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Abstract

We prove a number of general theorems about ZK, the class of problems possessing (com-
putational) zero knowledge proofs. Our results are unconditional, in contrast to most previous
works on ZK which rely on the assumption that one-way functions exist.

We establish several new characterizations of ZK, and use these characterizations to prove
results such as:

1. Honest-verifier ZK equals general ZK.

2. Public-coin ZK equals private-coin ZK.

3. ZK is closed under union (and more generally, “monotone formula closure”).

4. ZK with imperfect completeness equals ZK with perfect completeness.

5. Any problem in ZK ∩NP can be proven in computational zero knowledge by a BPPNP

prover.

6. ZK with black-box simulators equals ZK with general, non-black-box simulators.

The above equalities refer to the resulting class of problems (and do not necessarily preserve
other efficiency measures such as round complexity).

Our approach is to combine the conditional techniques previously used in the study of ZK
with the unconditional techniques developed in the study of SZK, the class of problems possess-
ing statistical zero knowledge proofs. To enable this combination, we prove that every problem
in ZK can be decomposed into a a problem in SZK together with a set of instances from which
a one-way function can be constructed.
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1 Introduction

Since their introduction by Goldwasser, Micali, and Rackoff [GMR], zero-knowledge interactive
proofs have become a central tool in cryptographic protocol design. In addition, they have also
provided fertile grounds for complexity-theoretic investigations into the interplay between funda-
mental notions such as proofs, randomness, interaction, and secrecy.

The notion of zero-knowledge proofs raised a number of intriguing basic questions, such as:

• Can we characterize the class ZK of problems possessing zero-knowledge proofs?1 (Here
and throughout, we refer to classes of promise problems Π = (ΠY , ΠN ) where ΠY and ΠN are
disjoint sets of strings containing the yes instances and no instances of Π, respectively [ESY];
see Section 2.3.)

• Can we transform proof systems that are zero knowledge for the “honest verifier” (ie the
verifier that follows the specified protocol) into ones that are zero knowledge in general (ie for
all polynomial-time verifier strategies)? That is, does HVZK = ZK, where HVZK denotes
the class of problems possessing honest-verifier zero-knowledge proofs?

• Is it always possible to modify zero-knowledge proofs to have additional useful properties —
such as having a small number of rounds, perfect completeness, or public coins? Or do the
latter properties restrict the class of problems possessing zero-knowledge proofs?

• What closure properties does ZK have? Is it closed under complement? union?

Almost all of these questions were seemingly resolved by a series of exciting works within a few years
after zero-knowledge proofs were defined. Specifically, under the assumption that one-way functions
exist, it was shown that ZK “hits the roof,” namely ZK = IP [GMW, IY, BGG+, Nao, HILL].
Thus, ZK is completely characterized and moreover has natural complete problems (namely, any
complete problem for IP = PSPACE [LFKN, Sha]). This also implies that HVZK equals ZK,
since ZK ⊆ HVZK ⊆ IP is immediate from the definitions. In addition, the equality ZK = IP
is proven by a generic transformation from interactive proofs into zero-knowledge proofs, and this
transformation preserves many properties such as those mentioned above: the round complexity2,
public coins, and perfect completeness. Since it was known how to transform interactive proofs
into ones with public coins [GS] and perfect completeness [FGM+], the same holds follows for zero-
knowledge proofs. ZK also inherits all the closure properties of IP = PSPACE, in particular
closure under complement and union. However, all of these results are based on the assumption
that one-way functions exist, and without this assumption, all the questions listed above were open.

In this paper, we answer most of these questions unconditionally (i.e., without any unproven
complexity assumption). In particular, we:

• Give several characterizations of ZK that make no reference to interaction or zero knowledge.
(These characterizations are not complete problems, but turn out to have much of the same
utility.).

1In this paper, we focus on the original notion of computational zero-knowledge proof systems, as introduced in
[GMR]. That is, the zero-knowledge condition is with respect to computationally bounded verifiers (and distin-
guishers), and the soundness is with respect computationally unbounded prover strategies. In particular, we do not
consider argument systems, which are only computationally sound.

2The round complexity is preserved up to an additive constant for achieving polynomially small soundness error.
For negligible error, any superconstant factor suffices (by sequential repetition).

1



• Prove that HVZK = ZK.

• Show how to transform any computational zero knowledge proof into one with public coins
and perfect completeness.

• Prove that computational zero knowledge is closed under union (and more generally satisfies
“monotone formula closure”).

This paper is inspired by the work of Ostrovsky and Wigderson [OW], who gave the first hint
that it might be possible to prove unconditional results about zero knowledge. They showed that
if computational zero knowledge is nontrivial (i.e. ZK 6= BPP), then “some form of one-way
functions” exist. Thus, they made the appealing suggestion that one might prove unconditional
results about computational zero knowledge by a case analysis: If ZK = BPP, then many results
about ZK hold trivially (because every problem in BPP has a trivial zero-knowledge proof where
the prover sends nothing and the verifer decides membership on its own using the BPP algorithm).
On the other hand, if ZK 6= BPP, then we can try to use their “one-way functions” in the known
conditional results about ZK. Unfortunately, as they point out, this approach does not work
because the form of one-way functions they construct (in case ZK 6= BPP) are too weak for
the conditional constructions mentioned above.3 A more precise description of the Ostrovsky–
Wigderson results and the contrast with ours can be found in Section 7.1.

Our approach is to replace BPP by SZK, the class of problems possessing statistical zero-
knowledge proofs (to be described in more detail shortly). In particular, in case ZK 6= SZK, we
are able to construct a form of one-way functions that is much closer to the standard notion than
in the Ostrovsky–Wigderson result. However, now the case that ZK = SZK is not as trivial as
before; instead we rely on a large body of previous work giving unconditional results about SZK
(as described below). To make this approach work, we actually carry out the case analysis on an
input-by-input basis. That is, we show that for every problem in ZK, we can partition its instances
into “SZK instances” and “one-way function instances.” This characterization is described in more
detail below.

1.1 The SZK/OWF Characterization

Statistical Zero Knowledge. The distinction between general (computational) zero knowledge
and statistical zero knowledge involves the formulation of the “zero knowledge property,” i.e. the
requirement that the verifier “learns nothing” from the interaction other than the fact that the
assertion being proven is true. The original (and most general) notion discussed above, called com-
putational zero knowledge, informally says that a polynomial-time verifier learns nothing. Statistical
zero knowledge, guarantees that even a computationally unbounded verifier learns nothing from the
interaction.4 Naturally, the stronger security guarantee of statistical zero knowledge is preferable,

3A similar approach was used in an attempt to prove HVSZK = SZK [DOY], but subsequently a more direct
approach that avoids these difficulties was found [GSV1].

4Recall that the zero-knowledge property is formalized by asking that there be probabilistic polynomial-time
algorithm S that “simulates” the verifier’s view of the interaction (when the assertion being proven is true). In
computational zero knowledge, the output distribution of the simulator is only required to be computationally indis-
tinguishable from the verifier’s view of the interaction, whereas in statistical zero knowledge, it must be statistically
close. We note that there is a similar choice in the soundness condition. We, like [GMR], focus on interactive proof
systems, where even a computationally unbounded prover cannot convince the verifier to accept a false statement,
except with negligible probability. In interactive argument systems [BCC], this soundness condition is only required
for polynomial-time provers.
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but unfortunately it seems to severely constrain the class of statements that can be proven in zero
knowledge. Specifically, it is known that the class SZK of problems possessing statistical zero-
knowledge proofs is contained in AM ∩ co-AM [For, AH], and thus NP-complete problems are
unlikely to have statistical zero-knowledge proofs. Thus statistical zero-knowledge proofs do not
seem to have the wide applicability of computational zero-knowledge proofs (which stems from the
existence of computational zero-knowledge proofs for all of NP [GMW]).

Nevertheless, the class SZK of problems possessing statistical zero-knowledge proofs has turned
out to be rich object of study, and in recent years, there have been a number of results substan-
tially improving our understanding it. These results include the identification of natural complete
problems for class SZK [SV, GV], showing that SZK is closed under complement [Oka], honest-
verifier SZK equals general SZK [GSV1], and private-coin SZK equals public-coin SZK [Oka],
and more.5 In contrast to what was known for computational zero knowledge, all of these results
are unconditional. That is, they do not rely on any unproven complexity assumptions (such as the
existence of one-way functions).

It was suggested in [Vad1] that the study of SZK could provide a useful testbed for understand-
ing zero knowledge, before moving on to more complex models that incorporate computational
intractability (such as ZK). In this paper, we make extensive use of that methodology, not just
proving results about ZK by analogy to SZK, but actually making direct use of known results
about SZK (e.g. in establishing and using the characterization below).

The characterization. In this paper, we provide a new characterization of ZK in terms of SZK
and one-way functions:

Definition 1.1 A promise problem Π = (ΠY , ΠN ) satisfies the SZK/OWF Characterization

if there exists I ⊆ ΠY , a polynomial-time computable function fx(y) def= f(x, y) and a polynomial
p(n) such that the following holds:

• Ignoring the inputs in I, the problem Π has a statistical zero-knowledge proof. Formally, we
have Π′ ∈ SZK, where Π′ = (ΠY \ I, ΠN ).

• When x ∈ I, the function fx is hard to invert. That is, for every nonuniform polynomial-time
algorithm A, there exists a negligible function ε such that for every x ∈ I,

Pr
[
A(fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
] ≤ ε(n).

Intuitively, this characterization says that for every yes instance x, either one can prove the
membership of x in Π in statistical zero knowledge (“x is an SZK instance”), or one can use x to
construct a one-way function that is given x as an auxiliary input (“x is a OWF instance”). Note
that if one-way functions exist (in the standard sense, without auxiliary input), then all promise
problems satisfy the SZK/OWF Characterization (by setting I = ΠY , and fx(y) = g(y) where
g is the one-way function assumed to exist).

On the other hand, ZK is contained in IP, so the above condition alone cannot characterize
ZK (given the possibility that one-way functions do exist). We prove that if we simply add the
condition Π ∈ IP, then we do indeed obtain an exact characterization.

Theorem 1.2 Π ∈ ZK if and only if Π ∈ IP and Π satisfies the SZK/OWF Characterization.
5See [Vad1] for a unified presentation of all of these results.
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One way of thinking of this theorem is as a common generalization of the fact that SZK ⊆ ZK
and the result of [IY, BGG+] that says that the existence of one-way functions implies ZK = IP.
(If one-way functions exist, then every Π satisfies the SZK/OWF Characterization, so Theo-
rem 1.2 becomes Π ∈ ZK ⇐⇒ Π ∈ IP.) As noted above, the usefulness of this characterization
is that it essentially reduces the unconditional study of ZK to its conditional study plus the study
of SZK.

Theorem 1.2 is in some sense the central theorem of this paper; all of the other results are
deduced as consequences of it or its proof.

1.2 Proof Overview

In proving each direction of Theorem 1.2, we actually prove stronger statements than required.
In the forward (“only if”) direction, we actually show that every problem in HVZK, not just
ZK, satisfies the SZK/OWF Characterization. In the reverse (“if”) direction, we show that
every problem in IP satisfying the SZK/OWF Characterization is not only in ZK, but has
a computational zero-knowledge proof with many nice properties, such as public coins, perfect
completeness, universal black-box simulation, etc. Combining the two directions, we deduce that
HVZK = ZK, and that every problem in ZK has a computational zero-knowledge proof with the
aforementioned properties.

From HVZK to the SZK/OWF Characterization. In proving this direction, we first es-
tablish intermediate characterizations of HVZK that are computational analogues of the complete
problems for SZK [SV, GV]. The reductions from HVZK to these intermediate characterizations
are naturally adaptations of the reductions from HVSZK = SZK to the SZK-complete problems
(which in turn are based on the simulator analyses of [For, AH, PT]). The reduction from the
intermediate characterizations to the SZK/OWF Characterization combines on a reduction to
one of the complete problems for SZK (for the “SZK instances”) with the techniques of H̊astad,
Impagliazzo, Levin, and Luby [HILL] (for the “OWF instances”).

From the SZK/OWF Characterization to ZK. Here the goal is to construct a compu-
tational zero-knowledge proof system for every problem Π ∈ IP that satisfies the SZK/OWF
Characterization. A first approach is for the prover to use the SZK proof system when the
input is in ΠY \ I, and to use the proof system obtained by the generic, one-way-function-based
compiler from IP to ZK [IY, BGG+] when the input is in I. The difficulty with this is that the
set I may not be efficiently recognizable, so this approach leaks information to the verifier (namely
whether or not the input is in I). Because of this difficulty, we take a more indirect approach.
Instead of trying to construct separate zero-knowledge proofs for the SZK instances and the OWF
instances and then combine them, we instead construct a type of bit-commitment scheme in each
of the two cases. The advantage is that the commitment schemes are easy to combine. We then
use the combined commitment scheme in the generic compiler from IP to ZK [IY, BGG+].

The type of commitment schemes we construct are problem-dependent commitment schemes [BMO,
IOS, MV]. For a promise problem Π, in a Π-dependent commitment scheme, both the sender and
receiver get an common auxiliary input x, which is an instance of Π. If x is a yes instance of Π,
then the protocol is hiding, and if x is a no instance, then the protocol is binding. Thus, they are a
relaxation of commitment schemes, because the hiding and binding properties are not required to
hold at the same time. Nevertheless, this relaxation is still useful in constructing zero-knowledge
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proofs. The reason is that zero-knowledge proofs based on commitments (e.g. [GMW, IY, BGG+])
typically only use the hiding property in proving zero knowledge (which is only required when x is
a yes instance) and the binding property in proving soundness (which is only required when x is
a no instance).

We show that every problem satisfying the SZK/OWF Characterization has a problem-
dependent commitment scheme. This is done by combining two problem-dependent commitment
schemes, one that is hiding on the OWF instances (using [Nao, HILL]) and the other that is
hiding on the SZK (yes) instances. (Both are binding on no instances.) The construction of the
problem-dependent commitment scheme for SZK is based on a combination of techniques from
[Oka, SV, GV], and is the technically most involved portion of our proof.

Putting together all of our results, we deduce that the SZK/OWF Characterization, the
computational analogues of the SZK-complete problems, and the problem-dependent commit-
ments, all provide equivalent characterizations of ZK = HVZK. These characterizations may be
of independent interest.

1.3 Organization

We begin in Section 2 with definitions, notations, and basic results we will use throughout the paper,
in particular covering probability and information theory, promise problems, and zero-knowledge
proofs. Section 3 contains the proof of the forward direction of Theorem 1.2, including establishing
the computational analogues of the SZK-complete problems. Section 4 contains the proof of the
reverse direction of Theorem 1.2, except for the construction of problem-dependent commitments
for all of SZK, which is deferred to Section 5. Section 6 ties together the results of Sections 3–5,
in particular establishing Theorem 1.2. Section 7 contains several applications and extensions of
our results, including monotone closure properties of ZK, new proofs of the Ostrovsky–Wigderson
Theorem, and an equivalence between strict and expected polynomial-time simulators. In Section 8,
we conclude with some open problems and directions for further work.

2 Preliminaries

2.1 Basic Notation

If X is a random variable taking values in a finite set U , then we write x ← X to indicate that x
is selected according to X. If S is a subset of U , then x ← S means that x is selected according
to the uniform distribution on S. We adopt the convention that when the same random variable
occurs several times in an expression, they refer to a single sample. For example, Pr[f(X) = X]
is defined to be the probability that when x ← X, we have f(x) = x. We write Un to denote
the random variable distributed uniformly over {0, 1}n. The support of a random variable X is
Supp(X) = {x : Pr [X = x] > 0}. A random variable is flat if it is uniform over its support.
If X and Y are random variables, then X ⊗ Y denotes the random variable obtained by taking
independent random samples x ← X and y ← Y and outputting (x, y). We write ⊗kX to denote
the random variable consisting of k independent copies of X. For an event E, X|E denotes the
random variable X conditioned on E.

A function µ : N → [0, 1] is called negligible if µ(n) = n−ω(1). We let neg(n) denote an
arbitrary negligible function (i.e., when we say that f(n) < neg(n) we mean that there exists a
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negligible function µ(n) such that for every n, f(n) < µ(n)). Likewise, poly(n) denotes an arbitrary
polynomial.

For a probabilistic algorithm A, we write A(x; r) to denote the output of A on input x and coin
tosses r. A(x) is a random variable denoting the output of A for uniformly selected coin tosses.
PPT refers to probabilistic algorithms (i.e. Turing machines) that run in strict polynomial time. A
nonuniform PPT algorithm is a pair (A, z̄), where z̄ = z1, z2, . . . is an infinite series of strings where
|zn| = poly(n), and A is a PPT algorithm that receives pairs of inputs of the form (x, z|x|). (The
string zn is the called the advice string for A for inputs of length n.) Nonuniform PPT algorithms
are equivalent to families of polynomial-sized Boolean circuits.

A circuit C : {0, 1}m → {0, 1}n defines a probability distribution on {0, 1}n by evaluating C
on a uniformly chosen input in {0, 1}m. That is, we view C as specifying a sampling algorithm for
the distribution, with its input gates being the coin tosses; thus we will often refer to distributions
specified by circuits as samplable distributions. These will play a central role in the paper.

2.2 Statistical Measures

Statistical Difference. The statistical difference (a.k.a. variation distance) between random
variables X and Y taking values in U is defined to be

∆(X, Y ) = max
S⊂U

|Pr [X ∈ S]− Pr [Y ∈ S]|

=
1
2

∑

x∈U
|Pr [X = x]− Pr [Y = x]|

= 1−
∑

x∈U
min{Pr [X = x] , Pr [Y = y]}

We say that X and Y are ε-close if ∆(X, Y ) ≤ ε. For basic facts about this metric, see [SV, Sec
2.3].

Entropy. The entropy of a random variable X is H(X) = Ex←X [log(1/Pr[X = x])]), where here
and throughout the paper all logarithms are base 2. Intuitively, H(X) measures the amount of
randomness in X on average (in bits). The min-entropy of X is H∞(X) = minx[log(1/Pr[X = x])];
this is a “worst-case” measure of randomness. In general H∞(X) ≤ H(X), but if X is flat, then
H(X) = H∞(X) = log |Supp(X)|. For p ∈ [0, 1], we define the binary entropy function H2(p) to be
the entropy of a binary random variable that is 1 with probability p and 0 with probability 1− p,
i.e. H2(p) = p · log(1/p) + (1− p) · log(1/(1− p)). For jointly distributed random variables X and
Y , we define the conditional entropy of X given Y to be

H(X|Y ) def= E
y←Y

[H(X|Y =y)] = E
(x,y)←(X,Y )

[
log

1
Pr[X = x|Y = y]

]
.

A useful fact is that if two random variables are statistically close, then their entropies must
also be close:

Lemma 2.1 (cf., [GV, Fact B.1]) For any two random variables, X and Y , ranging over a
universe U it holds that

|H(X)−H(Y )| ≤ log(|U| − 1) · δ + H2(δ)
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where δ
def= ∆(X, Y ).

For more background on entropy, see [CT].

Direct Products. We will often refer to the behavior of the above measures under direct prod-
ucts, i.e. when we take k independent copies of a random variable. For statistical difference, we
have the following bounds:

Lemma 2.2 (cf., [SV, Lemma 3.4]) For random variables X and Y , if δ = ∆(X, Y ), then for
every k ∈ N, we have

kδ ≥ ∆(⊗kX,⊗kY ) ≥ 1− 2 exp(−kδ2/2).

For entropy, it holds that for every X, Y , H(X ⊗ Y ) = H(X) + H(Y ) and thus H(⊗kX) =
k · H(X). Similarly, for conditional entropy, if we write ⊗k(X, Y ) = ((X1, Y1), . . . , (Xk, Yk)), then
H((X1, . . . , Xk)|(Y1, . . . , Yk)) = k ·H(X|Y ).

Another well-known and useful feature of taking direct products is that it makes “flattens”
random variables, so that probability masses become concentrated around 2−H(X). (This is known
as the Asymptotic Equipartition Property in information theory; see [CT].) Our formalization of
it follows [GV], with an extension to conditional distributions.

Definition 2.3 (heavy, light and typical elements) Let X be a random variable taking values
in a universe U , x an element of U , and ∆ a positive real number. We say that x is ∆-heavy (resp.,
∆-light) if Pr [X = x] ≥ 2∆ · 2−H(X) (resp., Pr [X = x] ≤ 2−∆ · 2−H(X)). Otherwise, we say that x
is ∆-typical.

If Y is a random variable jointly distributed with X, and y ∈ Supp(Y ), we say that x is ∆-
heavy given y (resp., ∆-light given y if Pr [X = x|Y = y] ≥ 2∆ ·2−H(X|Y ) (resp., Pr [X = x|Y = y] ≤
2−∆ · 2−H(X|Y )). Otherwise, we say that x is ∆-typical given y.

A natural relaxed definition of flatness follows. The definition links the amount of slackness
allowed in “typical” elements with the probability mass assigned to non-typical elements.

Definition 2.4 (nearly flat distributions) 6 A distribution X is called ∆-flat if for every t ≥ 1
the probability that an element chosen from X is t ·∆-typical is at least 1− 2−t2.

If Y is jointly distributed with X, then we say that X is ∆-flat given Y if for every t ≥ 1, when
(x, y) ← (X, Y ), the probability that x is t ·∆-typical given y is at least 1− 2−t2.

A consequence of this definition is that if X is ∆-flat, then for every t ≥ 1, X is 2−t2-close to a
random variable X ′ with min-entropy at least H(X)− t∆.

Lemma 2.5 (Flattening Lemma) Let X be a distribution, k a positive integer, and ⊗kX denote
the distribution composed of k independent copies of X. Suppose that for all x in the support of X
it holds that Pr [X = x] ≥ 2−m. Then ⊗kX is

√
k ·m-flat.

Suppose Y is jointly distributed with X, and for all (x, y) in the support of (X,Y ) it holds that
Pr [X = x|Y = y] ≥ 2−m. Then, defining ((X1, Y1), . . . , (Xk, Yk)) = ⊗k(X,Y ), the random variable
(X1, . . . , Xk) is

√
k ·m-flat given (Y1, . . . , Yk).

The key point is that deviation from flatness grows sublinearly with k, while the entropy grows
linearly with k. We prove the Flattening Lemma in Appendix A for completeness.

6The definition in [GV] allows any t > 0, but only requires that the probability of being t∆-typical to be 1−2−t2+1.
We find it more convenient to restrict to t ≥ 1, a setting that is satisfied in all our applications.
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Hashing. The topic of randomness extraction is concerned with efficiently extracting as many
almost-uniform random bits as possible from non-uniformly distributed random variables. The
entropy of a random variable does not provide a good measure of how many almost-uniform bits
can be extracted, but its min-entropy does, provided we are willing for the extraction procedure
itself to be probabilistic. In particular, the Leftover Hash Lemma of [BBR, HILL] shows that
universal (or pairwise independent) hash functions can be used for this purpose. (We could use
any randomness extractor in the sense of [NZ] with similar parameters, but we restrict to universal
hashing for simplicity.)

Lemma 2.6 (Leftover Hash Lemma) Let H be a randomly selected from a family of universal
hash functions mapping {0, 1}n to {0, 1}m. Then, for every ε > 0 and every distribution X on
{0, 1}n of min-entropy at least m+2 log(1/ε), the random variable (H, H(X)) is ε-close to (H, Um).

Recall that for every n, m, there is an explicit family of universal hash functions mapping {0, 1}n

to {0, 1}m, where a random hash function in the family can be described by O(n+m) random bits
and can be evaluated in time poly(n,m).

2.3 Promise Problems

Roughly speaking, a promise problem [ESY] is simply decision problem where some inputs are
excluded. Formally, a promise problem is specified by two disjoint sets of strings Π = (ΠY ,ΠN ),
where we call ΠY the set of yes instances and ΠN the set of no instances. Such a promise problem
is associated with the following computational problem: given an input that is “promised” to lie in
ΠY ∪ ΠN , decide whether it is in ΠY or in ΠN . Note that languages are a special case of promise
problems. (A language L over alphabet Σ corresponds to the promise problem (L,Σ∗ \ L). Thus
working with promise problems makes our results more general. Moreover, even to prove our results
just for languages, it turns out to be extremely useful to work with promise problems along the
way.

The complement of a promise problem Π = (ΠY , ΠN ) is the promise problem Π = (ΠN ,ΠY ).
The union of two promise problems Π and Γ is the promise problem Π∪Γ = (ΠY ∪ΓY , ΠN∩ΓN ). The
intersection of two promise problems Π and Γ is the promise problem Π∩Γ = (ΠY ∩ΓY , ΠN ∪ΓN ).

Most complexity classes, typically defined as classes of languages, extend to promise problems
in a natural way, by translating conditions on inputs in the language to be conditions on yes
instances, and conditions on inputs not in the language to be conditions on no instances. For
example, a promise problem Π is in BPP if there is a probabilistic polynomial-time algorithm A
such that x ∈ ΠY ⇒ Pr [A(x) = 1] ≥ 2/3 and x ∈ ΠN ⇒ Pr [A(x) = 0] ≤ 1/3. All complexity
classes in this paper denote classes of promise problems.

A promise problem Π reduces to promise problem Γ if there is a polynomial-time computable
function f such that

x ∈ ΠY ⇒ f(x) ∈ ΓY

x ∈ ΠN ⇒ f(x) ∈ ΓN .

That is we work with polynomial-time mapping reductions (i.e. Karp reductions), unless otherwise
specified. If C is a class of promise problems, then Π is complete for C (or C-complete) if Π ∈ C
and every promise problem in C reduces to Π. Sometimes we will restrict to reductions f that are
non-shrinking, in the sense that there is a constant δ > 0 such that |f(x)| ≥ |x|δ for all strings x.
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We refer the reader to the recent survey of Goldreich [Gol4] for more on the utility and subtleties
of promise problems.

2.4 Auxiliary-Input Cryptographic Primitives

It will be very useful for us to work with cryptographic primitives that are parameterized by an
additional “auxiliary” input x, and where the security condition will hold only if x is in some
particular set I. Indeed, recall that the SZK/OWF Characterization refers to such a variant
of the notion of one-way functions, as captured by the following definitions.

Definition 2.7 An auxiliary-input function ensemble is a collection of functions F = {fx :
{0, 1}p(|x|) → {0, 1}q(|x|)}x∈{0,1}∗, where p and q are polynomials. We call F polynomial-time
computable (or just poly-time), if there is a (deterministic) polynomial-time algorithm F such that
for every x ∈ {0, 1}∗ and y ∈ {0, 1}p(|x|), we have F (x, y) = fx(y).

Definition 2.8 An auxiliary-input one-way function on I is a poly-time auxiliary-input function
ensemble F = {fx : {0, 1}p(|x|) → {0, 1}q(|x|)} such that for every nonuniform PPT A, there exists
a negligible function µ such that for all x ∈ I,

Pr
[
A(x, fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
] ≤ µ(|x|).

(We note that since A is non-uniform, it is not essential that we give it the input x, but it is more
natural to think of A as having the input x and it helps ensure that A has sufficient running time
even if fx shrinks its input.) The standard definition of one-way function is obtained by considering
I = {1n : n ≥ 0} and p(n) = n. The above is a stronger notion of auxiliary-input one-way function
than the one considered by Ostrovsky and Wigderson [OW]. In their formulation (denoted ∃1WF ),
the set I is not fixed for all A, but rather can depend on A. That is, they require that for every
PPT A, there exists an infinite set IA such that A has small probability of inverting fx for all
x ∈ IA. (See Theorem 7.1 for a precise formulation of this notion and the result of [OW].)

Given this definition, we can restate the SZK/OWF Characterization as follows.

Definition 2.9 A promise problem Π = (ΠY , ΠN ) satisfies the SZK/OWF Characterization
if there is I ⊆ ΠY such that:

• The promise problem Π′ = (ΠY \ I,ΠN ) is in SZK.

• There exists an auxiliary-input one-way function on I.

Similarly, the notion of computational indistinguishability has an auxiliary-input analogue
(which is widely used in the definition of zero knowledge; see Section 2.5).

Definition 2.10 An auxiliary-input probability ensemble is a collection of random variables {Xx}x∈{0,1}∗,
where Xx takes values in {0, 1}p(|x|) for some polynomial p. We call such an ensemble samplable
if there is a probabilistic polynomial-time algorithm M such that for every x, S(x) is distributed
according to Xx.

9



Definition 2.11 Two auxiliary-input probability ensembles {Xx} and {Yx} are computationally
indistinguishable on I ⊆ {0, 1}∗ if for every nonuniform PPT D, there exists a negligible function
µ such that for all x ∈ I,

|Pr [D(x,Xx) = 1]− Pr [D(x, Yx) = 1]| ≤ µ(|x|).

Similarly, we say that that Xx and Yx are statistically indistinguishable on I ⊆ {0, 1}∗ if the above
is required for all functions D (instead of only nonuniform PPT). Equivalently, Xx and Yx are
µ(|x|)-close for some negligible function µ and all x ∈ I. If Xx are Yx are identically distributed
for all x ∈ I, we say that they are perfectly indistinguishable.

Often, we will informally say “Xx and Yx are computationally indistinguishable when x ∈ I” to
mean the ensembles {Xx} and {Yx} are computationally indistinguishable on I. It is well-known
that indistinguishability is preserved when we take polynomially many direct products. That is:

Lemma 2.12 (cf., [Gol3, Ch.3, Ex.9]) If {Xx} and {Yx} are computationally indistinguishable
on I, then for every polynomial p, {⊗p(|x|)Xx} and {⊗p(|x|)Yx} are computationally indistinguishable
on I.

Now we can naturally define auxiliary-input pseudorandom generators.

Definition 2.13 An auxiliary-input pseudorandom generator on I is a poly-time auxiliary-input
function ensemble G = {Gx : {0, 1}p(|x|) → {0, 1}q(|x|)} such that q(n) > p(n), and the probability
ensembles {Gx(Up(|x|))}x and {Uq(|x|)}x are computationally indistinguishable on I.

Almost all reductions between cryptographic primitives immediately extend to their auxiliary-
input analogues (using the same proof). For example:

Theorem 2.14 ([HILL]) For every set I ⊆ {0, 1}∗, there exists a pseudorandom generator on I
if and only if there exists a one-way function on I.

2.5 Zero-knowledge Proofs

We follow the standard definitions of zero-knowledge interactive proofs, as in [Gol3], noting the
following points:

An interactive protocol (A,B) consists of two algorithms that compute the next-message function
of the (honest) parties in the protocol. Specifically, A(x, a, α1, . . . , αk; r) denotes the next message
αk+1 sent by party A when the common input is x, A’s auxiliary input is a, A’s coin tosses are
r, and the messages exchanged so far are α1, . . . , αk. There are two special messages, accept and
reject, which immediately halt the interaction. We say that party A (resp. B) is probabilistic
polynomial time (PPT) if its next-message function can be computed in polynomial time (in |x|+
|a| + |α1| + · · · + |αk|). Sometimes (though not in this section) we will refer to protocols with a
joint output; such an output is specified by a deterministic, polynomial-time computable function
of the messages exchanged.

For an interactive protocol (A,B), we write (A(a), B(b))(x) to denote the random process
obtained by having A and B interact on common input x, (private) auxiliary inputs a and b to
A and B, respectively (if any), and independent random coin tosses for A and B. We call (A,B)
polynomially bounded if there is a polynomial p such that for all x, a, b, the total length of all
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messages exchanged in (A(a), B(b))(x) is at most p(|x|) with probability 1. Moreover, if B∗ is any
interactive algorithm, then A will immediately halt and reject in (A(a), B∗(b))(x) if the total length
of the messages ever exceeds p(|x|), and similarly for B interacting with any A∗.

The number of rounds in an execution of the protocol is the total number of messages exchanged
between A and B, not including the final accept/reject message. We call the protocol (A,B)
public coin if all of the messages sent by B are simply the output of its coin-tosses (independent of the
history), except for the final accept/reject message which is computed as a deterministic function
of the transcript. (Such protocols are also sometimes known as Arthur-Merlin games [BM].)

Definition 2.15 An interactive protocol (P, V ) is an interactive proof system for a promise prob-
lem Π if are functions c, s : N → [0, 1] such that 1 − c(n) > s(n) + 1/poly(n) and the following
holds:

• (Efficiency) (P, V ) is polynomially bounded, and V is computable in probabilistic polynomial
time.

• (Completeness) If x ∈ ΠY , then V accepts in (P, V )(x) with probability at least 1− c(|x|),
• (Soundness) If x ∈ ΠN , then for every P ∗, V accepts in (P ∗, V )(x) with probability at most

s(|x|).
We call c(·) the completeness error and s(·) the soundness error. We say that (P, V ) has negligible
error if both c and s are negligible. We say that it has perfect completeness if c = 0. IP denotes
the class of promise problems possessing interactive proof systems.

We write 〈A(a), B(b)〉(x) to denote B’s view of the interaction, i.e. a transcript (γ1, γ2, . . . , γt; r),
where the γi’s are all the messages exchanged and r is B’s coin tosses.

There are various notions of zero knowledge, referring to how rich a class of verifier strategies
are considered. The weakest is to consider only the verifier that follows the specified protocol.

Definition 2.16 (honest-verifier zero knowledge) An interactive proof system (P, V ) for a
promise problem Π is (perfect/statistical/computational) honest-verifier zero knowledge if there
exists a probabilistic polynomial-time simulator S such that the ensembles {〈P, V 〉(x)}x∈ΠY

and
{S(x)}x∈ΠY

are (perfectly/statistically/computationally) indistinguishable. We will often drop the
word “computational” in reference to computational zero knowledge.

HVPZK, HVSZK, and HVZK denote the classes of promise problems have honest-verifier
perfect, statistical, and computational zero-knowledge proofs, respectively.

While honest-verifier zero knowledge is already a nontrivial and interesting notion, crypto-
graphic applications usually require that the zero-knowledge condition holds even if the verifier
deviates arbitrarily from the specified protocol. This is captured by the following definition.

Definition 2.17 (auxiliary-input zero knowledge7) An interactive proof system (P, V ) for a
promise problem Π is (perfect/statistical/computational) (auxiliary-input) zero knowledge if for
every PPT V ∗ and polynomial p, there exists a PPT S such that the ensembles

{〈P, V ∗(z)〉(x)}x∈L,z∈{0,1}p(|x|) and {S(x, z)}x∈L,z∈{0,1}p(|x|) (1)

are (perfectly/statistically/computationally) indistinguishable.
PZK, SZK, and ZK are the classes of promise problems possessing perfect, statistical, and

computational (auxiliary-input) zero-knowledge proofs, respectively.
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The auxiliary input z in the above definition models a priori information that the verifier may
possess before the interaction begins. Thus auxiliary-input zero knowledge is usually necessary
when zero-knowledge proofs are to be used as a subprotocol in a larger protocol, or even when
composing zero-knowledge proofs with themselves. Indeed, it is known that auxiliary-input zero
knowledge is closed under sequential composition [GO], but plain zero knowledge (i.e. without
auxiliary inputs) is not [GK3]. For this reason, auxiliary-input zero knowledge is the definition
typically used in the literature.

Typically, a protocol is proven to be zero knowledge by actually exhibiting a single, universal
simulator that simulates an arbitrary verifier strategy V ∗ by using V ∗ as a subroutine. That is,
the simulator does not depend on or use the code of V ∗ (or its auxililary input), and instead only
requires black-box access to V ∗. This type of simulation is formalized as follows.

Definition 2.18 (black-box zero knowledge) We say that (P, V ) is (perfect/statistical/computational)
black-box zero knowledge if there exists an oracle PPT S such that for every nonuniform PPT V ∗,
the ensembles

{〈P, V ∗〉(x)}x∈ΠY
and {SV ∗(x,·;·)(x)}x∈ΠY

are (perfectly/statistically/computationally) indistinguishable.

Even though the above definition does not explicitly refer to an auxiliary input, the definition
encompasses auxiliary-input zero knowledge because we allow V ∗ to be nonuniform (and thus the
auxiliary input can be hardwired in as advice). The recent work of Barak [Bar] demonstrated that
non-black-box zero-knowledge proofs can achieve properties (such as simultaneously being public
coin and having a constant number of rounds) that were known to be impossible for black-box zero
knowledge [GK3]. Nevertheless, our results will show that, when ignoring efficiency considerations,
black-box zero knowledge is as rich as standard, auxiliary-input zero knowledge; that is, every
problem in ZK has a black-box zero-knowledge proof system.

Remarks on the definitions. Our definitions mostly follow the now-standard definitions of
zero-knowledge proofs as presented in [Gol3], but we highlight the following points:

1. (Promise problems) As has been done numerous times before (e.g. [GK4, SV]), we extended
all of the definitions to promise problems Π = (ΠY , ΠN ) in the natural way, i.e. conditions
previously required for inputs in the language (e.g. completeness and zero knowledge) are
now required for all yes instances, and conditions previously required for inputs not in the
language (e.g. soundness) are now required for all no instances. Similarly, all of our complex-
ity classes (e.g. ZK,SZK,HVZK,HVSZK,BPP) are classes of promise problems. These
extensions to promise problems are essential for formalizing our arguments, but all the fi-
nal characterizations and results we derive about ZK automatically extend to the class of
languages, simply because languages are a special case of promise problems.

2. (Nonuniform formulation) As has become standard, we have adopted a nonuniform formu-
lation of zero knowledge, where the computational indistinguishability to hold even with
respect to nonuniform distinguishers and is universally quantified over all yes instances. Uni-
form treatments of zero knowledge are possible (see [Gol2] and [BLV, Apdx. A]), but the
definitions are much more cumbersome. We do not know whether analogues of our results
hold for uniform zero knowledge, and leave that as a problem for future work.
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3. (Strict polynomial-time simulators) For simplicity, we initially present our results restrict our
attention to zero knowledge with respect to simulators that run in strict polynomial time.
The original definition of zero knowledge [GMR] allows for simulators that run in expected
polynomial time. In Section 7.3, we extend our techniques to zero knowledge with respect to
expected polynomial-time simulators (in fact an even weaker notion), and ultimately prove
that the class of problems having zero-knowledge proofs with expected polynomial-time sim-
ulators and the class of problems having zero-knowledge proofs with strict polynomial-time
simulators are equal.

4. (Proof systems versus arguments) We restrict our attention to the original notion of interactive
proof systems [GMR, BM], where the soundness condition holds even for computationally
unbounded prover strategies. A direction for future work is to obtain similar results for the
more general notion of interactive argument systems [BCC], where the soundness condition
is only required for polynomial-time prover strategies.

5. (Security parameterization) In the definition of computational indistinguishability (Defini-
tion 2.11) and consequently in the formulation of the zero-knowledge conditions above, com-
putational indistinguishability is measured in terms of the input length |x|. That is, only
“long” statements can be proven with “high” security. An alternative and perhaps more nat-
ural formulation of zero knowledge (see [Vad1, Section 2.3]) measures indistinguishability in
terms of a separate security parameter k, given to the prover, verifier, and simulator, and such
that the protocol is allowed running time poly(|x|, k). We stick with the formulation in terms
of the input length |x| because it is the original and more commonly used definition. More-
over, all of our results also hold for the security-parameterized definition, via the observation
that a security-parameterized zero-knowledge proof for a promise problem Π is equivalent to
a (standard, non-security-parameterized) zero-knowledge proof for the promise problem Π′

defined by Π′Y = {(x, 1k) : x ∈ ΠY , k ∈ N} and Π′N = {(x, 1k) : x ∈ ΠN , k ∈ N}. Note that
this does not imply (nor do we claim) that every problem in ZK has a security-parameterized
zero-knowledge proof. (For SZK, however, it was shown in [SV] that every problem in SZK
has a security-parameterized statistical zero-knowledge proof.)

6. (Closure under reductions) All of the zero-knowledge classes defined above, in particular
HVZK and ZK, are easily seen to be closed under non-shrinking reductions f (i.e. ones
where |f(x)| ≥ |x|Ω(1)): if f reduces Π to Γ ∈ ZK, we can obtain a zero-knowledge proof
for Π by having the prover and verifier on input x, execute the zero-knowledge proof for Γ
on f(x). The non-shrinking condition is needed because the security of the zero-knowledge
proof for Γ is measured as a function of |f(x)|, and we need to relate it to security in terms
of |x|. The non-shrinking condition is unnecessary if one works with a security-parameterized
definition of zero-knowledge proofs (cf., [Vad1, Prop. 2.4.1]).

3 From HVZK to the SZK/OWF Characterization

In this section, we prove that every problem in HVZK satisfies the SZK/OWF Characteriza-
tion.
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A first attempt. To show that every Π ∈ HVZK satisfies the SZK/OWF Characterization,
it is tempting to take the following approach. Consider the (honest-verifier) simulator for Π’s
computational zero-knowledge proof system. Let I be the set of inputs x ∈ ΠY for which the
simulator’s output is statistically far from the verifier’s view. When we ignore the inputs in I,
we have an (honest-verifier) statistical zero-knowledge proof system. On I, the output of the
simulator and the verifier’s view are statistically far apart but computationally indistinguishable.
By Goldreich [Gol1], from any two samplable distributions that are statistically far apart but
computationally indistinguishable, we can construct a one-way function.

This approach has two difficulties:

• What threshold of statistical difference should we use to partition the inputs in ΠY ? The
result of Goldreich requires statistical difference at least 1/p(n) for any fixed polynomial p(n),
but the definition statistical zero knowledge requires negligible statistical difference 1/nω(1).

• The result of Goldreich [Gol1] requires that both distributions be (polynomial-time) sam-
plable, but the verifier’s view of the interaction with the prover will typically not be sam-
plable. Moreover, if we require only one of the two distributions in Goldreich’s hypothesis to
be samplable, then it is unlikely to imply one-way functions. Indeed, it has been proven un-
conditionally that the uniform distribution (which is trivially samplable) is computationally
indistinguishable from some (non-samplable) distributions that are statistically very far from
uniform (indeed have very low entropy) [GK2].

The first difficulty can be overcome using known results about SZK. Specifically, in [GV] it is
shown that if a problem Π has an interactive proof system that can be simulated within statistical
difference within 1/p(n) for a sufficiently large (but fixed) polynomial p (e.g. the cube of the
communication complexity), then Π ∈ SZK.

For the second difficulty, we use the fact that a samplable distribution that is computationally
indistinguishable from a non-samplable distribution of noticeably higher entropy does imply one-way
functions [HILL]. This leads us to look for “high-entropy” distributions in the real prover-verifier
interaction. We find such distributions using the techniques of [AH, PT, GV]. This approach leads
us to establish two other characterizations of ZK en route to the SZK/OWF Characterization.
These characterizations are computational analogues of the complete problems for SZK, and may
be of independent interest.

3.1 Analogues of the SZK-Complete Problems

We establish two characterizations of ZK that are related to the the complete problems for SZK,
so we begin by recalling those.

The Complete Problems for SZK. The first problem is Statistical Difference, the
promise problem SD = (SDY ,SDN ) defined by

SDY = {(X,Y ) : ∆(X, Y ) ≤ 1/3}
SDN = {(X,Y ) : ∆(X, Y ) ≥ 2/3},

where X and Y are probability distributions specified by circuits that sample from them, and
∆(X, Y ) denotes statistical difference. (See Sections 2.1 and 2.2.)
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The second problem is Entropy Difference, the promise problem ED = (EDY ,EDN ) de-
fined by

EDY = {(X, Y ) : H(X) ≥ H(Y ) + 1}
EDN = {(X, Y ) : H(X) ≤ H(Y )− 1},

where H(·) denotes the entropy function (see Section 2.2).
The Completeness Theorems of [SV, GV] can be stated as follows.

Theorem 3.1 ([SV, GV]) Statistical Difference and Entropy Difference are complete
for SZK. That is, they are both in SZK and for every problem Π ∈ SZK, there is a polynomial-
time computable function mapping strings x to pairs of samplable distributions (X, Y ) such that

• If x ∈ ΠY , then ∆(X, Y ) ≤ 1/3,

• If x ∈ ΠN , then ∆(X, Y ) ≥ 2/3,

Similarly for Entropy Difference.

Note that the result that SZK is closed under complement [Oka] follows from the fact Entropy
Difference trivially reduces to its complement (via the reduction (X, Y ) 7→ (Y, X)).

Analogous Characterizations of ZK. We present analogous characterizations of ZK, albeit
not in terms of complete problems.

Definition 3.2 A promise problem Π satisfies the Indistinguishability Characterization if
there is a polynomial-time computable function mapping strings x to pairs of samplable distributions
(X,Y ) such that

• If x ∈ ΠY , then X and Y are computationally indistinguishable (in the sense of Defini-
tion 2.11),

• If x ∈ ΠN , then ∆(X, Y ) ≥ 2/3.

We note that the constant 2/3 in Item 3.2 is arbitrary. By taking direct products and applying
Lemmas 2.2 and 2.12, we can boost a threshold as low as 1/poly(n) to as high as 1 − 2−poly(n),
while preserving the computational indistinguishability in Item 3.2.

Like the SZK/OWF Characterization, if one-way functions exist, then every promise prob-
lem satisfies the Indistinguishability Characterization: on an input x of length n, we can
define X = G(Un) and Y = U2n, where G is a length-doubling pseudorandom generator, and then
X and Y simultaneously are computationally indistinguishable and have large statistical difference.
Thus, as before, to obtain a characterization of ZK, we need to add the condition Π ∈ IP.

This example also illustrates why Π satisfying the Indistinguishability Characterization
cannot be cast as a reduction from Π to some promise problem — the conditions for yes instances
and no instances may hold at the same time. Nevertheless, the Indistinguishability Charac-
terization turns out to have much of the same utility as a complete problem (like Statistical
Difference).

Our results will imply the following theorem.
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Theorem 3.3 Π ∈ ZK if and only if Π ∈ IP and Π satisfies the Indistinguishability Char-
acterization.

In [SV], it was already proven that every problem that has a public-coin computational zero-
knowledge proof satisfies the Indistinguishability Characterization. Thus, what is new here
is showing that the characterization holds even for private-coin proofs, and establishing a converse
(for Π ∈ IP).

A characterization somewhat analogous to Entropy Difference follows.

Definition 3.4 A promise problem Π satisfies the Conditional Pseudoentropy Character-
ization if there is a polynomial-time computable function mapping strings x to a samplable joint
distribution (X, Y ) (i.e. two circuits that use the same coin tosses) and a parameter r such that

• If x ∈ ΠY , then there exists a (not necessarily samplable) joint distribution (X ′, Y ′) such that
(X ′, Y ′) is computationally indistinguishable from (X, Y ) and H(X ′|Y ′) ≥ r, and

• If x ∈ ΠN , then H(X|Y ) ≤ r − 1,

where H(·|·) denotes conditional entropy. (See Section 2.2.)

As before, this definition is satisfied by all promise problems if one-way functions exist. A crucial
point is that we use the conditional entropy H(X|Y ) instead of the difference in entropies H(X)−
H(Y ) (as in the definition of Entropy Difference). Indeed, in [Vad1] we pointed out that the
analogous condition using difference in entropies is satisfied by all promise problems (regardless
of whether or not one-way functions exist) and thus is useless.8 (At the time, we saw this as an
obstacle to finding ZK analogues of the complete problems for SZK.) Our use of conditional
entropy was inspired in part by its role in the the conjectures of [BLV, Sec. 9].

Theorem 3.5 Π ∈ ZK if and only if Π ∈ IP and Π satisfies the Conditional Pseudoentropy
Characterization.

Note that, in contrast to the SZK-completeness of Entropy Difference, this theorem does
not seem to imply that ZK is closed under complement. The reason is that the Conditional
Pseudoentropy Characterization is not symmetric with respect to yes and no instances.

In the remainder of this section, we will show that every promise problem in HVZK satisfies
the Conditional Pseudoentropy Characterization, the Indistinguishability Charac-
terization, and the SZK/OWF Characterization. This establishes the forward (“only if”)
directions of Theorems 1.2, 3.3, and 3.5. The reverse directions, showing that problems in IP
satisfying the characterizations are in ZK, will be done in Section 4.

8The reason comes from the fact that we do not require X ′ and Y ′ above to be samplable. It is known (via the
Probabilistic Method) that there exist (non-samplable) low-entropy distributions that are indistinguishable from the
uniform distribution [GK2]. Thus, if the above characterization referred to H(X)− H(Y ), then it would hold for all
promise problems, by setting X ′ = X and Y ′ to be some low-entropy distribution indistinguishable from Y = Un.
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3.2 The Conditional Pseudoentropy Characterization

Lemma 3.6 If a promise problem Π is in HVZK, then Π satisfies the Conditional Pseudoen-
tropy Characterization.

Proof: The proof is an adaptation of the reduction from HVZK to Entropy Difference in
[GV]. Let (P, V ) be an honest-verifier computational zero-knowledge proof for Π, with simulator
S. We modify the proof system to satisfy the following (standard) additional properties:

• The completeness error c(|x|) and soundess error s(|x|) are both negligible. This can be
achieved by standard error-reduction via sequential repetition.

• On every input x, the two parties exchange 2`(|x|) messages for some polynomial `, with the
verifier sending even-numbered messages and sending all of its r(|x|) random coin tosses in
the last message. Having the verifier send its coin tosses at the end does not affect soundness
because it is after the prover’s last message, and does not affect honest-verifier zero knowledge
because the simulator is anyhow required to simulate the verifier’s coin tosses.

• On every input x, the simulator always outputs accepting transcripts, where we call a sequence
γ of 2` messages an accepting transcript on x if all of the verifier’s messages are consistent
with its coin tosses (as specified in the last message), and the verifier would accept in such
an interaction. To achieve this, we first modify the proof system so that the verifier always
accepts if its coin tosses are 0r(|x|); this increases the soundness error only negligibly. Then
we modify the simulator so that any time it is about to output a non-accepting transcript, it
instead outputs the accepting transcript where all of the prover messages are the empty string
and the verifier’s coin tosses are 0r(|x|). This has a negligible effect the quality of the simulation
because when x ∈ PiY , the original simulator could only output non-accepting transcripts
with negligible probability (otherwise its output could easily be distinguished from the real
interaction, which has non-accepting transcripts with probability at most c(|x|) = neg(|x|)).

We write γi to denote the prefix of γ consisting of the first i messages. For readability, we often
drop the input x from the notation, e.g. using ` = `(|x|), 〈P, V 〉 = 〈P, V 〉(x), etc.

The following two claims are shown in [AH, PT, GV]:

Claim 3.7 For every x,
∑̀

i=1

[H(〈P, V 〉2i)−H(〈P, V 〉2i−1)] = r.

Since 〈P, V 〉2i−1 is a prefix of 〈P, V 〉2i, the term H(〈P, V 〉2i)−H(〈P, V 〉2i−1) in the sum equals the
conditional entropy H(〈P, V 〉2i|〈P, V 〉2i−1). Thus, the sum measures the total entropy contributed
by the verifier’s messages, and it is natural that this should equal the number of coin tosses of the
verifier. (Recall that the verifier reveals its coin tosses at the end.)

What is less obvious is that the sum should be significantly smaller when we consider the
simulated transcripts for x ∈ ΠN .

Claim 3.8 For every x ∈ ΠN ,

∑̀

i=1

[H(S2i)−H(S2i−1)] ≤ r − log
1

s(|x|) < r − 1.
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Informally, this says that in case x ∈ ΠN the simulated verifier is not behaving as randomly
as the real verifier would — it captures at most at s(|x|) fraction of the probability space of
the verifer’s messages. Intuitively, if this were not the case, then the simulator could be used to
construct a prover strategy that convinces the verifier to accept with probability greater than s(|x|),
contradicting the soundness of the proof system.

Now, given input x, we construct circuits that sample from the following (joint) random vari-
ables.

(X,Y ): Select i ← {1, . . . , `(|x|)}, choose random coin tosses R for the simulator, and output
(S2i(x; R), S2i−1(x;R)).

When x ∈ ΠY , then S is computationally indistinguishable from 〈P, V 〉. So (X, Y ) is indis-
tinguishable from (X ′, Y ′) = (〈P, V 〉2I , 〈P, V 〉2I−1), where I denotes a uniform random element of
{1, . . . , `}. By Claim 3.7, we have:

H(X ′|Y ′) =
1
`

∑̀

i=1

H(〈P, V 〉2i|〈P, V 〉2i−1) =
r

`
,

When x ∈ ΠN , then by Claim 3.7, we have

H(X|Y ) =
1
`

∑̀

i=1

H(S2i|S2i−1) ≤ r − 1
`

,

This is what we need to prove, except the entropy gap is only 1/`. This can be increased
to 1 by taking ` independent samples from the joint distribution. That is, we define (X,Y ) =
((X1, . . . , X`), (Y1, . . . , Y`)), where the (Xi, Yi)’s are independent copies of (X,Y ). When x ∈
ΠY , then (X, Y ) is computationally indistinguishable from the analogously defined (X ′, Y ′), and
H(X ′|Y ′) = ` ·H(X ′|Y ′) = r. And when x ∈ ΠN , then H(X|Y ) = ` ·H(X|Y ) ≤ r − 1.

Therefore the mapping x 7→ (X, Y ), r satisfies Definition 3.4

3.3 The SZK/OWF Characterization

In this section, we show that the Conditional Pseudoentropy Characterization implies the
SZK/OWF Characterization.

Lemma 3.9 If a promise problem satisfies the Conditional Pseudoentropy Characteriza-
tion, then it also satisfies the SZK/OWF Characterization.

The idea behind the proof is the following. If Π satisfies the Conditional Pseudoentropy
Characterization, then on every yes instance, we obtain a samplable distribution (X, Y ) that is
computationally indistinguishable from (X ′, Y ′) where H(X ′|Y ′) is large. We consider two cases. If,
for the original distributions X,Y , we have that H(X|Y ) is large, then the instance is information-
theoretically distinguishable from a no instance (where H(X|Y ) is small), and such instances can
be reduced to Entropy Difference, one of the complete problems for SZK. If instead H(X|Y )
is small, then (X,Y ) is computationally indistinguishable from a joint distribution with higher
conditional entropy (namely (X ′, Y ′)). From such a pair, we can construct a one-way function
using the techniques of H̊astad, Impagliazzo, Levin, and Luby [HILL]. This case analysis provides
the partition of yes instances into SZK instances and OWF instances.

Before proceeding with the actual proof, we state the result we need from [HILL].
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Definition 3.10 An auxiliary-input false entropy generator on I is a samplable auxiliary-input
probability ensemble D = {Dx} for which there exists a samplable auxiliary-input probability ensem-
ble F = {Fx} that is computationally indistinguishable from D on I and satisfies H(Fx) ≥ H(Dx)+1.

Note that the above definition refers to entropy, rather than conditional entropy as in the
intuition above. We will need to cope with this in the proof. Also note that the definition requires
that F = {Fx} is also samplable. This is actually not necessary (i.e. Lemma 3.11 below holds
regardless), but we will achieve samplability of F in passing from conditional entropy to entropy,
so we add include the samplability condition for consistency with [HILL].9

Lemma 3.11 ([HILL]) If there exists an auxiliary-input false entropy generator on I, then there
exists an auxiliary-input pseudorandom generator (and hence auxiliary-input one-way function) on
I.

Actually, since our goal at this point is only to construct a one-way function, some of the steps in
the proof in the proof of Lemma 3.11 can be short-circuited. See the proof of Lemma 7.19, where
review the details of this step (as part of generalizing our results to expected polynomial-time
simulators).

Proof of Lemma 3.9: Given an instance x of the promise problem Π, we can efficiently construct
two samplable distributions (X,Y ) and parameter r such that if x ∈ ΠY , then H(X ′|Y ′) ≥ r + 2
for some (X ′, Y ′) indistinguishable from (X,Y ), and if x ∈ ΠN , then H(X|Y ) ≤ r − 2. (We may
assume a gap of 4 without loss of generality by taking multiple independent samples from the joint
distribution.)

Let I be the set of instances x ∈ ΠY such that H(X|Y ) < r. First we show that Π′ = (ΠY \I,ΠN )
is in SZK. We prove this by reducing Π′ to Entropy Difference. Consider the samplable
distributions A = (X,Y ), B = Y ⊗ Ur−1. Then

H(A)−H(B) = H(X,Y )− (H(Y ) + (r − 1)) = H(X|Y )− (r − 1).

Thus H(A) ≥ H(B) + 1 when x ∈ ΠY \ I, and H(B) ≥ H(A) + 1 when x ∈ ΠN .
Now we show that we can construct a one-way function from instances in I. Note that when

x ∈ I, we have H(X ′|Y ′) ≥ r + 2 > H(X|Y ) + 2. Let n = |x|, let m be the number of bits output
by X, set k = 4n · (m + n)2, and let H be an explicit family of universal hash functions mapping
{0, 1}km to {0, 1}kr+1. Let s = O(km) be the number of random bits to choose a random hash
function from H. Consider the following samplable distribution

Z = (H,Y1, . . . , Yk,H(X1, . . . , Xk)),

where H is a random hash function from H, and the (Xi, Yi)’s are independent copies of (X,Y ).
When x ∈ I, H(Z) ≤ s + k · H(Y ) + k · r. On the other hand, we will show below that that Z is
computationally indistinguishable from the samplable distribution

Z ′ = (H, Y1, . . . , Yk, Ukr+1),
9The samplability of F is only needed in [HILL] for proving results with respect to uniform adversaries. Indeed,

the condition was not included in the conference version [ILL], which only dealt with nonuniform adversaries.
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which has at least one more bit of entropy than Z. Thus, we have constructed an auxiliary-input
false entropy generator on I, and thus by Lemma 3.11 there exists a one-way function on I, as
desired.

We now proceed to show that when x ∈ ΠY , Z is computationally indistinguishable from Z ′. We
know that there exist (X ′, Y ′) indistinguishable from (X,Y ) such that H(X ′|Y ′) ≥ r + 2. We can
slightly modify (X ′, Y ′) to obtain (X∗, Y ∗) indistinguishable from (X,Y ) such that H(X∗|Y ∗) ≥
r + 1 and Pr [X ′ = x|Y ′ = y] ≥ 2−n · 2−m for all (x, y) ∈ Supp(X ′, Y ′). (The pairs (x, y) for which
the latter inequality does not hold constitute at most a 2−n fraction of the probability mass under
(X ′, Y ′), and hence shifting their probability mass to other elements incurs a statistical difference
of at most 2−n and changes the conditional entropy by much less than 1 bit by Lemma 2.1.)

By a hybrid argument, Z is computationally indistinguishable from Z∗ = (H, Y ∗
1 , . . . , Y ∗

k ,H(X∗
1 , . . . , X∗

k)),
where the (X∗

i , Y ∗
i )’s are independent copies of (X∗, Y ∗). By Lemma 2.5, X∗ = (X∗

1 , . . . , X∗
k) is

∆-flat given Y ∗ = (Y ∗
1 , . . . , Y ∗

k ) for ∆ =
√

k · (m + n). This implies that (X∗, Y ∗) is 2−n-close to
some (W,Y ∗) such that for every y ∈ Supp(Y ∗), the min-entropy of W conditioned on Y ∗ = y is
at least

k ·H(X∗|Y ∗)−√n ·∆ ≥ k · (r + 1)−√n ·∆
> kr + 2n + 1,

where in the last inequality we use
√

n∆ ≤ k/2 and 2n + 1 ≤ k/2.
Thus, Z∗ is statistically close to (H, Y ∗,H(W )), which is 2−n-close to (H, Y ∗, Ukr+1) by the

Leftover Hash Lemma (Lemma 2.6). This latter distribution is computationally indistinguishable
from Z ′ because Y ∗ is computationally indistinguishable from Y .

3.4 The Indistinguishability Characterization

In this section, we show that the Indistinguishability Characterization is equivalent to the
Conditional Pseudoentropy Characterization, and is thus satisfied by every problem in
HVZK. This equivalence is proven using computational analogues of the reductions given in [Vad1,
§3.4,§4.4] between the two complete problems for SZK, Statistical Difference and Entropy
Difference.

Lemma 3.12 If a promise problem satisfies the Conditional Pseudoentropy Characteri-
zation, then it satisfies the Indistinguishability Characterization.

Proof: The reduction is identical to the one used in the proof of Lemma 3.9 to construct
a pseudoentropy generator on the instances in I. Let Π be a promise problem satisfying the
Conditional Pseudoentropy Characterization. As in the proof of Lemma 3.9, given an
instance x of the promise problem Π, we can efficiently construct two samplable distributions (X,Y )
and parameter r such that if x ∈ ΠY , then H(X ′|Y ′) ≥ r + 2 for some (X ′, Y ′) indistinguishable
from (X,Y ), and if x ∈ ΠN , then H(X|Y ) ≤ r − 2. From X and Y , we can construct the
samplable distributions Z and Z ′ as in the proof of Lemma 3.9. In that proof, it is shown that
when x ∈ ΠY , then Z and Z ′ are computationally indistinguishable. It is also shown that when
H(X|Y ) < r (in particular if x ∈ ΠN ), then H(Z ′) ≥ H(Z) + 1. By Lemma 2.1, this implies that
∆(Z, Z ′) ≥ 1/2`, where ` = poly(n) is the number of bits output by Z and Z ′. Applying Lemma 2.2,
we can increase the statistical difference to 2/3 on no instances while maintaining computationally
indistinguishability on yes instances. Thus, we conclude that Π satisfies the Indistinguishability
Characterization.
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Lemma 3.13 If a promise problem satisfies the Indistinguishability Characterization, then
it satisfies the Conditional Pseudoentropy Characterization.

Proof: Let Π be a promise problem satisfying the Indistinguishability Characterization.
Given an instance x of Π, we can efficiently construct two samplable distributions (X0, X1) such
that X0 and X1 are computationally indistinguishable if x ∈ ΠY and ∆(X0, X1) ≥ 2/3 otherwise.
Consider the following pair of jointly distributed random variables.

(B, Y ): Select b ← {0, 1}. Sample x ← Xb. Output (b, x).

When x ∈ ΠY , X0 and X1 are computationally indistinguishable. This implies that (B, Y ) is
computationally indistinguishable from (B′, Y ) where B′ is a random bit independent of Y . Note
that H(B′|Y ) = 1.

When x ∈ ΠN , ∆(X0, X1) ≥ 2/3. Intuitively, this means that B can be predicted with relatively
high probability from Y = XB and hence B has less than 1 bit of entropy given Y . Specifically, it
is shown in [Vad1, Claim 4.4.2] that H(B|Y ) ≤ H2((1 + δ)/2), where δ = ∆(X0, X1). Plugging in
δ = 2/3, we see that H(B|Y ) ≤ H2(5/6) < .651.

Thus the mapping x 7→ (B, Y ), r = 1 meets the requirements of the Conditional Pseudoen-
tropy Characterization, except that the gap in conditional entropies between the two cases is
only 1− .651 = .349 bits. The gap can be amplified to 1 bit by taking direct products as usual.

4 From the SZK/OWF Characterization to ZK

In this section, we construct a computational zero-knowledge proof system for every problem Π in
IP that satisfies the SZK/OWF Characterization. Recall that the direct approach of using
the SZK proof system on the SZK instances and the one-way-functions-based IP-to-ZK compiler
on the OWF instances does not yield a zero-knowledge proof because the verifier learns whether
the input is an SZK instance or a OWF instances. Thus, we take a more indirect approach,
constructing “problem-dependent” commitment schemes for each of the two cases, then combining
these commitments and using them for constructing a zero-knowledge proof.

4.1 Problem-Dependent Commitments

Roughly speaking, a problem-dependent commitment scheme is an auxiliary-input version of a
commitment protocol, where the auxiliary input x (given to both the sender and receiver) is viewed
as an instance of some promise problem Π. It is required that the scheme is hiding when x ∈ ΠY

and is binding when x ∈ ΠN . Thus, they are a relaxation of standard commitment schemes, since
we do not require that the hiding and binding properties hold at the same time.

An example, used in Bellare, Micali, and Ostrovsky [BMO], is based on the Graph Iso-
morphism problem: given graphs (G0, G1), a commitment to bit b ∈ {0, 1} is a random iso-
morphic copy of Gb. When G0

∼= G1, the commitment is perfectly hiding, and when G0 6∼=
G1, then the commitment is perfectly binding. This idea was abstracted by Itoh, Ohta, and
Shizuya [IOS], who studied the general utility of language-dependent commitment schemes for
constructing zero-knowledge proofs. Specifically, they showed that every language possessing a
noninteractive language-dependent commitment scheme that is perfectly binding and perfectly
hiding is in PZK, as is the complement of every such language. Recently, in [MV], the notion was
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further generalized to allow interactive commitments, statistical security, and promise problems,
and was suggested as a possible tool for proving that every problem in SZK∩NP has a statistical
zero-knowledge proof system with an efficient prover.

Here we consider further relaxations of the definition — we allow the sender’s algorithm to
be computationally unbounded (rendering it useless for the application in [MV]), allow the hiding
property to be computational, and only require security for an honest receiver (i.e. one that follows
the specified protocol). The fact that the sender is not polynomial time complicates the definition
substantially, because many commonly used properties of commitment schemes implicitly use the
fact that the sender algorithm is polynomial time. For example, standard commitment schemes
are “zero knowledge” in the sense that the receiver learns nothing other than the bit to which the
sender commits; this is the case because the receiver can simulate a commitment to bit b by simply
running the sender’s algorithm. Instead, we will need to explicitly include such properties in the
definition.

Definition 4.1 For a promise problem Π, an (unbounded-sender, honest-receiver) Π-dependent
commitment scheme consists of two interactive protocols (S1, R1) (the commitment phase) and
(S2, R2) (the reveal phase) and a promise problem Val = (ValY ,ValN ). In the commitment
phase, both S1 and R1 receive a common input x ∈ {0, 1}∗, S1 receives a private input b ∈ {0, 1},
and the protocol produces as output a commitment z. In the reveal phase, both S2 and R2 receive
the common input x ∈ {0, 1}∗, a commitment z, and a bit b ∈ {0, 1}, and at the end of the
protocol, R2 accepts or rejects. We write (S1(b), R1)(x), (S2, R2)(x, z, b), and (S, R)(x, b) to denote
the interaction between S and R in the commit phase, reveal phase, and the two phases combined,
respectively.

We require the following conditions:

1. (Efficiency) R = (R1, R2) is computable in probabilistic polynomial time (in the length of the
common input x). (S is allowed to be computationally unbounded.)

2. (Completeness) For all x ∈ {0, 1}n and all b ∈ {0, 1}, if we let z be the output of (S1(b), R1)(x),
then (x, z, b) ∈ ValY with probability 1− neg(n).

3. (Validity Tests) (S2, R2) is an interactive proof system (with negligible error probabilities) for
Val. Moreover, the promise problem Val is in AM.

4. (Zero Knowledge) There is a probabilistic polynomial-time algorithm M such that for every
x ∈ {0, 1}∗ and b ∈ {0, 1}, the distribution M(x, b) has statistical difference neg(n) from R’s
view of (S, R)(x, b).

5. (Computationally hiding on yes instances) If x ∈ ΠY , then R’s views in (S1(0), R1)(x) and
(S1(1), R1)(x) are computationally indistinguishable. In case these views are statistically in-
distinguishable, we will refer to the scheme as statistically hiding.

6. (Statistically binding on no instances) If x ∈ ΠN , then for every S∗, if we let z be the output
of (S∗1 , R1)(x), then with probability at least 1−neg(n), either (x, z, 0) or (x, z, 1) is in ValN .

A few remarks on the above conditions:
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• The fact that we allow S to be computationally unbounded results in several differences
between the above definition and standard definitions of commitment schemes. When S is
restricted to be polynomial time, the zero-knowledge condition is trivial to satisfy (because
M(x, b) could carry out an execution of (S, R)(x, b)) and thus is typically omitted, and the
reveal phase can wlog consist of S just sending its coin tosses to R. On the other hand, we do
not need S to retain state between the two phases (because it can generate a random state
consistent with the commitment z).

• The completeness and zero-knowledge conditions (and the validity tests) are required for
all inputs x ∈ {0, 1}∗, not just those that satisfy the promise of Π. This will be useful in
combining two problem-dependent commitment schemes to obtain one for the union of the
corresponding promise problems.

• The definition provides for two different kinds of validity tests. One is the specified protocol
(S2, R2) (which may have many rounds, but is “zero knowledge” according to Item 4). The
other is the (unspecified) AM protocol for Val (which has only two rounds). Both will be
useful for us.

• Both the zero knowledge and hiding conditions are only required for honest (but curious)
receivers. The result is that the proof systems we construct using such commitments will
only be honest-verifier zero knowledge. We will then obtain zero knowledge against cheating
verifier strategies using the compiler of [GSV1].

Our results will show that problem-dependent commitment schemes characterize ZK and SZK:

Theorem 4.2 Π ∈ ZK if and only if Π has a computationally hiding, public-coin problem-dependent
commitment scheme in the sense of Definition 4.1.

Theorem 4.3 Π ∈ SZK if and only if Π has a statistically hiding problem-dependent commitment
scheme in the sense of Definition 4.1.

These theorems demonstrate that commitment schemes are at the heart of all zero-knowledge
proofs.

In this section, however, we prove just the following:

Lemma 4.4 If a promise problem Π satisfies the SZK/OWF Characterization, then there
exists a public-coin Π-dependent commitment scheme (in the sense of Definition 4.1). Moreover
the sender can be implemented in probabilistic polynomial time with an NP oracle.

We will prove this by dealing separately with the SZK instances and OWF instances. The OWF
instances are a straightforward application of the known construction of commitment schemes from
one-way functions.

Lemma 4.5 If there exists an auxiliary-input one-way function on set I, then there is a Π-
dependent commitment scheme for the promise problem Π = (I, I). Moreover, this commitment
scheme is public coin and the sender can be implemented in probabilistic polynomial time.

Proof: By Theorem 2.14, we can construct an auxiliary-input pseudorandom generator Gx :
{0, 1}p(|x| → {0, 1}3p(|x|) on I. Now we use Naor’s commitment scheme from pseudorandom gener-
ators [Nao]:
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Commit Phase (S1(b), R1)(x), where |x| = n.

1. R1 chooses v ← {0, 1}3p(n) and sends v to S1.

2. S1 chooses r ← {0, 1}p(n) and w = Gx(r)⊕ bv to R1.

3. The commitment z is defined to be the pair (v, w).

Now we define the promise problem Val = (ValY ,ValN ) by

ValY = {(x, (v, w), b) : ∃r ∈ {0, 1}p(|x|) w = G(x, r)⊕ bv}, and
ValN = ValY .

Clearly Val ∈ NP, and in fact the reveal phase simply consists of the sender providing the standard
NP proof that (x, (s, v), b) ∈ ValY (namely r such that w = Gx(r)⊕ bv).

The completeness and public coin properties hold by inspection. The zero knowledge condition
holds because the sender is polynomial time. Following [Nao], the (computational) hiding property
on x ∈ I follows from the pseudorandomness of Gx on such instances. Specifically, we know that
Gx(Up(n)) is indistinguishable from U3p(n). Thus, if we let the random variable V ← {0, 1}3p(n)

denote the message of R1, we see that (V, Gx(Up(n))⊕V ) is indistinguishable from (V,U3p(n)⊕S) =
(V, U3p(n)), and note that the former distribution is R1’s view of a commitment to 1 and the latter
is R1’s view of a commitment to 0. Following [Nao], the (statistical) binding property on x /∈ I (in
fact on all x ∈ {0, 1}∗) follows from the fact that Gx is length-tripling. Specifically, with probability
at least 1 − 2−p(n) over v ← {0, 1}3p(n), the image of Gx will be disjoint from the image of G ⊕ v,
in which case there is no w such that (v, w) is a valid commitment of both 0 and 1.

For the SZK instances, we prove the following (which is the forward direction of Theorem 4.3)
in Section 5.

Lemma 4.6 Every problem Π in SZK has a Π-dependent commitment scheme. Moreover, the
scheme is public coin and statistically hiding, and the sender can be implemented in probabilistic
polynomial time with an NP oracle.

We now show how to combine these two commitment schemes with to prove Lemma 4.4.

Lemma 4.7 If promise problems Π = (ΠY , ΠN ) and Γ = (ΓY , ΓN ) each have problem-dependent
commitment schemes, then the promise problem Π∪Γdef=(ΠY ∪ΓY ,ΠN∩ΓN ) has a problem-dependent
commitment scheme.

Proof: Let (S′, R′) be the problem-dependent commitment scheme for Π, and (S′′, R′′) the one
for Γ, with valid commitments defined by promise problems Val′ and Val′′. Intuitively, on an
input x, we would like to use (S′, R′) if x ∈ ΠY and use (S′′, R′′) if x ∈ ΓY . Unfortunately, we do
not know which is the case. So we will use both, and do so in such a way that the resulting scheme
is hiding even when only one of the two is hiding.

Specifically the new scheme (S,R) = ((S1, S2), (R1, R2)) is constructed as follows:

Commit Phase (S1(b), R1)(x) 1. S1 chooses random b′, b′′ ← {0, 1} such that b′ ⊕ b′′ = b.

2. S1 and R1 execute (S′1(b
′), R′

1)(x) and (S′′1 (b′′), R′′
1)(x) to obtain a commitments z′,z′′,

respectively.
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3. The output commitment is z = (z′, z′′).

Valid Commitments The promise problem of valid commitments is defined to be Val = (ValY ,ValN )
where

ValY = {(x, (z′, z′′), b) : ∃b′, b′′ ∈ {0, 1} [b′ ⊕ b′′ = b] ∧ [(x, z′, b′) ∈ Val′Y ] ∧ [(x, z′′, b′′) ∈ Val′′Y ]}
ValN = {(x, (z′, z′′), b) : ∀b′, b′′ ∈ {0, 1} [b′ ⊕ b′′ 6= b] ∨ [(x, z′, b′) ∈ Val′N ] ∨ [(x, z′′, b′′) ∈ Val′′N ]}

Reveal Phase (S2, R2)(x, (z′, z′′), b): 1. S2 sends b′, b′′ such that b′ ⊕ b′′ = b.
2. R2 checks that b′ ⊕ b′′ = b and rejects immediately if not.
3. S2 and R2 execute (S′, R′)(x, z′, b′) and (S′′, R′′)(x, z′′, b′′), and R2 accepts if both R′

and R′′ accept.

The completeness property of (S, R) on all x follows from the completeness properties of (S′, R′)
and (S′′, R′′), which guarantee that whp (x, z′, b′) ∈ Val′Y and (x, z′′, b′′) ∈ Val′′Y , and hence
(x, (z′, z′′), b) ∈ ValY . (Here it is important that we required completeness to hold on all instances,
rather than just yes instances, since ΠY and ΓY need not be the same.) The zero-knowledge
property follows in a similar manner: The new simulator M(x, b) chooses b′, b′′ ← {0, 1} such that
b′ ⊕ b′′ = b, runs the original simulators M ′(x, b′) and M ′′(x, b′′), and combines their outputs to
simulate the view of R. The fact that (S2, R2) is a an interactive proof for Val follows by inspection.

For the hiding property on ΠY ∪ ΓY , suppose wlog that x ∈ ΓY . Note that the view of R1

in (S1(b), R1)(x) consists of the view of R′
1 in (S′1(b

′), R′
1)(x) concatenated with the view of R′′

1

in (S′′1 (b′′), R′′
1)(x), where b′ and b′′ are chosen randomly such that b′ ⊕ b′′ = b. The first part of

the view (namely the R′
1-view) has the same distribution regardless of the value b, because b′ is a

random bit. Thus it suffices to show that for every fixed value of b′ and the R′
1-view, the R′′

1-view
in case b′′ = b′ (i.e., b = 0) is indistinguishable from the R′′

1-view in case b′′ 6= b′ (i.e., b = 1). But
this follows from the hiding property of (S′′, R′′) on x ∈ ΓY .

The binding property on x ∈ ΠN∩ΓN follows from the binding properties of the two commitment
schemes: For every strategy S∗, we know that with high probability, the output (z′, z′′) of (S∗, R)
satisfies the following. There is at most one b′ ∈ {0, 1} such that (x, z′, b′) /∈ Val′N and there
exists at most one b′′ ∈ {0, 1} such that (x, z′′, b′′) /∈ Val′′N . Thus there is at most one b (namely
b = b′ ⊕ b′′) such that (x, (z′, z′′), b) /∈ ValN , as desired.

4.2 The Zero-Knowledge Proof

Lemma 4.8 If a promise problem Π is in IP and has a computationally hiding (resp., statistically
hiding), public-coin problem-dependent commitment scheme (in the sense of Definition 4.1), the
Π ∈ HVZK (resp., Π ∈ HVSZK = SZK). Moreover, the honest-verifier zero-knowledge proof for
Π is public coin and the prover’s strategy P ′

x on can be computed in probabilistic polynomial time
with oracles for Sx and Px, where S is the sender algorithm in the problem-dependent commitment
scheme where P is a prover in any public-coin interactive proof system for Π.

Proof: We begin with the special case that Π ∈ NP, where we use the ideas of Itoh, Ohta, and
Shizuya [IOS] with our more general notion of problem-dependent commitments. The approach is
to use the zero-knowledge proofs of Goldreich, Micali, and Wigderson for all of NP, replacing the
commitment scheme used there with the problem-dependent commitment for Π. An outline of the
steps of the resulting protocol follows.
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Zero-knowledge proof (P, V )(x):

1. Both parties reduce x to an instance G of Three-Coloring.

2. P selects a random 3-coloring C of G.

3. P commits to the coloring by engaging with V in (polynomially many executions of) the
commitment phase of Π-dependent commitment scheme.

4. V selects a random edge e in G.

5. P reveals the colorings of the endpoints of e, and proves their validity to V via the reveal
phase of the Π-dependent commitment scheme.

6. V accepts if it the colors of the endpoints are different and it accepted in both executions of
the reveal phase.

Completeness when x ∈ ΠY follows from completeness of the Π-dependent commitment scheme.
Soundness when x ∈ ΠN follows from the binding property of the Π-dependent commitment scheme
when x ∈ ΠN . (Honest-verifier) zero knowledge follows from the hiding and zero-knowledge prop-
erties of the commitment scheme. Specifically, the simulator chooses a random edge e in the graph
(to be the verifier’s challenge), chooses two random distinct colors for its endpoints, and arbitrarily
extends this to a coloring of the entire graph. It uses the simulator for the commitment scheme
to simulate all the commitments, using the simulated commitment phase for all the commitments,
but the simulated reveal phase only for the edge e. The hiding property of the commitment scheme
implies that this simulation is computationally indistinguishable from the (honest) verifier’s view.

For the general case that Π ∈ IP, we follow [IY, BGG+] and transform an interactive proof
(P, V ) for Π into a zero-knowledge proof. By [GS], we may assume that (P, V ) is public coin. An
outline of the zero-knowledge proof follows:

Zero-knowledge proof (P ′, V ′)(x):

1. (P ′, V ′) simulate the public-coin interactive proof (P, V )(x), but instead of sending P ’s mes-
sages explicitly, P ′ commits to P ’s messages using the commit phase of the Π-dependent
commitment scheme. (The public-coin nature of (P, V ) ensures that V can compute its
messages without seeing P ’s messages explicitly.) Let (z1, . . . , zm) be all the commitments
obtained in this way.

2. V sends a random strings r1, . . . , rm for the AM proof system for Val.

3. Now P proves the following NP statement to V using protocol described above (GMW+problem-
dependent commitments): there exist decommitments b1, . . . , bm such that (a) V would have
accepted in the interactive proof if the prover responses were given by b1, . . . , bm, and (b)
there are prover responses s1, . . . , sm such that the AM verifier for Val would accept on
transcript ((x, zi, bi), ri, si) for i = 1, . . . , m.

The analysis of this proof system is similar to the previous one. The claim about the prover
complexity follows by inspection.
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We see that the characterization of SZK in terms of problem-dependent commitments (Theo-
rem 4.3 follows from Lemma 4.6 (to be proved in Section 5) and Lemma 4.8.

The above gives honest-verifier zero-knowledge proofs. These can be converted to zero-knowledge
proofs that tolerate cheating verifiers using the following compiler of Goldreich, Sahai, and Vad-
han [GSV1].

Theorem 4.9 ([GSV1]) Any honest-verifier public-coin statistical (resp., computational)
zero-knowledge proof system can be transformed into a (cheating-verifier) public-coin statistical
(resp., computational) zero-knowledge proof system. Furthermore,

1. The resulting proof system has twice as many rounds as the original one.

2. The resulting prover strategy can be implemented in probabilistic polynomial time given oracle
access to the original prover strategy.

3. The resulting proof system has completeness error 2−Ω(n) and soundness error 1/k, where k
is the security parameter. In case the original proof system has perfect completeness, so does
the resulting one.

4. The resulting proof system has a black-box simulator.

5 Problem-dependent commitments for SZK.

In this section, we construct our problem-dependent commitment schemes for SZK, thereby proving
Lemma 4.6. This is the technically most involved part of our work.

5.1 Overview

We will construct a problem-dependent commitment scheme for the SZK-complete problem Sta-
tistical Difference [SV]. This means that we will design a commitment protocol in which
both the sender and receiver get as auxiliary input a pair (X0, X1) of samplable distributions. The
commitment scheme should be (statistically) hiding when X0 and X1 are statistically close and (sta-
tistically) binding when X0 and X1 are statistically far apart. By the Polarization Lemma of [SV],
we may assume w.l.o.g. that the statistical difference between X0 and X1 is either exponentially
small (for yes instances) or exponentially close to 1 (for no instances).

A natural idea, suggested in [MV], is the following. To commit to a bit b, the sender sends a
random sample x ← Xb. To decommit, the sender reveals b and the coin tosses r used to generate
the sample, and the receiver verifies that x = Xb(r).

When X0 and X1 are statistically close, this scheme is indeed hiding. When ∆(X0, X1) = 1
(i.e. X0 and X1 have disjoint supports), then the scheme is perfectly binding. But we are only
guaranteed that ∆(X0, X1) is exponentially close to 1, and this does not suffice for any sort of
hiding. Indeed, two distributions can have statistical difference exponentially close to 1 and yet
have identical supports (which means that every commitment can be opened in two ways).

To deal with this problem, we notice that the intersection between the supports can consist
of two kinds of elements. First, there can be samples that are atypically light for at least one
of the distributions (i.e. have probability mass much smaller than 2−h, if we assume (wlog) that
H(X0) = H(X1) = h). There can be very many such elements. Second, there can be samples
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that are not atypically light for either distribution. However, there can only be a small number of
elements (¿ 2h) of this type, if the distributions have statistical difference exponentially close to
1. Still, we need to cope with both kinds of samples.

To deal with the latter problem, we replace the commit phase with an interactive protocol
whereby the receiver constrains the sender’s choice of the sample/commitment x. Even if the
sender deviates from the protocol, with high probability the commit phase will produce a sample
that is atypically light for at least one of the two distributions, in which case we will regard it as a
commitment to the bit corresponding to the other distribution. Thus, to reveal a commitment to
bit b, the sender will give an (interactive) proof that the sample is not atypically light for Xb. Of
course, the challenge is to design both of these protocols so that the hiding property is maintained
in case of yes instances.

Fortunately, there are two protocols due to Okamoto [Oka] (see also [GV, Vad1]) that turn out
to be very well-suited for these tasks. We use an adaptation of Okamoto’s “Sample Generation
Protocol” for the commitment phase, and his “Sample Test Protocol” for the reveal phase. The
price we pay for using Okamoto’s protocols is that the sender can no longer be implemented in
probabilistic polynomial time (but rather BPPNP), and also that the round complexity becomes
polynomial rather than constant.

5.2 Preprocessing the Distributions

We will not apply Okamoto’s protocols directly to instances of Statistical Difference itself, but
rather do some preprocessing on the distributions. The first drives the thresholds α, β exponentially
close to 0 and 1, respectively.

Lemma 5.1 (Polarization Lemma [SV]) There is a polynomial-time computable function map-
ping pairs of distributions (X0, X1) (specified by circuits which sample from them) and a unary
parameter 1k to pairs of distributions (Y0, Y1) such that:

∆(X0, X1) ≥ 2/3 ⇒ ∆(Y0, Y1) ≤ 2−k

∆(X0, X1) ≤ 1/3 ⇒ ∆(Y0, Y1) ≥ 1− 2−k,

The second transformation we will use is simply taking Direct Products, as analyzed in Sec-
tion 2.2. Combining these two transformations, we prove:

Lemma 5.2 For every promise problem Π ∈ SZK, there is a polynomial-time computable function
mapping instances x of length n and unary parameters 1k, 1` to pairs of distributions (Z0, Z1) such
that:

• If x ∈ ΠY , then ∆(Z0, Z1) ≤ ` · 2−k.

• If x ∈ ΠN , then ∆(Z0, Z1) ≥ 1− 2−`.

• For all x, H(Z0) = H(Z1) and both Z0 and Z1 are
√

` · poly(n, k)-flat.

When we apply this lemma, we will set k = O(n), and ` À k. The key point for us is that the
statistical difference in the case of no instances goes to 1 exponentially fast with `, whereas the
deviation from flatness grows sublinearly with `. We will show that this implies that the intersection
of the supports of the two distribution is due only to (a) atypically light elements, and (b) a small
number of other elements (i.e. much fewer than 2H(Zb)).
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Proof: Let an instance x of Π ∈ SZK and the parameters 1k, 1` be given. By the complete-
ness of Statistical Difference and the Polarization Lemma (Lemma 5.1), we can produce in
polynomial time distributions (Y0, Y1) such that

x ∈ ΠY ⇒ ∆(Y0, Y1) ≤ 2−2k

x ∈ ΠN ⇒ ∆(Y0, Y1) ≥ 1− 2−2k ≥ 1/2,

Now, let W0 = Y0 ⊗ Y1 (i.e. a sample of Y0 followed by an independent sample of Y1) and W1 =
Y1 ⊗ Y0. This ensures H(W0) = H(W1), and

x ∈ ΠY ⇒ ∆(W0,W1) ≤ 2 · 2−2k

x ∈ ΠN ⇒ ∆(W0,W1) ≥ 1/2,

Now we let Z0 = ⊗c·`W0 and Z1 = ⊗c·`W1, for a sufficiently large constant c. Then, by the
Lemma 2.2,

x ∈ ΠY ⇒ ∆(Z0, Z1) ≤ c` · 2 · 2−2k ≤ ` · 2−k

x ∈ ΠN ⇒ ∆(Z0, Z1) ≥ 1− exp(−Ω(c`)) ≥ 1− 2−`,

for an appropriate constant c and sufficiently large k. Also H(Z0) = c` · H(W0) = H(Z1). And
if m = poly(n, k) is the number of input gates to W0 and W1, then Pr[Wb = w] ≥ 2−m for all
b ∈ {0, 1} and all w in the support of Wb, so the Flattening Lemma tells us that Z0 and Z1 are
both

√
` ·m-flat.

The following lemma shows that for two nearly flat distributions with statistical difference
very close to 1, there can only be a small number of strings that are typical or heavy for both
distributions.

Lemma 5.3 Suppose Z0 and Z1 are random variables such that H(Z0) = H(Z1) and ∆(H(Z0), H(Z1)) ≥
1− 2−`. Then for any ∆ > 0,

# {z : z is not ∆-light for Z0 and z is not ∆-light for Z1} ≤ 2H(Z0)

2`−∆
.

Proof: Let S be the set of z that are neither ∆-light for Z0 nor for Z1. Then

2−` ≥ 1−∆(Z0, Z1)

=
∑

z

min{Pr [Z0 = z] , Pr [Z1 = z]}

>
∑

z∈S

min
{

2−∆ · 2−H(Z0), 2−∆ · 2−H(Z1)
}

= |S| · 2−∆ · 2−H(Z0).

Thus, |S| < 2H(Z0)/2`−∆, as desired.

Applying this to the (Z0, Z1) constructed in Lemma 5.2, where Z0, Z1 are ∆-flat for ∆ ¿ `,
we see that on no instances, there are very few (¿ 2H(Zb)) elements in the intersections of the
supports, except those that are atypically light.
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5.3 Okamoto’s subprotocols

We now describe the two protocols of Okamoto that we will use in our commitment scheme. The
first is used for generating a random sample from a nearly flat distribution so that even if one party
cheats, the output will be unlikely to fall in a sufficiently small set. The second is used to test
that a sample from a nearly flat distribution is not too light. Our presentation of these protocols
follows [GV, Vad1] (though we call the parties S and R instead of M and A for consistency with
the definition of problem-dependent commitments).

Below, all distributions are given in the form of a circuit which generate them. The input to
these protocols will consist of a distribution, denoted X. We will denote by m (resp., n) the length
of the input to (resp., output of) the circuit generating the distribution X. In order to define the
notion of a sample generation protocol, we must formalize what it means for an interactive protocol
to have output.

Definition 5.4 (sample generation protocol) A protocol (S, R) is called a sample generation
protocol if on common input a distribution X and parameters ∆, t, such that X is ∆-flat and
1 ≤ t ≤ ∆, the following holds:

1. (Efficiency) R is computable in probabilistic polynomial time, and S is computable in proba-
bilistic polynomial time with an NP oracle.

2. (“Completeness”) If both parties are honest, then the output of the protocol has statistical
difference at most m · 2−Ω(t2) from X.

3. (“Soundness I”) If R is honest then, no matter how S plays, the output will be 2
√

t∆·∆-heavy
with probability at most m · 2−Ω(t2).

4. (“Soundness II”) If R is honest then for every set T ⊆ {0, 1}n of size at most 2−6
√

t∆·∆ ·2H(X),
no matter how S plays, the output will be in T with probability at most m · 2−Ω(t2).

5. (Strong “Zero Knowledge”) There exists a probabilistic polynomial-time simulator M so that
for every (X, ∆, t) as above, the following two distributions have statistical difference at most
m · 2−Ω(t2):

(A) Execute (S, R) on common input (X, ∆, t) and output the view of R, appended by the
output.

(B) Choose x ← X and output (M(X, ∆, t, x), x).

A sample generation protocol is said to be public coin if it is public coin for R.

In [Oka, GV, Vad1], only the first soundness condition is given, but we will actually use the
second. (But our proof that the protocol satisfies the second will make use of the first.) The
above zero-knowledge property is referred to as strong since the simulator cannot produce a view-
output pair by first generating the view and then computing the corresponding output. Instead,
the simulator is forced (by the explicit inclusion of x in Distribution (B)) to generate a consistent
random view for a given random output (of the protocol). We comment that the trivial protocol in
which R uniformly selects an input r to the circuit X and reveals both r and the output x = X(r)
cannot be used since the simulator is only given x and it may be difficult to find an r yielding x in
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general. Still, a sample generation protocol is implicit in Okamoto’s work [Oka] (where it is called
“pre-test’); see Protocol 5.6. Note also that the zero-knowledge condition implies the completeness
condition; still conceptually it is convenient to state them separately.

Theorem 5.5 (implicit in [Oka], explicit in [GV]) There exists a public-coin sample genera-
tion protocol. Furthermore, the number of messages exchanged in the protocol is linear in m.

Protocol 5.6: Sample generation protocol (S, R)

Input: (X, ∆, t), where t ≤ ∆

1. S: Select x0 ∈ {0, 1}n according to X and send x0 to R.

2. S,R: Repeat for i from 1 to m:

(a) R: Choose hi uniformly from a family of pairwise independent hash functions
mapping {0, 1}m+n to {0, 1}m−3t∆ and send hi to S.

(b) S: Choose (ri−1, xi) from the distribution {r : X(r) = xi−1}×X, conditioned
on h(ri−1, xi) = 0, and send (ri−1, xi) to R. (If there is no such pair (r, x′),
then S sends fail to R.)

(c) R: Check that X(ri−1) = xi−1 and h(ri−1, xi) = 0. If either condition fails,
reject.

Output: xm, unless R rejects in some iteration of the above loop, in which case output
any canonical string outside {0, 1}n, e.g. 0n+1.

In [Oka, GV], it is proven that Protocol 5.6 satisfies all of the properties in Definition 5.4, except
the sender complexity and Soundness II. The sender complexity follows from the observation that
the sender only needs to sample strings uniformly from efficiently decidable sets (i.e. satisfying
assignments to a known, polynomial-sized circuit), and it is known how to do such sampling given
an NP oracle [JVV, BGP].

Lemma 5.7 Protocol 5.6 satisfies the Soundness II condition of Definition 5.4.

Proof: Fix a set T of size at most 2−6
√

t∆·∆ · 2H(X). We need to show that the output xm is
in T with probability at most m · 2−Ω(t2), even under a cheating strategy for S. The Soundness I
condition says that xm is 2

√
t∆ ·∆-heavy with probability at most m · 2−Ω(t2). In fact, the proof of

this condition [GV] also shows that xm−1 is 2
√

t∆ ·∆-heavy with probability at most m · 2−Ω(t2).
(Indeed, the protocol could have been terminated after m− 1 or even slightly fewer stages, but m
was chosen as a clean upper-bound on the number of stages needed.) We will show that if xm−1

is not 2
√

t∆ ·∆-heavy, then the probability (over hm) that S can select xm to be in T (without R
rejecting) is at most 2−Ω(t2).
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The number N of strings rm−1 such that X(rm−1) = xm−1 is

N = 2m · Pr [X = xm−1] < 2m · 22
√

t∆·∆ · 2−H(X).

Thus, the number of pairs (rm−1, xm) such that X(rm−1) = xm−1 and xm ∈ T equals

N · |T | =
(
2m · 22

√
t∆·∆ · 2−H(X)

)
·
(
2−6

√
t∆·∆ · 2H(X)

)
≤ 2−t2 · 2m−3t∆,

where the last inequality uses t ≤ ∆. Since hm(z) is uniformly distributed in {0, 1}m−3t∆ for every
z, the probability that there exists a pair (rm−1, xm−1) such that hm(rm−1, xm−1) = 0 is at most
2−t2 .

The second protocol tests whether a sample is too light; here we do not need any modifications
from the definition in [GV].

Definition 5.8 (sample test protocol) A protocol (S,R) is called a sample test protocol if on
common input a distribution X, a string x ∈ {0, 1}n and parameters ∆, t, such that X is ∆-flat
and t ≤ ∆, the following holds:

1. (Efficiency) R is computable in probabilistic polynomial time, and S is computable in proba-
bilistic polynomial time with an NP oracle.

2. (“Completeness”) If both parties are honest and x is t·∆-typical then R accepts with probability
at least 1−m · 2−Ω(t2).

3. (“Soundness”) If x is 6
√

t∆ ·∆-light and R is honest then, no matter how S plays, R accepts
with probability at most m · 2−Ω(t2).

4. (Weak “Zero Knowledge”) There exists a probabilistic polynomial-time simulator M so that
for every (X, ∆, t) as above and for every t ·∆-typical x, the following two distributions have
statistical difference at most m · 2−Ω(t2):

(A) Execute (S,R) on common input (X,x, ∆, t) and output the view of R, prepended by x.

(B) Choose r uniformly in ΩX(x) def= {r′ : X(r′) = x}, and output (x,M(X, x,∆, t, r)).

A sample test protocol is said to be public coin if it is public coin for R.

The above zero-knowledge property is referred to as weak since the simulator gets a random r
giving rise to x (i.e., x = X(r)) as an auxiliary input (whereas R is only given x). A sample test
protocol is implicit in Okamoto’s work [Oka] (where it is called a “post-test”).

Theorem 5.9 (implicit in [Oka], explicit in [GV]) There exists a public-coin sample test pro-
tocol. Furthermore, the number of messages exchanged in the protocol is linear in m.
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5.4 The Commitment Scheme

Now we use the above protocols to design problem-dependent commitments for all of SZK, and
thereby prove Theorem 4.3. Let Π be a promise problem in SZK, let x be any string of length n,
let k = 2n, and ` = n7c for a sufficiently large constant c. Applying the reduction of Lemma 5.2,
we obtain distributions (Z0, Z1) such that

• If x ∈ ΠY , then ∆(Z0, Z1) ≤ ` · 2−k < 2−n.

• If x ∈ ΠN , then ∆(Z0, Z1) ≥ 1− 2−`.

• For all x, H(Z0) = H(Z1) and both Z0 and Z1 are ∆-flat for ∆ =
√

` · poly(n, k) < n4c for a
sufficiently large constant c.

Now we also define a new distribution Z as follows Z(b, r) = Zb(r). That is, Z outputs a
random sample of Z0 with probability 1/2 and a random sample of Z1 with probability 1/2. Since
H(Z0) = H(Z1), we have H(Z0) ≤ H(Z) ≤ H(Z0) + 1. We also claim that Z inherits the flatness of
Z0 and Z1.

Claim 5.10 Z is 3∆-flat.

Proof of claim: We need to show that a random sample z ← Z is not t · 3∆-
typical for Z with probability at most 2−t2 . For this, it suffices to separately bound the
probabilities that z is not t · 3∆-light and that z is not t · 3∆-heavy. First we note that
t · 3∆ ≥ 2t ·∆ + 1. For any z that is (2t ·∆ + 1)-light for Z, we have

Pr [Z0 = z] ≤ 2 · Pr [Z = z] ≤ 2 · 2−(2t∆+1) · 2−H(Z) ≤ 2−2t∆ · 2−H(Z0).

Similarly for Z1. Therefore any such z is also 2t∆-light for Z0 and Z1. Hence, if z ← Z,
then z is t · (3∆)-light with probability at most 2−(2t)2 .

Now we consider the heavy z’s. Suppose that z is (2t ·∆ + 1)-heavy for Z. Then

max{Pr [Z0 = z] , Pr [Z1 = z]} ≥ Pr [Z = z] ≥ 22t∆+1 · 2−H(Z) ≥ 22t∆+1 · 2−(H(Z0)+1).

Thus any such z is 2t ·∆-heavy for either Z0 or Z1, wlog say Z0. The probability that
Z0 outputs a string that 2t ·∆-heavy for Z0 is at most 2−(2t)2 , by ∆-flatness. However
we also need to bound the probability that Z1 outputs such a string. Let H0 be the
set of strings that are 2t ·∆-heavy for Z0. These strings have total probability mass at
least |H0| · 2−H(Z0)+2t∆ under Z0, and probability mass at most 2−(2t)2 by ∆-flatness.
Thus, |H0| ≤ 2−(2t)2 · 2H(Z0)−2t∆. Then

Pr [Z1 ∈ H0] ≤ Pr [Z1 is 2t∆-heavy] + |H0| · 2−H(Z1)+2t∆ ≤ 2−(2t)2 + 2−(2t)2 .

We can do an identical analysis for the strings H1 that are 2t∆-heavy for Z1. Then

Pr [Z ∈ H0 ∪H1] =
1
2

(Pr [Z0 ∈ H0] + Pr [Z1 ∈ H0] + Pr [Z0 ∈ H1] + Pr [Z1 ∈ H1])

≤ 1
2

(
2−(2t)2 + 2 · 2−(2t)2 + 2 · 2−(2t)2 + 2−(2t)2

)

= 3 · 2−(2t)2

In total, we see that the probability that Z is not t · (3∆)-typical is at most 2−(2t)2 + 3 ·
2−(2t)2 ≤ 2−t2 , for t ≥ 1. ¤

33



We also set t = n, and define the problem-dependent commitment scheme (S, R) as follows:

Commit Phase (S1(b), R1)(x): 1. S1 and R1 execute the sample generation protocol on input
(Z, 3∆, t) to obtain output z.

2. S1 chooses (c, r) uniformly s.t. Z(c, r) = z, and sends d = b⊕ c to R.

3. The commitment is defined as the pair (z, d).

Intuitively, if Z0 and Z1 are statistically close, then a random sample z of Z is nearly equally
likely to have come from Z0 or Z1, so the bit c is random and hides b.

Valid Commitments The promise problem of valid commitments is defined to be Val = (ValY ,ValN )
where

ValY = {(x, (d, z), b) : z is t∆-typical for Zd⊕b}
ValN = {(x, (d, z), b) : z is 6

√
t∆ ·∆-light for Zd⊕b}

Reveal Phase (S2, R2)(x, (d, z), b): 1. S2 and R2 execute the sample test protocol on input
(Zd⊕b, z,∆, t), and R2 accepts or rejects according to its outcome.

Now we prove that the protocol has the desired properties.

1. (Efficiency) Follows from efficiency of the sample generation and sample test protocols.

2. (Completeness) By the completeness of the sample generation protocol, the string z generated
in the (S1(b), R1)(x) has statistical difference at most m · 2−t2 < 2−n from Z. Thus (c, r) has
statistical difference at most 2−n from uniform. If (c, r) were uniformly distributed, then by
the ∆-flatness of Zc⊕d, the probability (over r) that z = Zc(r) is t∆-typical for Zc = Zd⊕b is
least 1− 2−t2 > 1− 2−n. Therefore, (x, (d, z), b) ∈ ValY with probability at least 1− 2 · 2−n.

3. (Validity Tests) The completeness and soundness of the sample test protocol show that
(S2, R2) is an interactive proof system for Val. To see that Val is in AM, note that proving
that an instance (x, (d, z), b) ∈ ValY ∪ValN is a yes instance amounts to an approximate
lower bound on the size of the set {r : Zd⊕b(r) = z} (since 6

√
t∆ ·∆ > t∆ + 1).

4. (Zero Knowledge) The zero-knowledge condition follows from the zero-knowledge conditions
of the sample generation and sample test protocols. Specifically, the simulator M(x, b) chooses
a uniformly random (c, r), sets z = Z(c, r) and d = b ⊕ c, runs the simulator for the sample
generation protocol on input (Z, 3∆, t, z) to obtain a transcript γ1, and runs the simulator for
the sample test protocol on (Zc, z, ∆, t, r) to obtain a transcript γ2, and outputs (γ1, d, γ2).

5. (Statistically hiding on yes instances) The only dependence of R1’s view on the bit b is in the
value d = b⊕ c, where c is selected based on z, according to the conditional distribution of σ
given that Zσ = z, where σ is a random bit. In the case of a yes instance, Z0 and Z1 have
statistical difference at most 2−n, and we have seen above that z has statistical difference at
most 2−n from a random sample of Z. Together these imply the pair (z, c) has statistical
difference at most 2 ·2−n from (z, σ) where σ is a random bit independent of z, and thus R1’s
view in case b = 0 is indistinguishable from R1’s view in case b = 1.
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6. (Statistically binding on no instances) Let T = {z : z is not 6
√

t∆ ·∆-light for Z0 nor for Z1}.
By Lemma 5.3,

|T | ≤ 2H(Z0)

2`−6
√

t∆·∆ ≤ 2−6
√

t∆·∆ · 2H(Z),

where the last inequality is because ` = n7c > 12n6c+.5 > 12
√

t∆·∆. By the second soundness
condition of the sample generation protocol, the probability that the output z is in T is at
most 2−Ω(t2) < 2−n. If the output is not in T , then for any d, there is at most one value of b
such that z is not 6

√
t∆ ·∆-light for Zd⊕b. That is, there is at most one value of b such that

(x, (z, d), b) /∈ ValN , as desired.

6 Putting it Together

Now we can put together the results proven in the previous three sections and establish Theo-
rems 1.2, 3.3, 3.5, 4.2

Theorem 6.1 For a promise problem Π, the following conditions are equivalent:

1. Π ∈ HVZK.

2. Π ∈ IP and Π satisfies the Conditional Pseudoentropy Characterization.

3. Π ∈ IP and Π satisfies the SZK/OWF Characterization.

4. Π ∈ IP and Π satisfies the Indistinguishability Characterization.

5. Π ∈ IP and Π has a public-coin computationally hiding problem-dependent commitment
scheme in the sense of Definition 4.1. Moreover the sender can be implemented in proba-
bilistic polynomial time given an NP oracle.

6. Π is in ZK.

7. Π has a public-coin computational zero-knowledge proof with a black-box simulator and perfect
completeness.

8. Π has a public-coin computational zero-knowledge proof with a black-box simulator, where on
any input x, the prover strategy Px can be computed in probabilistic polynomial time given an
NP oracle and an oracle for P̂x, where P̂ is the prover in any interactive proof system for
Π. In particular, if Π ∈ NP (or even Π ∈ AM), then Px can be computed in probabilistic
polynomial time with an NP oracle.

Proof:

1 ⇒ 2 This is Lemma 3.6.

2 ⇒ 3 This is Lemma 3.9.

3 ⇒ 5 This is Lemma 4.4.
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5 ⇒ 7 Suppose Π ∈ IP and Π has a problem-dependent commitment scheme. By Lemma 4.8,
Π has a public-coin honest-verifier zero-knowledge proof. We can convert this into a public-
coin proof system with perfect completeness using the transformation of Fürer et al. [FGM+],
which preserves honest-verifier zero knowledge. Finally, by Theorem 4.9, this can be converted
into a public-coin (cheating-verifier) zero-knowledge proof with a black-box simulator and
perfect completeness.

5 ⇒ 8 This is proven the same way as in the previous item, except we omit the transformation
of Fürer et al. [FGM+] (which seems to increase the prover complexity too much for our
purposes). For bounding the prover complexity, we first note that if Π ∈ IP, then a (variant
of) the Goldwasser–Sipser [GS] transformation converts any interactive proof (P̂ , V̂ ) for Π
into a public-coin interactive proof where the prover on input x can be implemented in
probabilistic polynomial time given an NP oracle and oracle access to P̂x. Then Lemma 4.8
preserves this prover complexity because the sender in the problem-dependent commitment
can be implemented in probabilistic polynomial time with an NP oracle, as does Theorem 4.9.

7/8 ⇒ 6 ⇒ 1 These are immediate from the definitions.

2 ⇔ 4 This is Lemmas 3.12 and 3.13.

7 Applications and Extensions

7.1 The Ostrovsky–Wigderson Theorems

As described in the Introduction, the approach of this paper and in particular the SZK/OWF
Characterization, are inspired by the work of Ostrovsky and Wigderson [OW], who showed
that “nontriviality” of ZK implies “some form of one-way functions”. In this section, we show how
our results can be used to give new, more modular proofs of the Ostrovsky–Wigderson theorems.

The two Ostrovsky–Wigderson theorems are obtained by two different interpretations of “non-
triviality” and “some form of one-way functions.” In their first theorem (mentioned in the Intro-
duction), both are interpreted in a weak sense:

Theorem 7.1 ([OW, Thm 1]) If HVZK 6= BPP, then there exists a poly-time auxiliary-input
family of functions {fx : {0, 1}p(|x|) → {0, 1}q(|x|)} that is not “easy to invert”. That is, for every
PPT A and polynomial r(n), there exists an infinite set I ⊆ {0, 1}∗ such that

Pr
[
A(x, fx(Up(|x|))) ∈ f−1(f(Up(|x|)))

] ≤ 1/r(|x|)

for all x ∈ I.

We point out that the theorem above refers to uniform PPT inverters A; to obtain functions that
are not easy to invert by nonuniform algorithms, the hypothesis should be replaced by HVZK 6⊂
P/poly.

In their second theorem, both conditions are interpreted in a strong sense:

Theorem 7.2 ([OW, Thm 2], informally stated) If HVZK contains a “hard-on-average” prob-
lem, then (standard) one-way functions exist.
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Here we focus on the first theorem, and thus omit a formal definition of “hard-on-average” problem.
We begin by observing that the SZK/OWF Characterization immediately implies a stronger

form of one-way functions than given by Theorem 7.1 under the stronger hypothesis that HVZK 6=
HVSZK.

Theorem 7.3 If HVZK 6= HVSZK, then there exists an auxiliary-input one-way function on
some infinite set I. That is, there is a poly-time auxiliary-input family of functions {fx : {0, 1}p(|x|) →
{0, 1}q(|x|)} and an infinite set I such that for every nonuniform PPT A and every polynomial r(n),
we have

Pr
[
A(x, fx(Up(|x|))) ∈ f−1(f(Up(|x|)))

] ≤ 1/r(|x|)
for all sufficiently long x ∈ I.

The key difference between the conclusions of Theorem 7.1 and Theorem 7.3 is that the order of
quantifiers between the adversary A and the infinite set I is reversed. In the former, the infinite set
indices x for which the adversary fails to invert fx can depend on the adversary A, whereas in the
latter, there is a fixed infinite set of indices such that fx is hard for all polynomial-time adversaries
A.

Proof of Theorem 7.3: Suppose HVZK 6= HVSZK, and let Π be any promise problem in
HVZK \HVSZK. By Theorem 6.1, Π satisfies the SZK/OWF Characterization. That is,
there is a set I such that Π′ = (ΠY \ I, ΠN ) is in SZK and there exists an auxiliary-input one-way
function on I. We claim that I is infinite (which suffices to complete the proof). Suppose for sake
of contradiction that I is finite. Since Π′ ∈ SZK and Π and Π′ differ on only a finite set of inputs,
we conclude that Π ∈ SZK ⊆ HVSZK. (The statistical zero-knowledge proof for Π is the same
as the statistical zero-knowledge proof for Π′, except we hardwire the set I into the verifier and
simulator, have the verifier immediately accept inputs x ∈ I, and have the prover send nothing on
such inputs.) This contradicts the choice of Π.

We now give an alternate proof of Theorem 7.1.

Proof of Theorem 7.1: Suppose that HVZK 6= BPP. Then either HVZK 6= HVSZK or
HVSZK 6= BPP. In the first case, we are done by Theorem 7.3. Thus, we need only show that
HVSZK 6= BPP implies the existence of an auxiliary-input family of functions that is not easy to
invert. This can be done using the techniques of Ostrovksy [Ost], who proved an HVSZK-analogue
of Theorem 7.2. (Ostrovsky’s paper was a precursor to the Ostrovsky–Wigderson result, and has a
much simpler proof.) Below we give an alternative proof, utilizing the complete problems for SZK.

Suppose that HVSZK 6= BPP. In [GSV2], it was shown that this implies that for some
constant δ > 0, the following promise problem Image Density (ID) is not in BPP:10

IDY = {C : ∆(C(Um), Un) ≤ 2−|C|
δ}

IDN = {C : Image(C) ≤ 2−|C|
δ · 2n},

10Specifically, [GSV2, Lemma 5.1] shows that the HVSZK-complete problem Entropy Difference Cook-reduces
to a promise problem called Entropy Approximation, and [GSV2, Lemma 3.2] shows that Entropy Approxima-
tion (Karp-)reduces to Image Density. (We remark that both Entropy Approximation and Image Density are
complete for NISZK, the class of problems having noninteractive statistical zero-knowledge proofs [DDPY, GSV2].)
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where C : {0, 1}m → {0, 1}n is a circuit, and Image(C) ⊆ {0, 1}n is its image. Thinking of C as a
sampling circuit for the distribution C(Um), we see that Image Density is a restricted version of
Statistical Difference, where one of the distributions is fixed to be Un, and in no instances
the distribution is not only far from uniform but also has small support. However, in what follows
it is more useful to think of the circuit C as specifying a function rather than a distribution.

We define an auxiliary-input family of functions {fC}, where the function indexed by circuit
C : {0, 1}m → {0, 1}n is simply fC = C. Suppose, for sake of contradiction, that this family of
functions is easy to invert. That is, there exists a PPT A and a polynomial r such that for every
circuit C : {0, 1}m → {0, 1}n, Pr

[
A(C, C(Um)) ∈ C−1(C(Um))

] ≥ 1/r(|C|). Then we obtain the
following decision procedure for ID: On input C, where C : {0, 1}m → {0, 1}n is a circuit, we simply
choose x ← Un and check if C(A(C, x)) = x. That is, we see if A successfully finds a preimage of
a uniformly chosen element of {0, 1}n.

If C ∈ IDY , then Un has exponentially small statistical difference from C(Um). Since A suc-
cessfully inverts C on C(Um) with probability at least 1/r(|C|), it will successfully invert C on Un

with probability at least 1/r(|C|)−1/2|C|δ ≥ 1/(2r(|C|)). On the other hand, if C ∈ IDN , then the
image of C has exponentially small density and hence the probability that Un has any preimage
under C is at most 2−|C|δ . Consequently, A will successfully invert C on Un with exponentially
small probability. By standard amplfication, we conclude that ID ∈ BPP.

The above proof also illustrates why one only obtains a family of functions that is not easy to in-
vert, rather than the stronger notion of auxiliary-input one-way functions achieved in Theorem 7.3.
The reason is that the supposed inverter for the family of functions is used to construct a BPP
algorithm for Image Density and thereby for all of SZK. The hypothesis that SZK 6= BPP only
seems to guarantee that for every inverter A there exists an infinite set IA of instances on which
this procedure fails, not that there exists a fixed infinite set I of “hard” instances on which the
procedure fails for any A. For example, an inverter A running in time n2 may be able to succeed
on a larger set of instances than an inverter running in time n, and one running in time n3 may
succeed on an even larger set of instances, and so on. Ultimately, the set of instances which are
hard for all polynomial-time A may be empty. Intuitively, we avoided this difficulty in the proof of
Lemma 3.9 by using an information-theoretic condition (namely whether H(X|Y ) ≥ r) to separate
the SZK instances from the OWF instances.

As for an alternative proof of Theorem 7.2, it was already shown in [SV, Thm 5.12] that if a
hard-on-average problem satisfies the Indistinguishability Characterization, then one-way
functions exist. (The intuition is as follows: according to the Indistinguishability Charac-
terization, yes instances give rise to samplable distributions X and Y that computationally
indistinguishable, and no instances give rise to X and Y that are statistically far. However, the
fact that a problem is hard-on-average means that yes instances and no instances are computation-
ally indistinguishable from each other, under some samplable distribution on instances. Thus, we
can obtain two samplable distributions that are both computationally indistinguishable and statis-
tically far apart, which implies the existence of one-way functions by [Gol1].) Combining this with
our result that every problem in HVZK satisfies the Indistinguishability Characterization
(Thm. 6.1), we obtain Theorem 7.2.

We note that these new proofs of Theorems 7.1 and 7.2 only use our results from Section 3,
namely that every problem in HVZK satisfies the SZK/OWF Characterization and the In-
distinguishability Characterization. Our results in the converse direction, from Section 4,
are not needed.
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7.2 Monotone Closure

In this section, we use our results to prove closure properties of ZK. We begin by noting that the
fact that ZK is closed under intersection is immediate: to prove that x ∈ ΠY ∩ ΓY for promise
problems Π,Γ ∈ ZK, the prover can prove that x ∈ ΠY using the zero-knowledge proof for Π and
then prove that x ∈ ΓY using the zero-knowledge proof for Γ, and the verifier accepts only if both
proofs are convincing. The analogous approach for union, however, does not work. In particular,
proving that x ∈ ΠY ∪ ΓY seems to require the prover to reveal whether x ∈ ΠY or x ∈ ΓY , and
thus the proof system may not be zero knowledge.

In this section, we show ZK is indeed closed under union. More generally, for every Π ∈ ZK,
we give zero-knowledge proofs for arbitrary monotone boolean formulae over statements about
membership in Π, where the formula can even be specified as part of the common input. Our
constructions are direct generalizations of the techniques of [DDPY, SV], who proved analogous
closure properties for SZK and subclasses of SZK. (In fact, since SZK is closed under com-
plement [Oka], its closure properties extend even to non-monotone formulae.) Indeed, we simply
replace Statistical Difference in the construction of [SV] with the Indistinguishability
Characterization.

We begin with closure under union, only sketching the proof since it is subsumed by the more
general result presented later.

Theorem 7.4 ZK is closed under union.

Proof Sketch: By Theorem 3.3, a promise problem is in ZK if and only if it is in IP and it
satisfies the Indistinguishability Characterization. We know that IP is closed under union,
so it suffices to show that the class of problems satisfying the Indistinguishability Character-
izationis closed under union.

Suppose Π and Γ satisfy the Indistinguishability Characterization. From any instance
w, we obtain two samplable distributions X0, X1 that are computationally indistinguishable if
w ∈ ΠY and statistically far if w ∈ ΠN . Similarly, we obtain Y0, Y1 for Γ. Consider the following
two distributions:

Z0: Choose b, c ← {0, 1} such that b⊕ c = 0. Sample x ← Xb and y ← Yc. Output (x, y).

Z1: Choose b, c ← {0, 1} such that b⊕ c = 1. Sample x ← Xb and y ← Yc. Output (x, y).

Suppose w ∈ (Π ∪ Γ)Y = ΠY ∪ ΓY ; wlog say w ∈ ΠY . Then X0 and X1 are computationally
indistinguishable. Since the only difference between Z0 and Z1 is that X0 and X1 are swapped
(that is, if we replace Xb with X¬b in the definition of Z0, we obtain Z1), it follows that Z0 and Z1

are computationally indistinguishable.
Suppose that w ∈ (Π ∪ Γ)N = ΠN ∩ ΓN . It is shown in [SV, Prop. 3.6] that ∆(Z0, Z1) =

∆(X0, X1) ·∆(Y0, Y1), so ∆(Z0, Z1) ≥ (2/3) · (2/3) = 4/9. This suffices to prove that Π∪Γ satisfies
the Indistinguishability Characterization. ¤

We now present some definitions (closely following [SV]) to formalize the more general monotone
closure properties we will obtain. Specifically, in order to deal with instances of promise problems
that violate the promise, we will work with an extension of boolean algebra that includes an
additional“ambiguous” value ?.
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Definition 7.5 A partial assignment to variables v1, . . . , vk is a k-tuple a = (a1, . . . , ak) ∈ {0, 1, ?}k.
For a propositional formula (or circuit) φ on variables v1, . . . , vk, the evaluation φ(a) is recursively
defined as follows:

vi(a) = ai (φ ∧ ψ)(a) =

{ 1 if φ(a) = 1 and ψ(a) = 1
0 if φ(a) = 0 or ψ(a) = 0
? otherwise

(¬φ)(a) =





1 if φ(a) = 0
0 if φ(a) = 1
? if φ(a) = ?

(φ ∨ ψ)(a) =

{ 1 if φ(a) = 1 or ψ(a) = 1
0 if φ(a) = 0 and ψ(a) = 0
? otherwise

Note that φ(a) equals 1 (resp., 0) for some partial assignment a, then φ(a′) also equals 1 (resp.,
0) for every boolean a′ obtained by replacing every ? in a with either a 0 or 1. The converse,
however, is not true: The formula φ = v∨¬v evaluates to 1 on every boolean assignment, yet is not
1 when evaluated at ?. Thus, the “law of excluded middle” φ∨¬φ ≡ 1 no longer holds in this setting.
However, other identities in boolean algebra such as De Morgan’s laws (e.g. ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ)
do remain true.

Definition 7.6 For a promise problem Π, the characteristic function of Π is the map χΠ : {0, 1}∗ →
{0, 1, ?} given by

χΠ(x) =

{ 1 if x ∈ ΠY

0 if x ∈ ΠN

? otherwise

Definition 7.7 For any promise problem Π and constant δ > 0, we define a new promise problem
Monδ(Π) as follows:

Monδ(Π)Y = {(φ, x1, . . . , xk) : φ(χΠ(x1), . . . , χΠ(xk)) = 1 and ∀i |xi| ≥ nδ}
Monδ(Π)N = {(φ, x1, . . . , xk) : φ(χΠ(x1), . . . , χΠ(xk)) = 0 and ∀i |xi| ≥ nδ}.

where φ is a monotone k-ary propositional formula, and n = |(φ, x1, . . . , xk)|.

The condition |xi| ≥ nδ is a technicality due to the fact that the security of zero-knowledge
proofs is defined with respect to the input length. Intuitively, we will be constructing zero-knowledge
proofs for instances of Monδ(Π) of length n = |(φ, x1, . . . , xk)|, but these will be built by using zero-
knowledge proofs (or the resulting Indistinguishability Characterization) for the individual
xi’s. Hence to achieve security in terms of n, we will need the xi’s to be of length polynomially
related to n. Naturally, this entire issue disappears if one works with a security-parametrized
definition of zero knowledge. (See Remark 5 at the end of Section 2.5.)

Theorem 7.8 For any promise problem Π ∈ SZK and any δ > 0, Monδ(Π) ∈ SZK.

Proof: First we note that IP is closed under Monδ(·): to prove that (φ, x1, . . . , xk) ∈ Monδ(Π)Y ,
by monotonicity of φ, it suffices to prove that a subset of the xi’s are in ΠY . Thus, by Theorem 6.1 we
need only show that if Π satisfies the Indistinguishability Characterization, then Monδ(Π)
satisfies the Indistinguishability Characterization.

Suppose we are given an instance (φ, x1, . . . , xk) of Monδ(Π). Since Π satisfies the Indistin-
guishability Characterization, from each each xi we can efficiently construct two samplable
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Sample(ψ, b)
If ψ = vi, sample z ← Xi

b.
If ψ = τ ∧ µ,

Sample z1 ← Sample(τ, b);
Sample z2 ← Sample(µ, b);
Let z = (z1, z2).

If ψ = τ ∨ µ,
Choose c, d ← {0, 1} subject to c⊕ d = b;
Sample z1 ← Sample(τ, c);
Sample z2 ← Sample(µ, d);
Let z = (z1, z2).

Output z.

Figure 1:

distributions Xi
0, X

i
1 that are either computationally indistinguishable or statistically far apart,

depending on whether xi is a yes or no instance of Π. The idea is to recursively combine these dis-
tributions according the formula φ, to eventually obtain two samplable distributions that are either
computationally indistinguishable or statistically far apart according to whether (φ, x1, . . . , xk) is
a yes or no instance of Monδ(Π). At OR gates, we will combine distributions via the construction
used to prove closure under union above. At AND gates, we will combine distributions via the
Direct Product construction (X0, X1), (Y0, Y1) 7→ (X0⊗X1, Y0⊗Y1); this has the property that the
resulting pair of distributions are computationally indistinguishable if either of the initial pairs is
indistinguishable, and are statistically far apart if both initial pairs are statistically far apart. This
is precisely the construction used in [SV, Lemma 4.10], except that we need to work with compu-
tational indistinguishability rather than statistical closeness and the treatment of AND and OR is
swapped because our Indistinguishability Characterization corresponds to the complement
of the definition of Statistical Difference used there.

Now we make this construction and its analysis precise. First, by taking direct products, we
may assume that the distributions {Xi

0, X
i
1} satisfy:

• xi ∈ ΠY ⇒ Xi
0 and Xi

1 are computationally indistinguishable. More precisely, no circuit of
size s can distinguish between Xi

0 and Xi
1 with advantage greater than ε for some s =

(nδ)ω(1) = nω(1) and ε = 1/(nδ)ω(1) = 1/nω(1).

• xi ∈ ΠN ⇒ ∆(Xi
0, X

i
1) ≥ 1− 2−n.

Consider the randomized recursive procedure Sample(ψ, b) in Figure 1 which takes a subformula
ψ of φ = φ(v1, . . . , vn) and a bit b ∈ {0, 1} as input. Executing Sample(φ, b) for b ∈ {0, 1} takes time
polynomial in n, because the total number of recursive calls is equal to the number of subformulae
of φ.

Let a = (χΠ(x1), . . . , χΠ(xk)). From [SV, Claim 4.11], it follows that if φ(a) = 0, then
∆(Sample(φ, 0),Sample(φ, 1)) ≥ 1− |φ| · 2−n ≥ 2/3.

Thus, to establish the Indistinguishability Characterization, we need only show that if
φ(a) = 1, then Sample(φ, 0) and Sample(φ, 1) are computationally indistinguishable.
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Claim 7.9 For every subformula ψ such that ψ(a) = 1, no circuit of size s can distinguish between
Sample(ψ, 0) and Sample(ψ, 1) with advantage greater than |ψ| · ε.

Proof of claim: The proof is by induction on the subformulas of φ.

Base Case: ψ = vi The condition ψ(a) = 1 means that χΠ(xi) = 1, and hence no
circuit of size s can distinguish between Sample(ψ, 0) = Xi

0 and Sample(ψ, 1) = Xi
1

with advantage greater than ε.

Inductive Case I: ψ = τ ∧ µ The condition ψ(a) = 1 means that τ(a) = 1 and µ(a) =
1. We have Sample(ψ, b) = Sample(τ, b) ⊗ Sample(µ, b) for b = 0, 1. Consider
the hybrid distribution H = Sample(τ, 0) ⊗ Sample(µ, 1). Suppose for sake of
contradiction that there exists a circuit D of size s that distinguishes between
Sample(ψ, 0) and Sample(ψ, 1) with advantage greater than |ψ| · ε ≥ (|τ |+ |µ|) · ε.
Then D must distinguish between Sample(ψ, 0) and H with advantage greater
than |τ | · ε or distinguish between H and Sample(ψ, 1) with advantage greater
than |µ| · ε. By fixing one of the inputs to D, we obtain a circuit of size s that
distinguishes between Sample(τ, 0) and Sample(τ, 1) with advantage greater than
|τ | ·ε or between Sample(µ, 0) and Sample(µ, 1) with advantage greater than |µ| ·ε.
This contradicts the inductive hypothesis.

Inductive Case II: ψ = τ ∨ µ The condition ψ(a) = 1 means that τ(a) = 1 or µ(a) =
1. Without loss of generality, say that τ(a) = 1. Sample(ψ, b) is equivalent to the
distribution that w.p. 1/2 outputs a sample of Sample(τ, b) ⊗ Sample(µ, 0) and
w.p. 1/2 outputs a sample of Sample(τ,¬b)⊗ Sample(µ, 1). Thus if a circuit D of
size s distinguishes between Sample(ψ, 0) and Sample(ψ, 1) with advantage |ψ| · ε,
then by averaging, D must also distinguish between Sample(τ, 0) ⊗ Sample(µ, 0)
and Sample(τ, 1) ⊗ Sample(µ, 0), or between Sample(τ,¬0) ⊗ Sample(µ, 1) and
Sample(τ,¬1)⊗ Sample(µ, 1), with advantage at least |ψ| · ε. By fixing the second
input to D, we obtain a size s distinguisher between Sample(τ, 0) and Sample(τ, 1)
with advantage at least |ψ| · ε > |τ | · ε, contradicting the inductive hypothesis.

¤

Theorem 7.8 can be also viewed as demonstrating that ZK is closed under a type of polynomial-
time reducibility, which is formalized by the following two definitions.

Definition 7.10 (truth-table reduction [LLS]): We say a promise problem Π truth-table reduces
to a promise problem Γ if there exists a (deterministic) polynomial-time computable function f ,
which on input x produces a tuple (y1, . . . , yk) and a boolean circuit C (with k input gates) such
that

x ∈ ΠY ⇒ C(χΓ(y1), . . . , χΓ(yk)) = 1
x ∈ ΠN ⇒ C(χΓ(y1), . . . , χΓ(yk)) = 0

We call such a reduction non-shrinking if we have ∀i |yi| ≥ |x|δ, for some constant δ > 0.

In other words, a truth-table reduction for promise problems is a nonadaptive Cook reduction
which is allowed to make queries that violate the promise, but still must have an unambiguous
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output (in the strong sense formalized by Definition 7.5). We further consider the case where we
restrict the complexity of computing the output of the reduction from the queries:

Definition 7.11 (NC1 truth-table reductions): A truth-table reduction f between promise prob-
lems is an NC1 truth-table reduction if the circuit C produced by the reduction on input x has
depth bounded by cf log |x|, where cf is a constant independent of x. It is monotone if the circuit
C has only AND and OR gates (but no negations).

With these definitions, we can restate Theorem 7.8 as follows:

Corollary 7.12 ZK is closed under non-shrinking, monotone NC1 truth-table reductions.

Proof: Any circuit of size s and depth d can be efficiently “unrolled” into a formula of size 2d · s.
Hence, a non-shrinking NC1 truth-table reduction from Γ to Π (with parameter δ) gives rise to
a non-shrinking Karp reduction from Γ to Monδ/c(Π) (where the reduction produces outputs of
length at most nc). Since ZK is closed under Mon(·) and non-shrinking Karp reductions, it is also
closed under NC1 truth-table reductions.

As shown in [SV], closure under such reductions has a consequence for knowledge complex-
ity [GMR, GP], which is a framework for quantifying the amount k(n) of knowledge leaked in an
interactive proof system. Zero knowledge is the special case where k(n) = 0. There are various
formalizations of the notion of knowledge complexity, most of which measure the number of bits of
“help” that a simulator needs to simulate the verifier’s view of the interaction. The simplest (but
not entirely satisfactory) formulation is the following:

Definition 7.13 (knowledge complexity in the hint sense) An interactive proof system (P, V )
for a promise problem Π is said to have (honest-verifier) knowledge complexity k(n) in the hint
sense κ : N → N if there is a function h : ΠY → {0, 1}∗, and a probabilistic polynomial-time
algorithm S, such that for all x ∈ ΠY

1. |h(x)| = κ(|x|).
2. 〈P, V 〉(x) and S(x, h(x)) are computationally indistinguishable.

KChint(k(n)) denotes the class of problems having interactive proofs with knowledge complexity
k(n) in the hint sense.

We have restricted the definition to honest verifiers for simplicity, but the definition and our
results can be extended to the cheating-verifier one as well. Using Corollary 7.12, we can prove a
collapse in this hierarchy:

Theorem 7.14 For every polynomially bounded function k(n), KChint(k(n)+log n) = KChint(k(n)).
In particular, KChint(O(log n)) = ZK.

Proof Sketch: The proof is identical to the analogous result for SZK in [SV, Thm 4.15]. That
proof uses the fact that HVSZK is closed under NC1 truth-table reductions. By inspection, the
reduction used in the proof is non-shrinking and monotone (in fact the circuit produced simply
computes the OR of its inputs). ¤

In addition, as shown in [Vad1, Sec. 4.6.2, Cor. 6.5.2] for SZK, many of our other results
about ZK extend to KChint. In particular, we obtain an equivalence between the honest-verifier
and cheating-verifier definitions of KChint, between private coins and public coins, etc. We omit
the formal statements here.
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7.3 Expected Polynomial-Time Simulators and weak-ZK

Recall that, following Goldreich [Gol3], our definitions of zero knowledge (in Section 2.5) refer
to simulators that run in strict polynomial time. In this section, we extend our results to the
the original Goldwasser–Micali–Rackoff [GMR] definition, which allowed the simulator to run in
expected polynomial time. Indeed, we will prove that the two definitions yield exactly the same
class ZK; that is, every problem having a zero-knowledge proof with an expected polynomial-time
simulator also has one with a strict polynomial-time simulator. In fact, we will consider a further
relaxation, captured by the following definitions.

Definition 7.15 For a function ε : N→ [0, 1], we say that two auxiliary-input probability ensembles
{Xx} and {Yx} are ε-indistinguishable on I ⊆ {0, 1}∗ if for every nonuniform PPT D, there exists
a negligible function µ such that for all x ∈ I,

|Pr [D(x, Xx) = 1]− Pr [D(x, Yx) = 1]| ≤ ε(|x|) + µ(|x|).
Definition 7.16 (weak zero knowledge) An interactive proof system (P, V ) for a promise prob-
lem Π is weak honest-verifier zero knowledge if for every polynomial p, there exists a probabilistic
(strict) polynomial-time simulator S such that the ensembles {〈P, V 〉(x)}x∈ΠY

and {S(x)}x∈ΠY
are

(1/p(n))-indistinguishable.
weak-HVZK denotes the class of promise problems having weak honest-verifier zero-knowledge

proofs, respectively.

The above definition is more relaxed than allowing expected polynomial-time simulators, be-
cause if a simulator S has expected running time t(n), then running it for p(n) · t(n) steps yields
a strict polynomial-time simulator whose output distribution is (1/p(n))-close to that of S. In
particular, if the verifier’s view is computationally indistinguishable from the output of S, then it
is (1/p(n))-indistinguishable from the truncated version of S.

In this section, we will prove:

Theorem 7.17 weak-HVZK = ZK.

Analogous results were previously known for statistical zero knowledge [GV] and non-interactive
statistical zero knowledge [GSV2].

By the definitions, ZK ⊆ weak-HVZK, so we need only show weak-HVZK ⊆ ZK. We will
do this by showing that every problem in weak-HVZK satisfies the SZK/OWF Characteri-
zation, and applying Theorem 6.1. (By definition, weak-HVZK ⊆ IP.) We will do this by an
extension of our proof that every problem in HVZK satisfies the SZK/OWF Characteriza-
tion (from Section 3). Intuitively, the “weak” computational indistinguishability in the definition
of weak-HVZK will translate to obtaining a “weak” one-way function (in the sense that the in-
version probability is bounded by, say, 1/2 rather than being negligible), and then we will apply
the Yao’s conversion from weak one-way functions to standard one-way functions (see [Gol3, Thm.
2.3.2]).

We begin with an extension of Lemma 3.6.

Lemma 7.18 If a promise problem Π is in HVZK, then Π satisfies the following Weak Con-
ditional Pseudoentropy Characterization: there exists a fixed polynomial m such that for
every polynomial p, there is a polynomial-time computable function mapping strings x to a sam-
plable joint distribution (X, Y ) on {0, 1}m(|x|) × {0, 1}m(|x|) and a parameter r such that
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• If x ∈ ΠY , then there exists a (not necessarily samplable) joint distribution (X ′, Y ′) such that
(X ′, Y ′) is (1/p(n))-indistinguishable from (X,Y ) and H(X ′|Y ′) ≥ r, and

• If x ∈ ΠN , then H(X|Y ) ≤ r − 1,

A crucial point is that the output length m of the circuits X and Y does not grow with the
level of indistinguishability required (as specified by p). However, the sizes of the circuits and their
input length can indeed depend on p.

Proof Sketch: Recall that the proof of Lemma 3.6 first constructed distributions X,Y as follows:

(X,Y ): Select i ← {1, . . . , `(|x|)}, choose random coin tosses R for the simulator, and output
(S2i(x; R), S2i−1(x;R)),

where ` = `(|x|) is the number of rounds in the proof system. Here we do the same, but take S
to be the simulator achieving ε-indistinguishability, where ε = 1/(`(|x|) · p(|x|)) and p is any given
polynomial.

As in the proof of Lemma 3.6, when x ∈ ΠY , then (X, Y ) is ε-indistinguishable from (X ′, Y ′) =
(〈P, V 〉2I , 〈P, V 〉2I−1), where I denotes a uniform random element of {1, . . . , `}, and H(X ′|Y ′) = r.
And when x ∈ ΠN , then H(X|Y ) ≤ (r − 1)/`.

Then final distributions are taken to be ((X1, . . . , X`), (Y1, . . . , Y`)) where each (Xi, Yi) is an
independent copy of (X, Y ). This increases the entropy gap to 1 bit as before, and the level
of indistinguishability deteriorates to (` · ε) < 1/p(|x|). Notice that the output lengths of these
distributions depend only on the communication complexity of the proof system (but the circuit
sizes and number of random bits required depend on the simulator, which in turn may depend on
the choice of p). ¤

Given this lemma, we proceed to extend the reduction from the Conditional Pseudoentropy
Characterization to the SZK/OWF Characterization.

Lemma 7.19 If a promise problem satisfies the Weak Conditional Pseudoentropy Char-
acterization, then it satisfies the SZK/OWF Characterization.

Proof: Given an instance x of the promise problem Π, for any ε = ε(n) = 1/poly(n), we can
efficiently construct two samplable distributions (X, Y ) on {0, 1}m×{0, 1}m and parameter r such
that if x ∈ ΠY , then H(X ′|Y ′) ≥ r + 2 for some (X ′, Y ′) that is ε-indistinguishable from (X,Y ),
and if x ∈ ΠN , then H(X|Y ) ≤ r − 2. Again, m = m(|x|) is a fixed polynomial independent of ε.

Let I be the set of instances x ∈ ΠY such that H(X|Y ) < r. The proof that Π′ = (ΠY \ I,ΠN )
is in SZK is identical the proof of Lemma 3.9.

Thus, we focus on constructing one-way functions on I. The first step of the construction does
not change. We set k = 4n · (m + n)2, and consider the samplable distributions

Z = (H, Y1, . . . , Yk,H(X1, . . . , Xk)), and
Z ′ = (H, Y1, . . . , Yk, Ukr+1),

As in the proof of Lemma 3.9, H(Z ′) ≥ H(Z) + 1. The only change is that instead of arguing that
Z and Z ′ are computationally indistinguishable, we claim that that they are ε′-indistinguishable
from Z for ε′ = k · ε. (The deterioration by a factor of k comes from taking k samples of (Xi, Yi).)
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Recalling that k = 4n · (m + n)2 depends only on n and the output length m, we see that we can
still make the level ε′ of indistinguishability arbitrarily small. Moreover, the output length m′ of
Z and Z ′ remain independent of the choice of ε′ = 1/poly(n).

Now, to obtain a (weak) one-way function, we perform one more round of flattening and hashing.
This is essentially the construction of H̊astad et al. [HILL] going from a “false entropy generator”
to a “pseudoentropy generator” — where the output is indistinguishable from a distribution whose
min-entropy is higher than the seed-length of the generator. However, since we are starting from
only a weak false entropy generator Z as above, we need to ensure that the level of indistinguisha-
bility deteriorates only as a function of the output length m′ of Z and the security parameter (and
not the input length).

This part of the construction depends on “guess” e for (an approximation to) the entropy of Z.
(At the end we will enumerate over all choices for e.) Specifically, set k′ = 2n(m′ + n)2, let q be
the number of input gates to Z (as a circuit), let G be a random universal hash function mapping
{0, 1}k′q to {0, 1}k′q−k′e−n, and consider the following samplable distributions:

We = (Z(R1), . . . , Z(Rk′), G, G(R1, . . . , Rk′)), and
W ′

e = (Z ′1, . . . , Z
′
k, G, Uk′q−k′e−k′/8),

where R1, . . . , Rk′ are independent copies of Uq, and Z ′1, . . . , Z
′
k are independent copies of Z ′.

Claim 7.20 For H(Z) ≤ e ≤ H(Z) + 1/2, we have:

1. We and W ′
e are k′ε′-indistinguishable.

2. Pr [W ′
e ∈ Supp(We)] ≤ (k′ + 2) · 2−n.

Before proving the claim, we describe how it completes the proof of the Lemma. Specifically, we
argue that the circuit generating We defines a (weak) one-way function. Any algorithm that inverts
We with probability at least δ can be used to distinguish between We and W ′

e with advantage at
least δ − 2−n (because by Item 2 it is information-theoretically impossible to find a We-preimage
of a random sample of W ′

e, except with probability (k′+ 2) · 2−n). By Item 1, we conclude that We

can be inverted with probability at most δ = k′ε′+(k′+2) · 2−n ≤ 1/2, and is thus a weak one-way
function. Since we do not know the value of H(Z), we consider the function fx(r1, . . . , r2m′) =
(W1/2(r1),W1(r2), . . . ,Wm′−1/2(r2m′−1),Wm′(r2m′)), which is a weak one-way function because one
of its components is a weak one-way function (and the others are independent). Applying the
standard reduction from weak one-way functions to standard one-way functions completes the
proof. Thus, all that remains is to establish Claim 7.20.

Proof of claim: It will first be useful to remove low-probability samples from both
Z and Z ′. Let

L = {z : Pr [Z = z] ≤ 2−n · 2−m′}.
By a union bound, Pr [Z ∈ L] ≤ 2−n. Then Ẑ = Z|Z /∈L is 2−n-close to Z and moreover
for every z ∈ Supp(Ẑ),

Pr
[
Ẑ = z

]
≥ Pr [Z = z] ≥ 1/2m′+n.
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By Lemma 2.1, we have |H(Ẑ) − H(Z)| = 2−n ·m′ + H2(2−n), which is negligible. By
the Flattening Lemma, ⊗k′Ẑ is ∆-flat for ∆ =

√
k′ · (m′ + n) Analogously, using Z ′ we

can define L′, and Ẑ ′, and draw the same conclusions.
The ∆-flatness of ⊗k′Ẑ implies that with probability at least 1 − 2−n over z =

(z1, . . . , zk)getsr ⊗k′ Ẑ, we have

Pr[⊗k′Ẑ = z] ≥ 2−
√

n·∆ · 2−k′·H(Ẑ).

Since ⊗k′Z and ⊗k′Ẑ are k′ ·2−n-close (by Lemma 2.2), the same holds with probability
at least 1− (k′ + 1) · 2−n over z ← ⊗k′Z. For any such z, we have

#{(r1, . . . , rk) : ∀i Z(ri) = zi} = 2k′q · Pr[⊗k′Z = z]

≥ 2k′q · Pr[⊗k′Z = z| ⊗k′ Z ∈ (Lc)k′ ] · Pr
[
⊗k′Z ∈ (Lc)k′

]

≥ 2k′q · Pr[⊗k′Ẑ = z] · (1− k′ · 2−n)

≥ 2k′q · 2−
√

n·∆−k′·H(Ẑ) · (1− k′ · 2−n)
≥ 2k′q−k′e−k′/8+2n,

where in the last inequality we use the fact that H(Ẑ) ≥ H(Z) − neg(n) ≥ e − neg(n)
and

√
n · ∆ ≤ k′/16, 2n + 1 ≤ k′/16. for sufficiently large n. This implies that

conditioned on (Z(R1), · · · , Z(Rk′)) = z, the min-entropy of (R1, . . . , Rk′) is at least
k′q − k′e − k′/8 + 2n. Thus, by the Leftover Hash Lemma 2.6, (G,G(R1, . . . , Rk)) is
2−n-close to (G,Uk′q−k′e−k′/8). We conclude that We is statistically indistinguishable
from

V = (Z1, . . . , Zk, G, Uk′q−k′e−k′/8),

where Z1, . . . , Zk are independent copies of Z. Since Z is ε′-indistinguishable from
Z ′, it follows that V is (k′ε′)-indistinguishable from W ′

e. Therefore, We and W ′
e are

(k′ε′)-indistinguishable, as desired.
Now we proceed to Item 2. First we bound |Supp(We)|. Let g be the number of

random bits to generate G. Then the number of random bits used to generate We

is at most k′q + g. Hence |Supp(We)| ≤ 2k′q+g. Next show that W ′
e is statistically

indistinguishable from a distribution with min-entropy significantly higher than k′q+g.
This amounts to lower-bounding the min-entropy of (Z ′1, . . . , Z

′
k) = ⊗k′Z ′, since the

remaining components of the W ′
e are independent and have min-entropy g + k′q− k′e−

k′/8. As above, instead of Z ′, we consider Ẑ ′. Recall that ⊗k′Ẑ ′ is (k′2−n)-close to
⊗kZ ′, and is ∆-flat. By ∆-flatness, ⊗k′Ẑ ′ is 2−n-close to a distribution with min-
entropy k′ · H(Ẑ ′) − √n∆ ≥ k′ · (e + 1/2) − k′/4 = k′e + k′/4 for sufficiently large n.
Therefore, W ′

e is (k′ + 1) · 2−n-close to a distribution with min-entropy at least

(g + k′q − k′e− k′/2) + (k′e + k′/4) ≥ k′q + g + n.

A distribution of min-entropy w = k′q + g + n can land in Supp(We) with probability
at most 2−w · |Supp(We)| ≤ 2−n. Therefore W ′

e lands in Supp(We) with probability at
most 2−n + (k′ + 1) · 2−n, as desired. ¤
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8 Open Problems

There are some results that are known about ZK under the assumption that one-way functions
exist, but we do not know how to prove unconditionally:

• ZK is closed under complement. (If one-way functions exist, then ZK = PSPACE =
co-PSPACE.)

• If Π ∈ ZK ∩NP, then Π has a constant-round zero-knowledge proof (with soundness error
1/poly(n)) [GMW, Blu]. (Constant-round protocols with negligible soundness error are known
under stronger assumptions [GK1].)

• If Π ∈ ZK ∩NP, then Π has a computational zero-knowledge proof where the prover runs
in probabilistic polynomial time given a witness for membership. (In our Theorem 6.1, the
prover needs an NP oracle.)

The only bottleneck for proving the latter two results unconditionally is our problem-dependent
commitment scheme for SZK (Theorem 4.3) so any improvement to that commitment scheme with
respect to round complexity or prover efficiency would have an analogous impact on ZK. (And
on SZK — indeed, in [MV], problem-dependent commitments were proposed as an approach to
proving the SZK-analogue of the last item.)

A natural next project is to undertake a similar unconditional study of zero-knowledge ar-
guments, but there are several obstacles that need to be overcome. For example, the notion of
argument systems is less meaningful if the specified prover is not constrained to run in polyno-
mial time, but our techniques currently only give BPPNP provers (due to the problem-dependent
commitment for SZK).
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A Proof of the Flattening Lemma

Lemma A.1 (Flattening Lemma, restated) Let X be a distribution, k a positive integer, and
⊗kX denote the distribution composed of k independent copies of X. Suppose that for all x in the
support of X it holds that Pr [X = x] ≥ 2−m. Then ⊗kX is

√
k ·m-flat.

Suppose Y is jointly distributed with X, and for all (x, y) in the support of (X,Y ) it holds that
Pr [X = x|Y = y] ≥ 2−m. Then, defining ((X1, Y1), . . . , (Xk, Yk)) = ⊗k(X,Y ), the random variable
(X1, . . . , Xk) is

√
k ·m-flat given (Y1, . . . , Yk).

Proof: For every (x, y) in the support of (X, Y ), we define the weight of x given y to be
wt(x|y) = log(1/Pr [X = x|Y = y]). Then wt(·) maps the support of (X,Y ) to [0, m]. For every
x1, . . . , xk, y1, . . . , yk, we have

log
1

Pr [(X1, . . . , Xk) = (x1, . . . , xk)|(Y1, . . . , Yk) = (y1, . . . , yk)]
=

k∑

i=1

wt(xi|yi).

Thus, if we let X = (X1, . . . , Xk), Y = (Y1, . . . , Yk), we have:

Pr
[
X is not t∆-typical given Y

]
= Pr

[∣∣∣∣∣
k∑

i=1

wt(Xi|Yi)−H(X|Y )

∣∣∣∣∣ ≥ t∆

]
.

For every i, E[wt(Xi|Yi)] = H(X|Y ) and H(X|Y ) = k ·H(X|Y ), so we are bounding the probability
that the average of k independent, identically distributed random variables taking values in [0,m]
deviates from its expectation by t∆/k. By the Hoeffding Inequality, this probability is at most

2 · exp
(−2 · k · (t∆/k)2

m2

)
.

For ∆ =
√

k ·m and t ≥ 1, this bound becomes 2 exp(−2t2) ≤ 2−t2 , establishing the lemma.
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