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Computational analogues of information-theoretic notions have given rise to some
of the most interesting phenomena in the theory of computation. For exam-
ple, a computational analogue of entropy, known as pseudoentropy, introduced
by Hastad, Impagliazzo, Levin, and Luby [HILL], was the key to their fundamen-
tal result establishing the equivalence of pseudorandom generators and one-way
functions, and has also now become a basic concept in complexity theory and
cryptography.

In this work, we introduce another computational analogue of entropy, which we
call accessible entropy, and present several applications of it to the foundations of
cryptography. Before describing accessible entropy (and a complementary notion
of inaccessible entropy), we recall the standard information-theoretic notion of
entropy and the computational notion of pseudoentropy of Hastad et al.

Entropy and Pseudoentropy. Recall that the entropy of a random variable
X is defined to be H(X) := EIBX [log(1/Pr[X = z]), which measures the number

of “bits of randomness” in X (on average). We will refer to H(X) as the real
entropy of X to contrast with the computational analogues that we study. Hastad
et al. [HILL] say that a random variable X has pseudoentropy (at least) k if
there exists a random variable Y of entropy (at least) k such that X and Y are
computationally indistinguishable.

The reason that pseudoentropy is interesting and useful is that there exist ran-
dom variables X whose pseudoentropy is larger than their real entropy. For exam-
ple, the output of a pseudorandom generator G : {0,1}* — {0,1}" on a uniformly
random seed has entropy at most ¢, but has pseudoentropy n (by definition).
Hastad et al. proved that in fact, from any efficiently samplable distribution X
whose pseudoentropy is noticeably larger than its real entropy, it is possible to
construct a pseudorandom generator. By showing, in addition, how to construct
such a distribution X from any one-way function, Hastad et al. prove their theo-
rem that the existence of one-way functions implies the existence of pseudorandom
generators.

The notion of pseudoentropy is only useful, however, as a lower bound on the
“computational entropy” in a distribution. Indeed, it can be shown that every
distribution on {0,1}"™ is computationally indistinguishable from a distribution
of entropy at most poly(logn). While several other computational analogues of
entropy have been studied in the literature (cf., [BSW]), all of these are also meant
to serve as ways of capturing the idea that a distribution “behaves like” one of
higher entropy. In this paper, we explore a way in which a distribution can “behave
like” one of much lower entropy.

Accessible Entropy. We motivate the idea of accessible entropy with an
example. Consider an algorithm G that gets as input a random function A :
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{0,1}" — {0,1}™ from a family of collision-resistant hash functions (where m <

n), chooses a random z <- {0,1}", sets y = h(x), and outputs the pair (y, z).

Now, information-theoretically, the second block of G’s output (namely ) has
entropy at least n—m conditioned on the input & and the first block y, because y =
h(zx) reveals only m bits of information about x. However, the collision-resistance
property says that given the state of G after the first block, there is at most one
consistent value of x that G can reveal with nonnegligible probability. (Otherwise,
G would be able find two distinct messages x # z’ such that h(x) = h(z’).) This
holds even if G is replaced by any polynomial-time adversary G*. Thus, there
is “real entropy” in z (conditioned on the history) but it is “computationally
inaccessible” to G*, to whom x effectively has entropy 0.

We generalize this basic idea to allow the upper bound on the “accessible en-
tropy” to be a parameter k, and to consider both the real and accessible entropy
accumulated over several blocks. In more detail, consider an m-block generator G
that on input z, outputs a sequence (y1, ..., ym) of blocks, and let (Z,Y7,...,Y,)
be random variables denoting a random input Z to G and the output blocks of
G(Z) (when G’s coin tosses are chosen uniformly at random). We define the real
entropy of G to be

Y H(Y|Z,Yi,...,Yio),

where H(X|Y) = E Ry[H(X\y:y)] is the standard notion of conditional entropy.
y%

To define accessible entropy, consider a probabilistic polynomial-time adversary
G* that receives an input z, and then in sequence of m stages, tosses some fresh
random coins s; and computes and outputs a block y;. At the end it should also
justify that it has behaved consistently with the honest algorithm G by producing
coin tosses r for G such that G would have output (yi,...,¥m) on input z and
coin tosses r. (For simplicity we restrict attention to G* that always produce
correct justifications, though our definitions and results can be generalized also to
handle G* that sometimes fail to do so.) Now, let (Z,S1,Y1,S2,Ya,...,Sn,Yn)
be random variables corresponding to the sequence of coins S; and outputs Y; of
G* on a random input Z. Then we define the accessible entropy achieved by G* to
be

> H(Yi|Z, S, Sica).

The key point is that now we compute the entropy conditioned not just on the
previous blocks, but on the entire local state of G* prior to generating the i’th
block. (We don’t need to include Y; for j < ¢ since these are determined by Z and
Sl, ey Sj )

The collision resistance example given earlier shows that there can be gener-
ators G whose computationally accessible entropy is much smaller than the real
Shannon entropy. Indeed, in that protocol, the real entropy of G’s blocks is n
(namely, the total entropy in x), but the computationally accessible entropy is
at most m + neg(n), where m < n is the output length of the collision-resistant
hash function. (Here we are counting the conditional entropy in all of G’s blocks
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for simplicity, but the definitions generalize naturally if we only want to sum the
conditional entropies over some subset of blocks.) Thus, in contrast to pseudoen-
tropy, accessible entropy is useful for expressing the idea that the “computational
entropy” in a distribution is smaller than its real entropy. We refer to the difference
(real entropy) — (accessible entropy) as the inaccessible entropy of G.

Applications. We have used the notion of inaccessible entropy and variants
to:

e Give a much simpler and more efficient construction of statistically hiding
commitment schemes from arbitrary one-way functions.

e Prove that constant-round statistically hiding commitments are necessary
for constructing constant-round zero-knowledge proof systems for NP that
remain secure under parallel composition (assuming the existence of one-
way functions).

e Give a simpler construction of universal one-way hash functions and hence
digital signature schemes from one-way functions. This appears in a follow-
up subsequent paper [HRVW2]

e Inspire a simpler and more efficient construction of pseudorandom gener-
ators from one-way functions [HRV].

Bibliographic Note. Our paper [HRVW1] utilizes a more general (and more
involved) notion of inaccessible entropy for protocols. The simpler notion of inac-
cessible entropy generators described above and the simple construction of such
generators from one-way functions described in the talk will eventually be incor-
porated into the paper.
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