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Abstract

We give new constructions of randomness extractors and lossless condensers that are optimal to
within constant factors in both the seed length and the output length. For extractors, this matches the
parameters of the current best known construclldRMWO03], with an improvement in case the error
parameter is small (e.gl./poly(n)). For lossless condensers, the previous best constructions achieved
optimality to within a constant factor in one parameter only at the expense of a polynomial loss in the
other.

Our constructions are based on the Parvaresh-Vardy c®4X], and our proof technique is in-
spired by the list-decoding algorithm for those codes. The main object we construct is a condenser that
losesonly the entropy of its seed plus one bit, while condensing to entropylratex for any desired
constanty > 0. This construction is simple to describe, and has a short and completely self-contained
analysis. Our other results only require, in addition, standard uses of randomness-efficient hash functions
(to obtain a lossless condenser) or expander walks (to obtain an extractor).

Our techniques also show for the first time that a natural analogue of the Shaltiel-Umans extrac-
tor [SUOE| based on univariate polynomials (i.e., Reed-Solomon codes) yields a condenser that retains a
1 — « fraction of the source min-entropy, for any desired constant 0, while condensing to constant
entropy rate and using a seed length that is optimal to within constant factors.
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fSupported by NSF CCF-0346991, BSF 2004329, a Sloan Research Fellowship, and an Okawa Foundation research grant.
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1 Introduction

In this paper, we construct randomness extractors and condensers with the best parameters to date. Perhaps
more importantly, we do this by introducing a new algebraic construction based on the ingenious vari-
ant of Reed-Solomon codes discovered by Parvaresh and VAXBE]. Our proof technique is inspired
by the list-decoding algorithm for the Parvaresh-Vardy codes, which builds on the list-decoding results of
[Sud97/GS99. The resulting extractors and condensers are simple to describe and have short, self-contained
analyses. In the remainder of the introduction, we describe our results more precisely, and place them in
context within the large body of literature on extractors and related objects.

A long line of research beginning in the late 1980s has been devoted to the goal of constructing explicit
randomness extractargSee the survey of Shaltiébha02}.) Extractors are efficient functions that take an
n-bit string sampled from a “weak” random source together with a short truly random seed, and output a
nearly uniform distribution. Extractors have turned out to be a powerful tool in a number of application
areas. These include algorithm&Z99], hardness of approximatiolZlic96a Uma99 IMUQ2, ZucO€,
distributed protocols4uc97, 'IRZ01], coding theory TSZ04 (Gur04, and a variety of complexity results
[Sip88NZ96,/GZ97).

The randomness in the source is measureghimgntropy a random variabl&X has minentropy at least
kiff PriX = z] < 2= for all z. A random variabl€éZ is -closeto a distributionD if for all events A,
Pr[Z € A] differs from the probability ofA under the distributiorD by at most. An extractor is defined
as follows:

Definition 1.1 (INZ96]). A (k, ¢) extractoris a functionE : {0,1}" x {0,1}" — {0, 1} with the property
that for everyX with minentropy at least, F(X,Y) is e-close to uniform, whel is uniformly distributed
on {0, 1}t. An extractor isexplicitif it is computable in polynomial time.

The competing goals when constructing extractors are to obtain a short seed, and a long output length.
Nonconstructively, it is possible to simultaneously have a seed lengtlog n + 21log(1/¢) + O(1) and an
output length ofn = £+t —2log(1/¢) — O(1). It remains open to match these parameters with an explicit
construction.

A major theme in extractor constructions since the breakthrough result of TreWisz01]] has been
the use of error-correcting codes. Trevisan’s extractor construction, which is based on the Nisan-Wigderson
pseudorandom generat™\V94], encodes the source with an error-correcting code with good distance, and
uses the seed to select (via certain combinatorial designs) a subsdtitsf of the codeword to output.

A more algebraic approach, exploiting the specific structure of polynomial error-correcting codes was
pioneered by Ta-Shma, Zuckerman and S&fiaJ0€. There the source is encoded with a multivariate
polynomial code (Reed-Muller code), the seed is used to select a starting point, and the extractoroutputs
successive symbols along a dndetter parameters were achieve with a variant introduced by Shaltiel and
Umans [BUQOY, which exploits the fact that Reed-Muller codes ayelic. There then output symbols are
simply m successive coordinates of the codeword, when written in the cyclic ordering. A common feature
of these algebraic constructions is that their analysis relies crucially dodhkedecodabilityproperties of
the underlying error-correcting code. This paper diverges from the previous works on exactly this point, as
our constructions use only univariate polynomial codes, which are not locally decodable.

A second major theme dating tRSWO0¢ and RR99? is the use of a relaxation of extractors, called

1In this discussion we are ignoring the distinction between outputtirgymbols from a large alphabet and outputtingits.

2Actually, since the formal definition we give does not explicitly require that the min-entropy rate increase, such objects were
already considered as far back as the original papergwg6r) NZ96]. However, we will be interested in condensers that do
actually increase the min-entropy rate.



condensersas an intermediate goal:

Definition 1.2. A functionC : {0,1}" x {0,1}¢ — {0,1}™ is ank —. k' condenseif for every X
with minentropy at least, C(X,Y) is e-closeto a distribution with minentropy’, whenY is uniformly

losslessf k&' = k + d.

Observe that & —. kK’ condenser with output lengtlh. = &’ is an extractor, because the unique
distribution on{0, 1}"" with minentropym is the uniform distribution. Condensers are a natural stepping-
stone to constructing extractors, as they can be used to increa=@igy rate(the ratio of the minentropy
in a random variable to the length of the strings over which it is distributed), and it is often easier to construct
extractors when the entropy rate is high. Condensers have also been used extensively in less obvious ways
to build extractors, often as part of complex recursive constructions (V00 RSWO06 LRVWO03)]).
Nonconstructively, one can hope fosslessondensers with seed length- log n + log(1/¢) + O(1), and
output lengthm = k£ + ¢ + log(1/¢) + O(1).

Our central result is a completely elementary construction of a condenser that retains all but the seed
min-entropy (plus one bit), and condenseaty constant entropy rate using a seed length that is optimal up
to constant factors. This is the most basic object from which we derive most of the other results:

Theorem 1.1 (main). For all o > 0, all positive integers» > ¢ and alle > 27, there is an explicit
construction of a
(k =10t +1log(1l/e)) —3: (K —1)

condenser” : {0,1}" x {0,1}* — {0, 1}/ with t = log[(2n2/e)"/*] andd = | (1 + a)t].

For intuition about the parameters, consider takintp be a small constant. Then the seed length is
d = O(log(n/e)), which is optimal up to a constant factor. The condenser takes takes any distribution of
min-entropyk =~ ¢t and outputs a string of leng#td ~ (1 + «)k that still has min-entropy at least— 1.

Thus the min-entropyate of the output is at leagk — 1) /(¢d) ~ 1/(1 + «), which is arbitrarily close to 1.

In recent years, condensers have been studied in their own right. Lossless condensers are of particular
interest, as they are equivalent to unbalanced bipantipander graphgvith extremely good expansion (of
greater than half the left degree of the grapf)his turns out to be useful in a number of applications (see
the introduction of CRVWO0Z] for a survey). Constructions of lossless condensers appeRRag TUZ01,

CRVWO0?Z, TUO06].

For lossless condensers, the competing goals are short seed lengthoeiedtput length (thus achiev-
ing the greatest “condensing” of the source minentropy). Constructions are known that achieve essentially
optimal parameters for very largdl CRVWO0Z], and very smalk [RR99, but for generak, the best known
constructions can achieve optimality to within a constant factor in one parameter only at the expense of a
polynomial loss in the other. Specifically, the best known constructions (stated here for cepataieve
seed lengtht = O(log?n) and output lengtm = O(k) [TUZ01], or seed lengtht = O(logn) and out-
put lengthm = k'™ for any constanty > 0 [TUZ01]. Recently Ta-Shma and UmarigU06] showed
that if optimalderandomized curve samplaran be constructed, then a construction of lossless condensers
based on'$U0L would achieve seed length= O(logn) and output lengthm = k - polylog(n); they
obtain near-optimal derandomized curve samplers that produce lossless condensers with somewhat worse
parameters.

3Technically, the usual notion of expander corresponds to condensers that are simultaneously lossless for all minkagropies
to some threshold (in contrast to Definititr®, which refers to a single value &j. Our constructions actually achieve this stronger
property, as shown in the more detailed statements of the theorems in the body of the paper.



Using Theorenil.1, we obtain a new construction of lossless condensers that are optimal to within
constant factors in both the seed length and the output length. This uses an ide&RR6€h [because
the condenser of Theorefnl is only missing a small amount of minentropy, it can be made lossless by
appending a hash from an “almost-2-universal” hash family; we pay only with a constant factor increase in
the seed length. We obtain:

Theorem 1.2(lossless condenserlor every constanée > 0, For all positive integers. > k and alle > 0
, there is an explicit construction of a
k—ck+d

lossless condensét : {0,117 x{0,1}¢ — {0,1}™ withd = O(logn+log(1/¢)) andm = (1+a)(k+d).

We now return to extractors. There is a great diversity of extractor constructions; see Shaltiel's survey
[Sha02 for a nearly-up-to-date summary. The current champion is the construction of Lu, Reingold, Vad-
han, and WigdersorLRVWO03] which achieves optimality to within a constant factor in the seed length
and output length simultaneously, for any minentrépy(As with lossless condensers, for smallbetter
constructions are known; e.gGW97,1SZ99 TUZ01]). Again using the condenser of Theordnd, we can
match this best known construction with a simple, direct, and self-contained construction and analysis. We
simply need to “finish” the condenser of Theordmd with an extractor that extracts any desired constant
fraction of the minentropy, with a seed length that is optimal up to constant factors. Since this extractor
can start from a constant entropy rate arbitrarily close to 1, we can even use a standard extractor based
on expander walks. Whenis sub-constant, we use Zuckerman’s extracZarcP7 to obtain the proper
dependence on Altogether we obtain:

Theorem 1.3(extractor) For all constantsy > 0: for all positive integers:, k and alle > exp(—n /208" 7)),
there is an explicit construction of @, ¢) extractorE : {0,1}" x {0,1}* — {0,1}™ with d = O(logn +
log 1) andm > (1 — a)k.

In fact this result slightly improves upohRVWO3], for general erroe = ¢(n). They can handle error
as small ag—/ 12" n for any constant, but for generak, they must pay with either a larger seed length
of t = O((log*n)?logn + log(1)), or a smaller output length of, = Q(k/ log(®) n) for any constant.

1.1 Ourtechnique

In this section we give a high-level description of our construction and proof technique. Our condensers
are based on Parvaresh-Vardy cod@¥Q5, which in turn are based on Reed-Solomon codes. A Reed-
Solomon codeword is a univariate degre@olynomial f € F,[Y], evaluated at all points in the field. A
Parvaresh-Vardy codeword is a bundle of several related degrégolynomialsfy, f1, fo, ..., fm—_1,€ach
evaluated at all points in the field. The evaluations of the varjoud a given field element are packaged
into a symbol from the larger alphabg}~. The purpose of this extra redundancy is to enable a better
list-decoding algorithm than is possible for Reed-Solomon codes.

The main idea inPVOY is to view degreer — 1 polynomials as elements of the extension fi€lg=
F,[Y]/E(Y), whereE is some irreducible polynomial of degree The f; (now viewed as elements &)
are chosen so thgt = fg” for i > 1, and positive integers;. In order to list-decode, one produces a
nonzero univariate polynomid)’ overF from the received word, with the property thatis a root ofQ’
whenever the codeword has sufficient agreement with the received word. We use the same technique in the
analysis of our condenser, and below we describe how the interpolating polynomial is set up and how the
relationship between thg’s helps in the context of our analysis.
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Our condenser construction works as follows. We view the source st@asgdescribing a degree— 1

polynomial f(Y') € F,[Y]. We then defing; def " mod E for some parametet, and irreducibleZ of
degreen. Given a seeg € F,, our output isfo(y), fi(y), ..., fm—1(y).

Since [Tre0]], a common technique in analyzing extractors has been to show that for every subset
D C {0,1}™, there are very few, sag 2¥, source strings: that are “bad” with respect t®; i.e., much
fewer tharR” stringsz satisfy

P;r[E(z,y) € D] — P;r[z € D]| > e.

From this, it follows that a source with min-entropys unlikely to output a string that is bad with respect to
any givenD. Thus the output off on such a source must hit dli's with probability close to the density of
D, and soF is an extractor for minentropy. We use the same general outline to show that our construction
is a condenser. We only wish to show that the output is close to having mineritragher than close to
being uniform, and this is equivalent to showing that the output hits$efssize about*’ with less than
e probability (see SectioB.1for a precise statement of this fact). We do this by arguing that there are very
few source strings that are “bad” with respect t6; i.e., very fewz satisfyPr,[C(z,y) € S] > e.

Let’s consider whaPr, [C'(z,y) € S] > € means for our construction. First of all,is interpreted as a
degreen — 1 polynomial fy. Then, fy being “bad” means that for more thaq of the seedg, we have

(fO(y)7f1(y)7 s >fm—1(y)) es.

The first step in our analysis is to produce a non-zero polyno@ial F;* — [, that vanishes ors.
We arrange to have deg ) < eq, so that the univariate polynomi&)(fo(Y), f1(Y),..., fm—-1(Y)) is
identically zerdfor bad fy. Viewing the f; as elements of the extension fidld= [F,[Y]/E(Y), andQ as a

multivariate polynomial oveF, we have that fo, f1, ..., fm—1) is aroot of Q. Just as in the list-decoding

algorithm of [PVO, we define the polynomia)’(2) % Q(z, z", z"*,....z"""), and observe that

every badfj is a root of thisunivariatepolynomial. Thus the degree &f is a bound on the number of such
fo, and it turns out that this bound is nearly optimal: the number offgaslshown to be at most the size of
S.

To summarize, the analysis has two main steps: first, we erf¢ode a low-degree multivariate polyno-
mial @, and argue that for every bad polynomja(Y), Q(fo(Y), ..., fm—1(Y)) is in fact identically zero.
Then, we produce a univariate polynomigll from Q that has all of the bagl, as roots (when everything is
viewed over the extension fielg). The degree of)’ is an upper bound on the number of bad strings.

1.2 Additional results

In Section6 we discuss some variations on the basic construction.

Using the “multiple roots” idea from Guruswami-Sud&399, we optimize the seed length of our
condenser, making {tl + +) times the optimal seed length, while still retaining almost all the entropy and
outputting a source with a constant entropy rat€)6f) (Theorem6.2). For constant erras, one can then
extract almost all the entropy using the extractor frdnd0€ which uses an additional seed of at most
log k 4+ O(1) bits. The total seed length is th(s+ ) log n + log k + O(1), which approaches the optimal
logn 4+ O(1) bound fork = n°(). This result appears as Theoré. A different setting of the condenser
parameters (Corollarg.3) allows us to obtain aexactlyoptimal seed length, while retaining a constant
fraction (arbitrarily close to 1) of the entropy, at the expense of an output entropy r@td ofog(n /<)),
which is nonconstant, but still quite good.



With a small change to the original proof, we can say something about the variant of the main condenser
in which the seed is included in the output. One can hope to capture the entire seed entropy (which we do
in Theoreml.2, but that involves the extra step of appending a hash); here we are able to capture all but
O(log(1/¢)) bits of the seed entropy directly.

Finally, using one of the main ideas from the Guruswami-Rudra c@@R9€, we argue that a variant
of our main construction is the natural precursor®Dg, in which that basic construction is applied Reed-
Solomon codes. It has been an intriguing question for some time to determine what (if any) pseudorandom
object(s) can be obtained from this very natural construction. This question is stuck&diQ6][ where they
show that the Reed-Solomon construction “fools” certain kinds of low-degree tests. Our results in this paper,
which show that this construction is a very good condenser, seem to provide the correct (or nearly-correct)
answer, as we also describe an example that shows that the entropy rate and the constant factor entropy loss
for this construction cannot be improved substantively.

2 Preliminaries

Throughout this paper, we use boldface capital letters for random variables (¥.9,,capital letters
for indeterminates, and lower case letters for elements of a set. Also throughout the (3aperthe

random variable uniformly distributed of0, 1}. The supportof a random variabl& is supp(X) def
{z : Pr[X =2z] > 0}. Thestatistical distancévetween random variables (or distributio®)andY is
maxy |Pr[X € T] - Pr[Y € T]|. We sayX andY arec-closeif their statistical distance is at mostAll
logs are base 2.

We record some standard facts about minentropy:

Proposition 2.1. For K € N, a distributionD has minentropy at leasbg K iff D is a convex combination
of flat distributions on sets of size exacily

Proposition 2.2. For anyk > 0, the distance from a distributioP to a closest distribution with minentropy
kis exactlyy",. by so-+(D(a) — 27F).

Proposition 2.3. A distribution D with minentropylog(K — ¢) is ¢/ K-close to some distribution with
minentropylog K.

Proof. By Propositior2.2, the distance fronD to the closest distribution with minentropyg K is

> (D(@)-1/K)<1—(K—c) 1/K =¢/K.
a:D(a)>1/K

2.1 Analysis of condensers
The next lemma gives a useful sufficient condition for a distribution to be close to having large minentropy:

Lemma 2.4. Let Z be a random variable. If for all setS of sizeK, Pr[Z € S| < ¢ thenZ is e-close to
having minentropy at leasbg(K/<).

Proof. Let S be a set of thek heaviest elements (under the distribution of). Let2~¢ be the average
probability mass of the elements fh Thene > Pr[Z € S] = 27YK, so/ > log(K/<). But every element
outsideS has weight at most—*, and with all but probability, Z hits elements outsids. O
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This lemma establishes the framework within which we will prove our constructions are condensers:

Lemma2.5. LetC : {0,1}" x {0,1}¢ — {0,1}™ be a function. For each subsét define
BAD(S,¢e) = {:B : Pr[C(z,y) € S] > 5} .
Y

For K € N, defineB(K, ) = maxg, 5—x |[BAD(S, €)|. Then the functiod’ is a
log(B(K,¢e)/e) —9 log(K/e)
condenser.

Proof. We have a random variabX with minentropylog(B(K, ¢)/¢). For a fixedS of size K, the prob-
ability thatX is in BAD(S, €) is at most; if that does not happen, then the probabilityX, Uy) lands in
S is at most. Altogether the probability’ (X, Uy) falls in S is at moste. Now apply Lemmé.4. O

3 The main construction

Fix the field[F, and let£(Y") be an irreducible polynomial of degreeoverF,. View elements offy as
describing univariate polynomials ov&y with degree at most — 1. Fix an integer parametér.
We describe a functiot : Fy x F, — F* that is the basis of all of our constructions:

C(f,y) € [f(v), (f" mod E)(y), (f* mod E)(y),---, (""" mod E)(y)].

For ease of notation, we will refer {g"' mod E) as “f;.”

Lemma 3.1. DefiningBAD(S, ¢) and B(K, ¢) with respect taC' as in Lemm&.5, we have
B(K =h™—1,¢) < K,
providedg > (n — 1)(h — 1)m/e.

Proof. Fix a setS C ;" of size at mos#. We want to show thgBAD(S, ¢)| < K.

First, we observe that there exists@nzeran-variate polynomial) € F,[Z,, Zs, . .., Z,,] that vanishes
on S, and whose degree in each variable is at nkost1. (For eachz € S, the conditionQ(z) = 0O is a
homogenous linear constraint on thfé coefficients ofQ. Since|S| < K < h™, we have fewer constraints
than unknowns, so this linear system has a nonzero solution.)

Consider any polynomiaf(Y’) € BAD(S, ¢). By the definition ofBAD(SS, ), it holds that

%T[Q(fo(y), 1), fme1(y)) = 0] > e

Therefore, the univariate polynomiél,(Y") def Q(fo(Y),..., fm—1(Y)) has more tharq zeroes, and

degree at mostn — 1)(h — 1)m. Since(n — 1)(h — 1)m < eq, R;(Y') must be identically zero, and so

Q(fO(Y)7 ceey fm—l(Y)) = O
as a formal polynomial. Now recall thgf(Y) = f(Y)hi (mod E(Y)). Thus,

QU ), FV) . FOO) ) = Q(fo(Y), -, fin1(Y)) =0 (mod E(Y)).
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So if we interpretf(Y’) as an element of the extension fiéd= F,[Y]/E(Y), thenf(Y') is a root of the

univariate polynomial
def

Q)Y Qz 2z z",..., 72"
over the fieldF. Since this holds for every(Y) € BAD(S,¢), we deduce tha®)’ has at leasfBAD(S, ¢)|
roots inF.
On the other handy’ is a non-zero polynomial, because the individual degre&g afe all less than
(so distinct monomials i map to distinct monomials i®’). Thus, the number of roots 6§’ is bounded
by its degree, which is at most

(h=1D)(A+h+h*+- +h™ H=r"-1=K.
We conclude thaBAD(S,¢)| < K, as desired. O

Remark 1. The above proof works even if the distribution on the geedthe definition oBAD(S, ¢) is

not uniform onfF,, but comes from any distribution df of min-entropy at leasbg((n — 1)(h — 1)m/e).

This means that the construction yields a condenser that works even if the seed comes from a weak random
source.

We can now prove our main theorem, Theorgfi Here we state it in a stronger form, with the most
significant change being that it asserts that a single construction works for many different values of the
source min-entropy (as opposed to the construction being tailored to a particular valég oFhis will
allow us, in the next section, to construct condensers that are lossless for all min-entropies up to a given
threshold. The significance of this property is that the lossless condensers then correspond to the standard
notion of expander graphs, where expansion holds for all sets up to a given size. Intuitively, the reason
that our condenser works for many different source min-entropies is that every prefix of the condenser is
a condenser of the same form, but corresponding to a smaller valBérofe) < K in Lemma3.1 (and
log(B(K,¢)/e) corresponds to the source min-entropy, when we apply LethB)a

Theorem 3.2(Thm. [1.1, strengthened)For all « > 0, all positive integersn > n/, all ¢ > 0, and
all integers2! > (2nn//e)'/?, there is an explicit functio”' : {0,1}"? x {0,1}* — {0,1}"% with
d = | (1 + «)t] such that for all positive integerse [log(1/¢)/t,n'], C'is a

(k= (t +log(1/e)) —sec (k—1)
condenser.

To see how the original form of Theorein1 follows, taket = [log(2nn’/e)'/*], change the input
length fromnd to n (a condenser for a given input length yields a condenser for shorter input lengths by just
padding the input with zeroes), and fix= n’

Proof. We describe how to set parameters in the condenser of Le3ahaand then apply Lemma.E. Let
h=2'> (2nn' /), d = | (1 + a)t| andq = 2¢. Note thaty > h'te/2.

LetC: Fy x Fy — Fg' be the condenser of Lemri3al with parameteh andm = n’ output symbols.
Note the input length, output length, seed length, and the valdenatch the parameters claimed in the
theorem. Moreover, a representatiorFgffor ¢ = 24 (i.e. an irreducible polynomial of degrdever[Fs,) as
well as an irreducible polynomidl(Y") of degreen overF, can be found in time polyl, n) [Sho9(), and
thus the construction is explicit.



Now, given any! < n/, let C’ denote the first symbols of the output of’; this is also a condenser of
the type analyzed in Lemnfal We will show thatC’ is a

(k =10t +log(1l/e)) —se k — 1,

which implies that' is also a condenser with these parameters.
For consistency with Lemnmia.1, we writemn = £ for the rest of the proof. Note that

qg=>h-(h*/2) = h-(nn'/e) = hnm/e.
Thus, by Lemm&.1and Lemm&.5, C'is a
log((h™ —1)/e)) —2c log((h™ —1)/e) =1

condenser. All that remains is numerical manipulation to express this in the same way as it is stated in the
theorem. First, note that

log((h™ —1)/e) < log(h™/e) = mt +log(1l/e) .

Also, by Propositior2.3, a distribution withlog((h™ — 1)/¢) — 1 minentropy isl/h™-close to having
minentropy
log(h™/e) — 1 =mt +log(1l/e) — 1.

Sincel/h™ = 1/2™ L ¢, C"is amt + log(1/e) —3. mt + log(1/e) — 1 condenser as claimed. O

Remark 2. In this proof we work in a field", of characteristic 2, which has the advantage of yielding a
polynomial-time construction even when we need to tat@ be superpolynomially large (which occurs
whens(n) = n~<M). Whens > 1/poly(n), then we could take a primg> 2¢ instead, with some minor
adjustments to the construction (e.g. only ustigelements oF, for the seed, as per Rematk and the
parameters claimed in the theorem.

4 Lossless condensers that are optimal up to constant factors

We begin with the general method to recover “missing” minentropy, duRRBf|. Given ak —. &k’
condenser” : {0,1}" x {0,1}¢ — {0,1}™, we say it has entropy logs= k + d — k’. We can make the
condenser lossless by appending a random hash-ifitg(1/¢) bits. Whend is small, the extra randomness

can also be small, provided we use a randomness-efficient family of hash functions. Specifically, we can use
a family of “almost 2-universal” hash functions:

Theorem 4.1(JAGHP92,SZ99). For everyn’, m’, there exists an explicit familif of hash functions from
n’ tom/ bits, of cardinalityO((n'm’2™)?), that satisfies the following property:

Ywy # wo [h(wl) = h(w2)] <2 27ml. D)

Pr

heH
Arandomh € H can be sampled usirigg | H| bits, and given these bita,can be computed in paly’, m’)
time.

Note that a truly 2-universal hash function would satidywith the right-hand-side replaced by
— but the price would be tha#f| > 2", which is far too large to be useful for us. Now we show that
appending a random hash makes a condenser lossless.
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Lemma 4.2. LetC : {0,1}" x {0,1}¢ — {0,1}™ be ak —. k' condenser. Lefl be a family of hash
functions fromn’ = n + d bitstom” > k + d — k' + log(1/¢) + 2 bits satisfying[f). Then the function
C': {0,1}" x {0, 1}¢=dHoelHl _, g 1ymHleslHI+m" gefined by:

C'(w;y,h € H)E (C(x,y), h, h(z, 1)
isak —s. k + d' lossless condenser.

Proof. Let X be a random variable distributed uniformly on an arbitrary set ofZiz&Ve prove that’ is
the stated condenser when its sourcX jsvhich by Propositioi2.1 suffices. We denote i, the random
variable that is uniformly distributed over the hash function&/inWe also takéY to be a random variable
uniformly distributed on{0, 1}“.

Call z € {0,1}™ goodif Pr[C(X,Y) = z] < 2-¥+! andbadotherwise. By Propositic®.2, C(X,Y)
is good with all buRe probability. (If z is bad, ther{Pr[C(X,Y) = 2] — 27%) > Pr[C(X,Y)]/2, so each
badz contributes at least half of its probability mass to the distance from min-enirggyote that ifz is
good, thenS, = {(z,) € supp(X,Y) : C(z,y) = z} is of size2kt4 . Pr[C(X,Y) = z] < 2kTd—K'+1,

Call h goodwith respect to(z, y) if h(z',y") # h(x,y) for all (z/,y') € S, \ {(z,y)}, wherez =
C(z,y); that is,(x, y) does not collide with any other element®f underh. Notice that ifz = C(z,y) is
good, then

Pr[H is bad w.r.t.(z,y)] < > Pr[H(z',y/) = H(z,y)|
(2 ) €S\ {(z.9)}
|5 |
2m’—1
2k+d7k’+1

N

om’—1
E.

NN

SinceC(X,7Y) is good with all bue probability, we conclude thd is good with respect t6X, Y') with
all but 3¢ probability.

Now, for every(x, y, h) such that is good with respect toz, y), we have tha€’ (x; y, h) = (C(x,y), h, h(z,y))
uniquely determineér; y, h) among the elements in the suppor{Xf, Y, H). In particular,C’(z; y, h) has
probability mass exactlg—(*+4) underC’(X; Y, H).

We have shown that except wisla probability, we hit an output string with probability mags++4").

This implies that”’(X; Y, H) is 3e-close to having min-entropy + d’, as required. O

Applying this transformation to the condenser from TheoBg)we obtain our second main theorem,
restated here:

Theorem 4.3(Thm. [1.2, strengthened)For every constantx > 0, there is a constant such that the
following holds. For all positive integers, m and alle > 0 satisfyingn > m > clog(n/e), there is an
explicit construction of a functiot : {0,1}" x {0,1}¢ — {0,1}™, withd = O(logn + log(1/¢)), such
thatforallk < (1 —a)m,Cisa

k—eck+d

lossless condenser.



Proof. Leteg = /6, ap = a/2, t = log[(2n?/eo)" /0], dy = |(1 + ap)t], no = [n/dg], andmg =
|m/do] — 20. Then, Theoren8.2 gives usCy : {0,1}"0% x {0,1}9% — {0,1}™0% such that for all
positive integerd € [log(1/ep)/t, mo], Co is a

(ko = 0t +1log(1/e0)) —3e ko — 1

condenser.

Sincengdy > n, we can viewCy as having source length(padding any input with zeroes). To obtain
our condensef’, we combineCy with an almost 2-universal hash function as in Len## We use hash
functions with output lengthn’ = dy+t+31og(1/e09) + O(1), so the number of bits needed to sample from
H is 2m' + 2logn + 2logm’ + O(1). The resulting condensér has seed lengt®(log n + log(1/zo))
and has output length at mastdy + 2m’ + 2logn + 2logm’ + O(1) < mody + 20dy < m.

We now argue that it is lossless. Consider any min-entropy threghgld1l — a)m. First, note that

E<(1—a)ym<(1—a)(mo+20)dy < (1 —a)(mo+20)(1+ ap)t < mot,

where the last inequality follows from the fact that> clog(n/co). Thus we can viewr, as a condenser
for sources of min-entropy by settingl = | (k —log(1/ep))/t] € [log(1/£0)/t, mo]. The entropy loss will
be at mostly + t + 21log(1/2¢) bits. This is because we lose ttig bits of the seed, at mosthits due to
rounding? down, and in casé < t + 2log(1/¢9) we can lose all of the min-entropy (because théntoo
small forCj to work).

Since we have chosen hash functions with output length= d + ¢ + 3log(1/9) + O(1), we will
recover all of the min-entropy, by Lemrda2.

0

5 Extractors that are optimal up to constant factors

Once we have condensed almost all of the entropy into a source with entropy rate cloges o Theo-
rem1.1), extracting (most of) that entropy is not that difficult. All we need to do is to compose the condenser
with an extractor that works for entropy rates closé.td he following standard fact makes this formal:

Proposition 5.1. Suppose” : {0,1}" x {0,1}"* — {0,1}" is an(n,k) —., (n’,k’) condenser, and
E :{0,1}" x {0,1}*> — {0,1}™ is a (K, e2)-extractor, thenE o C' : {0,1}" x {0,1}11*+t2 — {0,1}™

defined by(E o C)(z, y1,y2) & E(C(z,y1),y2) is a(k,e1 + e2)-extractor.
For the best dependence on the error paransetee extractor we will use is due to Zuckerman:

Theorem 5.2([Zuc97). For all constantsy, § > 0: for all positive integers:, k and alle > exp(—n,/2000g" 7)),
there is an explicit construction of & = dn,e) extractor E : {0,1}" x {0,1}' — {0,1}™ with
t = O(logn 4 log(1/¢)) andm > (1 — a)k.

We now prove our main extractor theorem, restated here:

Theorem 5.3(Thm. [1.3 restated) For all constantsae > 0: for all positive integersn, k and alle >
exp(—n/20008" 1)) there is an explicit construction of (&, ¢) extractorE : {0,1}" x {0,1}% — {0,1}™
withd = O(logn + log 2) andm > (1 — a)k.
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Proof. Consider the condenser of Theorét, with its parameter set to the one sixth of the presenand

its parametew set to (say)l /2. This condenser has seed lendtkl 3t/2 wheret = O(logn + log(1/¢)).

We set its parametér = |(k — log(6/¢))/t]. The resultis & —o. k — ¢t — 1 condenser”' : {0,1}" x
{0,1}¢ — {0,1}™, with m < (3/2)(k — log(6/¢)) < 3k/2. (The loss of up ta bits comes from the
rounding.) We may assume that- ¢t — 1 > (1 — «/2)k, or else a trivial extractor that outputs its seed of
length[2(t+ 1)/« would satisfy the theorem. Applying Propositibr to this condenser and the extractor
of Theorenb.2 (with its error parametesr set to half the presen) gives the claimed extractor. O

In the fairly common case thatis a constant, we can use the much simpler “expander-walk” extractor
(in place of the extractor of Theorem?) which extracts almost all of the entropy for entropy rates close
to 1. Note that our condenser from Theordm achieves a constant entropy rate arbitrarily closg, tand
so can be combined with any extractor for such high min-entropy rates. A standard construction achieving
this is based on expander wallGil98, Zuc97, ZucO€. Specifically, such an extractor can be obtained by
combining the equivalence between extractors and ‘averaging samilec§, and the fact that expander
walks are an averaging sampler, as established by the Chernoff bound for expandeBiadis4

Theorem 5.4. For all constants, e > 0, there is a constant < 1 for which the following holds: for all
positive integers:, there is an explicit construction of @& = on, ¢) extractor £ : {0,1}" x {0,1} —
{0,1}™ with ¢ < log(an) andm > (1 — a)n.

For completeness, we present the short proof:

Proof. Letm = [(1 — «)n], and for some absolute constants- 1 and\ < 1, let G be an explicit2¢-
regular expander o™ vertices (identified with{0, 1}"*) and second eigenvalie = A\(G) < 1. Let L
be the largest power of 2 at mdst — m)/c (SOL > (n —m)/(2c¢)), and lett = log L < log(an). The
extractorFE is constructed as follows. Its first argumenis used to describe a walk, v, . .., vy, of length
L in G by pickingwv, based on the first: bits of x, and each further step of the walk from the nekits of
x — soin all, L must satisfyn = m + (L — 1)c. The seed, is used to pick one of the vertices of the walk
at random. The output(z, y) of the extractor is the:-bit label of the chosen vertex.

Let X be a random variable with minentropy= dn. We wish to prove that for angy C {0,1}", the
probability thatF (X, Uy) is a vertex inS is in the range: + ¢ wherep = |S|/2™. Fix any such subset.
Call anz € {0, 1}" “bad” if

Pr[E(xz,y) € S| — u| > /2.
Y
The known Chernoff bounds for random walks on expand@i®8] imply that the number of bad'’s is at
most
on . 6—9(52(1—/\)L) —9n. 6—9(52(1—/\)an/c) —9on. Z—Q(62a7z)

(sincec, \ are absolute constants). Therefore the probability Xhat bad is at mos2 =" - 2" - 2~ SUe%an),
which is exponentially small for large enough< 1. Therefore

|Pr[E(X,Up) € 8] —pu| <e/2+27%M < ¢,

implying thatE is a(k, ¢)-extractor. O

“The paperslZ89, [CW8Y prove hitting properties of expander walks, and observe that these imply objects related to (but
weaker than) extractors, known as dispersers.
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Combining Theoreni.1 with Theorem5.4 via Propositior5.1, as in the proof of Theorerh.3 we
obtain the following extractor, which has the advantage that its proof is short and self-contained:

Theorem 5.5. For every constant > 0: for all positive integers, k, and all constant > 0, there is an
explicit construction of dk, ¢) extractor £ : {0,1}" x {0,1}% — {0,1}™ with d = O(log n + log(1/¢))
andm > (1 — a)k.

6 Variations on the main condenser

In this section we show how minor modifications to the proof allow us to optimize the seed length or the
output entropy. We also show that a small modification to the construction yields condensers from Reed-
Solomon codes.

6.1 Optimizing the seed length

The condenser of Theoreinl retains all the source minentropy (except for 1 bit) and achieves an entropy
rate of 1 — ¢ for any desiredd > 0. Its main shortcoming is the large seed length, which is greater than
(logn)/0, whereas the optimal condenser achieves a seed lengtof+ log(1/¢) + O(1).

We now show that the seed length can be improved te v)(logn + log(1/¢)) — the new condenser
still retains a(1 — O(loén)) fraction of the input entropy and the output entropy rat@(s). While the
entropy rate is not close to as it was before, it is still a constant, and extractors with seed length of
1-logn 4+ O(1) were recently constructed for sources of any constant minentropy rate, and constant error
e [Zuc0€ (Theorem6.4 below.) Composing the condenser with such an extractor gives an extractor that
extracts(1 — a)k bits from a source with minentropy; using seed lengtfl + +) log n + log k + O(1), for
arbitrary constants, v > 0. Note that wherk = n°(!), the seed length is near-optimal.

The improved analysis that permits us to optimize the seed length is in the following lemma (compare
to Lemme3.1):

Lemma 6.1. DefiningBAD(S, ¢) and B( K, ¢) with respect t&' as in Lemm&.5, for any integer parameter

s > 1, we have
W -1 o
B<K:\‘(W’L+81—1)J’E><h _1,

providedg > m(n — 1)(h — 1)/(se).

Proof. Let S C F;* be an arbitrary set of size at mo&t. The proof follows along the lines of the
proof of Lemma3.1, with the main change being that we make sure that the interpolated polynomial
Q(Zy,Zs, ..., Zy) has a root of multiplicity at least at each element = (g, ag,...,an) € S. (Note

that LemmaB.1is the special case of the current theorem with 1.) By a ‘root of multiplicity at least’,

we mean that that the polynomial

def
Qa(Zla-"aZm) = Q(a1+Zla--wam+Zm)

has no monomials of degree- 1 or smaller with nonzero coefficients, which amount:{’ﬁjf;l) homo-
geneous linear constraints on the coefficientQoBinceh™ > |S| (mj_s;l), such a nonzero polynomiél

of degree at mogth — 1) in each variable exists. Fig to be any such nonzero polynomial.

12



Supposef(Y) € BAD(S,¢). Lety € F, be such tha€(f,y) € S. Then, by the choice af,

QUfo) frw), -, fm—1(y)) = Q(C(f,y)) = 0.

In fact, sinceC'(f,y) is a root of multiplicitys, we can show that the the polynomial

Ri(Y) € QUfo(Y), i(Y), -, frna(Y)

has a root of multiplicitys aty. To see this, note that

Ri(y+Y) = QUfoly+Y), ily+Y),..., fm-1(y +Y))
= QUfo(y)+Y -90¥Y), fily) +Y -1 (Y), .. frn—1(y) + Y - gm—1(Y))
= QoY - 90(Y),Y - q1(Y),....,Y - gm-1(Y))

for some polynomialgy,. . . gm-1. Since every monomial i« (s, has degree at leastwhen we substi-
tuteY - g;(Y) for the variables we get a univariate polynomial divisible¥oy ThusY*|R¢(y+Y), i.e. Rf
has a root of multiplicitys aty. Equivalently,(Y" — y)*|R¢(Y"). We conclude that if (Y') € BAD(S,¢),
ie., if

Pyr[Q(fo(y), fi)s s fma1(y) =0] > €,

thenR(Y') has more thaasq roots counting multiplicities. On the other hand the degreRB(@f) is at most
(n — 1)(h — 1)m. Therefore, sincesq > (n — 1)(h — 1)m, we must have®(Y") = 0.

From this point on, the proof proceeds identically to that of Thedteineading to the desired conclu-
sion|BAD(S,¢)| < h™ — 1. O

Picking parameters suitably, and following the outline of the proof of Thedrdhwe obtain the fol-
lowing condenser:

Theorem 6.2. For everyy > 0: for all positive integers: > ¢ and alle > 0, there is an explicit construction
of a

(k =t +log(l/e)) —2 (k—30—1)
condenser” : {0,1}" x {0,1}% — {0, 1}* with ¢ = log[(2n/e)?] andd = |(1 + 1/~)t], providedt > 4
and/t > log(1/¢).

Proof. We describe how to set parameters, and then apply Lenémdand2.5. We seth = [(2n/e)7],
t =logh,d = [(1+41/7)t], andq = 2%. Setm = s = £. We havey > nmh/(es) = nh/e as required.
By Lemmaé6.1, and Lemm&.5, C is a

log((h™ —1)/e) —9c log(K/e) — 1

condenser. NowK = [(h™ —1)/(*" )] > (k™ —1)/22™~1 — 1 > (h/8)™, as long as: > 10. The
theorem follows, using the fact thialg(h") = ¢t andlog(h/8)™ = ¢ - (t — 3). O

In the previous theoremy may be subconstant, and in the following corollary we show that it can be
set to produce an a seed length that is optimal up tatulitive constant, while still retaining a constant
fraction of the minentropy, at the expense of an output entropy rdéloflog(n /<)), which is subconstant,
but still quite good.
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Corollary 6.3. For every integer constant > 4: for all positive integers: > ¢ and alle > 2-, there is

an explicit construction of a
1
(k: = c€+log> —9e <<1 - 3) k— 1)
9 &

condenset” : {0,1}"x {0,1}% — {0,1}" withd = logn-+log(1/¢)+O(1) andn’ = (1 + %) el

Proof. Sety = ¢/log(2n/¢) in Theoren6.2 O

We now combine the condenser of Theor@r with Zuckerman’s recent extractor. (This extractor in
turn starts by applying a condenser due to FRaZ0% that has constant seed length and can increase the
entropy rate frond to 1 — § for any constané > 0, while retaining a constant fraction of the minentropy.)

Theorem 6.4 ([ZucO€]). For all constantsa, d,e > 0: for all positive integersn, there is an explicit
construction of gk = dn, ) extractorE : {0,1}" x {0,1}% — {0, 1} with seed lengtd = logn+ O(1)
and output lengtm > (1 — «)k.

Combining Theoren®.2 with Theorem6.4 via Propositior5.1, as in the proof of Theorerh.3 we
obtain the following extractor, which has a near-optimal seed length:

Theorem 6.5. For all constantsx, v, > 0: for all positive integersq, k, there is an explicit construction
of a(k,e) extractorE : {0,1}" x {0,1}% — {0,1}™ with seed lengtll = (1 + ) logn + log k + O(1)
and output lengthm > (1 — «)k, providedk > cd/a for a universal constant.

6.2 Increasing the output entropy

The condenser of Theorefinl is missing only the entropy of the seed, which is small enough that it can
be “recovered” using the hashing technique of Len¥fia However, one can ask how far our new proof
technique can go in isolation. More precisely, we modify the funaotices follows

C'(f,y) © (v, C(f.y)),

and ask how much entropy is retained for this “strong” variant of the basic construction. In the language
of Lemma2.5, ideally we could hope foB(K,s) < K/q, when the seed length isgq. This would
correspond to recovering all of the entropy of the source and seed together.

In this section we show that a minor modification to the proof allows us to arguéitfdte) < K/r
for r approachinggq. This corresponds to recovering all Bug(1/<) + O(1) of the total entropy, although
we don’t know of a direct application for this improvement. We show the improved result by recording a
variant of Lemmé&3.1 for C’ as defined above:

Lemma 6.6. DefiningBAD(S, ¢) and B(K, ) with respect ta”’ as in Lemm&.5, we have
B(K =rh™ —1,e) < K/r,

for any positive integer such thaty > [(n — 1)(h — 1)m + 7]/e.
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Proof. FixasetS C F, xIF;* of size atmosK. LetQ € Fy[Y, Z1, Zs, ..., Z,] be a nonzeren + 1-variate
polynomial that vanishes ofi, with degree at most— 1 in Y, and individual degrees at mdst- 1 for the
remainingm variables. By definition, for every(Y') € BAD(S, ), it holds that

f;r[Q(y, fo), fr(y)s -y fm—1(y)) = 0] > &.

Therefore, the univariate polynomi&l;(Y") def QY. fo(Y),..., fm-1(Y)) has more thamq zeroes, and

degree at most + (n — 1)(h — 1)m. Sincer 4 (n — 1)(h — 1)m < eq, R;(Y') must be identically zero,
and soQ(Y, fo(Y),..., fm—1(Y)) = 0 for every badf(Y).

Now, view @ as a polynomial ifif,[Y][Z1, Zo, ..., Zy], and factor out the largest power &f(Y).
SinceE(Y') has no roots i, the resulting polynomial still vanishes ¢h Also, the resulting polynomial
is non-zero moduld(Y); let Q" be the resulting polynomial after reducing modil¢Y’).

Now, view Q" as a multivariate polynomial (in variables, Z,, ..., Z,,) over the extension fielfl =
F,[Y]/E(Y), and define

Q2)=qQ(2,2z"2",...,z".

Because the individual degrees @f are all less thark, Q" is a non-zero polynomial (because distinct
monomials inQ’ map to distinct monomials i®").

For everyf(Y) € BAD(S, ), now viewed as an element Bf we haveQ”(f) = 0; i.e., f is a root of
Q". Thus|BAD(S, ¢)| < deg(Q"). The degree of)” is at most

(h=1)(A+h+h*+- +h™ =" -1 < K/r.

6.3 Reed-Solomon version

We use one of the main ideas fro@RO0€ to argue that a small modification to our construction gives a
good condenser from Reed-Solomon codes, answering a question ralK&tsy.[

Let ¢ be an arbitrary prime power, and lgte I, be a generator of the multiplicative grotip). Then
the polynomialE(Y) = Y9~ — ¢ is irreducible oveif, [LN86, Chap. 3, Sec. 5]. The following identity
holds for all f(Y') € F,[Y]:

)= fY) = fYIY) = f(CY)  (mod E(Y)).

In this case, if we modify our basic functiant : F; x F, — F* slightly so that we rais¢ to successive
powers ofg rather tharh, we get:

Clfy) < (f(y), (f9 mod E)(y), (f mod E)(y),---,(f7" " mod E)(y)

In other words, our function interprets its first argument as describing a univariate polynomidl,over
degree at most — 1 (i.e., a Reed-Solomon codeword), it uses the seed to select a random location in
the codeword, and it outputs successive symbols of the codeword. This is precisely the analogue of
the Shaltiel-Umang-ary extractor constructior8U0% for univariate polynomials, rather than multivariate
polynomials.

With a minor modification to the proof of Lemn&l, we show that this is good condenser:
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Lemma 6.7. DefiningBAD(S, ¢) and B(K, ) with respect to the functio@’ of Equation2) as in Lemma
2.5, we have
B(K=h"—-1,e) <(¢" =1)(h—1)/(¢ = 1),

providedg > (n — 1)(h — 1)m/e.
Proof. The proof is the same as the proof of Lem#except that we defin@’ differently:

QZ) L Qz,29,27,..., 2",
As before, everyf (Y) € BAD(S,¢), is aroot of@’. Thus|BAD(S,¢)| < deg(Q’). The degree of)’ is at
most
(h=1)(1+g+q"+ - +¢" ") =(h—1)((¢" ~1)/(a—1)).

We obtain the following condenser:

Theorem 6.8(Reed-Solomon condensefor every constant > 0: for all positive integers: > ¢ and all
e > 0, there is an explicit construction of a

(¢d +1og(1/e)) —3: (bt +log(l/e) — 1)

condenseC' : {0,1}" x {0,1}¢ — {0,1}* with t = [log(2n¢/c)'/*] andd = |(1 + a)t|, provided
0t > log(1/e).

The main difference between this theorem and our basic condenser (Thedjesthat the input and
output min-entropies no longer differ by one bit. Instead, the ratio is rougfilys (1 + «), which means
that we retain only 4 /(1 + «) fraction of the min-entropy.

Proof. The proof is identical to that of Theoreinl, with the only change being that we fix = ¢ = m,
and due to the difference between Lem@naand Lemmé.1, the input min-entropy required is

log(¢™/e) = 4d +log(1/e).
O

For the Reed-Solomon-based construction, a relatively simple argument shows that the entropy rate and
the ratio of output minentropy to input minentropy must both be constants less than 1. The example below
comes fromGHSZ02, TZ04]:

Theorem 6.9. For every positive integes such thaip|(¢ — 1), there is a sourc& with minentropy at least
|n/p| log g for which the support of (X, Uy), as defined in Equatioig), is entirely contained within a set
of sizew™, wherew = (¢ — 1) /p + 1. ThusC(X, Uy) is note-close to having minentrofyg(-w™), .

Proof. Take the source to bg-th powers of all degreén/p| polynomials. Every output symbol af'
is an evaluation of such a polynomial, and therefore must pehapower, or 0. There are thus only
w = (¢ — 1)/p + 1 possible output symbols, so the output is contained within a set ofigfzevhich by
Propositior2.2is note-close to any distribution with minentronyg(l%awm). O
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This example can be interpreted as follows. For any |n/p|, we have enough entropy to hope for
C’s output (which has lengthn log ¢) to be close to uniform. However, if we chooge= n’ for some
constanty > 0, then the output minentropy can be no larger thaf{O(w™)) = mlog(q'~%), for some
constan®’ > 0, as long ag = poly(n) (which is required for seed length(logn)). This example shows
that the output minentropy rate being a constant strictly less than 1, as well as the output minentropy being
a constant factor smaller than the input minentropy are inherent in the present construction; they are not
artifacts of the analysis. That is, it is not possible to resolve those issues by simply giving a different,
improved analysis for our generic construction.

7 Conclusions

This paper introduces a new proof technique for analyzing algebraic extractor constructions, which does not
rely on local decodability of the underlying error-correcting codes. It is thus natural to ask whether these
new techniques can help in other settings. For example, can we use them to argueoafjouttional
analogues of the objects in this paper — pseudorandom generators and pseudoentropy generators? Or, can
variants of our constructions yield so-called “2-source” objects, in which both the source and the seed are
only weakly random?

Of course a significant remaining open problem is to construct truly optimal extractors, ones that are
optimal up toadditive constants in the seed length and/or output length. Towards this end, we wonder if
there is some variant of our constructions with a better entropy rate — the next natural threshold is to have
entropydeficiencyonly k°(1). Another interesting question is whether some variant of these constructions
can give a block-wise source directly. Depending on the actual parameters, either of these two improvements
have the potential to lead to extractors with optimal output length (i.e. ones extract all the minentropy).
Alternatively, if we can find an extractor with optimal output length for high min-entropy &ay), then,
by composing it with our condenser, we would get one for arbitrary min-entropy.
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