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Abstract. It is known that if a 2-universal hash function H is applied to
elements of a block source (X1, . . . , XT ), where each item Xi has enough
min-entropy conditioned on the previous items, then the output distribu-
tion (H,H(X1), . . . , H(XT )) will be “close” to the uniform distribution.
We provide improved bounds on how much min-entropy per item is re-
quired for this to hold, both when we ask that the output be close to
uniform in statistical distance and when we only ask that it be statis-
tically close to a distribution with small collision probability. In both
cases, we reduce the dependence of the min-entropy on the number T of
items from 2 log T in previous work to log T , which we show to be opti-
mal. This leads to corresponding improvements to the recent results of
Mitzenmacher and Vadhan (SODA ‘08) on the analysis of hashing-based
algorithms and data structures when the data items come from a block
source.

1 Introduction

A block source is a sequence of items X = (X1, . . . , XT ) in which each item
has at least some k bits of “entropy” conditioned on the previous ones [CG88].
Previous works [CG88, Zuc96, MV08] have analyzed what happens when one
applies a 2-universal hash function to each item in such a sequence, establishing
results of the following form:

Block-Source Hashing Theorems (informal): If (X1, . . . , XT ) is
a block source with k bits of “entropy” per item and H is a random
hash function from a 2-universal family mapping to m � k bits, then
(H(X1), . . . ,H(XT )) is “close” to the uniform distribution.

In this paper, we prove new results of this form, achieving improved (in some
cases, optimal) bounds on how much entropy k per item is needed to ensure that
? A full version of this paper can be found on [CV08].
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the output is close to uniform, as a function of the other parameters (the output
length m of the hash functions, the number T of items, and the “distance” from
the uniform distribution). But first we discuss the two applications that have
motivated the study of Block-Source Hashing Theorems.

1.1 Applications of Block-Source Hashing

Randomness Extractors. A randomness extractor is an algorithm that extracts
almost-uniform bits from a source of biased and correlated bits, using a short
seed of truly random bits as a catalyst [NZ96]. Extractors have many applications
in theoretical computer science and have played a central role in the theory
of pseudorandomness. (See the surveys [NT99, Sha04, Vad07].) Block-source
Hashing Theorems immediately yield methods for extracting randomness from
block sources, where the seed is used to specify a universal hash function. The
gain over hashing the entire T -tuple at once is that the blocks may be much
shorter than the entire sequence, and thus a much shorter seed is required to
specify the universal hash function. Moreover, many subsequent constructions
of extractors for general sources (without the block structure) work by first
converting the source into a block source and performing block-source hashing.

Analysis of Hashing-Based Algorithms. The idea of hashing has been widely ap-
plied in designing algorithms and data structures, including hash tables [Knu98],
Bloom filters [BM03], summary algorithms for data streams [Mut03], etc. Given a
stream of data items (x1, . . . , xT ), we first hash the items into (H(x1), . . . ,H(xT )),
and carry out a computation using the hashed values. In the literature, the anal-
ysis of a hashing algorithm is typically a worst-case analysis on the input data
items, and the best results are often obtained by unrealistically modelling the
hash function as a truly random function mapping the items to uniform and in-
dependent m-bit strings. On the other hand, for realistic, efficiently computable
hash functions (eg., 2-universal or O(1)-wise independent hash functions), the
provable performance is sometimes significantly worse. However, such gaps seem
to not show up in practice, and even standard 2-universal hash functions empiri-
cally seem to match the performance of truly random hash functions. To explain
this phenomenon, Mitzenmacher and Vadhan [MV08] have suggested that the
discrepancy is due to worst-case analysis, and propose to instead model the in-
put items as coming from a block source. Then Block-Source Hashing Theorems
imply that the performance of universal hash functions is close to that of truly
random hash functions, provided that each item has enough bits of entropy.

1.2 How Much Entropy is Required?

A natural question about Block-Source Hashing Theorems is: how large does
the “entropy” k per item need to be to ensure a certain amount of “closeness”
to uniform (where both the entropy and closeness can be measured in various
ways). This also has practical significance for the latter motivation regarding
hashing-based algorithms, as it corresponds to the amount of entropy we need



Setting Previous Results Our Results

2-universal hashing m+ 2 log T + 2 log(1/ε) m+ log T + 2 log(1/ε)
ε-close to uniform [CG88, ILL89, Zuc96]

2-universal hashing m+ 2 log T + log(1/ε) [MV08] m+ log T + log(1/ε)
ε-close to small cp.

4-wise indep. hashing max{m+ log T, max{m+ log T,
ε-close to small cp. 1/2(m+ 3 log T + log 1/ε)} [MV08] 1/2(m+ 2 log T + log(1/ε)}

Table 1. Our Results: Each entry denotes the min-entropy (actually, Renyi entropy)
required per item when hashing a block source of T items to m-bit strings to ensure
that the output has statistical distance at most ε from uniform (or from having collision
probability within a constant factor of uniform). Additive constants are omitted for
readability.

to assume in data items. In [MV08], they provide bounds on the entropy required
for two measures of closeness, and use these as basic tools to bound the required
entropy in various applications. The requirement is usually some small constant
multiple of log T , where T is the number of items in the source, which can be on
the borderline between a reasonable and unreasonable assumption about real-
life data. Therefore, it is interesting to pin down the optimal answers to these
questions. In what follows, we first summarize the previous results, and then
discuss our improved analysis and corresponding lower bounds.

A standard way to measure the distance of the output from the uniform
distribution is by statistical distance.1 In the randomness extractor literature,
classic results [CG88, ILL89, Zuc96] show that using 2-universal hash functions,
k = m+2 log(T/ε)+O(1) bits of min-entropy (or even Renyi entropy)2 per item
is sufficient for the output distribution to be ε-close to uniform in statistical
distance. Sometimes a less stringent closeness requirement is sufficient, where
we only require that the output distribution is ε-close to a distribution having
“small” collision probability3. A result of [MV08] shows that k = m+ 2 log T +
log(1/ε) + O(1) suffices to achieve this requirement. Using 4-wise independent
hash functions, [MV08] further reduce the required entropy to k = max{m +
log T, 1/2(m+ 3 log T + log(1/ε))}+O(1).

Our Results. We reduce the entropy required in the previous results, as summa-
rized in Table 1. Roughly speaking, we save an additive log T bits of min-entropy
(or Renyi entropy) for all cases. We show that using universal hash functions,

1 The statistical distance of two random variables X and Y is ∆(X,Y ) =
maxT |Pr[X ∈ T ]− Pr[Y ∈ T ]|, where T ranges over all possible events.

2 The min-entropy of a random variable X is H∞(X) = minx log(1/Pr[X = x]). All of
the results mentioned actually hold for the less stringent measure of Renyi entropy
H2(X) = log(1/Ex←X [Pr[X = x]]).

3 The collision probability of a random variable X is
P

x Pr[X = x]2. By “small
collision probability,” we mean that the collision probability is within a constant
factor of the collision probability of uniform distribution.



k = m+ log T + 2 log 1/ε+O(1) bits per item is sufficient for the output to be
ε-close to uniform, and k = m + log(T/ε) + O(1) is enough for the output to
be ε-close to having small collision probability. Using 4-wise independent hash
functions, the entropy k further reduces to max{m + log T, 1/2(m + 2 log T +
log 1/ε)} + O(1). The results hold even if we consider the joint distribution
(H,H(X1), . . . ,H(XT )) (corresponding to “strong extractors” in the literature
on randomness extractors). Substituting our improved bounds in the analysis
of hashing-based algorithms from [MV08], we obtain similar reductions in the
min-entropy required for every application with 2-universal hashing. With 4-wise
independent hashing, we obtain a slight improvement for Linear Probing, and
for the other applications, we show that the previous bounds can already be
achieved with 2-universal hashing. The results are summarized in Table 2.

Although the log T improvement seems small, we remark that it could be
significant for practical settings of parameter. For example, suppose we want to
hash 64 thousand internet traffic flows, so log T ≈ 16. Each flow is specified by
the 32-bit IP addresses and 16-bit port numbers for the source and destination
plus the 8-bit transport protocol, for a total of 104 bits. There is a noticeable
difference between assuming that each flow contains 3 log T ≈ 48 vs. 4 log T ≈ 64
bits of entropy as they are only 104 bits long, and are very structured.

We also prove corresponding lower bounds showing that our upper bounds
are almost tight. Specifically, we show that when the data items have not enough
entropy, then the joint distribution (H,H(X1), . . . ,H(XT )) can be “far” from
uniform. More precisely, we show that if k = m+ log T + 2 log 1/ε−O(1), then
there exists a block source (X1, . . . , XT ) with k bits of min-entropy per item such
that the distribution (H,H(X1), . . . ,H(XT )) is ε-far from uniform in statistical
distance (for H coming from any hash family). This matches our upper bound
up to an additive constant. Similarly, we show that if k = m + log T − O(1),
then there exists a block source (X1, . . . , XT ) with k bits of min-entropy per
item such that the distribution (H,H(X1), . . . ,H(XT )) is 0.99-far from having
small collision probability (for H coming from any hash family). This matches
our upper bound up to an additive constant in case the statistical distance
parameter ε is constant; we also exhibit a specific 2-universal family for which
the log(1/ε) in our upper bound is nearly tight — it cannot be reduced below
log(1/ε) − log log(1/ε). Finally, we also extend all of our lower bounds to the
case that we only consider distribution of hashed values (H(X1), . . . ,H(XT )),
rather than their joint distribution with Y . For this case, the lower bounds are
necessarily reduced by a term that depends on the size of the hash family. (For
standard constructions of universal hash functions, this amounts to log n bits of
entropy, where n is the bit-length of an individual item.)

Techniques. At a high level, all of the previous analyses for hashing block sources
were loose due to summing error probabilities over the T blocks. Our improve-
ments come from avoiding this linear blow-up by choosing more refined measures
of error. For example, when we want the output to have small statistical distance
from uniform, the classic Leftover Hash Lemma [ILL89] says that min-entropy
k = m+ 2 log(1/ε0) suffices for a single hashed block to be ε0-close to uniform,



Type of Hash Family Previous Results [MV08] Our Results

Linear Probing

2-universal hashing 4 log T 3 log T
4-wise independence 2.5 log T 2 log T

Balanced Allocations with d Choices

2-universal hashing (d+ 2) log T (d+ 1) log T
4-wise independence (d+ 1) log T —

Bloom Filters

2-universal hashing 4 log T 3 log T
4-wise independence 3 log T —

Table 2. Applications: Each entry denotes the min-entropy (actually, Renyi entropy)
required per item to ensure that the performance of the given application is “close”
to the performance when using truly random hash functions. In all cases, the bounds
omit additive terms that depend on how close a performance is desired, and we restrict
to the (standard) case that the size of the hash table is linear in the number of items
being hashed. That is, m = log T +O(1).

and then a “hybrid argument” implies that the joint distribution of T hashed
blocks is Tε0-close to uniform [Zuc96]. Setting ε0 = ε/T , this leads to a min-
entropy requirement of k = m+2 log(1/ε)+2 log T per block. We obtain a better
bound, reducing 2 log T to log T , by using Hellinger distance to analyze the error
accumulation over blocks, and only passing to statistical distance at the end.

For the case where we only want the output to be close to having small
collision probability, the previous analysis of [MV08] worked by first showing
that the expected collision probability of each hashed block h(Xi) is “small” even
conditioned on previous blocks, then using Markov’s Inequality to deduce that
each hashed block has small collision probability except with some probability
ε0, and finally doing a union bound to deduce that all hashed blocks have small
collision probability except with probability Tε0. We avoid the union bound by
working with more refined notions of “conditional collision probability,” which
enable us to apply Markov’s Inequality on the entire sequence rather than on
each block individually.

The starting point for our negative results is the tight lower bound for ran-
domness extractors due to Radhakrishnan and Ta-Shma [RT00]. Their methods
show that if the min-entropy parameter k is not large enough, then for any hash
family, there exists a (single-block) source X such that h(X) is “far” from uni-
form (in statistical distance) for “many” hash functions h. We then take our block
source (X1, . . . , XT ) to consist of T iid copies of X, and argue that the statistical
distance from uniform grows sufficiently fast with the number T of copies taken.
For example, we show that if two distributions have statistical distance ε, then
their T -fold products have statistical distance Ω(min{1,

√
T ·ε}), strengthening a

previous bound of Reyzin [Rey04], who proved a bound of Ω(min{ε1/3,
√
T · ε}).

Due to space constraints, we skip the precise statements and proofs of our neg-
ative results. Please refer to the full version of this paper [CV08] for details.



2 Preliminaries

Notations. All logs are based 2. We use the convention that N = 2n, K = 2k,
and M = 2m. We think of a data item X as a random variable over [N ] =
{1, . . . , N}, which can be viewed as the set of n-bit strings. A hash function
h : [N ] → [M ] hashes an item to a m-bit string. A hash function family H is a
multiset of hash functions, and H will usually denote a uniformly random hash
function drawn fromH. U[M ] denotes the uniform distribution over [M ]. Let X =
(X1, . . . , XT ) be a sequence of data items. We use X<i to denote the first i− 1
items (X1, . . . , Xi−1). We refer to Xi as an item or a block interchangeably. Our
goal is to study the distribution of hashed sequence (H,Y) = (H,Y1, . . . , YT ) def=
(H,H(X1), . . . ,H(XT )).

Hash Families. The truly random hash family H is the set of all functions
from [N ] to [M ]. A hash family H is s-universal if for every sequence of dis-
tinct elements x1, . . . , xs ∈ [N ], PrH [H(x1) = · · · = H(xs)] ≤ 1/Ms. H is
s-wise independent if for every sequence of distinct elements x1, . . . , xs ∈ [N ],
H(x1), . . . ,H(xs) are independent and uniform random variables over [M ].

Block Sources and Collision Probability. For a random variable X, the colli-
sion probability of X is cp(X) = Pr[X = X ′] =

∑
x Pr[X = x]2, where X ′

is an independent copy of X. The Renyi entropy H2(X) = log(1/cp(X)) can
be viewed as a measure of the amount of randomness in X (In the random-
ness extractor literature, the entropy is measured by min-entropy H∞(X) =
minx∈supp(X) log(1/Pr[X = x]), but using the less stringent measure Renyi en-
tropy makes our results stronger since H2(X) ≥ H∞(X).) For an event E, (X|E)
is the random variable defined by conditioning X on E.

Definition 2.1 (Block Sources). A sequence of random variables (X1, . . . , XT )
over [N ]T is a block K-source if for every i ∈ [T ], and every x<i in the support
of X<i, we have cp(Xi|X<i = x<i) ≤ 1/K. That is, each item Xi has at least
k = logK bits of Renyi entropy even after conditioning on the previous items.

Let X = (X1, . . . , XT ) be a sequence of random variables over [M ]T . We are
interested in bounding the overall collision probability cp(X) by the collision
probability of each blocks. Suppose all Xi’s are independent, then cp(X) =∏T

i=1 cp(Xi). The following lemma generalizes Lemma 4.2 in [MV08], which
says that if for every x ∈ X, the average collision probability of every block Xi

conditioning on X<i = x<i is small, then the overall collision probability cp(X)
is also small. In particular, if X is a block K-source, then cp(X) ≤ 1/KT .

Lemma 2.2. Let X = (X1, . . . , XT ) be a sequence of random variables such
that for every x ∈ supp(X),

1
T

T∑
i=1

cp(Xi|X<i=x<i
) ≤ α.

Then the overall collision probability satisfies cp(X) ≤ αT .



Proof. By Arithmetic Mean-Geometric Mean Inequality, the inequality in the
premise implies

T∏
i=1

cp(Xi|X<i=x<i
) ≤ αT .

Therefore, it suffices to prove

cp(X) ≤ max
x∈supp(X)

T∏
i=1

cp(Xi|X<i=x<i).

We prove it by induction on T . The base case T = 1 is trivial. Suppose the
lemma is true for T − 1. We have

cp(X) =
∑
x1

Pr[X1 = x1]2 · cp(X2, . . . , XT |X1=x1)

≤

(∑
x1

Pr[X1 = x1]2
)
·max

x1
cp(X2, . . . , XT |X1=x1)

≤ cp(X1) ·max
x1

(
max

x2,...,xT

T∏
i=2

cp(Xi|X<i=x<i
)

)

= max
x

T∏
i=1

cp(Xi|X<i=x<i
),

as desired.

Statistical Distance. The statistical distance is a standard way to measure the
distance of two distributions. Let X and Y be two random variables. The sta-
tistical distance of X and Y is ∆(X,Y ) = maxT |Pr[X ∈ T ] − Pr[Y ∈ T ]| =
(1/2) ·

∑
x |Pr[X = x] − Pr[Y = x]|, where T ranges over all possible events.

When ∆(X,Y ) ≤ ε, we say that X is ε-close to Y . Similarly, if ∆(X,Y ) ≥ ε,
then X is ε-far from Y . The following standard lemma says that if X has small
collision probability, then X is close to uniform in statistical distance.

Lemma 2.3. Let X be a random variable over [M ] such that cp(X) ≤ (1+ε)/M .
Then ∆(X,U[M ]) ≤

√
ε.

Conditional Collision Probability. Let (X,Y ) be jointly distributed random vari-
ables. We can define the conditional Renyi entropy of X conditioning on Y as
follows.

Definition 2.4. The conditional collision probability of X conditioning on Y
is cp(X|Y ) = Ey←Y [cp(X|Y =y)]. The conditional Renyi entropy is H2(X|Y ) =
log 1/cp(X|Y ).

The following lemma says that as in the case of Shannon entropy, conditioning
can only decrease the entropy.



Lemma 2.5. Let (X,Y, Z) be jointly distributed random variables. We have
cp(X) ≤ cp(X|Y ) ≤ cp(X|Y, Z).

Proof. For the first inequality, we have

cp(X) =
∑

x

Pr[X = x]2

=
∑
y,y′

Pr[Y = y] · Pr[Y = y′] ·

(∑
x

Pr[X = x|Y = y] · Pr[X = x|Y = y′]

)
≤
∑
y,y′

Pr[Y = y] · Pr[Y = y′] ·

(
∑

x Pr[X = x|Y = y]2)
1/2 · (

∑
x Pr[X = x|Y = y′]2)

1/2

= E
y←Y

[
cp(X|Y = y)1/2

]2
≤ cp(X|Y )

For the second inequality, observe that for every y in the support of Y , we have
cp(X|Y =y) ≤ cp((X|Y =y)|(Z|Y =y)) from the first inequality. It follows that

cp(X|Y ) = E
y←Y

[cp(X|Y =y)]

≤ E
y←Y

[cp((X|Y =y)|(Z|Y =y))]

= E
y←Y

[ E
z←(Z|Y =y)

[cp(X|Y =y,Z=z)]

= cp(X|Y,Z)

3 Positive Results: How Much Entropy is Sufficient?

In this section, we present our positive results, showing that the distribution of
hashed sequence (H,Y) = (H,H(X1), . . . ,H(XT )) is close to uniform when H
is a random hash function from a 2-universal hash family, and X = (X1, . . . , XT )
has sufficient entropy per block. The new contribution is that we will not need
K = 2k to be as large as in previous works, and so save the required randomness
in the block source X = (X1, . . . , XT ).

3.1 Small Collision Probability Using 2-universal Hash Functions

Let H : [N ] → [M ] be a random hash function from a 2-universal family H.
We first study the conditions under which (H,Y) = (H,H(X1), . . . ,H(XT )) is
ε-close to having collision probability O(1/(|H| ·MT )). This requirement is less
stringent than (H,Y) being ε-close to uniform in statistical distance, and so
requires less bits of entropy. Mitzenmacher and Vadhan [MV08] show that this



guarantee suffices for some hashing applications. They show that K ≥ MT 2/ε
is enough to satisfy the requirement. We save a factor of T , and show that in
fact, K ≥MT/ε, is sufficient. (Taking logs yields the first entry in Table 1, i.e.
it suffices to have Renyi entropy k = m+ log T + log(1/ε) per block.) Formally,
we prove the following theorem.

Theorem 3.1. Let H : [N ] → [M ] be a random hash function from a 2-
universal family H. Let X = (X1, . . . , XT ) be a block K-source over [N ]T . For
every ε > 0, the hashed sequence (H,Y) =
(H,H(X1), . . . ,H(XT )) is ε-close to a distribution (H,Z) = (H,Z1, . . . , ZT )
such that

cp(H,Z) ≤ 1
|H| ·MT

(
1 +

M

Kε

)T

.

In particular, if K ≥ MT/ε, then (H,Z) has collision probability at most (1 +
2MT/Kε)/(|H| ·MT ).

To analyze the distribution of the hashed sequence (H,Y), the starting point
is the following version of the Leftover Hash Lemma [BBR85, ILL89], which says
that when we hash a random variable X with enough entropy using a 2-universal
hash function H, the conditional collision probability of H(X) conditioning on
H is small.

Lemma 3.2 (The Leftover Hash Lemma). Let H : [N ]→ [M ] be a random
hash function from a 2-universal family H. Let X be a random variable over [N ]
with cp(X) ≤ 1/K. We have cp(H(X)|H) ≤ 1/M + 1/K.

We now sketch how the hashed block source Y = (Y1, . . . , YT )
= (H(X1), . . . ,H(XT )) is analyzed in [MV08], and how we improve the analysis.
The following natural approach is taken in [MV08]. Since the data X is a block
K-source, the Leftover Hash Lemma tells us that for every block i ∈ [T ], if we
condition on the previous blocks X<i = x<i, then the hashed value (Yi|X<i=x<i

)
has small conditional collision probability, i.e. cp((Yi|X<i=x<i)|H) ≤ 1/M+1/K.
This is equivalent to saying that the average collision probability of (Yi|X<i=x<i)
over the choice of the hash function H is small, i.e.,

E
h←H

[cp(h(Xi)|X<i=x<i
)] = cp((Yi|X<i=x<i

)|H) ≤ 1
M

+
1
K
.

We can then use a Markov argument to say that for every block, with probability
at least 1− ε/T over h← H, the collision probability is at most 1/M +T/(Kε).
We can then take a union bound to say that for every x ∈ supp(X), at least
(1−ε)-fraction of hash functions h are good in the sense that cp(h(Xi)|X<i=x<i)
is small for all blocks i = 1, . . . , T . [MV08] shows that if this condition is true
for every (h,x) ∈ supp(H,X), then Y is a block (1/M + T/(Kε))-source, and
thus the overall collision probability is at most (1 + MT/Kε)T /MT . [MV08]
also shows how to modify an ε-fraction of the distribution to fix the bad hash
functions, and thus complete the analysis.



The problem of the above analysis is that taking a Markov argument for each
block, and then taking a union bound incurs a loss of factor T . To avoid this, we
want to apply Markov argument only once to the whole sequence. For example,
a natural thing to try is to sum over blocks to get

E
h←H

[
1
T

T∑
i=1

cp(h(Xi)|X<i=x<i
)

]
=

1
T

T∑
i=1

cp((Yi|X<i=x<i
)|H) ≤ 1

M
+

1
K
,

and use a Markov argument to deduce that for every x ∈ supp(X), with proba-
bility 1− ε over h← H, the average collision probability per block satisfies

1
T
·

T∑
i=1

cp(h(Xi)|X<i=x<i) ≤
1
M

+
1
Kε

.

We need to bound the collision probability of Y using this information. We may
try to apply Lemma 2.2, but it requires the information on (1/T )

∑
i cp(Yi|Y<i=y<i

)
instead of (1/T )

∑
i cp(h(Xi)|X<i=x<i

). That is, Lemma 2.2 requires us to con-
dition on previous hashed values Y<i, whereas the above argument refers to
conditioning on the un-hashed values X<i. The difficulty with directly reasoning
about the former is that conditioned on the hashed values Y<i, the hash function
H may no longer be uniform (as it is correlated with Y<i) and thus the Leftover
Hash Lemma no longer applies.

To get around with the issues, we work with the averaged form of conditional
collision probability cp(Yi|H,Y<i), as from Definition 2.4. Our key observation
is that now we can apply Lemma 2.5 to deduce that for every block i ∈ [T ],
the conditional collision probability satisfies cp(Yi|H,Y<i) ≤ cp(Yi|H,X<i) ≤
1/M + 1/K. Then, by a Markov argument, it follows that with probability 1− ε
over (h,y)← (H,Y), the average collision probability satisfies

1
T

T∑
i=1

cp(Yi|(H,Y<i)=(h,y<i)) ≤
1
M

+
1
Kε

.

We can then modify an ε-fraction of distribution, and apply Lemma 2.2 to
complete the analysis.

The following lemma formalizes our claim about that the conditional collision
probability of every block of (H,Y) is small.

Lemma 3.3. Let H : [N ]→ [M ] be a random hash function from a 2-universal
family H. Let X = (X1, . . . , XT ) be a block K-source over [N ]T . Let (H,Y) =
(H,H(X1), . . . ,H(XT )). Then cp(H) = 1/|H| and for every i ∈ [T ], cp(Yi|H,Y<i) ≤
1/M + 1/K.

Proof. cp(H) = 1/|H| is trivial since H is the uniform distribution. Fix i ∈
[T ]. By the definition of block K-source, for every x<i in the support of X<i,
cp(Xi|X<i=x<i

) ≤ 1/K. By the Leftover Hash Lemma, we have
cp((Yi|X<i=x<i

)|(H|X<i=x<i
)) ≤ 1/M + 1/K for every x<i. It follows that



cp(Yi|H,X<i) ≤ 1/M + 1/K. Now, we can think of (Yi|H,X<i) as Yi first con-
ditioning on (H,Y<i), and then further conditioning on X<i. By Lemma 2.5, we
have

cp(Yi|H,Y<i) ≤ cp(Yi|H,Y<i, X<i) = cp(Yi|H,X<i) ≤ 1/M + 1/K,

as desired.

The remaining part of the proof follows the above sketch closely. Details can
be found in the full version of this paper[CV08].

3.2 Small Collision Probability Using 4-wise Independent Hash
Functions

As discussed in [MV08], using 4-wise independent hash functions H : [N ] →
[M ] from H, we can further reduce the required randomness in the data X =
(X1, . . . , XT ). [MV08] shows that in this case, K ≥MT +

√
2MT 3/ε is enough

for the hashed sequence (H,Y) to be ε-close to having collision probability
O(1/|H| ·MT ). As discussed in the previous subsection, by avoiding using union
bounds, we show that K ≥ MT +

√
2MT 2/ε suffices. (Taking logs yields the

second entry in Table 1, i.e. it suffices to have Renyi entropy k = max{m +
log T, (1/2) · (m+ 2 log T + log(1/ε))}+O(1) per block.) Formally, we prove the
following theorem.

Theorem 3.4. Let H : [N ] → [M ] be a random hash function from a 4-wise
independent family H. Let X = (X1, . . . , XT ) be a block K-source over [N ]T . For
every ε > 0, the hashed sequence (H,Y) = (H,H(X1), . . . ,H(XT )) is ε-close to
a distribution (H,Z) = (H,Z1, . . . , ZT ) such that

cp(H,Z) ≤ 1
|H| ·MT

(
1 +

M

K
+

√
2M
K2ε

)T

.

In particular, if K ≥ MT +
√

2MT 2/ε, then (H,Z) has collision probability at
most (1 + γ)/(|H| ·MT ) for γ = 2 · (MT +

√
2MT 2/ε)/K.

The improvement of Theorem 3.4 over Theorem 3.1 comes from that when
we use 4-wise independent hash families, we have a concentration result on the
conditional collision probability for each block . For the proof of the theorem,
please refer to [CV08].

3.3 Statistical Distance to Uniform Distribution

Let H : [N ]→ [M ] be a random hash function form a 2-universal family H. Let
X = (X1, . . . , XT ) be a block K-source over [N ]T . In this subsection, we study
the statistical distance between the distribution of hashed sequence (H,Y) =
(H,H(X1), . . . ,H(XT )) and the uniform distribution (H,U[M ]T ). Classic results



of [CG88, ILL89, Zuc96] show that if K ≥ MT 2/ε2, then (H,Y) is ε-close to
uniform. The proof idea is as follows. The Leftover Hash Lemma together with
Lemma 2.3 tells us that the joint distribution of hash function and a hashed value
(H,Yi) = (H,H(Xi)) is

√
M/K-close to uniform U[M ] even conditioning on the

previous blocks X<i. One can then use a hybrid argument to show that the
distance grows linearly with the number of blocks, so (H,Y) is T ·

√
M/K-close

to uniform. Taking K ≥MT 2/ε2 completes the analysis.
We save a factor of T , and show that in fact, K = MT/ε2 is sufficient.

(Taking logs yields the third entry in Table 1, i.e. it suffices to have Renyi
entropy k = m+ log T + 2 log(1/ε) per block.) Formally, we prove the following
theorem.

Theorem 3.5. Let H : [N ] → [M ] be a random hash function from a 2-
universal family H. Let X = (X1, . . . , XT ) be a block K-source over [N ]T . For
every ε > 0 such that K > MT/ε2, the hashed sequence (H,Y) =
(H,H(X1), . . . ,H(XT )) is ε-close to uniform (H,U[M ]T ).

Recall that the previous analysis goes by passing to statistical distance first,
and then measuring the growth of distance using statistical distance. This incurs
a quadratic dependency of K on T . Since without further information, the hybrid
argument is tight, to save a factor of T , we have to measure the increase of
distance over blocks in another way, and pass to statistical distance only in the
end. It turns out that the Hellinger distance (cf., [GS02]) is a good measure for
our purposes:

Definition 3.6 (Hellinger distance). Let X and Y be two random variables
over [M ]. The Hellinger distance between X and Y is

d(X,Y )def=

(
1
2

∑
i

(
√

Pr[X = i]−
√

Pr[Y = i])

)1/2

=
√

1−
∑

i

√
Pr[X = i] · Pr[Y = i].

Like statistical distance, Hellinger distance is a distance measure for distri-
butions, and it takes value in [0, 1]. The following standard lemma says that the
two distance measures are closely related. We remark that the lemma is tight in
both directions even if Y is the uniform distribution.

Lemma 3.7 (cf., [GS02]). Let X and Y be two random variables over [M ].
We have

d(X,Y )2 ≤ ∆(X,Y ) ≤
√

2 · d(X,Y ).

In particular, the lemma allows us to upper-bound the statistical distance by
upper-bounding the Hellinger distance. Since our goal is to bound the distance
to uniform, it is convenient to introduce the following definition.

Definition 3.8 (Hellinger Closeness to Uniform). Let X be a random vari-
able over [M ]. The Hellinger closeness of X to uniform U[M ] is

C(X) def=
1
M

∑
i

√
M · Pr[X = i] = 1− d(X,U[M ])2.



Note that C(X,Y ) = C(X) · C(Y ) when X and Y are independent random
variables, so the Hellinger closeness is well-behaved with respect to products
(unlike statistical distance). By Lemma 3.7, if the Hellinger closeness C(X) is
close to 1, then X is close to uniform in statistical distance. Recall that collision
probability behaves similarly. If the collision probability cp(X) is close to 1/M ,
then X is close to uniform. In fact, by the following normalization, we can view
the collision probability as the 2-norm of X, and the Hellinger closeness as the
1/2-norm of X.

Let f(i) = M ·Pr[X = i] for i ∈ [M ]. In terms of f(·), the collision probability
is cp(X) = (1/M2) ·

∑
i f(i)2, and Lemma 2.3 says that if the “2-norm” M ·

cp(X) = Ei[f(i)2] ≤ 1 + ε where the expectation is over uniform i ∈ [M ], then
∆(X,U) ≤

√
ε,. Similarly, Lemma 3.7 says that if the “1/2-norm” C(X) =

Ei[
√
f(i)] ≥ 1− ε, then ∆(X,U) ≤

√
ε.

We now discuss our approach to prove Theorem 3.5. We want to show that
(H,Y) is close to uniform. All we know is that the conditional collision proba-
bility cp(Yi|H,Y<i) is close to 1/M for every block. If all blocks are independent,
then the overall collision probability cp(H,Y) is small, and so (H,Y) is close to
uniform. However, this is not true without independence, since 2-norm tends to
over-weight heavy elements. In contrast, the 1/2-norm does not suffer this prob-
lem. Therefore, our approach is to show that small conditional collision proba-
bility implies large Hellinger closeness. Formally, we have the following lemma.
The main idea is to use Hölder’s inequality to relate two different norms.

Lemma 3.9. Let X = (X1, . . . , XT ) be jointly distributed random variables over
[M1] × · · · × [MT ] such that cp(Xi|X<i) ≤ αi/Mi for every i ∈ [T ]. Then the
Hellinger closeness satisfies

C(X) ≥
√

1
α1 . . . αT

.

The proof of this lemma can be found in the full version of this paper[CV08].
With this lemma, the proof of Theorem 3.5 is immediate.

Proof of Theorem 3.5: By Lemma 3.3, cp(H) = 1/|H|, and cp(Yi|H,Y<i) ≤
(1 +M/K)/M for every i ∈ [T ]. By Lemma 3.9, the Hellinger closeness satisfies
C(H,Y) ≥ (1 +M/K)−T/2 ≥ 1−MT/2K (recall that K ≥MT/ε2). It follows
by Lemma 3.7 that

∆((H,Y), (H,U[M ]T )) ≤
√

2 · d((H,Y), (H,U[M ]T ))

=
√

2 ·
√

1− C(H,Y) ≤
√
MT/K ≤ ε.
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