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Abstract

We give new constructions of randomness extractors and lossless condensers that are optimal to
within constant factors in both the seed length and the output length. For extractors, this matches the
parameters of the current best known construction [LRVW03], with an improvement in case the error
parameter is small (e.g.1/poly(n)). For lossless condensers, the previous best constructions achieved
optimality to within a constant factor in one parameter only at the expense of a polynomial loss in the
other.

Our constructions are based on the Parvaresh-Vardy codes [PV05], and our proof technique is in-
spired by the list-decoding algorithm for those codes. The main object we construct is a condenser that
losesonly the entropy of its seed plus one bit, while condensing to entropy rate1 − α for any desired
constantα > 0. This construction is simple to describe, and has a short and completely self-contained
analysis. Our other results only require, in addition, standard uses of randomness-efficient hash functions
(to obtain a lossless condenser) or expander walks (to obtain an extractor).

Our techniques also show for the first time that a natural analogue of the Shaltiel–Umans extrac-
tor [SU05] based on univariate polynomials (i.e., Reed-Solomon codes) yields a condenser that retains a
1− α fraction of the source min-entropy, for any desired constantα > 0, while condensing to constant
entropy rate and using a seed length that is optimal to within constant factors.
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1 Introduction

In this paper, we construct randomness extractors and condensers with the best parameters to date. Perhaps
more importantly, we do this by introducing a new algebraic construction based on the ingenious vari-
ant of Reed-Solomon codes discovered by Parvaresh and Vardy [PV05]. Our proof technique is inspired
by the list-decoding algorithm for the Parvaresh-Vardy codes, which builds on the list-decoding results of
[Sud97, GS99]. The resulting extractors and condensers are simple to describe and have short, self-contained
analyses. In the remainder of the introduction, we describe our results more precisely, and place them in
context within the large body of literature on extractors and related objects.

A long line of research beginning in the late 1980s has been devoted to the goal of constructing explicit
randomness extractors. (See the survey of Shaltiel [Sha02].) Extractors are efficient functions that take an
n-bit string sampled from a “weak” random source together with a short truly random seed, and output a
nearly uniform distribution. Extractors have turned out to be a powerful tool in a number of application
areas. These include algorithms [WZ99], hardness of approximation [Zuc96a, Uma99, MU02, Zuc06],
distributed protocols [Zuc97, RZ01], coding theory [TSZ04, Gur04], and a variety of complexity results
[Sip88, NZ96, GZ97].

The randomness in the source is measured byminentropy: a random variableX has minentropy at least
k iff Pr[X = x] ≤ 2−k for all x. A random variableZ is ε-closeto a distributionD if for all eventsA,
Pr[Z ∈ A] differs from the probability ofA under the distributionD by at mostε. An extractor is defined
as follows:

Definition 1.1 ([NZ96]). A (k, ε) extractoris a functionE : {0, 1}n×{0, 1}t → {0, 1}m with the property
that for everyX with minentropy at leastk, E(X,Y) is ε-close to uniform, whenY is uniformly distributed
on{0, 1}t. An extractor isexplicit if it is computable in polynomial time.

The competing goals when constructing extractors are to obtain a short seed, and a long output length.
Nonconstructively, it is possible to simultaneously have a seed lengtht = log n +2 log(1/ε)+ O(1) and an
output length ofm = k + t−2 log(1/ε)−O(1). It remains open to match these parameters with an explicit
construction.

A major theme in extractor constructions since the breakthrough result of Trevisan [Tre01], has been
the use of error-correcting codes. Trevisan’s extractor construction, which is based on the Nisan-Wigderson
pseudorandom generator [NW94], encodes the source with an error-correcting code with good distance, and
uses the seed to select (via certain combinatorial designs) a subset ofm bits of the codeword to output.

A more algebraic approach, exploiting the specific structure of polynomial error-correcting codes was
pioneered by Ta-Shma, Zuckerman and Safra [TZS06]. There the source is encoded with a multivariate
polynomial code (Reed-Muller code), the seed is used to select a starting point, and the extractor outputsm
successive symbols along a line1. Better parameters were achieve with a variant introduced by Shaltiel and
Umans [SU05], which exploits the fact that Reed-Muller codes arecyclic. There them output symbols are
simply m successive coordinates of the codeword, when written in the cyclic ordering. A common feature
of these algebraic constructions is that their analysis relies crucially on thelocal-decodabilityproperties of
the underlying error-correcting code. This paper diverges from the previous works on exactly this point, as
our constructions use only univariate polynomial codes, which are not locally decodable.

A second major theme dating to [RSW06] and [RR99]2 is the use of a relaxation of extractors, called

1In this discussion we are ignoring the distinction between outputtingm symbols from a large alphabet and outputtingm bits.
2Actually, since the formal definition we give does not explicitly require that the min-entropy rate increase, such objects were

already considered as far back as the original papers of [Zuc96b, NZ96]. However, we will be interested in condensers that do
actually increase the min-entropy rate.
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condensers, as an intermediate goal:

Definition 1.2. A functionC : {0, 1}n × {0, 1}d → {0, 1}m is an k →ε k′ condenserif for everyX
with minentropy at leastk, C(X,Y) is ε-closeto a distribution with minentropyk′, whenY is uniformly
distributed on{0, 1}d. A condenser isexplicit if it is computable in polynomial time. A condenser is called
losslessif k′ = k + d.

Observe that ak →ε k′ condenser with output lengthm = k′ is an extractor, because the unique
distribution on{0, 1}m with minentropym is the uniform distribution. Condensers are a natural stepping-
stone to constructing extractors, as they can be used to increase theentropy rate(the ratio of the minentropy
in a random variable to the length of the strings over which it is distributed), and it is often easier to construct
extractors when the entropy rate is high. Condensers have also been used extensively in less obvious ways
to build extractors, often as part of complex recursive constructions (e.g., [ISW00, RSW06, LRVW03]).
Nonconstructively, one can hope forlosslesscondensers with seed lengtht = log n + log(1/ε) + O(1), and
output lengthm = k + t + log(1/ε) + O(1).

Our central result is a completely elementary construction of a condenser that retains all but the seed
min-entropy (plus one bit), and condenses toanyconstant entropy rate using a seed length that is optimal up
to constant factors. This is the most basic object from which we derive most of the other results:

Theorem 1.1 (main). For all α > 0, all positive integersn > ` and all ε > 2−`, there is an explicit
construction of a

(k = `t + log(1/ε)) →3ε (k − 1)

condenserC : {0, 1}n × {0, 1}d → {0, 1}`d with t = logd(2n2/ε)1/αe andd = b(1 + α)tc.
For intuition about the parameters, consider takingα to be a small constant. Then the seed length is

d = O(log(n/ε)), which is optimal up to a constant factor. The condenser takes takes any distribution of
min-entropyk ≈ `t and outputs a string of length̀d ≈ (1 + α)k that still has min-entropy at leastk − 1.
Thus the min-entropyrateof the output is at least(k− 1)/(`d) ≈ 1/(1 + α), which is arbitrarily close to 1.

In recent years, condensers have been studied in their own right. Lossless condensers are of particular
interest, as they are equivalent to unbalanced bipartiteexpander graphswith extremely good expansion (of
greater than half the left degree of the graph).3 This turns out to be useful in a number of applications (see
the introduction of [CRVW02] for a survey). Constructions of lossless condensers appear in [RR99, TUZ01,
CRVW02, TU06].

For lossless condensers, the competing goals are short seed length, andshortoutput length (thus achiev-
ing the greatest “condensing” of the source minentropy). Constructions are known that achieve essentially
optimal parameters for very largek [CRVW02], and very smallk [RR99], but for generalk, the best known
constructions can achieve optimality to within a constant factor in one parameter only at the expense of a
polynomial loss in the other. Specifically, the best known constructions (stated here for constantε) achieve
seed lengtht = O(log2 n) and output lengthm = O(k) [TUZ01], or seed lengtht = O(log n) and out-
put lengthm = k1+α for any constantα > 0 [TUZ01]. Recently Ta-Shma and Umans [TU06] showed
that if optimalderandomized curve samplerscan be constructed, then a construction of lossless condensers
based on [SU05] would achieve seed lengtht = O(log n) and output lengthm = k · poly log(n); they
obtain near-optimal derandomized curve samplers that produce lossless condensers with somewhat worse
parameters.

3Technically, the usual notion of expander corresponds to condensers that are simultaneously lossless for all min-entropiesk up
to some threshold (in contrast to Definition1.2, which refers to a single value ofk). Our constructions actually achieve this stronger
property, as shown in the more detailed statements of the theorems in the body of the paper.
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Using Theorem1.1, we obtain a new construction of lossless condensers that are optimal to within
constant factors in both the seed length and the output length. This uses an idea from [RR99]: because
the condenser of Theorem1.1 is only missing a small amount of minentropy, it can be made lossless by
appending a hash from an “almost-2-universal” hash family; we pay only with a constant factor increase in
the seed length. We obtain:

Theorem 1.2(lossless condenser). For every constantα > 0, For all positive integersn > k and allε > 0
, there is an explicit construction of a

k →ε k + d

lossless condenserC : {0, 1}n×{0, 1}d → {0, 1}m with d = O(log n+log(1/ε)) andm = (1+α)(k+d).

We now return to extractors. There is a great diversity of extractor constructions; see Shaltiel’s survey
[Sha02] for a nearly-up-to-date summary. The current champion is the construction of Lu, Reingold, Vad-
han, and Wigderson [LRVW03] which achieves optimality to within a constant factor in the seed length
and output length simultaneously, for any minentropyk. (As with lossless condensers, for smallk, better
constructions are known; e.g., [GW97, SZ99, TUZ01]). Again using the condenser of Theorem1.1, we can
match this best known construction with a simple, direct, and self-contained construction and analysis. We
simply need to “finish” the condenser of Theorem1.1 with an extractor that extracts any desired constant
fraction of the minentropy, with a seed length that is optimal up to constant factors. Since this extractor
can start from a constant entropy rate arbitrarily close to 1, we can even use a standard extractor based
on expander walks. Whenε is sub-constant, we use Zuckerman’s extractor [Zuc97] to obtain the proper
dependence onε. Altogether we obtain:

Theorem 1.3(extractor). For all constantsα > 0: for all positive integersn, k and allε > exp(−n/2O(log∗ n)),
there is an explicit construction of a(k, ε) extractorE : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n +
log 1

ε ) andm > (1− α)k.

In fact this result slightly improves upon [LRVW03], for general errorε = ε(n). They can handle error

as small asn−1/ log(c) n for any constantc, but for generalε, they must pay with either a larger seed length
of t = O((log∗ n)2 log n + log(1

ε )), or a smaller output length ofm = Ω(k/ log(c) n) for any constantc.

1.1 Our technique

In this section we give a high-level description of our construction and proof technique. Our condensers
are based on Parvaresh-Vardy codes [PV05], which in turn are based on Reed-Solomon codes. A Reed-
Solomon codeword is a univariate degreen polynomialf ∈ Fq[Y ], evaluated at all points in the field. A
Parvaresh-Vardy codeword is a bundle of several related degreen−1 polynomialsf0, f1, f2, . . . , fm−1, each
evaluated at all points in the field. The evaluations of the variousfi at a given field element are packaged
into a symbol from the larger alphabetFqm . The purpose of this extra redundancy is to enable a better
list-decoding algorithm than is possible for Reed-Solomon codes.

The main idea in [PV05] is to view degreen − 1 polynomials as elements of the extension fieldF =
Fq[Y ]/E(Y ), whereE is some irreducible polynomial of degreen. Thefi (now viewed as elements ofF)
are chosen so thatfi = fhi

0 for i ≥ 1, and positive integershi. In order to list-decode, one produces a
nonzero univariate polynomialQ′ overF from the received word, with the property thatf0 is a root ofQ′

whenever the codeword has sufficient agreement with the received word. We use the same technique in the
analysis of our condenser, and below we describe how the interpolating polynomial is set up and how the
relationship between thefi’s helps in the context of our analysis.
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Our condenser construction works as follows. We view the source stringx as describing a degreen− 1
polynomialf(Y ) ∈ Fq[Y ]. We then definefi

def= fhi
mod E for some parameterh, and irreducibleE of

degreen. Given a seedy ∈ Fq, our output isf0(y), f1(y), . . . , fm−1(y).
Since [Tre01], a common technique in analyzing extractors has been to show that for every subset

D ⊆ {0, 1}m, there are very few, say¿ 2k, source stringsx that are “bad” with respect toD; i.e., much
fewer than2k stringsx satisfy

∣∣∣∣Pr
y

[E(x, y) ∈ D]− Pr
z

[z ∈ D]
∣∣∣∣ > ε.

From this, it follows that a source with min-entropyk is unlikely to output a string that is bad with respect to
any givenD. Thus the output ofE on such a source must hit allD’s with probability close to the density of
D, and soE is an extractor for minentropyk. We use the same general outline to show that our construction
is a condenser. We only wish to show that the output is close to having minentropyk′, rather than close to
being uniform, and this is equivalent to showing that the output hits setsS of size about2k′ with less than
ε probability (see Section2.1 for a precise statement of this fact). We do this by arguing that there are very
few source stringsx that are “bad” with respect toS; i.e., very fewx satisfyPry[C(x, y) ∈ S] > ε.

Let’s consider whatPry[C(x, y) ∈ S] > ε means for our construction. First of all,x is interpreted as a
degreen− 1 polynomialf0. Then,f0 being “bad” means that for more thanεq of the seedsy, we have

(f0(y), f1(y), . . . , fm−1(y)) ∈ S.

The first step in our analysis is to produce a non-zero polynomialQ : Fm
q → Fq that vanishes onS.

We arrange to havendeg Q < εq, so that the univariate polynomialQ(f0(Y ), f1(Y ), . . . , fm−1(Y )) is
identically zerofor badf0. Viewing thefi as elements of the extension fieldF = Fq[Y ]/E(Y ), andQ as a
multivariate polynomial overF, we have that(f0, f1, . . . , fm−1) is a root of Q. Just as in the list-decoding

algorithm of [PV05], we define the polynomialQ′(Z) def= Q(Z, Zh, Zh2
, . . . , Zhm−1

), and observe that
every badf0 is a root of thisunivariatepolynomial. Thus the degree ofQ′ is a bound on the number of such
f0, and it turns out that this bound is nearly optimal: the number of badf0 is shown to be at most the size of
S.

To summarize, the analysis has two main steps: first, we encodeS into a low-degree multivariate polyno-
mial Q, and argue that for every bad polynomialf0(Y ), Q(f0(Y ), . . . , fm−1(Y )) is in fact identically zero.
Then, we produce a univariate polynomialQ′ from Q that has all of the badf0 as roots (when everything is
viewed over the extension fieldF). The degree ofQ′ is an upper bound on the number of bad strings.

1.2 Additional results

In Section6 we discuss some variations on the basic construction.
Using the “multiple roots” idea from Guruswami-Sudan [GS99], we optimize the seed length of our

condenser, making it(1 + γ) times the optimal seed length, while still retaining almost all the entropy and
outputting a source with a constant entropy rate ofΩ(γ) (Theorem6.2). For constant errorε, one can then
extract almost all the entropy using the extractor from [Zuc06] which uses an additional seed of at most
log k + O(1) bits. The total seed length is thus(1 + γ) log n + log k + O(1), which approaches the optimal
log n + O(1) bound fork = no(1). This result appears as Theorem6.5. A different setting of the condenser
parameters (Corollary6.3) allows us to obtain anexactlyoptimal seed length, while retaining a constant
fraction (arbitrarily close to 1) of the entropy, at the expense of an output entropy rate ofΩ(1/ log(n/ε)),
which is nonconstant, but still quite good.
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With a small change to the original proof, we can say something about the variant of the main condenser
in which the seed is included in the output. One can hope to capture the entire seed entropy (which we do
in Theorem1.2, but that involves the extra step of appending a hash); here we are able to capture all but
O(log(1/ε)) bits of the seed entropy directly.

Finally, using one of the main ideas from the Guruswami-Rudra codes [GR06], we argue that a variant
of our main construction is the natural precursor of [SU05], in which that basic construction is applied Reed-
Solomon codes. It has been an intriguing question for some time to determine what (if any) pseudorandom
object(s) can be obtained from this very natural construction. This question is studied in [KU06], where they
show that the Reed-Solomon construction “fools” certain kinds of low-degree tests. Our results in this paper,
which show that this construction is a very good condenser, seem to provide the correct (or nearly-correct)
answer, as we also describe an example that shows that the entropy rate and the constant factor entropy loss
for this construction cannot be improved substantively.

2 Preliminaries

Throughout this paper, we use boldface capital letters for random variables (e.g., “X”), capital letters
for indeterminates, and lower case letters for elements of a set. Also throughout the paper,Ut is the

random variable uniformly distributed on{0, 1}t. The supportof a random variableX is supp(X) def=
{x : Pr [X = x] > 0}. Thestatistical distancebetween random variables (or distributions)X andY is
maxT |Pr [X ∈ T ]−Pr [Y ∈ T ] |. We sayX andY areε-closeif their statistical distance is at mostε. All
logs are base 2.

We record some standard facts about minentropy:

Proposition 2.1. For K ∈ N, a distributionD has minentropy at leastlog K iff D is a convex combination
of flat distributions on sets of size exactlyK.

Proposition 2.2. For anyk > 0, the distance from a distributionD to a closest distribution with minentropy
k is exactly

∑
a:D(a)≥2−k(D(a)− 2−k).

Proposition 2.3. A distribution D with minentropylog(K − c) is c/K-close to some distribution with
minentropylog K.

Proof. By Proposition2.2, the distance fromD to the closest distribution with minentropylog K is
∑

a:D(a)≥1/K

(D(a)− 1/K) 6 1− (K − c) · 1/K = c/K.

2.1 Analysis of condensers

The next lemma gives a useful sufficient condition for a distribution to be close to having large minentropy:

Lemma 2.4. Let Z be a random variable. If for all setsS of sizeK, Pr[Z ∈ S] ≤ ε thenZ is ε-close to
having minentropy at leastlog(K/ε).

Proof. Let S be a set of theK heaviest elementsx (under the distribution ofZ). Let 2−` be the average
probability mass of the elements inS. Thenε ≥ Pr[Z ∈ S] = 2−`K, so` ≥ log(K/ε). But every element
outsideS has weight at most2−`, and with all but probabilityε, Z hits elements outsideS.
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This lemma establishes the framework within which we will prove our constructions are condensers:

Lemma 2.5. LetC : {0, 1}n × {0, 1}d → {0, 1}m be a function. For each subsetS, define

BAD(S, ε) =
{

x : Pr
y

[C(x, y) ∈ S] > ε

}
.

For K ∈ N, defineB(K, ε) = maxS:|S|=K |BAD(S, ε)|. Then the functionC is a

log(B(K, ε)/ε) →2ε log(K/ε)

condenser.

Proof. We have a random variableX with minentropylog(B(K, ε)/ε). For a fixedS of sizeK, the prob-
ability thatX is in BAD(S, ε) is at mostε; if that does not happen, then the probabilityC(X,Ut) lands in
S is at mostε. Altogether the probabilityC(X,Ut) falls in S is at most2ε. Now apply Lemma2.4.

3 The main construction

Fix the fieldFq and letE(Y ) be an irreducible polynomial of degreen overFq. View elements ofFn
q as

describing univariate polynomials overFq with degree at mostn− 1. Fix an integer parameterh.
We describe a functionC : Fn

q × Fq → Fm
q that is the basis of all of our constructions:

C(f, y) def= [f(y), (fh mod E)(y), (fh2
mod E)(y), · · · , (fhm−1

mod E)(y)].

For ease of notation, we will refer to(fhi
mod E) as “fi.”

Lemma 3.1. DefiningBAD(S, ε) andB(K, ε) with respect toC as in Lemma2.5, we have

B(K = hm − 1, ε) ≤ K,

providedq ≥ (n− 1)(h− 1)m/ε.

Proof. Fix a setS ⊆ Fm
q of size at mostK. We want to show that|BAD(S, ε)| 6 K.

First, we observe that there exists anonzerom-variate polynomialQ ∈ Fq[Z1, Z2, . . . , Zm] that vanishes
on S, and whose degree in each variable is at mosth − 1. (For eachz ∈ S, the conditionQ(z) = 0 is a
homogenous linear constraint on thehm coefficients ofQ. Since|S| 6 K < hm, we have fewer constraints
than unknowns, so this linear system has a nonzero solution.)

Consider any polynomialf(Y ) ∈ BAD(S, ε). By the definition ofBAD(S, ε), it holds that

Pr
y

[Q(f0(y), f1(y), . . . , fm−1(y)) = 0] > ε.

Therefore, the univariate polynomialRf (Y ) def= Q(f0(Y ), . . . , fm−1(Y )) has more thanεq zeroes, and
degree at most(n− 1)(h− 1)m. Since(n− 1)(h− 1)m ≤ εq, Rf (Y ) must be identically zero, and so

Q(f0(Y ), . . . , fm−1(Y )) = 0

as a formal polynomial. Now recall thatfi(Y ) ≡ f(Y )hi
(mod E(Y )). Thus,

Q(f(Y ), f(Y )h, . . . , f(Y )hm−1
) ≡ Q(f0(Y ), . . . , fm−1(Y )) ≡ 0 (mod E(Y )).
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So if we interpretf(Y ) as an element of the extension fieldF = Fq[Y ]/E(Y ), thenf(Y ) is a root of the
univariate polynomial

Q′(Z) def= Q(Z, Zh, Zh2
, . . . , Zhm−1

)

over the fieldF. Since this holds for everyf(Y ) ∈ BAD(S, ε), we deduce thatQ′ has at least|BAD(S, ε)|
roots inF.

On the other hand,Q′ is a non-zero polynomial, because the individual degrees ofQ are all less thanh
(so distinct monomials inQ map to distinct monomials inQ′). Thus, the number of roots ofQ′ is bounded
by its degree, which is at most

(h− 1)(1 + h + h2 + · · ·+ hm−1) = hm − 1 = K.

We conclude that|BAD(S, ε)| 6 K, as desired.

Remark 1. The above proof works even if the distribution on the seedy in the definition ofBAD(S, ε) is
not uniform onFq, but comes from any distribution onFq of min-entropy at leastlog((n− 1)(h− 1)m/ε).
This means that the construction yields a condenser that works even if the seed comes from a weak random
source.

We can now prove our main theorem, Theorem1.1. Here we state it in a stronger form, with the most
significant change being that it asserts that a single construction works for many different values of the
source min-entropyk (as opposed to the construction being tailored to a particular value ofk). This will
allow us, in the next section, to construct condensers that are lossless for all min-entropies up to a given
threshold. The significance of this property is that the lossless condensers then correspond to the standard
notion of expander graphs, where expansion holds for all sets up to a given size. Intuitively, the reason
that our condenser works for many different source min-entropies is that every prefix of the condenser is
a condenser of the same form, but corresponding to a smaller value ofB(K, ε) 6 K in Lemma3.1 (and
log(B(K, ε)/ε) corresponds to the source min-entropy, when we apply Lemma2.5).

Theorem 3.2 (Thm. 1.1, strengthened). For all α > 0, all positive integersn > n′, all ε > 0, and
all integers2t > (2nn′/ε)1/α, there is an explicit functionC : {0, 1}nd × {0, 1}d → {0, 1}n′d with
d = b(1 + α)tc such that for all positive integers̀∈ [log(1/ε)/t, n′], C is a

(k = `t + log(1/ε)) →3ε (k − 1)

condenser.

To see how the original form of Theorem1.1 follows, taket = dlog(2nn′/ε)1/αe, change the input
length fromnd to n (a condenser for a given input length yields a condenser for shorter input lengths by just
padding the input with zeroes), and fix` = n′

Proof. We describe how to set parameters in the condenser of Lemma3.1and then apply Lemma2.5. Let
h = 2t > (2nn′/ε)1/α, d = b(1 + α)tc andq = 2d. Note thatq > h1+α/2.

Let C : Fn
q × Fq → Fn′

q be the condenser of Lemma3.1with parameterh andm = n′ output symbols.
Note the input length, output length, seed length, and the value oft match the parameters claimed in the
theorem. Moreover, a representation ofFq for q = 2d (i.e. an irreducible polynomial of degreed overF2) as
well as an irreducible polynomialE(Y ) of degreen overFq can be found in time poly(d, n) [Sho90], and
thus the construction is explicit.
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Now, given anỳ 6 n′, let C ′ denote the first̀ symbols of the output ofC; this is also a condenser of
the type analyzed in Lemma3.1. We will show thatC ′ is a

(k = `t + log(1/ε)) →3ε k − 1,

which implies thatC is also a condenser with these parameters.
For consistency with Lemma3.1, we writem = ` for the rest of the proof. Note that

q > h · (hα/2) > h · (nn′/ε) > hnm/ε.

Thus, by Lemma3.1and Lemma2.5, C is a

log((hm − 1)/ε)) →2ε log((hm − 1)/ε)− 1

condenser. All that remains is numerical manipulation to express this in the same way as it is stated in the
theorem. First, note that

log((hm − 1)/ε) < log(hm/ε) = mt + log(1/ε) .

Also, by Proposition2.3, a distribution withlog((hm − 1)/ε) − 1 minentropy is1/hm-close to having
minentropy

log(hm/ε)− 1 = mt + log(1/ε)− 1.

Since1/hm = 1/2mt 6 ε, C ′ is amt + log(1/ε) →3ε mt + log(1/ε)− 1 condenser as claimed.

Remark 2. In this proof we work in a fieldFq of characteristic 2, which has the advantage of yielding a
polynomial-time construction even when we need to takeq to be superpolynomially large (which occurs
whenε(n) = n−ω(1)). Whenε > 1/poly(n), then we could take a primeq > 2d instead, with some minor
adjustments to the construction (e.g. only using2d elements ofFq for the seed, as per Remark1) and the
parameters claimed in the theorem.

4 Lossless condensers that are optimal up to constant factors

We begin with the general method to recover “missing” minentropy, due to [RR99]. Given ak →ε k′

condenserC : {0, 1}n × {0, 1}d → {0, 1}m, we say it has entropy loss̀= k + d − k′. We can make the
condenser lossless by appending a random hash into`+log(1/ε) bits. Whend is small, the extra randomness
can also be small, provided we use a randomness-efficient family of hash functions. Specifically, we can use
a family of “almost 2-universal” hash functions:

Theorem 4.1([AGHP92, SZ99]). For everyn′,m′, there exists an explicit familyH of hash functions from
n′ to m′ bits, of cardinalityO((n′m′2m′

)2), that satisfies the following property:

∀w1 6= w2 Pr
h∈H

[h(w1) = h(w2)] ≤ 2 · 2−m′
. (1)

A randomh ∈ H can be sampled usinglog |H| bits, and given these bits,h can be computed in poly(n′,m′)
time.

Note that a truly 2-universal hash function would satisfy (1) with the right-hand-side replaced by2−m′

– but the price would be that|H| ≥ 2n′ , which is far too large to be useful for us. Now we show that
appending a random hash makes a condenser lossless.
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Lemma 4.2. Let C : {0, 1}n × {0, 1}d → {0, 1}m be ak →ε k′ condenser. LetH be a family of hash
functions fromn′ = n + d bits tom′ > k + d − k′ + log(1/ε) + 2 bits satisfying (1). Then the function
C ′ : {0, 1}n × {0, 1}d′=d+log |H| → {0, 1}m+log |H|+m′

defined by:

C ′(x; y, h ∈ H) def= (C(x, y), h, h(x, y))

is ak →3ε k + d′ lossless condenser.

Proof. Let X be a random variable distributed uniformly on an arbitrary set of size2k. We prove thatC ′ is
the stated condenser when its source isX, which by Proposition2.1suffices. We denote byH, the random
variable that is uniformly distributed over the hash functions inH. We also takeY to be a random variable
uniformly distributed on{0, 1}d.

Call z ∈ {0, 1}m goodif Pr[C(X,Y) = z] ≤ 2−k′+1, andbadotherwise. By Proposition2.2, C(X,Y)
is good with all but2ε probability. (If z is bad, then(Pr[C(X,Y) = z]− 2−k) > Pr[C(X,Y)]/2, so each
badz contributes at least half of its probability mass to the distance from min-entropyk.) Note that ifz is
good, thenSz = {(x, y) ∈ supp(X,Y) : C(x, y) = z} is of size2k+d · Pr[C(X,Y) = z] 6 2k+d−k′+1.

Call h goodwith respect to(x, y) if h(x′, y′) 6= h(x, y) for all (x′, y′) ∈ Sz \ {(x, y)}, wherez =
C(x, y); that is,(x, y) does not collide with any other element ofSz underh. Notice that ifz = C(x, y) is
good, then

Pr[H is bad w.r.t.(x, y)] 6
∑

(x′,y′)∈Sz\{(x,y)}
Pr[H(x′, y′) = H(x, y)]

6 |Sz|
2m′−1

6 2k+d−k′+1

2m′−1

6 ε.

SinceC(X,Y) is good with all but2ε probability, we conclude thatH is good with respect to(X,Y) with
all but3ε probability.

Now, for every(x, y, h) such thath is good with respect to(x, y), we have thatC ′(x; y, h) = (C(x, y), h, h(x, y))
uniquely determines(x; y, h) among the elements in the support of(X,Y,H). In particular,C ′(x; y, h) has
probability mass exactly2−(k+d′) underC ′(X;Y,H).

We have shown that except with3ε probability, we hit an output string with probability mass2−(k+d′).
This implies thatC ′(X;Y,H) is 3ε-close to having min-entropyk + d′, as required.

Applying this transformation to the condenser from Theorem3.2, we obtain our second main theorem,
restated here:

Theorem 4.3 (Thm. 1.2, strengthened). For every constantα > 0, there is a constantc such that the
following holds. For all positive integersn,m and all ε > 0 satisfyingn > m > c log(n/ε), there is an
explicit construction of a functionC : {0, 1}n × {0, 1}d → {0, 1}m, with d = O(log n + log(1/ε)), such
that for all k 6 (1− α)m, C is a

k →ε k + d

lossless condenser.
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Proof. Let ε0 = ε/6, α0 = α/2, t = logd(2n2/ε0)1/α0e, d0 = b(1 + α0)tc, n0 = dn/d0e, andm0 =
bm/d0c − 20. Then, Theorem3.2 gives usC0 : {0, 1}n0d0 × {0, 1}d0 → {0, 1}m0d0 such that for all
positive integers̀ ∈ [log(1/ε0)/t,m0], C0 is a

(k0 = `t + log(1/ε0)) →3ε0 k0 − 1

condenser.
Sincen0d0 > n, we can viewC0 as having source lengthn (padding any input with zeroes). To obtain

our condenserC, we combineC0 with an almost 2-universal hash function as in Lemma4.2. We use hash
functions with output lengthm′ = d0+t+3 log(1/ε0)+O(1), so the number of bits needed to sample from
H is 2m′ + 2 log n + 2 log m′ + O(1). The resulting condenserC has seed lengthO(log n + log(1/ε0))
and has output length at mostm0d0 + 2m′ + 2 log n + 2 log m′ + O(1) 6 m0d0 + 20d0 6 m.

We now argue that it is lossless. Consider any min-entropy thresholdk 6 (1− α)m. First, note that

k 6 (1− α)m 6 (1− α)(m0 + 20)d0 6 (1− α)(m0 + 20)(1 + α0)t 6 m0t,

where the last inequality follows from the fact thatm > c log(n/ε0). Thus we can viewC0 as a condenser
for sources of min-entropyk by setting̀ = b(k− log(1/ε0))/tc ∈ [log(1/ε0)/t,m0]. The entropy loss will
be at mostd0 + t + 2 log(1/ε0) bits. This is because we lose thed0 bits of the seed, at mostt bits due to
rounding` down, and in casek < t + 2 log(1/ε0) we can lose all of the min-entropy (because then` is too
small forC0 to work).

Since we have chosen hash functions with output lengthm′ = d + t + 3 log(1/ε0) + O(1), we will
recover all of the min-entropy, by Lemma4.2.

5 Extractors that are optimal up to constant factors

Once we have condensed almost all of the entropy into a source with entropy rate close to1 (as in Theo-
rem1.1), extracting (most of) that entropy is not that difficult. All we need to do is to compose the condenser
with an extractor that works for entropy rates close to1. The following standard fact makes this formal:

Proposition 5.1. SupposeC : {0, 1}n × {0, 1}t1 → {0, 1}n′ is an (n, k) →ε1 (n′, k′) condenser, and
E : {0, 1}n′ × {0, 1}t2 → {0, 1}m is a (k′, ε2)-extractor, thenE ◦ C : {0, 1}n × {0, 1}t1+t2 → {0, 1}m

defined by(E ◦ C)(x, y1, y2)
def= E(C(x, y1), y2) is a (k, ε1 + ε2)-extractor.

For the best dependence on the error parameterε, the extractor we will use is due to Zuckerman:

Theorem 5.2([Zuc97]). For all constantsα, δ > 0: for all positive integersn, k and allε > exp(−n/2O(log∗ n)),
there is an explicit construction of a(k = δn, ε) extractor E : {0, 1}n × {0, 1}t → {0, 1}m with
t = O(log n + log(1/ε)) andm > (1− α)k.

We now prove our main extractor theorem, restated here:

Theorem 5.3 (Thm. 1.3, restated). For all constantsα > 0: for all positive integersn, k and all ε >
exp(−n/2O(log∗ n)), there is an explicit construction of a(k, ε) extractorE : {0, 1}n × {0, 1}d → {0, 1}m

with d = O(log n + log 1
ε ) andm > (1− α)k.

10



Proof. Consider the condenser of Theorem1.1, with its parameterε set to the one sixth of the presentε, and
its parameterα set to (say)1/2. This condenser has seed lengthd 6 3t/2 wheret = O(log n + log(1/ε)).
We set its parameter̀= b(k − log(6/ε))/tc. The result is ak →2ε k − t − 1 condenserC : {0, 1}n ×
{0, 1}d → {0, 1}m, with m 6 (3/2)(k − log(6/ε)) 6 3k/2. (The loss of up tot bits comes from the
rounding.) We may assume thatk − t − 1 > (1 − α/2)k, or else a trivial extractor that outputs its seed of
lengthd2(t+1)/αe would satisfy the theorem. Applying Proposition5.1to this condenser and the extractor
of Theorem5.2(with its error parameterε set to half the presentε) gives the claimed extractor.

In the fairly common case thatε is a constant, we can use the much simpler “expander-walk” extractor
(in place of the extractor of Theorem5.2) which extracts almost all of the entropy for entropy rates close
to 1. Note that our condenser from Theorem1.1achieves a constant entropy rate arbitrarily close to1, and
so can be combined with any extractor for such high min-entropy rates. A standard construction achieving
this is based on expander walks [Gil98, Zuc97, Zuc06]. Specifically, such an extractor can be obtained by
combining the equivalence between extractors and ‘averaging samplers’ [Zuc97], and the fact that expander
walks are an averaging sampler, as established by the Chernoff bound for expander walks [Gil98]. 4

Theorem 5.4. For all constantsα, ε > 0, there is a constantδ < 1 for which the following holds: for all
positive integersn, there is an explicit construction of a(k = δn, ε) extractorE : {0, 1}n × {0, 1}t →
{0, 1}m with t 6 log(αn) andm ≥ (1− α)n.

For completeness, we present the short proof:

Proof. Let m = d(1 − α)ne, and for some absolute constantsc > 1 andλ < 1, let G be an explicit2c-
regular expander on2m vertices (identified with{0, 1}m) and second eigenvalueλ = λ(G) < 1. Let L
be the largest power of 2 at most(n −m)/c (soL > (n −m)/(2c)), and lett = log L 6 log(αn). The
extractorE is constructed as follows. Its first argumentx is used to describe a walkv1, v2, . . . , vL of length
L in G by pickingv1 based on the firstm bits ofx, and each further step of the walk from the nextc bits of
x — so in all,L must satisfyn = m + (L− 1)c. The seedy is used to pick one of the vertices of the walk
at random. The outputE(x, y) of the extractor is them-bit label of the chosen vertex.

Let X be a random variable with minentropyk = δn. We wish to prove that for anyS ⊆ {0, 1}m, the
probability thatE(X,Ut) is a vertex inS is in the rangeµ± ε whereµ = |S|/2m. Fix any such subsetS.
Call anx ∈ {0, 1}n “bad” if ∣∣∣∣Pr

y
[E(x, y) ∈ S]− µ

∣∣∣∣ > ε/2.

The known Chernoff bounds for random walks on expanders [Gil98] imply that the number of badx’s is at
most

2n · e−Ω(ε2(1−λ)L) = 2n · e−Ω(ε2(1−λ)αn/c) = 2n · 2−Ω(ε2αn)

(sincec, λ are absolute constants). Therefore the probability thatX is bad is at most2−δn · 2n · 2−Ω(ε2αn),
which is exponentially small for large enoughδ < 1. Therefore

|Pr[E(X,Ut) ∈ S]− µ| ≤ ε/2 + 2−Ω(n) ≤ ε,

implying thatE is a(k, ε)-extractor.

4The papers [IZ89, CW89] prove hitting properties of expander walks, and observe that these imply objects related to (but
weaker than) extractors, known as dispersers.
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Combining Theorem1.1 with Theorem5.4 via Proposition5.1, as in the proof of Theorem1.3, we
obtain the following extractor, which has the advantage that its proof is short and self-contained:

Theorem 5.5. For every constantα > 0: for all positive integersn, k, and all constantε > 0, there is an
explicit construction of a(k, ε) extractorE : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n + log(1/ε))
andm > (1− α)k.

6 Variations on the main condenser

In this section we show how minor modifications to the proof allow us to optimize the seed length or the
output entropy. We also show that a small modification to the construction yields condensers from Reed-
Solomon codes.

6.1 Optimizing the seed length

The condenser of Theorem1.1 retains all the source minentropy (except for 1 bit) and achieves an entropy
rate of1 − δ for any desiredδ > 0. Its main shortcoming is the large seed length, which is greater than
(log n)/δ, whereas the optimal condenser achieves a seed length oflog n + log(1/ε) + O(1).

We now show that the seed length can be improved to(1 + γ)(log n + log(1/ε)) — the new condenser
still retains a(1 − O( 1

log n)) fraction of the input entropy and the output entropy rate isΩ(γ). While the
entropy rate is not close to1 as it was before, it is still a constant, and extractors with seed length of
1 · log n + O(1) were recently constructed for sources of any constant minentropy rate, and constant error
ε [Zuc06] (Theorem6.4 below.) Composing the condenser with such an extractor gives an extractor that
extracts(1−α)k bits from a source with minentropyk, using seed length(1 + γ) log n + log k + O(1), for
arbitrary constantsα, γ > 0. Note that whenk = no(1), the seed length is near-optimal.

The improved analysis that permits us to optimize the seed length is in the following lemma (compare
to Lemma3.1):

Lemma 6.1. DefiningBAD(S, ε) andB(K, ε) with respect toC as in Lemma2.5, for any integer parameter
s ≥ 1, we have

B

(
K =

⌊
hm − 1(
m+s−1

s−1

)
⌋

, ε

)
≤ hm − 1,

providedq ≥ m(n− 1)(h− 1)/(sε).

Proof. Let S ⊆ Fm
q be an arbitrary set of size at mostK. The proof follows along the lines of the

proof of Lemma3.1, with the main change being that we make sure that the interpolated polynomial
Q(Z1, Z2, . . . , Zm) has a root of multiplicity at leasts at each elementα = (α1, α2, . . . , αm) ∈ S. (Note
that Lemma3.1 is the special case of the current theorem withs = 1.) By a ‘root of multiplicity at leasts’,
we mean that that the polynomial

Qα(Z1, . . . , Zm) def= Q(α1 + Z1, . . . , αm + Zm)

has no monomials of degrees− 1 or smaller with nonzero coefficients, which amounts to
(
m+s−1

s−1

)
homo-

geneous linear constraints on the coefficients ofQ. Sincehm > |S|(m+s−1
s−1

)
, such a nonzero polynomialQ

of degree at most(h− 1) in each variable exists. FixQ to be any such nonzero polynomial.

12



Supposef(Y ) ∈ BAD(S, ε). Let y ∈ Fq be such thatC(f, y) ∈ S. Then, by the choice ofQ,

Q(f0(y), f1(y), . . . , fm−1(y)) = Q(C(f, y)) = 0.

In fact, sinceC(f, y) is a root of multiplicitys, we can show that the the polynomial

Rf (Y ) def= Q(f0(Y ), f1(Y ), . . . , fm−1(Y ))

has a root of multiplicitys aty. To see this, note that

Rf (y + Y ) = Q(f0(y + Y ), f1(y + Y ), . . . , fm−1(y + Y ))
= Q(f0(y) + Y · g0(Y ), f1(y) + Y · g1(Y ), . . . , fm−1(y) + Y · gm−1(Y ))
= QC(f,y)(Y · g0(Y ), Y · g1(Y ), . . . , Y · gm−1(Y ))

for some polynomialsg0,. . . ,gm−1. Since every monomial inQC(f,y) has degree at leasts, when we substi-
tuteY · gi(Y ) for the variables we get a univariate polynomial divisible byY s. ThusY s|Rf (y +Y ), i.e. Rf

has a root of multiplicitys at y. Equivalently,(Y − y)s|Rf (Y ). We conclude that iff(Y ) ∈ BAD(S, ε),
i.e., if

Pr
y

[Q(f0(y), f1(y), . . . , fm−1(y)) = 0] > ε ,

thenR(Y ) has more thanεsq roots counting multiplicities. On the other hand the degree ofR(Y ) is at most
(n− 1)(h− 1)m. Therefore, sinceεsq ≥ (n− 1)(h− 1)m, we must haveR(Y ) = 0.

From this point on, the proof proceeds identically to that of Theorem1.1, leading to the desired conclu-
sion|BAD(S, ε)| ≤ hm − 1.

Picking parameters suitably, and following the outline of the proof of Theorem1.1, we obtain the fol-
lowing condenser:

Theorem 6.2.For everyγ > 0: for all positive integersn > ` and allε > 0, there is an explicit construction
of a

(k = `t + log(1/ε)) →2ε (k − 3`− 1)

condenserC : {0, 1}n × {0, 1}d → {0, 1}`d with t = logd(2n/ε)γe andd = b(1 + 1/γ)tc, providedt ≥ 4
and`t > log(1/ε).

Proof. We describe how to set parameters, and then apply Lemmas6.1 and2.5. We seth = d(2n/ε)γe,
t = log h, d = b(1 + 1/γ)tc, andq = 2d. Setm = s = `. We haveq ≥ nmh/(εs) = nh/ε as required.

By Lemma6.1, and Lemma2.5, C is a

log((hm − 1)/ε) →2ε log(K/ε)− 1

condenser. Now,K = b(hm − 1)/
(
2m−1
m−1

)c ≥ (hm − 1)/22m−1 − 1 ≥ (h/8)m, as long ash ≥ 10. The
theorem follows, using the fact thatlog(hm) = `t andlog(h/8)m = ` · (t− 3).

In the previous theorem,γ may be subconstant, and in the following corollary we show that it can be
set to produce an a seed length that is optimal up to theadditiveconstant, while still retaining a constant
fraction of the minentropy, at the expense of an output entropy rate ofΩ(1/ log(n/ε)), which is subconstant,
but still quite good.
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Corollary 6.3. For every integer constantc ≥ 4: for all positive integersn > ` and all ε > 2−c`, there is
an explicit construction of a

(
k = c` + log

1
ε

)
→2ε

((
1− 3

c

)
k − 1

)

condenserC : {0, 1}n×{0, 1}d → {0, 1}n′ with d = log n+log(1/ε)+O(1) andn′ =
(
1 + log(2n/ε)

c

)
c`.

Proof. Setγ = c/ log(2n/ε) in Theorem6.2.

We now combine the condenser of Theorem6.2 with Zuckerman’s recent extractor. (This extractor in
turn starts by applying a condenser due to Raz [Raz05] that has constant seed length and can increase the
entropy rate fromδ to 1− δ for any constantδ > 0, while retaining a constant fraction of the minentropy.)

Theorem 6.4 ([Zuc06]). For all constantsα, δ, ε > 0: for all positive integersn, there is an explicit
construction of a(k = δn, ε) extractorE : {0, 1}n×{0, 1}d → {0, 1}m with seed lengthd = log n+O(1)
and output lengthm > (1− α)k.

Combining Theorem6.2 with Theorem6.4 via Proposition5.1, as in the proof of Theorem1.3, we
obtain the following extractor, which has a near-optimal seed length:

Theorem 6.5. For all constantsα, γ, ε > 0: for all positive integersn, k, there is an explicit construction
of a (k, ε) extractorE : {0, 1}n × {0, 1}d → {0, 1}m with seed lengthd = (1 + γ) log n + log k + O(1)
and output lengthm > (1− α)k, providedk ≥ cd/α for a universal constantc.

6.2 Increasing the output entropy

The condenser of Theorem1.1 is missing only the entropy of the seed, which is small enough that it can
be “recovered” using the hashing technique of Lemma4.2. However, one can ask how far our new proof
technique can go in isolation. More precisely, we modify the functionC as follows

C ′(f, y) def= (y, C(f, y)),

and ask how much entropy is retained for this “strong” variant of the basic construction. In the language
of Lemma2.5, ideally we could hope forB(K, ε) ≤ K/q, when the seed length islog q. This would
correspond to recovering all of the entropy of the source and seed together.

In this section we show that a minor modification to the proof allows us to argue thatB(K, ε) ≤ K/r
for r approachingεq. This corresponds to recovering all butlog(1/ε) + O(1) of the total entropy, although
we don’t know of a direct application for this improvement. We show the improved result by recording a
variant of Lemma3.1for C ′ as defined above:

Lemma 6.6. DefiningBAD(S, ε) andB(K, ε) with respect toC ′ as in Lemma2.5, we have

B(K = rhm − 1, ε) < K/r,

for any positive integerr such thatq ≥ [(n− 1)(h− 1)m + r]/ε.
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Proof. Fix a setS ⊆ Fq×Fm
q of size at mostK. LetQ ∈ Fq[Y,Z1, Z2, . . . , Zm] be a nonzerom+1-variate

polynomial that vanishes onS, with degree at mostr− 1 in Y , and individual degrees at mosth− 1 for the
remainingm variables. By definition, for everyf(Y ) ∈ BAD(S, ε), it holds that

Pr
y

[Q(y, f0(y), f1(y), . . . , fm−1(y)) = 0] > ε.

Therefore, the univariate polynomialRf (Y ) def= Q(Y, f0(Y ), . . . , fm−1(Y )) has more thanεq zeroes, and
degree at mostr + (n − 1)(h − 1)m. Sincer + (n − 1)(h − 1)m ≤ εq, Rf (Y ) must be identically zero,
and soQ(Y, f0(Y ), . . . , fm−1(Y )) = 0 for every badf(Y ).

Now, view Q as a polynomial inFq[Y ][Z1, Z2, . . . , Zm], and factor out the largest power ofE(Y ).
SinceE(Y ) has no roots inFq, the resulting polynomial still vanishes onS. Also, the resulting polynomial
is non-zero moduloE(Y ); let Q′ be the resulting polynomial after reducing moduloE(Y ).

Now, viewQ′ as a multivariate polynomial (in variablesZ1, Z2, . . . , Zm) over the extension fieldF =
Fq[Y ]/E(Y ), and define

Q′′(Z) = Q′(Z, Zh, Zh2
, . . . , Zhm−1

).

Because the individual degrees ofQ′ are all less thanh, Q′′ is a non-zero polynomial (because distinct
monomials inQ′ map to distinct monomials inQ′′).

For everyf(Y ) ∈ BAD(S, ε), now viewed as an element ofF, we haveQ′′(f) = 0; i.e.,f is a root of
Q′′. Thus|BAD(S, ε)| ≤ deg(Q′′). The degree ofQ′′ is at most

(h− 1)(1 + h + h2 + · · ·+ hm−1) = hm − 1 < K/r.

6.3 Reed-Solomon version

We use one of the main ideas from [GR06] to argue that a small modification to our construction gives a
good condenser from Reed-Solomon codes, answering a question raised in [KU06].

Let q be an arbitrary prime power, and letζ ∈ Fq be a generator of the multiplicative groupF∗q . Then
the polynomialE(Y ) = Y q−1 − ζ is irreducible overFq [LN86, Chap. 3, Sec. 5]. The following identity
holds for allf(Y ) ∈ Fq[Y ]:

f(Y )q ≡ f(Y q) ≡ f(Y q−1Y ) ≡ f(ζY ) (mod E(Y )) .

In this case, if we modify our basic functionC : Fn
q × Fq → Fm

q slightly so that we raisef to successive
powers ofq rather thanh, we get:

C(f, y) def= (f(y), (f q mod E)(y), (f q2
mod E)(y), · · · , (f qm−1

mod E)(y)
= (f(y), f(ζy), · · · , f(ζm−1y)). (2)

In other words, our function interprets its first argument as describing a univariate polynomial overFq of
degree at mostn − 1 (i.e., a Reed-Solomon codeword), it uses the seed to select a random location in
the codeword, and it outputsm successive symbols of the codeword. This is precisely the analogue of
the Shaltiel-Umansq-ary extractor construction [SU05] for univariate polynomials, rather than multivariate
polynomials.

With a minor modification to the proof of Lemma3.1, we show that this is good condenser:
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Lemma 6.7. DefiningBAD(S, ε) andB(K, ε) with respect to the functionC of Equation (2) as in Lemma
2.5, we have

B(K = hm − 1, ε) ≤ (qm − 1)(h− 1)/(q − 1),

providedq ≥ (n− 1)(h− 1)m/ε.

Proof. The proof is the same as the proof of Lemma3.1except that we defineQ′ differently:

Q′(Z) def= Q(Z,Zq, Zq2
, . . . , Zqm−1

).

As before, everyf(Y ) ∈ BAD(S, ε), is a root ofQ′. Thus|BAD(S, ε)| ≤ deg(Q′). The degree ofQ′ is at
most

(h− 1)(1 + q + q2 + · · ·+ qm−1) = (h− 1)((qm − 1)/(q − 1)).

We obtain the following condenser:

Theorem 6.8(Reed-Solomon condenser). For every constantα > 0: for all positive integersn > ` and all
ε > 0, there is an explicit construction of a

(`d + log(1/ε)) →3ε (`t + log(1/ε)− 1)

condenserC : {0, 1}n × {0, 1}d → {0, 1}`d with t = dlog(2n`/ε)1/αe and d = b(1 + α)tc, provided
`t > log(1/ε).

The main difference between this theorem and our basic condenser (Theorem1.1) is that the input and
output min-entropies no longer differ by one bit. Instead, the ratio is roughlyd/t ≈ (1 + α), which means
that we retain only a1/(1 + α) fraction of the min-entropy.

Proof. The proof is identical to that of Theorem1.1, with the only change being that we fixn′ = ` = m,
and due to the difference between Lemma6.7and Lemma3.1, the input min-entropy required is

log(qm/ε) = `d + log(1/ε).

For the Reed-Solomon-based construction, a relatively simple argument shows that the entropy rate and
the ratio of output minentropy to input minentropy must both be constants less than 1. The example below
comes from [GHSZ02, TZ04]:

Theorem 6.9. For every positive integerp such thatp|(q − 1), there is a sourceX with minentropy at least
bn/pc log q for which the support ofC(X,Ut), as defined in Equation (2), is entirely contained within a set
of sizewm, wherew = (q − 1)/p + 1. ThusC(X,Ut) is notε-close to having minentropylog( 1

1−εw
m), .

Proof. Take the source to bep-th powers of all degreebn/pc polynomials. Every output symbol ofC
is an evaluation of such a polynomial, and therefore must be ap-th power, or 0. There are thus only
w = (q − 1)/p + 1 possible output symbols, so the output is contained within a set of sizewm, which by
Proposition2.2 is notε-close to any distribution with minentropylog( 1

1−εw
m).
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This example can be interpreted as follows. For anym ≤ bn/pc, we have enough entropy to hope for
C ’s output (which has lengthm log q) to be close to uniform. However, if we choosep = nδ for some
constantδ > 0, then the output minentropy can be no larger thanlog(O(wm)) = m log(q1−δ′), for some
constantδ′ > 0, as long asq = poly(n) (which is required for seed lengthO(log n)). This example shows
that the output minentropy rate being a constant strictly less than 1, as well as the output minentropy being
a constant factor smaller than the input minentropy are inherent in the present construction; they are not
artifacts of the analysis. That is, it is not possible to resolve those issues by simply giving a different,
improved analysis for our generic construction.

7 Conclusions

This paper introduces a new proof technique for analyzing algebraic extractor constructions, which does not
rely on local decodability of the underlying error-correcting codes. It is thus natural to ask whether these
new techniques can help in other settings. For example, can we use them to argue aboutcomputational
analogues of the objects in this paper – pseudorandom generators and pseudoentropy generators? Or, can
variants of our constructions yield so-called “2-source” objects, in which both the source and the seed are
only weakly random?

Of course a significant remaining open problem is to construct truly optimal extractors, ones that are
optimal up toadditiveconstants in the seed length and/or output length. Towards this end, we wonder if
there is some variant of our constructions with a better entropy rate – the next natural threshold is to have
entropydeficiencyonly ko(1). Another interesting question is whether some variant of these constructions
can give a block-wise source directly. Depending on the actual parameters, either of these two improvements
have the potential to lead to extractors with optimal output length (i.e. ones extract all the minentropy).
Alternatively, if we can find an extractor with optimal output length for high min-entropy (say.99n), then,
by composing it with our condenser, we would get one for arbitrary min-entropy.

Acknowledgements. This paper began with a conversation at the BIRS workshop “Recent Advances in
Computation Complexity.” We would like to thank the organizers for inviting them, and BIRS for hosting
the workshop. We also thank Oded Goldreich, Prahladh Harsha, Omer Reingold, and Ronen Shaltiel for
helpful comments on the write-up.

References

[AGHP92] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almostk-wise inde-
pendent random variables.Random Structures and Algorithms, (3):289–304, 1992.

[CRVW02] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors and constant-
degree expansion beyond the degree/2 barrier. InProceedings of the 34th Annual ACM Sympo-
sium on Theory of Computing, pages 659–668, 2002.

[CW89] A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and weak random sources
(extended abstract). InProceedings of the 30th Annual IEEE Symposium on Foundations of
Computer Science, pages 14–19, 1989.

[GHSZ02] V. Guruswami, J. Hastad, M. Sudan, and D. Zuckerman. Combinatorial bounds for list decod-
ing. IEEE Transactions on Information Theory, 48(5):1021–1035, 2002.

17



[Gil98] D. Gillman. A Chernoff bound for random walks on expander graphs.SIAM J. Comput.,
27(4):1203–1220 (electronic), 1998.

[GR06] V. Guruswami and A. Rudra. Explicit capacity-achieving list-decodable codes. InProceedings
of the 38th Annual ACM Symposium on Theory of Computing, pages 1–10, 2006.

[GS99] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and Algebraic-Geometry
codes.IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

[Gur04] V. Guruswami. Better extractors for better codes? InSTOC, pages 436–444, 2004.

[GW97] O. Goldreich and A. Wigderson. Tiny families of functions with random properties: A quality-
size trade-off for hashing.Random Structures & Algorithms, 11(4):315–343, 1997.

[GZ97] O. Goldreich and D. Zuckerman. Another proof that BPP subseteq PH (and more). Technical
Report TR97-045, Electronic Colloquium on Computational Complexity, 1997.

[ISW00] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and pseudo-random generators with
optimal seed length. InProceedings of the 32nd Annual ACM Symposium on Theory of Com-
puting, pages 1–10, 2000.

[IZ89] R. Impagliazzo and D. Zuckerman. How to recycle random bits. InProceedings of the 30th
Annual IEEE Symposium on Foundations of Computer Science, pages 248–253, 1989.

[KU06] S. Kalyanaraman and C. Umans. On obtaining pseudorandomness from error-correcting codes.
Electronic Colloquium on Computational Complexity (ECCC), (128), 2006.

[LN86] R. Lidl and H. Niederreiter.Introduction to Finite Fields and their applications. Cambridge
University Press, 1986.

[LRVW03] C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: Optimal up to constant
factors. InProceedings of the 35th Annual ACM Symposium on Theory of Computing, pages
602–611, 2003.

[MU02] E. Mossel and C. Umans. On the complexity of approximating the vc dimension.J. Comput.
Syst. Sci., 65(4):660–671, 2002.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness.Journal of Computer and System
Sciences, 49:149–167, 1994.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space.Journal of Computer and System
Sciences, 52(1):43–52, 1996.

[PV05] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in polyno-
mial time. InProceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, pages 285–294, 2005.

[Raz05] R. Raz. Extractors with weak random seeds. InProceedings of the 37th Annual ACM Sympo-
sium on Theory of Computing, pages 11–20, 2005.

18



[RR99] R. Raz and O. Reingold. On recycling the randomness of states in space bounded computation.
In Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pages 159–168,
1999.

[RSW06] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness via repeated condensing.
SIAM J. Comput., 35(5):1185–1209, 2006.

[RZ01] A. Russell and D. Zuckerman. Perfect information leader election in log* n+o (1) rounds.J.
Comput. Syst. Sci., 63(4):612–626, 2001.

[Sha02] R. Shaltiel. Recent developments in explicit constructions of extractors.Bulletin of the Euro-
pean Association for Theoretical Computer Science, 77:67–, June 2002. Columns: Computa-
tional Complexity.

[Sho90] V. Shoup. New algorithms for finding irreducible polynomials over finite fields.Mathematics
of Computation, 54(189):435–447, 1990.

[Sip88] M. Sipser. Expanders, randomness, or time versus space.Journal of Computer and System
Sciences, 36(3):379–383, 1988.

[SU05] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudorandom
generator.Journal of the ACM, 52(2):172–216, 2005. Conference version appeared in FOCS
2001.

[Sud97] M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bound.J. Complexity,
13(1):180–193, 1997.

[SZ99] A. Srinivasan and D. Zuckerman. Computing with very weak random sources.SIAM Journal
on Computing, 28:1433–1459, 1999.

[Tre01] L. Trevisan. Extractors and pseudorandom generators.Journal of the ACM, 48(4):860–879,
2001.

[TSZ04] A. Ta-Shma and D. Zuckerman. Extractor codes.IEEE Transactions on Information Theory,
50(12):3015–3025, 2004.

[TU06] A. Ta-Shma and C. Umans. Better lossless condensers through derandomized curve samplers.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
2006. To appear.

[TUZ01] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less condensers, unbalanced expanders, and
extractors. InProceedings of the 33rd Annual ACM Symposium on Theory of Computing, pages
143–152, 2001.

[TZ04] A. Ta-Shma and D. Zuckerman. Extractor codes.IEEE Transactions on Information Theory,
50(12):3015–3025, 2004.

[TZS06] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller codes.J. Comput. Syst.
Sci., 72(5):786–812, 2006.

19



[Uma99] C. Umans. Hardness of approximatingΣp
2 minimization problems. InProceedings of the 40th

Annual IEEE Symposium on Foundations of Computer Science, pages 465–474, 1999.

[WZ99] A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue bound: Explicit construc-
tion and applications.Combinatorica, 19(1):125–138, 1999.

[Zuc96a] D. Zuckerman. On unapproximable versions of NP-complete problems.SIAM Journal on
Computing, 25:1293–1304, 1996.

[Zuc96b] D. Zuckerman. Simulating BPP using a general weak random source.Algorithmica, 16(4-
5):367–391, 1996.

[Zuc97] D. Zuckerman. Randomness-optimal oblivious sampling.Random Struct. Algorithms,
11(4):345–367, 1997.

[Zuc06] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic
number. InProceedings of the 38th Annual ACM Symposium on Theory of Computing, pages
681–690, 2006.

20


