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Computational complexity theory is the study of the minimal resources
needed to solve computational problems. In particular, it aims to distin-
guish between those problems that possess efficient algorithms (the “easy”
problems) and those that are inherently intractable (the “hard” problems).
Thus computational complexity provides a foundation for most of modern
cryptography, where the aim is to design cryptosystems that are “easy to
use” but “hard to break”. (See computational security.)

Running Time. The most basic resource studied in computational com-
plexity is running time — the number of basic “steps” taken by an algorithm.
(Other resources, such as space (i.e., memory usage), are also studied, but we
will not discuss them here.) To make this precise, one needs to fix a model of
computation (such as the Turing machine), but here we will informally think
of it as the number of “bit operations” when the input is given as a string
of 0’s and 1’s. Typically, the running time is measured as a function of the
input length. For numerical problems, we assume the input is represented in
binary, so the length of an integer N is roughly log, N. For example, the
elementary-school method for adding two m-bit numbers has running time
proportional to n. (For each bit of the output, we add the corresponding in-
put bits plus the carry.) More succinctly, we say that addition can be solved
in time “order n”, denoted O(n) (see O-notation). The elementary-school
multiplication algorithm, on the other hand, can be seen to have running

*This is an entry to appear in the Encyclopedia of Cryptography and Security [7].
Underlined words/phrases refer to other entries in the encyclopedia.



time O(n?). In these examples (and in much of complexity theory), the run-
ning time is measured in the worst case. That is, we measure the maximum
running time over all inputs of length n.

Polynomial Time. Both the addition and multiplication algorithms are
considered to be efficient, because their running time grows only mildly with
the input length. More generally, polynomial time (running time O(n¢) for a
constant ¢), is typically adopted as the criterion of efficiency in computational
complexity. The class of all computational problems possessing polynomial-
time algorithms is denoted P.! Thus ADDITION and MULTIPLICATION are
in P, and more generally we think of P as identifying the “easy” computa-
tional problems. Even though not all polynomial-time algorithms are fast in
practice, this criterion has the advantage of robustness: the class P seems
to be independent of changes in computing technology. P is an example of
a complexity class — a class of computational problems defined via some
algorithmic constraint, in this case “polynomial time”.

In contrast, algorithms that do not run in polynomial time are con-
sidered infeasible. For example, consider the trial division algorithms for
integer factoring or primality testing (see prime number). For an n-bit num-

ber, trial division can take time up to 22, which is exponential time rather
than polynomial time in n. Thus, even for moderate values of n (e.g. n =
200) trial division of n-bit numbers is completely infeasible for present-day
computers, whereas addition and multiplication can be done in a fraction of
a second. Computational complexity, however, is not concerned with the effi-
ciency of a particular algorithm (such as trial division), but rather whether a
problem has any efficient algorithm at all. Indeed, for primality testing, there
are polynomial-time algorithms known (see prime number), so PRIMALITY
is in P. For integer factoring, on the other hand, the fastest known algorithm
has running time greater than 2”1/3, which is far from polynomial. Indeed,
it is believed that FACTORING is not in P; the RSA and Rabin cryptosystems
(see RSA public-key encryption, RSA digital signature scheme, Rabin cryptosystem,
Rabin signature scheme) rely on this conjecture. One of the ultimate goals
of computational complexity is to rigorously prove such lower bounds, i.e.
establish theorems stating that there is no polynomial-time algorithm for a
given problem. (Unfortunately, to date, such theorems have been elusive, so

!Typically, P is defined as a class of decision problems (i.e. problems with a yes/no
answer), but here we make no such restriction.



cryptography continues to rest on conjectures, albeit widely believed ones.
More on this below.)

Polynomial Security. Given the above association of “polynomial time”
with feasible computation, the general goal of cryptography becomes to con-
struct cryptographic protocols that have polynomial efficiency (i.e., can be
executed in polynomial time) but super-polynomial security (i.e., cannot be
broken in polynomial time). This guarantees that, for a sufficiently large
setting of the security parameter (which roughly corresponds to the input
length in complexity theory), “breaking” the protocol takes much more time
than using the protocol. This is referred to as asymptotic security.

While polynomial time and asymptotic security are very useful for the
theoretical development of the subject, more refined measures are needed
to evaluate real-life implementations. Specifically, one needs to consider the
complexity of using and breaking the system for fixed values of the input
length, e.g. n = 1000, in terms of the actual time (e.g. in seconds) taken
on current technology (as opposed the “basic steps” taken on an abstract
model of computation). Efforts in this direction are referred to as concrete
security. Almost all results in computational complexity and cryptography,
while usually stated asymptotically, can be interpreted in concrete terms.
However, they are often not optimized for concrete security (where even
constant factors hidden in O-notation are important).

Even with asymptotic security, it is sometimes preferable to demand that
the gap between the efficiency and security of cryptographic protocols grows
even more than polynomially fast. For example, instead of asking simply for
super-polynomial security, one may ask for exponential security (i.e. cannot
be broken in time 2™ for some € > 0). Based on the current best known
algorithms, it seems that FACTORING may have exponential hardness and
hence the cryptographic protocols based on its hardness may have exponen-
tial security. 2

Complexity-Based Cryptography. As described above, a major aim of
complexity theory is to identify problems that cannot be solved in polynomial

2In cryptography, a slightly different definition of exponential hardness is typically
employed, with exponential security (compare exponential time) only referring to pro-
tocols that cannot be broken in time 2" for some € > 0. Accordingly, in cryptog-
raphy, FACTORING is typically considered to provide subexponential security (compare
subexponential time).




time and a major aim of cryptography is to construct protocols that cannot
be broken in polynomial time. These two goals are clearly well-matched.
However, since proving lower bounds (at least for the kinds of problems
arising in cryptography) seems beyond the reach of current techniques in
complexity theory, an alternative approach is needed.

Present-day complexity-based cryptography therefore takes a reductionist
approach: it attempts to relate the wide variety of complicated and subtle
computational problems arising in cryptography (forging a signature, com-
puting partial information about an encrypted message, etc.) to a few, simply
stated assumptions about the complexity of various computational problems.
For example, under the assumption that there is no polynomial-time algo-
rithm for FACTORING (that succeeds on a significant fraction of composites
of the form n = pq), it has been demonstrated (through a large body of re-
search) that it is possible to construct algorithms for almost all cryptographic
tasks of interest (e.g., asymmetric cryptosystems, digital signature schemes,
secure multiparty computation, etc.). However, since the assumption that
FACTORING is not in P is only a conjecture and could very well turn out to
be false, it is not desirable to have all of modern cryptography to rest on this
single assumption. Thus another major goal of complexity-based cryptogra-
phy is to abstract the properties of computational problems that enable us
to build cryptographic protocols from them. This way, even if one problem
turns out to be in P, any other problem satisfying those properties can be
used without changing any of the theory. In other words, the aim is to base
cryptography on assumptions that are as weak and general as possible.

Modern cryptography has had tremendous success with this reductionist
approach. Indeed, it is now known how to base almost all basic cryptographic
tasks on a few simple and general complexity assumptions (that do not rely
on the intractability of a single computational problem, but may be realized
by any of several candidate problems). Among other things, the text below
discusses the notion of a reduction from complexity theory that is central to
this reductionist approach, and the types of general assumptions, such as the
existence of one-way functions, on which cryptography can be based.

Reductions. One of the most important notions in computational com-
plexity, which has been inherited by cryptography, is that of a reduction
between computational problems. We say that problem II reduces to prob-
lem T" if IT can be solved in polynomial time given access to an “oracle” that



solves I' (i.e. a hypothetical black box that will solve I on instances of our
choosing in a single time step). Intuitively, this captures the idea that prob-
lem II is no harder than problem I'. For a simple example, let us see that
PRIMALITY reduces to FACTORING.? Suppose we have an oracle that, when
fed any integer, returns its prime factorization in one time step. Then we
could solve PRIMALITY in polynomial time as follows: on input NV, feed the
oracle with N, output “prime” if the only factor returned by the oracle is N
itself, and output “composite” otherwise.

It is easy to see that if problem II reduces to problem I', and I' € P,
then I € P: if we substitute the oracle queries with the actual polynomial-
algorithm for I', we obtain a polynomial-time algorithm for II. Turning this
around, IT ¢ P implies that I' ¢ P. Thus, reductions give a way to use
an assumption that one problem is intractable to deduce that other prob-
lems are intractable. Much work in cryptography is based on this paradigm:
for example, one may take a complexity assumption such as “there is no
polynomial-time algorithm for FACTORING” and use reductions to deduce
statements such as “there is no polynomial-time algorithm for breaking en-
cryption scheme X”. (As discussed later, for cryptography, the formaliza-
tions of such statements and the notions of reduction in cryptography are
more involved than suggested here.)

NP. Another important complexity class is NP. Roughly speaking, this is
the class of all computational problems for which solutions can be verified in
polynomial time.* For example, given that PRIMALITY is in P, we can easily
see that FACTORING is in NP: to verify that a supposed prime factorization
of a number N is correct, we can simply test each of the factors for primality
and check that their product equals N. NP can be thought of as the class
of “well-posed” search problems: it is not reasonable to search for something
unless you can recognize when you have found it. Given this natural def-
inition, it is not surprising that the class NP has taken on a fundamental
position in computer science.

It is evident that P C NP, but whether or not P = NP is considered
to be one of the most important open problems in mathematics and com-

30f course, this reduction is redundant given that PRIMALITY is in P, but suppose for
a moment that we did not know this.

4NP stands for nondeterministic polynomial time. Like P, NP is typically defined as
a class of decision problems, but again that constraint is not essential for our informal
discussion.



puter science.® It is widely believed that P # NP, indeed, we have seen
that FACTORING is one candidate for a problem in NP \ P. In addition
to FACTORING, NP contains many other computational problems of great
importance, from many disciplines, for which no polynomial-time algorithms
are known.

The significance of NP as a complexity class is due in part to the NP-
complete problems. A computational problem II is said to be NP-complete
if IT € NP and every problem in NP reduces to II. Thus the NP-complete
problems are the “hardest” problems in NP, and are the most likely to be
intractable. (Indeed, if even a single problem in NP is not in P, then all
the NP-complete problems are not in P.) Remarkably, thousands of nat-
ural computational problems have been shown to be NP-complete. (See
[1].) Thus, it is an appealing possibility to build cryptosystems out of NP-
complete problems, but unfortunately, NP-completeness does not seem suf-
ficient for cryptographic purposes (as discussed later).

Randomized Algorithms. Throughout cryptography, it is assumed that
parties have the ability to make random choices; indeed this is how one
models the notion of a secret key. Thus, it is natural to allow not just
algorithms whose computation proceeds deterministically (as in the defi-
nition of P), but also consider randomized algorithms — ones that may
make random choices in their computation. (Thus, such algorithms are
designed to be implemented with a physical source of randomness. See
random bit generation (hardware).)

Such a randomized (or probabilistic) algorithm A is said to solve a given
computational problem if on every input x, the algorithm outputs the correct
answer with high probability (over its random choices). The error probability
of such a randomized algorithm can be made arbitrarily small by running
the algorithm many times. For examples of randomized algorithms, see the
probabilistic primality tests in the entry on prime number. The class of
computational problems having polynomial-time randomized algorithms is
denoted BPP.® A widely believed strengthening of the P # NP conjecture
is that NP ¢ BPP.

5The significance of P vs. NP in mathematics comes from the fact that it is equivalent
to asking whether we can find short mathematical proofs efficiently.
SBPP stands for “bounded-error probabilistic polynomial time.”



P vs. NP and Cryptography. The assumption P # NP (and even
NP ¢ BPP) is necessary for most of modern cryptography. For example,
take any efficient encryption scheme and consider the following computa-
tional problem: given a ciphertext C', find the corresponding message M
along with the key K and any randomization R used in the encryption pro-
cess. This is an NP problem: the solution (M, K, R) can be verified by
re-encrypting the message M using the key K and the randomization R and
checking whether the result equals C'. Thus, if P = NP, this problem can
be solved in polynomial time, i.e. there is an efficient algorithm for breaking
the encryption scheme.”

However, the assumption P # NP (or even NP ¢ BPP) does not appear
sufficient for cryptography. The main reason for this is that P # NP refers
to worst-case complexity. That is, the fact that a computational problem II
is not in P only means that for every polynomial-time algorithm A, there
exist inputs on which A fails to solve II. However, these “hard inputs” could
conceivably be very rare and very hard to find. Intuitively, to make use
of intractability (for the security of cryptosystems), we need to be able to
efficiently generate hard instances of an intractable computational problem.

One-way functions. The notion of a one-way function captures the kind
of computational intractability needed in cryptography. Informally, a one-
way function is a function f that is “easy to evaluate” but “hard to invert”.
That is, we require that the function f can be computed in polynomial time,
but given y = f(x), it is intractable to recover x. The difficulty of inversion
is required to hold even when the input x is chosen at random. Thus, we
can efficiently generate hard instances of the problem "find a preimage of
y”, by selecting = at random and setting y = f(z). (Note that we actually
generate a hard instance together with a solution; this is another way in
which one-way functions are stronger than what follows from P # NP.)
To formalize the definition, we need the concept of a negligible function. A
function € : N — [0, 1] is negligible if for every constant ¢, there is an ng
such that €(n) < 1/n° for all n > ng. That is, € vanishes faster than any

"Technically, to conclude that the cryptosystem is broken requires that the message
M is uniquely determined by ciphertext C'. This will essentially be the case for most
messages if the message length is greater than the key length. (If the message length is
less than or equal to the key length, then there exist encryption schemes that achieve
information-theoretic security (for a single encryption, e.g. the one-time pad), regardless
of whether or not P = NP.




polynomial. Then we have:

Definition 1 (one-way function) A one-to-one function f is one-way if
it satisfies the following conditions.

1. (Easy to evaluate) f can be evaluated in polynomial time.

2. (Hard to invert) For every probabilistic polynomial-time algorithm A,
there is a negligible function € such that

where the probability is taken over selecting a input X of length n uni-
formly at random and the random choices of the algorithm A.

For simplicity, we have only given the definition for one-to-one one-way
functions. Without the one-to-one constraint, the definition should refer to
the problem of finding some preimage of f(X), i.e. require the probability
that A(f(X)) € f~'(f(X)) is negligible.®

The input length n can be thought of as corresponding to the security
parameter (or key length) in a cryptographic protocol using f. If f is one-
way, we are guaranteed that by making n sufficiently large, inverting f takes
much more time than evaluating f. However to know how large to set n in an
implementation requires a concrete security analogue of the above definition,
where the maximum success probability e is specified for A with a particu-
lar running time on a particular input length n, and a particular model of
computation.

The “inversion problem” is an NP problem (to verify that X is a preim-
age of Y, simply evaluate f(X) and compare with Y ). Thus, if NP C BPP
then one-way functions do not exist. However, the converse is an open prob-
lem, and proving it would be a major breakthrough in complexity theory.
Fortunately, even though the existence of one-way functions does not appear
to follow from NP ¢ BPP, there are a number of natural candidates for
one-way functions.

8For technical reasons, we also need to require that f does not shrink its input too
much, e.g. that the length of |f(x)| and length of |z| are polynomially related (in both
directions.



Some Candidate One-Way Functions. These examples are described
informally, and may not all match up perfectly with the simplified definition
above. In particular, some are actually collections of one-way functions F =
{fi : D; — R;}, in the functions f; are parameterized by an index ¢ that is
generated by some randomized algorithm.’

1. (Multiplication) f(p,q) = p - q, where p and ¢ are primes of equal
length. Inverting f is the FACTORINGproblem (see integer factoring,
which indeed seems intractable even on random inputs of the form p-q.

2. (Subset Sum) f(z1,...,2n,5) = (x1,...,%n, > ;e ;). Here each z; is
an n-bit integer and S C [n]. Inverting f is the SUBSET SuMproblem
(see knapsack cryptosystem). This problem is known to be NP-complete,
but for the reasons discussed above, this does not provide convincing
evidence that f is one way (nevertheless it seems to be so).

3. (The Discrete Log Collection) fq ,(z) = g%, where G is a cyclic group
(e.g. G = Z} for prime p), g is a generator of G, and v € {1,...,|G|-1}.
Inverting f¢ 4 is the DISCRETE LoGproblem (see discrete logarithm problem),
which seems intractable. This (like the next two examples) is actually
a collection of one-way functions, parametrized by the group G and
generator g.

4. (The RSA Collection) f,.(z) = 2° mod n, where n is the product of
two equal-length primes, e satisfies ged(e, ¢p(n)) = 1, and =z € Z7, .
Inverting f, . is the RSA problem.

5. (Rabin’s Collection (see Rabin cryptosystem, Rabin signature scheme)
fn(z) = 2? mod n, where n is a composite and = € Z*. Inverting f, is
known to be as hard as factoring n.

6. (Hash functions & block ciphers) Most cryptographic hash functions
seem to be finite analogues of one-way functions with respect to con-
crete security. Similarly, one can obtain candidate one-way functions
from block ciphers, say by defining f(K) to be the block cipher applied
to some fixed message using key K.

9Actually, one can convert a collection of one-way functions into a single one-way
function, and conversely. See [3].



In a long sequence of works by many researchers, it has been shown that
one-way functions are indeed the “right assumption” for complexity-based
cryptography. On one hand, almost all tasks in cryptography imply the
existence of one-way functions. Conversely (and more remarkably), many
useful cryptographic tasks can be accomplished given any one-way function.

Theorem 1 (see [3, 4]) The existence of one-way functions is necessary
and sufficient for each of the following:

o The existence of commitment schemes.

The existence of pseudo-random number generators.

The existence of pseudorandom functions.

The existence of symmetric cryptosystems.

e The existence of digital signature schemes.

These results are proven via the notion of reducibility mentioned above,
albeit in much more sophisticated forms. For example, to show that the
existence of one-way functions implies the existence of pseudorandom gener-
ators, one describes a general construction of a pseudorandom generator G
from any one-way function f. To prove the correctness of this construction,
one shows how to “reduce” the task of inverting the one-way function f to
that of “distinguishing” the output of the pseudorandom generator GG from
a truly random sequence. That is, any polynomial-time algorithm that dis-
tinguishes the pseudorandom generator can be converted into a polynomial-
time algorithm that inverts the one-way function. But if f is one-way, it
cannot be inverted, so we conclude that the pseudorandom generator is se-
cure. These reductions are much more delicate than those arising in, say, the
NP-completeness, because they involve non-traditional computational tasks
(e.g., inversion, distinguishing) that must be analyzed in the average case
(i.e. with respect to nonnegligible success probability).

The general constructions asserted in Theorem 1 are very involved and
not efficient enough to be used in practice (though still polynomial time), so
it should be interpreted only as a “plausibility result”. However, from special
cases of one-way functions, such as one-way permutations (see one-way function)
or some of the specific candidate one-way functions mentioned earlier, much
more efficient constructions are known.
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Trapdoor Functions. For some tasks in cryptography, most notably public-
key encryption (see public-key cryptography), one-way functions do not seem
to suffice, and additional properties are used. One such property is the trap-
door property, which requires that the function can be easily inverted given
certain “trapdoor information”. We do not give the full definition here, but
just list the main properties. (See also trapdoor one-way function.)

Definition 2 (trapdoor functions, informal) A collection of one-to-one
functions F = {f; : D; — R;} is a collection of trapdoor functions if

1. (Efficient generation) There is a probabilistic polynomial-time algo-
rithm that, on input a security parameter n, generates a pair (i,t;),
where i is the index to a (random) function in the family and t; is the
associated “trapdoor information”.

2. (Easy to evaluate) Given i and x € D;, one can compute f;(x) in
polynomial time.

3. (Hard to invert) There is no probabilistic polynomial-time algorithm
that on input (i, fi(z)) outputs x with nonnegligible probability. (Here,
the probability is taken over i, x € D;, and the coin tosses of the in-
verter.)

4. (Easy to invert with trapdoor) Given t; and f;(x), one can compute x
in polynomial time.

Thus, trapdoor functions are collections of one-way functions with an
additional trapdoor property (Item 4). The RSA and Rabin collections de-
scribed earlier have the trapdoor property. Specifically, they can be inverted
in polynomial time given the factorization of the modulus n.

One of the main applications of trapdoor functions is for the construction
of public-key encryption schemes.

Theorem 2 (see [4]) If trapdoor functions exist, then public-key encryption
schemes exist.

There are a number of other useful strengthenings of the notion of a one-
way function, discussed elsewhere in this volume: claw-free permutations,
collision-resistant hash functions (see collision resistance), and universal one-way hash functions
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Other Interactions with Cryptography. The interaction between com-
putational complexity and cryptography has has been very fertile. Above we
have described the role that computational complexity plays in cryptogra-
phy. Conversely, several important concepts that originated in cryptography
research have had a tremendous impact on computational complexity. Two
notable examples are the notions of pseudo-random number generators and
interactive proof systems. For more on these topics and the resulting devel-
opments in computational complexity, see [2].

Further Reading. Above we have touched upon only a small portion of
computational complexity, and even on the topics covered, many important
issues were ignored (not to mention historical references). Thus, we refer the
reader to the text [3, 4] for more on computational complexity as it relates
to cryptography (including formal definitions and proofs for the theorems
mentioned above), and the texts [6, 5] for other aspects of complexity theory.
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