algorithm (a circuit) that takes for input a key identifying a functionh, in the
family and tries to output a collisiomy # z; such thath,(zp) = hk(z1). (Such
modeling is not possible for single functions since for any length-reducing function
there always exists an adversary that outputs a collision for that function in constant
time.) Second, this approach supports a simple and natural quantitative measure for the
level of collision resistance: the level of collision resistance is the maximum probability,
over the choice of the key, with which an efficient adversary can find a collision. Third,
current constructions of hash functions can be naturally regarded as keyed function
families. For instance, we may interpret the initialization vector (IV) in SHAO and
SHAL as a key. Finally, several collision-finding attacks seems to depend on specific
values or properties of the key in use and work for some keys but not others. Specific
examples include Dobbertin’s attack on MD5 [6], time-memory trade-off attacks, and
attacks on Gibson’s hash function [8]. In particular, it may well be possible that even
“broken” functions still have a significant fraction of keys for which attacks are less
successful. On the other hand, it may not be sufficient to simply view an IV as a key,
because the IV may not be incorporated into the computation in a sufficiently strong
way; see the discussion at the end of the introduction.

Parameters. We consider the following parameters for hash functions and hardness
amplification. First and foremost is the level of collision resistance. The goal in hardness
amplification is to reduce the maximum probability that an efficient adversary can find
collisions from1 — ¢ to ¢, wheree andé are typicallyo(1). Another salient parameter is

the output length. Other parameters include the key size, the number of applications of
the underlying hash function, the the running time (or, complexity) of the adversaries
considered and the “compression ratio” (i.e the ratio of input length to output length).
By itself, the compression ratio is less interesting since we may apply a transformation
due to Merkle and Dandgd [17, 4] to increase the compression ratio arbitrarily; this
increases the number of applications of the underlying function but maintains the same
key size and output length. Our goal is to construct hash functions with a high level of
collision resistance, while maintaining short outputs, short keys, and a good trade-off
between compression ratio and number of operations.

Constructions. We analyze two construction for hardness amplification. The first is
based on simple concatenation (possibly folklore) and the second uses error-correcting
codes and was suggested by Knudsen and Preneel [14]. Then, we analyze two additional
constructions for reducing the key size and the output length respectively.

Amplification via concatenationThe first construction is simple concatenation: we
hash the input using several independently chosen functions and concatenate the hash
values. Formally, given a familf{ = {h,} of hash functions, and a parametgr

define the familyH’ = {h, . }sothathy . (z)=hg (z)o...0hs (2), where

K1, ..., Kq are independently chosen keys in the fantily The analysis is essentially

the same as that for classic hardness amplification for one-way functions [27]. The
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underlying intuition is that finding collisions ih; . is hard as long as finding
collisions in one ofh,, ..., h., is hard. If the initial maximal probability of finding
collisions isd, the maximal probability of finding collisions in the new hash family
is (1 — 6)2@ = e ©09), This means that the improvement in the level of collision
resistance is exponential inwhereas the output length is lineargn

Amplification via codes.In the second construction, we first encode the input with
an error-correcting code wherein the codeword has leqpgier some large alphabet.
Next, we hash the encoded input usinmpdependently chosen functions (one for each
of the ¢ symbols in the codeword) and concatenate the hash values as before. In order
to find a collision for this construction, one has to find collisiongriany of the ¢
underlying hash functions (as opposealfig; functions as in the previous construction).
This construction was previously analyzed in an idealized setting in [14].

The analysis relies on the idea that finding collisions in the new hash function is
hard as long as finding collisions Beveralof the ¢ functions is hard (as opposed to
finding collision in just a single function). Indeed, if the initial maximal probability of
finding collisions isg, then we expect that it is hard to find collisionsdip functions.

To exploit this, we use a code with minimum distarite- O(¢))q, and for such codes,

we may achieve a rate @b(J). Consequently this construction allows us to hash an
input that is longer by a factor @(dq) (compared to the first construction) while still
using onlyq invocations of hash functions from the given family. When compared to
amplifying the domain size via the Merkle-Daéng transformation and then applying
the first construction, the second construction offe® &) factor improvement in the
number of hashing operations. The price we pay for this improvement is that for the
samey, ¢ (i.e., for fixed levels of collision resistance in the underlying and target hash
functions), the choice af for the second construction is a constant multiplicative factor
larger than that for the first construction.

We remark that this analysis yields also hardness amplification for one-way
functions with a logarithmic factor improvement in the security reduction.

Reducing the key sizélext, we demonstrate how to modify both constructions so that
the key size increases only by additivelogarithmic term (at the price of increasing

the output length by a constant multiplicative factor). This is done by choosing the
keys via randomness-efficient sampling using expander graphs. The sampler we require
for the concatenation construction is fairly standard (e.g. randomness-efficient samplers
were exploited in a similar manner in [5]), whereas the coding-theoretic construction
requires a modified analysis of a previous sampler [9].

Reducing the output lengthStarting with a familyH of hash functions with output
length/,,: and parametey, the first two constructions yield a family with output length
q%out- We show that for any\, we may in fact reduce the output lengthgt@/s,. — A).

More generally, we show how to transform any faniywith output length?,,; into

one with output lengtli,,. — A with a negligible loss in the level of collision resistance.
However, the complexity of computing the function increases by a multiplicative factor
of 24, so the construction is only useful for logarithmic values'of
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Limitations. We point out some of the limitations of our constructions and try to
justify them. A first limitation is that, given a guarantee on the resiliencH afjainst
adversaries of a given size, we can only guarantee resilience of the new hash family
H’ against adversaries of much smaller size. A similar limitation is shared by existing
hardness amplification results for one-way functions. This may be expected, given that
all our constructions, as well as all existing constructions for hardness amplification
of one-way functions are “black box”. Indeed, evidence that such limitation may be
inherent in “black-box constructions” is given in [11, Chapter 2, Ex 16, p. 96]. In
addition, our constructions increase iboth the complexity of the hashing and the output
length. To explain the blow-up in these parameters, we provide lower bounds on the
number of hashing operations and output length:

— We establish a matching lower bound (up to multiplicative constants) on the number
of hashing operations used in our first two constructions. The bound holds for
black-box constructions that do not use the input as keys for the underlying hash
functions. In particular, the number of hashing operations must have an inverse
dependency on, the initial maximal probability of finding collisions. The bound
is derived from that for hardness amplification for one-way functions in [15].

— Assuming in addition some natural restrictions on the reduction used in the proof
of security, we show that the output length of the new hash function is at least

Q(% - Lout). Our constructions achieve output lengi - fou: - log 1).

While the guarantees provided by our constructions may be too weak to be of real
practical significance, this is unfortunately the state of the art for general constructions.
Providing better guarantees remains a fascinating open problem.

Combiners. Our results pertaining to the output length (namely the fourth construction
and lower bounds thereof) build on the recent work ack-box combiners for
collision resistance [2, 19, 12]. We briefly recall the notion and results and explain the
connection to hardness amplification.

Black-box combiners for collision resistancé\ black-box combiner for collision
resistance is a procedure that giverfunctionsh!, ..., ht with output lengthloy:,
computes a single functioh with the following property: there is an efficient
transformation that given a collision fdr, outputs collision for each ok!, ..., h’.
This guarantees that finding collisions biis hard as long as finding collisions one

of h',..., h'is hard. Concatenating the outputshdt . . ., h* on the same input yields
a combiner with output length- 4,,:. Boneh, Boyen and Pietrzak [2, 19] showed that
this trivial combiner is essentially optimal by giving &/4,,: — O(log n)) lower bound
for deterministidblack-box combiners.

Black-box combiners for collision resistance arise naturally in the context of our
work. Indeed, our first hardness amplification construction may be viewed as choosing
K1, .., kq atrandom and applying the trivial (deterministic) combineti to, . . ., A, .

In addition, since we deal witfamiliesof functions rather than with single functions,
it makes sense in our model to consider aigndomizedcombiners (still, for single
functions). We can then incorporate any randomness used by the combiner in the key of



6 R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan and H. Wee

the new hash family. Two natural questions arise here: Can we beat the [2, 19] bound by
using randomized combiners? Alternatively, can the bound be improved by removing
the additive logarithmic factor?

We answer both questions negatively. We first extend the lower bound of [2,19] to
derive at- ({o,r — O(logn) lower bound on the output length of randomized black-box
combiners. Our lower bound for the output length for hardness amplification builds on
this lower bound. We then construct a randomized black-box combiner with output
length¢- (Your — Q(logn)). This result is interesting in itself, since it is the first
non-trivial combiner that beats concatenation. Furthermore, this combiner underlies
our fourth construction mentioned above, which reduces the output length of hash
functions. Putting these two results together, we deduce that the optimal randomized
black-box combiner has output lengtt{/,,: — ©(log n)).

Combiners for families of hash functionSo far, we've discussed the relationship be-
tween combiners for single functions and hardness amplification for function families.
In addition, one may directly study combiners familiesof functions: Givert families

of hash functions with output length,., construct a single family of hash functions that

is collision-resistant as long as one of thiamilies is collision-resistant. We note that

it is possible to construct a combiner having output lerigth,,. — O(logn)) using

our randomized black-box combiner. The concurrent work of Fischlin and Lehmann
[7] studies a very similar problem, albeit in an idealized model that only admits generic
attacks on the hash functions.

Extensions. Our positive results for hardness amplification of collision resistance may
be extended to several other variants of collision resistance. Details of these extensions
are deferred to the final version of the paper.

Resistance to correlationsAs noted in previous work (e.g. [1]), collision resistance
can be regarded as a special case of “resistance to finding correlations.” That is, for a
givenk-ary relationR, say that a family of function®( is R-resistant if it is hard given a
randomh € H tofindxy, ...z, such thalR(h(x1), ..., h(xy)) holds. In this terminology,
collision resistance is simplyR.q-resistance wher&eq(y1,y2) iff y1 = y2. CanR-
resistance be amplified for other relations? Can collision resistance be derived from (or
imply) R-resistance for other relatiord®? These are interesting questions.

As a small step in this direction, we consider amplification for the “near collision”
relation Rear, Where Rpear(y1,y2) iff the Hamming distance between andys is
small (see e.g. [16, Sec 9.2.6]). We observe that by encoding the hash value with
an error-correcting code, we may transform a standard collision-resistant hash family
to a near-collision-resistant hash family. Conversely, given a near-collision-resistant
hash family, one can construct a standard collision-resistant hash family with shorter
output by “decoding” the hash value to the nearest codeword of a covering code. This
yields an amplification theorem for resistance to near-collisions, as a corollary of our
amplification theorems for collision resistance.

Target collision resistance.Our results extend also to the related notion of target
collision resistance (namely, universal one-way hash functions [18]). Here we may
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use the same constructions as for collision resistance, except to replace the Merkle-
Damgard domain expansion with that of Shoup [24], and the same analysis goes
through. We stress that the extension should not be taken for granted, because
techniques for collision resistance do not always extend readily to target collision
resistance; domain expansion is a good example.

Discussion. We discuss some additional aspects of the analysis in this work. First,
we address only collision resistance, which is one out of many desired properties of
“cryptographic hash functions”. In fact, we do not even address properties such as
resistance to finding additional collisions, once a collision is found. Concentrating on
plain collision resistance allows for clearer understanding. In fact, constructing hash
functions achieving even this specific property seems to be challenging enough, as
evidenced by the attacks on MD5 and SHAL.

Another point worth highlighting is that our analysis can be viewed as a demonstra-
tion of the benefits in havinfamiliesof hash functions, where there is some assurance
that finding collisions in one function in the family does not render other functions in the
family completely insecure. This may suggest a methodologgdastructingpractical
collision-resistant functions: Design such functions as keyed functions, where the key
is intimately incorporated in the evaluation of the function. This might give some hope
that finding collisions for one value of the key might not help much in finding collisions
for other values of the key. Then, apply a generic amplification mechanism such as
the ones studied here to guarantee strong collision resisemrewhen a significant
fraction of the keys result in weak functioe stress that, in order to be of value,
the key has to be incorporated in the computation of the function in a strong way. This
fact is exemplified (in the negative) by the MD/SHA line of functions: Although these
functions are often modeled as families of functions that are keyed via the 1V, the actual
constructions do not incorporate the IV in the computation in a strong way. And, indeed,
the very recent attacks against such functions (e.g. [26]) seem to work equally well for
all values of the IV. Similarly suspect are related methods for creating a hash function
family from a fixed hash function by treating a portion of the input as key.

Finally, we stress that even though we use asymptotic notation to make our results
more readable, they actually provide concrete bounds on the parameters achieved.
Moreover, we provide uniform reductions in all of our proofs of security, so even though
the positive results are stated for nonuniform adversaries, it is easy to derive an analogue
of those results for uniform adversaries.

Organization. We begin with by reviewing quantitative definitions of collision
resistance for CRHFs in Section 2. We present all of our constructions for hardness
amplification, key size reduction and output length reduction in Section 3, and our lower
bounds in Section 4. Given that randomized black-box combiners are a recurring tool
in this paper, we define them in Section 2 and present the construction in Section 3 and
the matching lower bound in Section 4.
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2 Preliminaries

2.1 Quantitative definitions of collision resistance

A family of hash functions is a collection of polynomial-time computable functions
H = {H, : {0,1}0 x {0,1}00) — [0,1}f=(")}, wheren is the security
parameter, satisfyingo,:(n) < fin(n). We refer tofi,, lout, fiey as the input length,
output length and key size of the hash function. Welyse {0, 1}%(™) — {0, 1}feut(n)
to denote the functiofi,, (, -) associated with the key € {0, 1}%= ("), We call a pair
(0, 1) satisfyingzg # x1 andh,(xo) = h.(x1) a collision forh,.

For anyn, we say that,, is an(s, ¢)-CRHF (collision-resistant hash function) if
for every nonuniformA of sizes,

Pr[k — {0,1}% (). A(x) outputs a collision fok,.] < e

(The quantity is what we refer to in the introduction as the level of collision resistance.)
For notational simplicity, we omit referencestowhenever the context is clear (e.g.
H : {0, 1} 5 x {0, 1} — {0, 1}ou).

We will also refer to asymptotic notions of CRHFs. As with one-way functions, we
want to consider the entire class of nonuniform polynomial-time adversaries (although
we do provide uniform reductions in our proofs of security). Formally, we say that
H is a strong CRHF if for every polynomial(-) and every sufficiently large, H
is a(p(n), ﬁ)-CRHF. Similarly, we say that{ is a weak CRHF if there exists a
constantc such that for every polynomial(-) and every sufficiently large, H is a
(p(n),1 — #)-CRHF. Standard cryptographic applications of hash functions actually
require strong CRHFs, so whenever the strength of the CRHF is not qualified, we will
refer to strong CRHFs.

Public-coin vs. secret-coin hash functionés noted in [13], a distinction needs to

be made between public-coin and secret-coin hash functions. In a public-coin hash
function, the key corresponds to a uniformly generated random string and the key
generation algorithm computes the identity function. In a secret-coin hash function,
the distribution of the key may be any samplable distribution. For simplicity and clarity,
our definition and exposition refer to public-coin hash functions. It is easy to see that
all of our constructions (Constructions 1, 2 and 4) apart from the reduction in key size
using randomness-efficient sampling extend to secret-coin hash functions.

2.2 Black-box combiners for collision resistance

We generalize the notion of black-box combiners from [2, 19] so as allow randomized
constructions.

Definition 1. We say that(C, R) is a randomized black-box (¢,t)-combiner for
collision resistance if C, R are deterministic poly-time oracle TMs, and there exists
some negligible function(-) such that for allh?, ... k! : {0,1}4 — {0, 1}fen:
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CONSTRUCTION For everyr, Ch"h'(r.) computes a functiorh,
{0,1}" — {0,1} ", whereli,” > lout'.

RebucTION. With probabilityl — v(n) overr: if (Zo, 1) is a collision for
h,, thenRM = (v & &) outputst pairs (z3, z1), . .., («}, ) such that for
at leastt — t' + 1 valuesi € {1,...,t}, (z},z}) is a collision forh?.

Intuitively, the guarantee is that if it is hard to find collisions on sahw# the functions
R, ..., R, then with overwhelming probability ovet, it is hard to find collisions on
h,.. Our definition generalizes that in [2,19] in that we provide bétland R with
additional “randomness?, which is interpreted as a key. Specifically, in the previous
definitions, C' computes a single function, whereas in our definit@rcomputes a
family of functions{h,.}. In our constructionR is deterministic, whereas our lower
bound (as with previous work) extends to randomized reductibns

3 Constructions

The goal of hardness amplification is to deduce the existence of strong CRHFs from
weak CRHFs. Fix a security parameterThe parameters for the new CRHE will

be different from those for the starting CRHE we useli,, fout, fkey 10 denote the
parameters for &s,1 — §)-CRHF that we start with, anél,’, fou’, fke,” to denote the
parameters for thés’, ¢)-CRHF that we are about to construct. Typical values of the
parameters aré = m ande = neg(n). As outlined in the introduction, we begin

two basic constructions for hardness amplification (Sections 3.1 and 3.2) and then show
how to reduce the key size (Section 3.3) and output length (Section 3.4). A summary of
the parameters is given in Fig 1.

Domain expansionWe compensate the loss in compression ratio in our constructions
by first applying Merkle-Damard domain expansion [4,17], noting that domain
expansion for collision resistance preserves the hardness parameter.

Proposition 0 ([4, 17]).Fix some security parameter Suppose there exists(a, ¢)-
CRHF H,, from {0,1}% x {0,1}% to {0,1}%= computable in time7T. Then,
Construction 0 yields affis’, €)-CRHF H/, from {0,1}%" x {0,1}%" to {0, 1}’
with the following parameters:

/ /
- eout = gout andekey = Ekey

— # hash calls F» =%
out

—%in

— security reduction s’ = s — 4," - T

3.1 Amplification via concatenation

We begin with a description and the analysis of the basic concatenation construction.
The analysis we provide is very similar to that for hardness amplification for one-way

functions via direct product [27, 11]. The presentations is somewhat simpler. We also
make a small modification to the analysis that facilitates the analysis of the coding-
theoretic construction, discussed in the next section.
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Construction 1 (basic).Pickq = [% In %l independent keys, . . ., k,. Oninputr €
{0,1}%, outputh,., () 0 hy, () 0 ---0 he, ()

In using the same input to the hash functions under all ofgtkeysx1, ..., kq,

we ensure that a collisiong, x; for the key (1, ..., kq) is also a collision for the
underlying hash function on each of the keys. . . , k.

Proposition 1 (Construction 1).Fix some security parameter. Suppose there exists
a (s,1 — §)-CRHF H,, from {0, 1}% x {0,1}% to {0,1}*«. Then, Construction 1
yields an(s’, €)-CRHF 1/, from {0, 1}%=" x {0,1}%" to {0, 1}%" with the following
parameters:

— b = lin and Loy’ = O(%22 log 1) andfye, = O( % log 1)

— # hash calls =9( £ log 1)

— security reduction 5’ = s - ©(1 log L log 1)~}

Proof. SupposeA finds collisions orf], with probability at least, and consider the
following algorithm A’ for finding collisions orfH,,: on inputk,

1. chooses, ..., k, atrandom; € [¢| at random, and seis = .
2. runsA(kq, ..., kq) to obtainzg, z1, and outputsg, z;.

To analyze the success probability faf, first fix any setS of keysx of densityg.
Intuitively, S represents the set of keys for which it is hard fdrto find a collision.

Pr [A(k1,...,Kq) Outputs a collision)\ at least one of the;’s lies in S]

K1,..-,Kq

>e—(1-95)7>

[Slfe

Hence,

Pr [A(ki,...,kq) outputs a collision)\ k; € S] > =

Kl 3Kq,t 2q
On the other hand,

Pr  [A(k1,...,Kq) outputs a collision)\ x; € S|

: Prs Pr[A’ (k) outputs a collision foh,]
KE

IN

- max Pr[A’(x) outputs a collision fo,]
KE

This implies that for any sef of densityg,

max Pr[A’(r) outputs a collision foh,] > 5
KE

Hence,
Pr [Pr[A’(m) outputs a collision foh,;] > ;—q} >1-
K

S

By running A’ a total of %2 log 1 = O( log L log 1) times, we find collisions oft,,
foral — g fraction of keys with probabilityi — g This means we find collisions on
'H,, for a random key with probability at least— 6. O
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3.2 Amplification via codes

Note how the basic construction loses@(y) factor in the compression ratio because
we repeat the same input for each of théeys. The following work-around was
suggested in [14]. We first encode the inputsing an error-correcting codeto obtain

q symbolsC(z)1,...,C(x), € {0,1}%, and then we hash each of thdlocks with
independently chosen hash functidnsg, . . ., h., and output the concatenation. Note
that the adversary may upon receiving thkeys only produce collisions wherein the
codewords disagree only on the “easy” keys. For the analysis to go through, we argue
that w.h.p., afI fraction of the keys (and not just one key) must be “hard”. If we pick

C to be a code with relative distante- g, we are guaranteed there i%éraction of
positions wherein the codewords disagree and the corresponding keys are “hard”.

Construction 2 (coding-theoretic).Pick g = [% In %1 independent keys, . . ., kq.
LetC : {0,1}%" — ({0,1}%)? be an error-correcting code with minimum relative
distancel — g (e.g., the Reed-Solomon code), whéré = O(dqli,). On inputx €
{0,1}%", outputh,,, (C(x)1) 0 by (C(2)2) 0 -+ - 0 hye (C() ).

Proposition 2 (Construction 2).Fix some security parameter. Suppose there exists
a (s,1 — §)-CRHF H,, from {0, 1}%« x {0,1}% to {0, 1}*«. Then, Construction 2
yields an(s’, €)-CRHF 1/, from {0, 1}%" x {0,1}%" to {0, 1}%" with the following
parameters:

— b = O(lin log 1) and oy’ = O(%3: log 1) andie,’ = O( % log 1)
— # hash calls =0(1 log 1)
— security reduction 5’ = s - ©(1 log 1)~!

Proof. SupposeA finds collisions orf], with probability at least, and consider the
following algorithm A’ for finding collisions orfH,,: on inputx,

1. chooses, ..., rq atrandom; € [¢| at random, and sets = .
2. runsA(kq, ..., kq) to obtainzg, z1, and outputs” (z¢);, C(x1);-

To analyze the success probability faf, first fix any setS of keysx of densityg. By
a Chernoff bound (the multiplicative variant), we have

Pr [A(k1,...,kq) Outputs a collisior{zo, z1) /A at Ieastg fraction ofx,’s lies in S]

> € _Cfﬁq/16 > %

Conditioned on the above event, forgafraction of j's in {1,2,...,q}, we have
C(x0); # C(x1); andk; € S (since the former occurs for A— g fraction of j’s
and the latter occurs for%fraction of’s). Hence,

Pr  [A(ky,...,kq) outputs a collisior{zg, z1) A k; € S A Cl(x0); # Clz1)s] > 9

. 16
K1yeensKg,t



12 R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan and H. Wee

On the other hand,
1 Pr [A(ka,...,Kq) outputs a collisior(zg, z1) A k; € S A C(xo); # C(1)i]
K1 pororfiq i
=1 [Pr Pr[A'(x) outputs a collision for,]
<$. max Pr[A’ (k) outputs a collision foh,]

This implies that for any sef of density?,

max Pr[A’(k) outputs a collision foh,;] >

£
KES 8

Hence,
Pr [Pr[A’(m) outputs a collision fok,,] > g} >1-$
K

Again by runningA4’ a total of O(% log ;) times, we can find collisions of,, with
probability 1 — 4. O

3.3 Reducing the key size

From a theoretical point of view, it is useful to have hash functions with short
descriptions (i.e. short keys). Short keys may also be of interest from a practical point
of view, although for the most common application of collision-resistant hash functions
(digital signatures) the key would be standardized and only distributed once. Starting
with a 160-bit key, the above transformations could yield a key that is much longer.
Fortunately, there is no inherent cause for this blow-up: we may reduce the key size in
each of the above constructions using randomness-efficient sampling [9], namely, we
want to sample keys in{0, 1}“ usingr bits of randomness, where< glyey.

To accomplish this, we will use the randomness-efficient hitter in [9, Appendix C],
with a slightly different analysis showing that for the parameters we are interested in,
the construction satisfies a stronger sampler-like property. The weaker hitter guarantee
is sufficient to reduce the key size for Construction 1, whereas the stronger sampler-like
property is necessary for Construction 2. For our application, we will also require that
that the hitter satisfy a certain reconstructibility property, previously used in [5]. This
is used in the security reduction to generate challenges for the adversary brgdking
given a key forH.

We stress here that for specific concrete parameters, we may use different choices
of hitters and samplers for ease of implementation and optimality for those specific
parameters.

Lemma 1. There exists a constaatsuch that for every, e > 0, there is an efficient
randomized procedur€ : {0,1}" — ({0, 1}% )7 with the following properties:

— (sampler) for every subs6tC {0, 1}% of densitys, with probability at least —e,
at Ieastg—g of the strings output by lie in S.

— (complexity) the randomness complexitys fi., + O(log%) and the sample
complexityy is O(5 log 1).
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— (reconstructible) there exists an efficient algorithm that on irput), outputs a
uniformly random element from the det | G(0); = «}.

Proof (sketch)The construction (based on that in [9]) proceeds in three stages:

— First, we construct a hitter that generatesamples in{0, 1} ey using/\e, random
bits with the following property: for every subsstof {0, 1}% with densityd,
with probability at least, at least one sample lies ifi. We may obtain such a
hitter using Ramanujan graphs of degrg@and vertex sef0, 1}%e, wherein we
pick a random vertex, and the samples are the indices of the neighbots[8F.

— Next, we construct a sampler that generates O(log 1) samples in{0, 1}«
using/ie, + O(d) random bits with the following property: for every subsgtof
{0, 1} % with density2, with probability at least — ¢, at least} of the samples lie
in S’. We may obtain such a sampler by taking a random walk of letigthl on a
constant-degree expander with vertex{getl } % [9].

— Finally, we compose the sampler and the hitter as follows: we consider a random
walk of lengthd—1 on the expander, and use each ofdertices along the path as
random coins for the hitter. Overall, we will run the hittétimes, which generate
atotal ofg = d - § samples using a total df., + O(d) random bits. This yields
the desired query and randomness complexity.

The sampler guarantee follows fairly readily. Fixof densityd. Let S’ be the set of
random coins for the hitter such that at least one sample ligs 80 .S’ has density
at leastZ. We know that with probability at leagt — e (over the random walk), we
generate at leagt samples inS’, which in turn yields? = 3¢ samples that lie ir.

Finally, we check each of the two components in our construction is reconstructible,
from which it follows that the combined construction is also reconstructible. For the
expander-based hitter, this means that givenwe need to compute the vertexvhose
7'th neighbor is labeled. For the expander-based sampler, we need to diversample
a start vertex and a path such that thie vertex on the path is labeled Indeed, both
properties are readily satisfied for standard explicit constructions of constant-degree
expanders. O

The next construction is obtained from Construction 2 by replacing independent
sampling of they keys with randomness-efficient sampling us@gand using a code
with slightly different parameters:

Construction 3 (reduced key size)RunG to obtaing keysk, ..., x, € {0,1}%.
LetC : {0,1}%" — ({0,1}%)? be an error-correcting code with minimum relative
distancel — % (e.g., the Reed-Solomon code), wh&ge = ©(5¢li,). On inputz €
{0, 13", outputhy;, (C(2)1) © b, (C(2)2) 0 -+ © s, (C())-

It is straight-forward to verify that an analogue of Proposition 2 holds for Con-
struction 3 if the CRHF is public-coin, and with essentially the same parameters except
that the key size is now reduced 4@, + O(log %) (i.e., the randomness complexity
of ). We now state our main result for hardness amplification of collision-resistance,
which is essentially a restatement of Proposition 2 for independent sampling and for
randomness-efficient sampling:
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Parameters
input length
output length
# hash calls

key size

(public-coin)

Construction 0
Einl
éout
Lin' —in
Zout*éin

¢ key

¢ key

Construction 1

O(“ log 1)

€

ley + O(log %)

Construction 2
O(lin log %)
O(* log ¢)
O(5 log ¢)
O(% log 1)

liey + O(log 1)

Construction 4
lin — A — log bin
Lot — A
0(2%4n)
Ol + A)
Olin? + A)

Fig. 1. Summary of parameters for Constructions 0, 1, 2, & 4. In order to compare constructions
1 and 2 on inputs of the same length, we could apply the Merkle-Badrtgansformation first, in
which case the latter offers@(log %) factor improvement in the number of hashing operations.
For the key size, the second line refers that achieved using Construction 3 for public-coin hash
functions.

Theorem 1. Fix some security parameter. Suppose there exists(a, 1 — §)-CRHF
H,, from {0, 1}%« x {0, 1}%" to {0, 1}%«. Then, there exists aB’, ¢)-CRHF H/, from
{0,1}5" x {0,1}%" to {0, 1} with the following parameters:

~ ' = O(fiylog 1) andle,’ = O(‘s# log 1) andye, = O(% log 1)
— # hash calls =0(5 log 1)
— security reduction s’ = s - ©(1log §)7!

Moreover, if the CRHF is public-coin, then we may redégg’ to fie, + ©(log %).

3.4 Reducing the output length

We show that it is possible to reduce the output size of any CRHF by an additive factor
of A, with a negligible loss in the the probability of finding collisions, but at the price
of an exponential (imd) multiplicative increase in the complexity of the function, along
with a similar decrease in the size of adversaries tolerated. This imposes a limitation of
A = O(logn) for all reasonable settings.

Proposition 3. Suppose there exists(a, ¢)-CRHF H from {0, 1}% to {0, 1}, Let

A = O(logn). Then, there exists & — poly(24,n),e + 2-2))-CRHF from

{0, 1}fn—A-logtn=2 tg {0, 1}f==4, The complexity of the new CRHF is increases by
afactorpoly (22, 4i,).

This result follows the randomized black-box combiner in the following theorem,
settingt’ =t = 1.

Theorem 2. There is a randomized black-bdx, t)-combiner(C, R) achieving pa-
rameterst;,” = lin — A —log li, — 2 and/oy’ = (t —t' +1)-(Lou — A) for any positive
A such thatty,” > €., > 0. The running times of and R are polynomial inn and
24 and the randomness complexity®is O (¢;,> + A).
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We may in fact use this combiner instead of the trivial combiner for our hardness
amplification constructions. However, since we do not optimize on the output length
of our hardness amplification within constant multiplicative factors, it does not make
sense to try to cut down on the additive terms.

Overview of combinerWe begin with the cas¢ = ¢t = 1 and supposé& = h!

is “highly regular”, and we have a partition df), 1}% into 2/—4 sets{S; | y €
{0,1}*=41 each of size2* with the following property: for eveng, S; contains a
unique stringe such that:(z) has prefix02. Then, we definé(z) to be the(lo, — A)-

bit suffix of h(z). It is easy to see how every collisidit, z') for & yields a collision

(o, 1) for h. To arrive at the general construction (which is where randomness plays
arole),

— We replaced? with a stringz € {0,1}4 that is relatively popular in the sense
that it occurs in at least a@(1/24) fraction of the images of. Such az can be
identified by evaluating. on O (¢, - 224) random inputs. To bring the randomness
complexity down toO(¢4;, + A), we choose these inputs using the randomness-
efficient Boolean sampler for approximating the mean within an additive error of
1 .27 with probability1 — 2724 in [9].

— We replace the fixed partitioning with a random partitioning induced by a family
G of ¢,,-wise independent functions frof, 1}~ to {0, 1}fm—4-los =2 Gijven
g € G, we takeS; = ¢g~'(Z). This gives us a partition of0, 1}“" into sets each
of sizeO(QA&n). With overwhelming probability ovey, for everyz, there exists
x € Sz such that(z) has prefixz (we setz to be the lexicographically first string
with this property).

Construction and analysisWe formally state the construction fot = ¢ = 1. For
simplicity, we present the construction using independent samplesd defer the
randomness-efficient version to the full version.

Construction 4. LetG = {g : {0,1}% — {0,1}fn—A~1etn=2} pe a family of6¢,-
wise independent hash functions that such that giyehe sety—!(y) is computable in
time poly(24,n). (This can be achieved using univariate polynomials of degfgg.
On inputz € {0,1}%~4-1g~2 gand randomness € {0,1}°(4+"), we compute
h. (%) € {0, 1}fx=4 as follows:

1. Parser asg € G anduy, ..., u,, € {0,1}%, wherem = ©(2244;,).

2. Letz € {0,1}4 be the lexicographically first string that occurs at least 24
fraction of times as a prefix amorgdu, ), . .., h(u,,) (Whereh = h');

3. ComputeS; = g~ 1(&) in order to find a stringe in Sz such thath(x) has prefixz.
Choose the lexicographically first string if there are more thaoutput(fe:«—2 if
no such string exists or |5;| > 8¢, - 24.

4. Output the(l,,: — A)-bit suffix ofh(z).

For general’, ¢, we may simply apply the above construction to each'of . ., At~ +1

and concatenate the output; it will be clear from the analysis that we may use the
same randomnessfor all ¢ functions. Theorem 2 follows readily once we establish
the following technical claim fot’ = ¢ = 1.
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Claim. With probability 1 — 2= over r = (g,uy,...,u,), the following
statements hold simultaneously:

— |T.| > 2%—4-1 wherez is as in the construction arfd = {x € {0,1}% | h(x)
has prefixz};

— for all #, we haveS; N T, # 0 (whereS; = g~ 1(%));

— for all , we have|S;| < 84, - 24.

Suppose we have a collisigfig, z1) for h,., where the conditions in the technical claim
do hold forr. Then, we could ipoly (24, ¢;,) time computgzg, z1) € Sz, % Sz, such
thath(zg) = z o h-(Zp) andh(z1) = z o h,(Z1). This implies(z, 1) is a collision
for h.

Proof (of claim) By a Chernoff bound, we have that for eadkbit prefixw, if w occurs

in ap,, fraction of outputs of as a prefix, then with probability at least— 2~ 2¢n

over thew;’s, w will occur at most ap,, + % - 274 fraction of times (as a prefix)
among theh(u;)’s. Taking a union bound over al® < 2 prefixes, we see that
with probability at leastt — 2%, the prefixz must satisfyp. > 3 - 274 and thus

IT.| > 2%—4-1 We assume in the rest of the proof that this is the case. Then, for each
y € {0,1}fm=A7losta=2: B[|S UT,|] = |T,| - 2~ nttHlogtnt2 > 97, Applying a tail
bound for6¢;,-wise independence [22], we obtain:

Pr[S; NT, = §] < 272
)

Taking a union bound over afl € {0, 1}fn—4-logtn=2 e have:

Pr[fly . Si n rz — @] S 2—2&" . 2€in—A—10gfin—2 — 2—Q(fin)
g

Finally, for eachy, E[|Sz|] = 44, - 24. Again, by using the tail bound fd¥/;,-wise
independence and a union bound, we Wy : |Sz| > 84, - 24] < 27 ), O

4 Limitations

We begin by presenting the class of constructions for which we prove lower bounds:

Definition 2. We say that(C, R) is a black-box (1 — 4, ¢)-amplifier for collision
resistance if C' = (Ckey, Chash) iS @ pair of deterministic (oracle) TMs, anft =
(Rkey, Reon) is a pair of randomized (oracle) TMs, and both pairs of TMs run in time
poly(n, 1, 1). In addition, for all = {{0, 1}% x {0, 1} — {0, 1}fex}:
CONSTRUCTION C computeH’ = {{0,1}%" x {0,1}%" — {0,1}%x"}
wherel,,.' > ¢, as follows: given a key’ and a stringz, we runCie, (x) to
obtainky, ..., kg and then sek/, () to beC,iLa"S}]""’h”’q (K, ).

REDUCTION. There exists a constantsuch that for every TM that outputs
a collision onh’, with probability at leask and any subse§ of {0, 1}% of
density at least /2, there exists: € S such that

Pr [Riey(r;0) = '3 RI (4,0, A(K)) outputs a collision orh,;] > (ﬁy
T, Licoll n
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Note that a black-box amplifier should provide an efficient reduction that converts any
adversaryA that finds collisions ink/, with probability e into an adversarny’ that

finds collisions inh,. with probability 1 — §. Indeed, Definition 2 guarantees that for

al — & fraction of keysk, R4™ (1) outputs a collision for,, with probability (¢)°.
RunningR a total of O((£ )¢ log %) yields the desired reduction. The above reduction

is more restrictive than an arbitrary black-box reduction due to the following structural
restrictions we place on the construction and the reduction, and this makes our result
weaker.

Construction.We do not allow constructions that use the input as a key into the
underlying family hash functions. We enforce this constraint by having a key
generation algorithnCy., select the membera, ,...,h, of the underlying
family given only the new key’, and restrict the actual computatioh,s, to only
queryh,,, ..., h.,. We will refer toq as the query complexity of the construction,
the idea being that',.s, will query each of the functions,., , . .., h,, atleast once
by havingCi., not generate extraneous keys.

Reduction.The restriction on the reduction states that the reduction only requires
a single collision fromA’ to break’H with noticeable probability. This is true
of the reductions used in our constructions and of all known reductions used
in hardness amplification for one-way functions (c.f. [15]): all these reductions
generate multiple challenges to the adversary and if the adversary successfully
answers any of the challenges, the reduction succeeds with high probability.

We present lower bounds for the query complexity of the construgtenmd the output
length/le,: .

Theorem 3. Suppos€C, R) is a black-box1 — 4, ¢)-amplifier for collision resistance
with e < 3. Then,

q>Q(5logl) and low' > 5 - (lour — O(logn + log L +1log 3)) — 2

The lower bound forg follows closely the lower bound in [15], by arguing that
Ckey must compute a randomness-efficient hitting sampler, and is omitted due to
lack of space. To obtain a lower bound féy,.', we begin with an observation of

a connection between black-box hardness amplification and randomized black-box
combiners. Intuitively, 1 — §)-CRHF could comprisé § | functions, of which it is

hard to find collisions on just one of them. In this case, the blackf{bex, ¢)-amplifier

acts like a randomized black-bdx, | ; |)-combiner. To derive a lower bound for the
latter, we use the probabilistic argument in Pietrzak’s work [19]. We also note that the
probabilistic argument is already sufficient to obtain the lower bounds for deterministic
black-box combiners, therefore simplifying the lower bounds in [2, 19] by eliminating
an additional randomization argument therein.

Proof. Set¢ to be a power of2 in the interval [+, 2). Pick ¢ random functions
fioeoy fe 2 {0, 1} — {0,1}%= and identify{0, 1}% with {1,2,...,t} andH with
{f1,-.., f+}. Consider the following procedur® for finding collisions infy, ..., f;

given oracle access to these functions:
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— picksz), x; € {0,1}%" andx’ € {0,1}%" at random;
— for eachi = 1,2,...,t, sample a random; such thatRy., (i;0;) = &/,

and outputkR? 7 (i, o, (), ).

We note that for allfy,..., f; and for all ¥/, the functionh/, maps {0,1}%" to
{0,1}%", By the standard lower bound on collision probability or a simple application
of Cauchy-Schwartz, we have

. . ’ ! _ ’_
Pr [(z), z") is a collision forh’,| > 2 et — 276 > 9~ fou' 1
7 0>1 K
.TO,ZL’I

Consider a procedurd that outputs collisions on every,, by repeatedly choosing
(x(, x}) at random until it finds a collision. By our choice feach{:} is a subset of
{0,1}% of density} > §/2, fori = 1,2,...,t. The reduction then guarantees that
Pr [Riey(is0) = /s RY, (i, 0, A(k")) outputs a collision orf;] > (%¢)°
T, [icoll
In fact, the above statement is true even if we restdidb only output collisions for
x' lying in some subse$’ of {0, 1}“ of densitye. By a probabilistic argument, this
implies that for every subsét of {0, 1}% of densitye, there exists:’ € S’ such that:

Prlo « Ryey(i;-) = K'; RY, (i, 0, A(x')) outputs a collision oth,,| > (2£)°

coll n

Call such ax’ i-good. Then, for each, a1 — ¢ fraction of ¥’ is i-good. By a union
bound, there exists B— te fraction of x’ that arei-good, for alli = 1,2, ..., t. Hence,

Pr[R/1-I* outputs collisions for each of;,.. ., f;]
R

> (1 — te) - 2~ ton'~1 . (8!

Note that the preceding inequality holds for all functiofis..., f; and thus also
holds for random functiong, . .., f;. On the other hand, by the birthday paradox and
independence of thefunctions, we know that the probability (over random functions)

~ t
R outputs collisions in each of, . . ., f; is at most( Q° ) , WhereQ = poly(n, $,1)

2%ut

is the query complexity oRR. Comparing the two bounds and solving gy’ yields
the desired bound. O

The above argument also yields a lower bound on the output lengtft/fe)-
combiners. The idea is to ugeto find¢ — ¢’ 4 1 collisions amongst random functions
fi,..., f. and observe that the probability is bounded(pytf;ﬂ) - (2%1 Y=t +1 This
establishes the optimality of our construction in Theorem 2 (up to constant factors in
theO(logn) term):

Theorem 4. Suppos€C, R) is a randomized black-bo§¢’, ¢t)-combiner for CRHFs.
Let@Q be an upper bound on the query complexityzofThen,

lot' > (t =t +1)(lour — 2log Q) —t — 1
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on combiners.
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