
The Hardness of the Expected Decision Depth

Problem

In memory of the second author’s loving father, Yaakov (Yasha) Rosenfeld

Dana Ron ∗,1

Department of EE–Systems, Tel Aviv University, Ramat Aviv, Israel

Amir Rosenfeld 2

Altair Semiconductor, Hod Hasharon, Israel.

Salil Vadhan 3

Division of Engineering and Applied Sciences, Harvard University, Cambridge,
MA, USA

Abstract

Given a function f over n binary variables, and an ordering of the n variables, Added

abstract
we consider the Expected Decision Depth problem. Namely, what is the expected
number of bits that need to be observed until the value of the function is determined,
when bits of the input are observed according to the given order. Our main finding
is that this problem is #P-hard. In particular, hardness holds when the function f

is represented as a decision tree.

Key words: Computational Complexity, Decision Trees
1991 MSC: 68Q17

∗ Corresponding author.
Email addresses: danar@eng.tau.ac.il (Dana Ron),

amirrosenfeld@yahoo.com (Amir Rosenfeld), salil@eecs.harvard.edu (Salil
Vadhan).
1 Work partially done while a fellow at the Radcliffe Institute for Advanced Study,
Harvard University. Also supported by the Israel Science Foundation.
2 This work was part of the author’s MsC thesis at the Department of EE – Systems,
Tel Aviv University
3 Work done while a fellow at the Radcliffe Institute for Advanced Study, Harvard
University. Also supported by a Sloan Research Fellowship and NSF grant CCF-
0133096.

Preprint submitted to Elsevier 27 July 2006

1 Introduction

Added

motivating

scenario

Consider the following communication problem between two types of servers.
One type of server is a function server – it has some function f over n binary
variables. The other type of server is an input server – it has some input
α ∈ {0, 1}n. For a fixed ordering of the variables, the input server sends, one
by one, the corresponding bits of the input it holds to the function server.
Once the value f(α) is determined given the bits that were sent, the function
server notifies the input server and the input server sends no more bits.

One interesting problem in this context is to find an ordering that (approxi-
mately) minimizes the number of bits sent until the value of the function is
determined, when averaging over all inputs. Here we consider the more basic
problem of computing this average number, when given a particular ordering
of the inputs. Solving this, seemingly simpler, computational problem, could
possibly serve as a building block for finding an optimal order. However, we
show that computing this average number is hard.

1.1 Formal Problem Definition

Let f : {0, 1}n → {0, 1} be a Boolean function and let π : [n] → [n] (where

[n]
def
= {1, . . . , n}) be an ordering on the variables of the function. For a fixed

choice of f and π, the decision depth of α ∈ {0, 1}n with respect to f and π,
denoted DDf,π(α), is the minimum number j such that the value of f(α) is
determined given απ(1), . . . , απ(j). That is,

DDf,π(α)
def
= min

0≤j≤n

{

∀ β ∈ {0, 1}n s.t. βπ(i) = απ(i) ∀i ≤ j , f(β) = f(α)
}

.

Note that if DDf,π(α′) = 0 for some α′, then DDf,π(α) = 0 for every α, and
this holds if and only if f is a constant function (i.e., either the all 0 function
or the all 1 function). On the other hand observe that there exist functions,
such as the parity function, for which DDf,π(α) = n for every π and α.

The expected decision depth of f with respect to π, denoted EDD(f, π), is
simply the expected value of DDf,π(α), where the expectation is taken over
the uniform choice of α. Namely,

EDD(f, π)
def
= Expα∈{0,1}n [DDf,π(α)] . (1)

In this paper we consider the problem of computing EDD(f, π) for f that is
given as a decision tree, and refer to this problem as EDD. We note that Removed

poly-size

computing DDf,π(α) for any given α when f is given in the form of a decision

2

tree can be done in time polynomial in the size of the tree. 4 Observe that in
contrast, if f is given in the form of a general CNF (or DNF) function, then
computing DDf,π(α) is NP-hard. This is true since an algorithm for computing
DDf,π in this case can be used to decide satisfiability of (a CNF function) f .
This follows from the aforementioned fact that DDf,π(α) = 0 (for some α and
hence for every α) if and only if f is either a tautology or is unsatisfiable.

For the rest of this paper, we consider only functions represented as decision
trees, and refer to EDD as the problem restricted to this representation.

1.2 Our Result

Theorem 1 EDD is computationally equivalent to #P. That is, EDD reduces
to some problem in #P and every problem in #P reduces to EDD. Added

explanation

Observe that (for technical reason) we do not show that EDD is in #P, but
rather that it reduces to a problem in #P. In particular, EDD cannot belong
to #P since it typically does not have an integer value. However, from a
complexity point of view, this technicality is not of much importance.

The main part of the proof of Theorem 1, which is proving #P-hardness, is
done by a reduction from #SAT to EDD. We note that the reduction is a Cook
reduction (i.e., polynomial-time oracle reduction), and leave open the question
of the existence of a Karp reduction (i.e., polynomial-time mapping reduction).
We also note that this hardness result should be contrasted with the fact that
obtaining an approximation of EDD (whether additive or multiplicative 5)
can be done efficiently by sampling, where the sample and time complexity of
the algorithm are polynomial in n and 1/ε, where ε is a given approximation
parameter.

Finally we consider a variant of EDD in which the cost does not take into
account variables that do not influence the value of the function given the
assignment to previous variables in the order π (as considered in [6], discussed
below). That is, the order is fixed, but a variable v may be “skipped” if, for
the given assignment to the previous variables, for every assignment to the
remaining variables, the value of the function is the same when v = 0 and
when v = 1. This corresponds to a scenario in which there is direct access to

4 For each variable (according to the order defined by π), once the value of the
variable is determined, we can efficiently modify the decision tree by restricting all
appearances of the variable in the tree to this value. Once all leaves of the decision
tree have the same label, the output of the function is decided.
5 Note that unless f is a constant function, which can be determined efficiently
when f is a decision tree, 1 ≤ EDD(f, π) ≤ n for every π.

3

the input, rather than the communication scenario described at the start of
the introduction. This variant is computationally equivalent to #P as well.

1.3 Related Work

Variants of the EDD problem have been considered in several papers
(e.g., [2,3,6], and more remotely related [1,4,5]). The most closely related work
is the paper of Kaplan, Kushilevitz and Mansour [6]. They consider a more
general optimization problem in which each variable, xi, has an associated cost,
ci, and they seek an ordering of the variables that (approximately) minimizes
the expected cost with respect to a known distribution D over {0, 1}n. 6 They
show that if f is a single clause (disjunction of literals) and D is a product
distribution then the optimal ordering can be found in polynomial time. When
D is a general distribution (but f is still a single clause) then the problem
is NP-hard, but there is a polynomial time 4-approximation algorithm. This
approximation holds more generally for read-once DNF. Finally they consider
the case where f is a monotone function whose DNF representation has at
most m terms and its CNF representation has at most m clauses. They show
that if every variable has unit cost and the distribution over inputs is uniform
(as in our case), then there is an algorithm that evaluates f whose expected
cost is O(log m) times the optimum expected cost.

1.4 Open Problems

As noted at the start of the introduction, an interesting open problem is
finding a permutation π for which EDD(f, π) is approximately minimized
when f is given as a polynomial size decision tree. Another problem is to
improve/extend the results in [6] to non-monotone functions. Recall that for
monotone functions with small CNF and DNF representation, Kushilevitz et.
al. [6] do not find a permutation whose expected cost is some factor larger
than the minimum expected cost but rather describe an adaptive algorithm
with such a cost for computing the function.

6 To be precise, they assume that they have access to an oracle that given any
assignment to a subset of the variables, returns the conditional probability that
the function f is 1 (so that in particular, satisfiability is no longer an issue). Their
cost is defined slightly differently from ours, where the cost takes into account only
variables that influence the value of the function given the setting of the previous
variables queried.

4

2 Preliminaries

Added

definitions

For every binary relation R ⊆ Σ∗ × Σ∗, where Σ is some finite alphabet, the

counting function #R : Σ∗ → N is defined by #R(x)
def
= |{y : (x, y) ∈ R}|.

The class #P is the class of all counting functions #R where R is an NP
relation. That is, R is polynomial-time decidable, and there exists a polynomial
p(·) such that for every (x, y) ∈ R, it holds that |y| ≤ p(|x|). In particular,
let R be the SAT relation, that is, SAT consists of all pairs (φ, τ) such that
φ is a CNF function, and τ is an assignment that satisfies φ. For any CNF
function φ, we have that cSAT(φ) is the number of satisfying assignments of φ.
Since SAT is an NP relation, the function cSAT is in #P, and furthermore, it
is #P-complete.

Recall that a decision tree T over a set of variables V is a (binary) tree whose
internal nodes are associated with variables in V , and whose leaves have labels
in {0, 1}. For each internal node, one of its outgoing edges is labeled 0 and
the other is labeled 1. The value of the function fT computed by the decision
tree T for a particular assignment α : V → {0, 1}, is determined as follows.
Starting from the root of the tree, and until a leaf is reached, at each step
we consider the variable v associated with the current node, and take the
outgoing edge labeled α(v). The value of fT (α) is the value at the final leaf.
For simplicity, we shall equate the tree T with the function fT . In all that
follows we consider trees whose size (number of nodes) is polynomial in n.

3 Proof of Theorem 1

In the next two subsections we prove the two directions of the equivalence
stated in Theorem 1. We start with the easy direction.

3.1 EDD is reducible to #P

Modified

subsection

Let TDD (which stands for total decision depth), be defined as follows:
TDD(T, π) =

∑

α∈{0,1}n DDT,π(α). Thus, EDD(T, π) = 2−n · TDD(T, π). Since
EDD clearly reduces to TDD, it suffices to show that TDD ∈ # P. To this
end we need to define an NP relation R such that TDD = #R (where the
counting function #R is as defined in Section 2). Specifically, we define

R =
{

((T, π), (α, k)) : DDT,π(α) ≥ k
}

(2)

5

where α ranges over all assignments to the variables in T and k ranges over
all positive integers between 1 and the number of variables. Clearly, (α, k) is
of size linear in (T, π), and since DDT,π(α) is computable in polynomial time
given T and π, it follows that R is polynomial-time recognizable. Therefore,
R is an NP relation, as required.

For any given choice of (T, π) let R(T, π) = {(α, k) : ((T, π), (α, k)) ∈ R}. By
definition of the counting function #R, we have that #R(T, π) = |R(T, π)|.
By definition of R, if DDT,π(α) = t, then (α, k) ∈ R(T, π) for every k ≤ t and
(α, k) /∈ R(T, π) for every k > t. In other words, for every α, the number of
integers k such that (α, k) ∈ R(T, π) is DDT,π(α). Hence,

TDD(T, π) =
∑

α

DDT,π(α) = |R(T, π)| = #R(T, π) (3)

3.2 #P is reducible to EDD

In this subsection we prove:

Lemma 2 #SAT reduces to EDD.

As noted in the introduction, we show a Cook reduction and leave open the
question of the existence of a Karp reduction. Specifically, let φ : {0, 1}n →
{0, 1} be a 3-CNF function with m clauses over the set of variables X =
{x1, . . . , xn}. We assume, without loss of generality, that φ is a function of
all n variables, so that, in particular the size of φ is greater than n. We shall
construct two decision trees, T1 and T2 over n′ = O(n) variables, and an
ordering π over [n′], such that the number of satisfying assignments of φ can be
computed exactly given the difference between the expected decisions depths
of the two trees, that is, given EDD(T2, π) − EDD(T1, π).

3.2.1 The high-level idea

We start by giving the high level idea of the construction. Both trees will
be defined over the set of variables X of φ as well as several (log m + O(1))
auxiliary variables. Let the union of X with the auxiliary variables be denoted
by V . The two trees and the ordering will be such that the following holds. For
every assignment α to the tree variables (which, in particular is an assignment
to the set of variables, X, of φ), if α does not satisfy φ, then DDT2,π(α) −
DDT1,π(α) = 0, while if α satisfies φ, then DDT2,π(α) − DDT1,π(α) = 1. This
will allow for computing the number of satisfying assignments of φ (among
all assignments to X) from EDD(T2, π) − EDD(T1, π) as we show in detail
subsequently.

6

G2(y, y′)G1(y)

y

y′
y′

0 01 1

y

0 1

Fig. 1. The two types of “waiting” gadgets used to construct T1 and T2. On the left
is a single-variable gadget G1(y), and on the right, a two-variable gadget G2(y, y′).
The solid edges are labeled 1 and the dashed ones are labeled 0.

The two trees are constructed based on the clauses of the CNF function φ.
Namely, for each clause C of φ there is a subtree in each of the two trees, which
contains the variables of the clause and auxiliary variables; there is a unique
path from the root of the tree to this clause-subtree (using auxiliary variables).
The difference between the trees is in the construction of the clause-subtrees.
The structure of these subtrees together with the ordering π will ensure the
desired property regarding satisfying and non-satisfying assignments for φ.
Specifically, in the case of a satisfying assignment for φ, the ordering π will
“force” the computation on the tree T2 to read one more (auxiliary) variable
as compared to the computation on T1, while in the case of a non-satisfying
assignment the computations on the two trees are essentially the same.

3.2.2 Details of the construction

At the heart of the construction are two simple gadgets. For a variable y, the
single-variable gadget G1(y) is a decision tree that outputs the assignment
to the variable y. For a pair of variables y and y ′, the two-variable gadget
G2(y, y′) is a tree that computes the function y ⊕ y′. For an illustration see
Figure 1. Thus the output value of G1(y) is determined once the variable y is
read, and the output value of G2(y, y′) is determined only once both y and y′

are read. We think of these gadgets as waiting gadgets, since they force the
decision to wait until certain variables are read.

Using the above types of gadgets, the decision tree T1 is constructed as follows
over the set of variables V which includes all variables in X (the variables of
φ), as well as auxiliary variables y0, y1, y

′
1 and v1, . . . , vk where k = dlog me.

For each clause Cj in the function φ, there is a subtree tj in T1. The subtree
computes the function “if Cj then G1(y1) else G1(y0)”. For an illustration
see Figure 2. We “put together” the different subtrees t1, . . . , tm by using the
variables v1, . . . , vk. Namely, we construct a binary tree, where nodes in level
i are associated with vi, and where each node at level k has two children that
are roots of two different clause-subtrees that were defined above. If m is not
a power of 2 then some of the clause-subtrees will be children of nodes at level

7

1

1

10

the clause x1 ∨ x2 ∨ x3

A subtree computing

x3

x2

x1

subtree in T1

x3

x1

x2

subtree in T2

x3

x2

x1

The corresponding The corresponding

G2(y1, y′
1
)

G2(y1, y′
1
)

G2(y1, y′
1
)

G1(y1)

G1(y1)

G1(y1)G1(y0) G1(y0)

Fig. 2. On the top is the CNF clause (x1 ∨ x2 ∨ x3), computed by a decision tree
over the three variables. On the bottom left is the corresponding subtree in T1, and
on the bottom right is the corresponding subtree in T2.

v2

v1

v2

t1 t2
v3 v3

t3 t4 t5 t6

Fig. 3. The structure of decision trees T1 and T2 when the number of clauses in φ

is 6.

k − 1. For an illustration see Figure 3.

The decision tree T2 is constructed exactly as T1 with the following important
exception: instead of each single-variable gadget G1(y1) in T1, we put a two-
variable gadget G2(y1, y

′
1). That is, the subtree tj computes the function: “If

8

Cj then G2(y1, y
′
1) else G1(y0)”. 7 As we shall see momentarily, this, together

with the choice of ordering of the variables, will “force” the decision depth
to be larger by 1 in T2 for every assignment that satisfies φ, while forcing
equal decision depth for non-satisfying assignments of φ. With slight abuse of
notation we may sometimes refer to clauses that belong to a certain subtree
T ′ (where we mean clauses that correspond to subtrees within T ′).

The ordering, π, of the variables is defined as follows. First appear the n
variables x1, . . . , xn, then the variables y1 and y′

1, after them v1, . . . , vk, and
finally y0. We shall show that φ is satisfiable if and only if EDD(T1, π) <
EDD(T2, π) and furthermore, the number of satisfying assignments of φ among
all assignments to X, equals 2n · (EDD(T2, π) − EDD(T1, π)). For the sake of
succinctness, we continue with the convention used in the high level discussion
by which we say that an assignment α : V → {0, 1} satisfies (does not satisfy)
φ, when its restriction to X satisfies (respectively, does not satisfy) φ.

Lemma 3 Let α be any fixed assignment α : V → {0, 1}.

(1) If α satisfies φ, then DDT2,π(α) − DDT1,π(α) = 1.
(2) If α does not satisfy φ then DDT2,π(α) − DDT2,π(α) = 0.

We prove Lemma 3 momentarily, but first prove Lemma 2 (i.e., #P reduces
to EDD) based on Lemma 3.

Proof of Lemma 2: Given a 3-CNF function φ over n variables, we con-
struct the trees T1 and T2 and the ordering π as described in the preced-
ing discussion. Clearly this can be done in time polynomial in the size of φ.
Assuming we have an oracle for computing EDD, we compute and output
ŝ(φ) = 2n · (EDD(T2, π) − EDD(T1, π)). By Lemma 3 and the fact that for Added

elaboration

each assignment τ : X → {0, 1} that satisfies φ there are 2|V |−n assignments
α : V → {0, 1} that extend τ to V ,

ŝ(φ) = 2n · 2−|V | ·
∑

α∈{0,1}|V |

(DDT2,π(α) − DDT1,π(α)) (4)

= 2n−|V | · |{α ∈ {0, 1}|V | : α satisfies φ}| (5)

= |{τ ∈ {0, 1}n : τ satisfies φ}| . (6)

Therefore, ŝ(φ) equals the number of satisfying assignments of φ (among all
2n assignments to X). 2

Proof of Lemma 3: Let α : V → {0, 1}. Suppose α satisfies φ. Since φ is a

7 We note that the variable y′
1 does not appear in the tree T1. This was done for

the sake of simplicity, at the cost of elegance. This issue is addressed (in a more
general context) in Subection 3.3.

9

conjunction of its clauses, this means that α satisfies each clause. Namely, for
each clause C, at least one of its literals is assigned 1 by α. This implies that
no matter what is the assignment to v1, . . . , vk, the computation path on T1

reaches a G1(y1) gadget, and the computation path on T2 reaches a G2(y1, y2)
gadget. Namely, the output value of T1 is determined once the assignment
to the variable y1 is determined but not before that, while the output value
of T2 is determined once the assignment to both y1 and y′

1 is determined
(and not before that). Given the ordering π (by which x1, . . . , xn appear first
and after them y1 and then y′

1), this implies that DDT1,π(α) = n + 1 while
DDT2,π(α) = n + 2, and so DDT2,π(α)−DDT1,π(α) = 1, as claimed in the first
item of the lemma.

Turning to Item 2, let α : V → {0, 1} be a non-satisfying assignment for φ.
This means that there exists some clause C in φ that is not satisfied by α.
Hence, neither the value of T1 on α nor the value of T2 on α can be determined
before at least some non-empty prefix of the variables v1, . . . , vk (and possibly
y0) is determined. There are now two cases. If, for some ` ≤ k, the path
determined by α(v1), . . . , α(v`) reaches a node such that all clauses in the
subtree rooted at that node are satisfied by α, then the output value of both
T1 and T2 is determined (since y1 and y′

1 were already determined). In the other
case, α(v1), . . . , α(vk) reaches a clause that is not satisfied by α. This means
that the computation path (in both trees) ends at a G1(y0) gadget. This in turn
implies that for both trees, the output value of the tree is determined by y0,
which is the last variable in the order π. Therefore, in both cases DDT1,π(α) =
DDT2,π(α) (though the decision depth may vary according to α). 2

3.3 A Note on the cost measure

Recall that according to our definition of the decision depth, we “pay” for
every variable in the order determined by π, until the value of the function
can be determined. An alternative definition would allow “skipping” variables
that do not influence the value of the function given the assignment to all
variables already read (indeed as defined in [6]). Namely, for a function f and
ordering π of the variables V of f , a variable v ∈ V can be skipped given an
assignment α′ to a subset V ′ ⊂ V of variables that appear before v in the
ordering π, if an only if for every assignment to V \ {V ′ ∪ {v}} that extends
α′, the value of f is the same when v = 1 and when v = 0. We denote the
analogues of DD and EDD according to this cost measure by DD′ and EDD′,
respectively, and claim that EDD′ is computationally equivalent to #P.

Using a reduction as in Subsection 3.1, one can show that EDD′ reduces to #P
(where DD is replaced by DD′ in the definition of the relation R). The only
thing that needs to be verified is that DD′

T,π(α) is computable in polynomial
time (implying that the relation is recognizable in polynomial time). This holds

10

because deciding whether a variable can be skipped given an assignment to a
subset of the variables translates to checking whether two decision trees are
equivalent, which can be done in time polynomial in the sizes of the decision
trees [7].

In order to prove that #SAT (and hence #P) reduces to EDD′, we slightly
modify our construction of the trees T1 and T2. To see why this is necessary,
consider an assignment α that does not satisfy φ. Our reduction from #SAT
to EDD used the fact that DDT1,π(α) = DDT2,π(α). However, for the new cost
measure the corresponding equality does not hold. The reason is that since no
node in T1 is associated with y′

1, this variable can be skipped when evaluating
T1(α) while it must be read when evaluating T2(α). In order to address this
issue we modify T1 and T2 so that each G1(y0) gadget is replaced by a G2(y

′
1, y0)

gadget. Let the modified trees be denoted T ′
1 and T ′

2 respectively. Clearly now
T ′

1 depends on y′
1, and y′

1 cannot be skipped when computing T ′
1(α) for α that

does not satisfy φ.

It remains to verify that this modification suffices to prove a lemma analogous
to Lemma 3. Namely, that for every α : V → {0, 1}, if α satisfies φ then
DD′

T ′
2
,π(α) − DD′

T ′
1
,π(α) = 1 while if α does not satisfy φ then DD′

T ′
2
,π(α) −

DD′
T ′
1
,π(α) = 0 (from which the proof that #SAT reduces to EDD′ follows).

We first observe that a variable xi can be skipped given the restriction of α to
a subset Xi ⊂ {x1, . . . , xi−1} if and only if all clauses in which xi or x̄i appear
are already satisfied given the restriction of α to Xi. This observation holds for
computations on both T ′

1 and T ′
2. The claim that DD′

T ′
2
,π(α) − DD′

T ′
1
,π(α) = 1

when α satisfies φ now follows as in the proof of Lemma 3. When α does not
satisfy φ then both y1 and y′

1 must be read in the computation on both trees
(unless all clauses are unsatisfied by α in which case for both trees y1 can be
skipped and y′

1 must be read). It is easy to verify that from this point on, every
variable that can be skipped in the computation on one tree can be skipped
in the computation on the other tree, and so DD′

T ′
2
,π(α) − DD′

T ′
1
,π(α) = 0 in

this case, as claimed.

References

[1] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom. Adaptive
ordering of pipelines stream filters. In Proceedings of the ACM International
Conference on Management of Data, pages 407–418, 2004.

[2] M. Charikar, R. Fagin, V. Guruswami, J. Kleinberg, P. Raghavan, and A. Sahai.
Query strategies for priced information. Journal of Computer and Systems
Sciences, 64(4):785–819, 2002.

[3] F. Cicalese and E.S. Laber. A new strategy for querying priced information.

11

In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
pages 674–683, 2005.

[4] O. Etzioni, S. Hanks, T. Jiang, R.M. Karp, O. Madani, and O. Wartz. Efficient
information gathering on the internet. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, pages 234–243, 1996.

[5] O. Etzioni, S. Hanks, T. Jiang, and O. Madani. Optimal information gathering
on the internet with time and cost constraints. SIAM Journal on Computing,
29(3):1596–1620, 2000.

[6] H. Kaplan, E. Kushilevitz, and Y. Mansour. Learning with attribute costs. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages
356–365, 2005.

[7] H. Zantema. Decision trees: Equivalence and propositional operations.
In Proceedings of the 10th Netherlands/Belgium Conference on Artificial
Intelligence (NAIC’98), pages 157–166, 1998. Extended version appeared as
report UU-CS1998–14, Utrecht University.

12

