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We present a deterministic logspace algorithm for solving S-T Connectivity on directed graphs

if (i) we are given a stationary distribution of the random walk on the graph in which both of the
input vertices s and t have nonnegligible probability mass and (ii) the random walk which starts at

the source vertex s has polynomial mixing time. This result generalizes the recent deterministic

logspace algorithm for S-T Connectivity on undirected graphs (O. Reingold, Journal of the
ACM, 2008). It identifies knowledge of the stationary distribution as the gap between the S-

T Connectivity problems we know how to solve in logspace (L) and those that capture all of

randomized logspace (RL).
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1. INTRODUCTION

There is a long and beautiful line of work in complexity theory, starting with [Blum
and Micali 1984; Yao 1982; Nisan and Wigderson 1994] giving evidence that ran-
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domized algorithms are not much more powerful than deterministic algorithms.
That is, under a variety of natural complexity assumptions, every randomized al-
gorithm can be fully derandomized with only a small loss in efficiency (e.g. time and
space). Like many research directions in complexity theory, a major long-term goal
is to obtain similar results unconditionally. Unfortunately, recent results loosely
show that, when we measure efficiency by time, derandomization (e.g. BPP = P)
implies superpolynomial circuit lower bounds (for NEXP), and thus unconditional
results may be out of reach [Impagliazzo et al. 2002; Kabanets and Impagliazzo
2004].

However, when we measure efficiency by space, it seems that there is hope for
unconditional derandomization, even showing that RL = L. Indeed, there are
highly nontrivial and unconditional deterministic simulations of RL. Most notably,
using Nisan’s pseudorandom generator for logspace computation [Nisan 1992], Saks
and Zhou [Saks and Zhou 1999] showed that RL ⊆ L3/2, where L3/2 denotes the
class of problems solvable in space O(log3/2 n). But proving RL = L has remained
elusive; in fact, there has been no improvement to the Saks and Zhou theorem in
over a decade.

Hope for further progress on RL vs. L was recently renewed, when Rein-
gold [Reingold 2008] showed how to fully derandomize the classic and most no-
table example of an RL algorithm, namely the random-walk algorithm of [Aleli-
unas et al. 1979] for Undirected S-T Connectivity. (Independently, Tri-
fonov [Trifonov 2005] gave an deterministic algorithm for this problem using space
O(log n · log log n).) It is well-known that general RL computations can be viewed
as some restricted form of the S-T Connectivity problem on directed graphs
(a.k.a. digraphs). (S-T Connectivity on general digraphs is NL-complete, and
RL algorithms correspond to a restricted class of NL algorithms.) Thus, one can
attack the RL vs. L question by trying to close the gap between undirected graphs
(solvable in L by [Reingold 2008]) and the types of digraphs corresponding to RL
machines. This approach was pursued in [Reingold et al. 2006].

The first question in this approach is to identify a class of digraphs whose S-
T Connectivity problems capture RL. In [Reingold et al. 2006], it was shown
that S-T Connectivity on digraphs where the random walk converges to the
stationary distribution in a polynomial number of steps is complete for RL. For
short, we refer to such graphs as poly-mixing, and the resulting computational prob-
lem as Poly-Mixing S-T Connectivity.1 The poly-mixing condition captures
what is needed for the random-walk algorithm of [Aleliunas et al. 1979] to work.2

Consequently, proving RL = L amounts to derandomizing this algorithm, and we
may hope to do so by closing the gap between poly-mixing graphs and undirected
graphs.

There are two general ways we might hope to place Poly-Mixing S-T Connec-
tivity in L, corresponding to two common settings for derandomization in general.
In the explicit setting, we design an algorithm that is given full access to the input

1Technically, this is a promise problem, and thus is complete for the promise-problem analogue of

RL.
2Technically, we also require that s and t have non-negligible stationary probability, but only

require fast mixing on the strongly connected component containing s.
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graph and can do arbitrary logspace computations on it. This is the most general
approach, in the sense that it is equivalent to proving RL = L. However, many
derandomization results are actually done in a more restricted oblivious setting.
Here the algorithm is not given explicit access to the input graph. Instead, based
on just the size and degree of the input graph, it generates “pseudorandom” bits to
be used in the randomized algorithm. If the pseudorandom bits are generated from
a short seed, then we can get a deterministic algorithm by enumerating all seeds.
For example, any pseudorandom generator for space-bounded computation, such
as Nisan’s [Nisan 1992], yields an oblivious derandomization. (But Nisan’s pseu-
dorandom generator does not imply RL = L because the seed length is O(log2 n)
rather than O(log n).) As noted in [Reingold et al. 2006], to put Poly-Mixing
S-T Connectivity (and hence all of RL) in L, a somewhat weaker notion of
pseudorandom generator suffices. Specifically, we only need a method for generat-
ing pseudorandom walks on poly-mixing graphs that ensures that the final vertex
is distributed close to the stationary distribution; we refer to such a generator as
a pseudorandom walk generator. Oblivious methods for derandomization tend to
be interesting in their own right, and have many applications beyond just proving
RL = L, such as [Indyk 2000; Kaplan et al. 2005; Haitner et al. 2006; Sivakumar
2002]. However, they can be harder to obtain. For example, the derandomization
of Saks and Zhou [Saks and Zhou 1999] is not oblivious.

The main results of [Reingold et al. 2006] concern the oblivious setting. First,
extending the techniques of [Reingold 2008], they exhibit a pseudorandom walk
generator for regular digraphs that are consistently labelled. Regular means that
all the in-degrees and out-degrees are the same, and consistently labelled means
that it is never the case that the i’th neighbor of u is the same as the the i’th
neighbor of v for distinct vertices u and v. Second, they show that a pseudorandom
walk generator for arbitrarily labelled regular digraphs implies a pseudorandom
walk generator for poly-mixing digraphs, and thus RL = L. Thus, dealing with
inconsistent labelling is the “only” obstacle to proving RL = L in the oblivious
setting.

In this work, we focus on the explicit setting. Recall that Reingold [Reingold
2008] gave a deterministic logspace algorithm for Undirected S-T Connectiv-
ity in this setting. In [Reingold et al. 2006], this was extended to (arbitrarily
labelled) regular digraphs, and more generally Eulerian digraphs (where every ver-
tex has the same in-degree as out-degree). This result is obtained by noting that
there is a simple reduction from S-T Connectivity in Eulerian digraphs to S-T
Connectivity in consistently labelled regular digraphs, and then applying the
pseudorandom walk generator for consistently labelled regular digraphs mentioned
above. Thus, after [Reingold 2008; Reingold et al. 2006], the gap in the explicit
setting is between regular or Eulerian digraphs (which are in L) and general poly-
mixing digraphs (which are complete for RL).

Regular and Eulerian digraphs have a few properties not shared by general poly-
mixing digraphs. It is easy to obtain a stationary distribution for the random walk
on such graphs: the uniform distribution in the case of regular graphs, and assigning
each vertex mass proportional to its degree in the case of Eulerian digraphs. In
addition, this stationary distribution can be computed exactly in logspace and every
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vertex has non-negligible probability in it (at least 1/(#edges)).
In this work, we show that in general, knowing a stationary distribution of the

random walk is sufficient to solve Poly-Mixing S-T Connectivity in deter-
ministic logspace. That is, we consider a further restriction of Poly-Mixing S-T
Connectivity, where we are given the stationary probabilities as part of the input,
and show that the resulting (promise) problem, Known-Stationary S-T Con-
nectivity, is in L. We allow the possibility that some vertices have exponentially
small stationary probability, and the estimates only need to be accurate to within
a 1/poly(n) additive error. We view this result as clarifying the property that
makes Reingold’s algorithm and its generalizations possible, and suggesting that
future attempts to prove RL = L might focus on dealing with unknown stationary
distributions.

Problem Oblivious Explicit

Regular digraph with consistent labelling L L

Regular digraph with arbitrary labelling RL L

Poly-mixing digraph with known stationary distribution RL L
(our result)

Poly-mixing digraph (RL complete) RL RL

Table I. S-T Connectivity problems and RL vs. L

An entry of L means that there is a deterministic logspace solution for the given class of graphs in

the given setting (oblivious or explicit). An entry of RL means that such a solution would imply
RL = L.

It is interesting to note the very different behavior of the oblivious setting and
explicit setting, as summarized in Table I. Our result shows that in the explicit
setting, the gap between L and RL centers around whether the stationary distri-
bution is known. But in the oblivious setting, this is not an essential property, as
the results of [Reingold et al. 2006] show that handling (arbitrarily labelled) regular
digraphs, where the stationary distribution is uniform, suffices to solve all of RL.
Instead, in the oblivious setting the key property seems to be consistent labelling;
note that this property is irrelevant for the explicit setting, where there is a simple
reduction from arbitrarily labelled regular graphs to consistently labelled ones.

The idea of restricting to the case that estimates of the stationary probabilities
are known is inspired by the work of Raz and Reingold [Raz and Reingold 1999], who
studied derandomization of RL machines when estimates of the state probabilities
of the RL machine are known. Our model and results are incomparable to those
of [Raz and Reingold 1999]. They require estimates of the probabilities on walks
of every length (in a layered graph), whereas we only require the estimates of the
long-term behavior (in a poly-mixing graph). On the other hand, they require only
weak multiplicative estimates of the probabilities, whereas we require good additive
estimates. Finally, they only derandomize walks of length roughly 2

√
logn, whereas

our work allows the walk length/mixing time to be poly(n).
Our algorithm for Known-Stationary S-T Connectivity is obtained by giv-

ing a logspace reduction from the case of poly-mixing digraphs with known sta-
tionary probabilities to the case of nearly regular digraphs, and then showing that
the algorithm of [Reingold et al. 2006] works even if the graph is nearly regular.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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This reduction is inspired by the result of [Reingold et al. 2006] showing that a
pseudorandom walk generator for (arbitrarily labelled) regular digraphs implies a
pseudorandom walk generator for all poly-mixing digraphs. The proof of their
theorem works by showing that every poly-mixing digraph can be ‘blown up’ to a
regular digraph such that pseudorandom walks on the regular digraph project down
to pseudorandom walks on the poly-mixing digraph. The ‘blow up’ procedure of
[Reingold et al. 2006] is only done in the analysis, and thus need not be computable
in logspace (the logspace algorithm only needs to do the projection of walks, which
is very simple). Much of the work in our result is in showing that a similar blow
up can in fact be done in logspace if estimates of the stationary probabilities are
known. To do this, we need to find alternatives to some of the steps taken in the
construction of [Reingold et al. 2006], and settle for getting a nearly regular rather
than exactly regular graph at the end.

Organization. The rest of the paper is organized as follows. We discuss technical
preliminaries about random walks on digraphs and Markov chains in Section 2. In
Section 3, we give the formal statement of our main result and a high-level overview
of the proof. Finally, we present the proof of the main theorem in Section 4.

2. PRELIMINARIES

In this paper, we consider directed graphs (digraphs for short) G = ([n], E), and
allow them to have multiple edges and self-loops. A graph G is outregular if every
vertex has the same number d of edges leaving it; d is called the out-degree. G is
regular if it is both outregular and inregular. We say G is a d-(out)regular graph if
G is a n-vertex (out)regular graph of (out-)degree d.

Given a graph G on n vertices, we consider the random walk on G described by
the transition matrix MG whose (u, v)’th entry equals the number of edges from u
to v, divided by the out-degree of v. MG is a Markov chain on state space [n]. Since
we are interested in random walks on graphs, when we refer to a Markov chain M ,
there is always an underlying graph G with MG = M .

We say M is a-lazy if M(v, v) ≥ a for every v, and M is lazy if M is a-lazy
for some constant a > 0. A distribution π on [n] is stationary for M if πM = π.
For a distribution α on [n], denote the support of α by supp(α) def= {v : α(v) > 0}.
Note that the support of a stationary distribution is always the union of disjoint
strongly connected components since stationarity implies that if there is a path
from u ∈ supp(π) to v, then there is also a path from v to u.

We are interested in the rate at which a Markov chain M converges to a stationary
distribution. In terms of random walk on the graph, how many steps does it take to
reach a stationary distribution? It is well-known (see, e.g., [Aldous and Fill 2001])
that for undirected graphs, the rate of convergence is characterized by the second
largest (in absolute value) eigenvalue λ2(M) of the matrix M . More precisely, let
αt denote the distribution of a random walk after t-th step, and π be the stationary
distribution αt converges to, then the variation distance of αt to π will decrease
in the rate λ2(M)t (For two distributions α, β on [n], their variation distance is
∆(α, β) def= (1/2)

∑
v |α(v)− β(v)|.)

However, for directed graphs, λ2(M) may even not exist. To estimate the mixing
ACM Journal Name, Vol. V, No. N, Month 20YY.
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time (i.e. the number of steps to get “close” to the stationary distribution), Mi-
hail [Mihail 1989] and Fill [Fill 1991] introduce a generalized parameter, which we
call the spectral expansion λπ(M), and is equal to λ2(M) when G is undirected.

Definition 2.1. Let M be a Markov chain and π a stationary distribution for
M . We define the spectral expansion of M with respect to π to be

λπ(M) def= max
x∈Rn:

P
v∈supp(π) x(v)=0

‖xM‖π
‖x‖π

,

where ‖x‖π
def=
∑
v∈supp(π) x(v)2/π(v).

The following lemma shows that, like λ2, λπ measures the rate of convergence to
the stationary distribution π.

Lemma 2.2 cf. [Reingold et al. 2006]. Let M be a Markov chain on [n] and
π a stationary distribution with λπ(M) < 1. Let αt denote the distribution of a
random walk after t steps starting from distribution α0 with supp(α0) ⊂ supp(π).
Then,

∆(αt, π) ≤ λπ(M)t · ‖α0 − π‖π.

In particular, the walk αt converges to π.

Since the above lemma implies that random walks starting at any vertex in
supp(π) converge to π, it follows that supp(π) consists of a single strongly con-
nected component and that π is the unique stationary distribution supported on
this component.

Sometimes it is convenient to use the spectral gap γπ(M) def= 1− λπ(M). We will
often bound λπ(M) (or γπ(M)) by the conductance of M .

Definition 2.3 [Lawler and Sokal 1988; Sinclair and Jerrum 1989]. Let
M be a Markov chain with n vertices and π a stationary distribution. The conduc-
tance of M with respect to π is defined to be

hπ(M) def= min
A:0<π(A)≤1/2

∑
u∈A,v 6∈A π(u)M(u, v)

π(A)
.

Observe that the denominator π(A) is the probability mass contained in A, and the
numerator

∑
u∈A,v 6∈A π(u)M(u, v) is the probability mass flowing out from A. The

conductance is a lower bound of the fraction of probability mass in A leaving A.
Intuitively, if the conductance is large, then the probability mass will mix quickly.
Indeed, the following lemma formalizes this intuition.

Lemma 2.4 [Sinclair and Jerrum 1989; Mihail 1989; Fill 1991]. Let M
be a connected, 1/2-lazy Markov chain and π a stationary distribution. Then
γπ(M) ≥ hπ(M)2/2.

To estimate the conductance, we introduce another useful measure of mixing time
which is implicitly used in [Reingold et al. 2006].

Definition 2.5. Let M be a Markov chain, and s be a vertex of M . The visiting
length of s, denoted `s(M), is the smallest number ` such that for every vertex v
ACM Journal Name, Vol. V, No. N, Month 20YY.
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reachable from s, a random walk of length ` from v visits s with probability at least
1/2.

The length for v to visit s as defined above is related to the hitting time, which
is the expected time to visit s from v. We use visiting length because it extends
naturally to a more general notion that we need in Section 4. Intuitively, if s has a
short visiting length, then there must be a lot of flow towards s, which can be used
to bound the conductance.

Lemma 2.6 [Reingold et al. 2006]. Let M be a 1/2-lazy Markov chain. Let
s be a vertex of M with visiting length `. Then M has a stationary distribution π
(with s ∈ supp(π)) such that the conductance satisfies hπ(G) ≥ 1/(2`), and hence
the spectral gap satisfies γπ(G) ≥ 1/(8`2).

Since spectral gap and visiting length are both measures of mixing time, it is not
surprising that we can also bound visiting length by spectral gap.

Lemma 2.7 implicit in [Reingold et al. 2006]. Let M be a Markov chain
with n vertices such that the underlying graph is d-regular, and π be a stationary
distribution with γπ(M) > 1/k. Let s be a vertex of M with π(s) > 1/k, then the
visiting length `s(M) is at most O(nk3 log d).

3. MAIN THEOREM AND PROOF OVERVIEW

Our main result is a deterministic logspace algorithm to solve S-T Connectivity
problem for digraphs with polynomial mixing time when a good approximation of
a stationary distribution is available. Formally, we study the following problems,
and solve them in deterministic logspace.

δ-Known-Stationary S-T Connectivity:

—Input: (G, p1, . . . , pn, s, t, 1k), where G = ([n], E) is a d-outregular digraph,
pv ∈ [0, 1] for each v ∈ [n], s, t ∈ [n] = V , and k ∈ N.

—YES instances:
(1) There is a stationary distribution π such that π(s), π(t) ≥ 1/k, and for each

v ∈ [n] that can reach s, |pv − π(v)| ≤ δ.
(2) If we let πs be the restriction of π to the strongly connected component of

supp(π) containing s,3 then γπs(G), πs(s), πs(t) ≥ 1/k.
—NO instances: There is no path from s to t in G.

δ-Known-Stationary Find Path:

—Input: (G, p1, . . . , pn, s, t, 1k), where G = ([n], E) is a d-outregular digraph,
pv ∈ [0, 1] for each v ∈ [n], s, t ∈ [n] = V , and k ∈ N.

—Promise:
(1) There is a stationary distribution π such that π(s), π(t) ≥ 1/k, and for each

v ∈ [n] that can reach s, |pv − π(v)| ≤ δ.
(2) If we let πs be the restriction of π to the strongly connected component of

supp(π) containing s, then γπs(G), πs(s), πs(t) ≥ 1/k.

3That is, if S ⊂ supp(π) is the strongly connected component containing s, then πs(v) =

π(v)/(
P

w∈S π(w))

ACM Journal Name, Vol. V, No. N, Month 20YY.
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—Output: A path from s to t in G.

In both of the above problems, (p1, . . . , pn) is called the input stationary distri-
bution, and δ can be a function of the input parameters n, d, and k. We note that
if we remove Condition 1 (regarding the accuracy of the stationary distribution),
then the resulting problems, Poly-Mixing S-T Connectivity and Poly-Mixing
Find Path become complete for the promise and search version of RL, respectively
[Reingold et al. 2006].

Note that the input stationary distribution (p1, . . . , pn) does not necessarily reveal
the solution to the decision problem, because (p1, . . . , pn) can be arbitrary on NO
instances (in particular, pt can be larger than 1/k). Moreover, even if we required
Condition 1 (regarding the accuracy of the stationary distribution) to hold on NO
instances, pt could be arbitrary in case that there is no path from t to s. However,
when there is a path from t to s, but no path from s to t, any stationary distribution
π has to have π(t) = 0, and so pt ≤ δ. In this case the decision problem becomes
trivial, but the search version is still interesting. We remark that the reduction
from arbitrary RL problems to Poly-Mixing S-T Connectivity presented in
[Reingold et al. 2006] always gives such instances.

Theorem 3.1. There is a polynomial p such that (1/p(n, d, k))-Known-Stationary
S-T Connectivity and (1/p(n, d, k))-Known-Stationary Find Path can be
solved in logarithmic space.

To prove Theorem 3.1, it suffices to provide a deterministic logspace algorithm
for Known-Stationary Find Path as we can check whether the path found leads
from s to t in order to decide Known-Stationary S-T Connectivity. Let G
be an input graph satisfying the promise. Our goal is to find a path from s to t
in G. To simplify the presentation, we first set δ = 0, and use π(·) to denote the
input stationary distribution. We will explain why the proof still works for some
δ = 1/poly(n, d, k) at the end.

Recall the idea mentioned in introduction. We first blow up G to a graph G′′ that
is “close” to a consistently labelled regular graph Gcon, and then apply the pseu-
dorandom walk generator of [Reingold et al. 2006] for consistently labelled regular
graphs to G′′. The pseudorandom walk generator will produce a path in G′′ which
can be projected to a path in G, which will visit t with non-negligible probability.
Since the pseudorandom walk generator uses a seed of logarithmic length, we can
enumerate all possible seeds and find a path from s to t in deterministic logspace.

Although the idea is natural, the construction and analysis are somewhat deli-
cate. The main challenge is that we need to preserve the mixing time throughout
the construction. Since the pseudorandom walk generator works for consistently
labelled regular graphs, but G′′ is only close to such a graph Gcon, there is some
“error” accumulated along the pseudorandom walk. It is important to minimize
the error produced in each step (by making G′′ closer to Gcon) while keeping the
walk short by maintaining the mixing time.

We divide the construction into four stages. The algorithm will actually construct
two graphs G′ and G′′, and for the purpose of analysis, we will define two regular
graphs Greg and Gcon. Before we discuss the construction, we first discuss two
properties of G we want to preserve throughout the construction. Let ε be a small
ACM Journal Name, Vol. V, No. N, Month 20YY.
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error parameter (which we will later set to be 1/poly(n, d, k).)

(1) All four graphs preserve the s-t connectivity of G: Each vertex v in G will
become a cloud of vertices in each of the four graphs. The existence of a path
from s to t in G implies the existence of a path from the cloud of s to the cloud
of t in the four graphs. Furthermore, every path from the cloud of s to the
cloud of t in G′ or G′′ can be projected to a path from s to t in G in logspace.

(2) G′, Greg, and Gcon preserve the mixing time of G: We want the spectral gaps
γ(G′), γ(Greg), γ(Gcon) ≥ 1/poly(n, d, k) for some fixed polynomial independent
of ε. In this case, we say G′, Greg, and Gcon have short mixing time.

We describe the goal of each stage below.

STAGE 1 We improve the regularity of G in this stage. We convert G to a nearly
dD-regular digraph G′ with roughly N vertices in logspace, where N,D are blow up
factors depending on ε. We use the input stationary distribution to determine how
much to blow up each vertex and edge so that G′ is nearly regular. More precisely,
nearly regular means that except for an O(ε) fraction of bad vertices in G′, every
vertex has in-degree and out-degree (1±O(ε))dD. We emphasize that G′ has short
mixing time.

STAGE 2 This stage is a mental experiment for the sake of the analysis and is
not used by the algorithm. We define a regular graph Greg “close” to G′ by adding
an O(kε) fraction of edges to G′. Adding only a small number of edges is the key
property to show that the behavior of pseudorandom walk generator of [Reingold
et al. 2006] on G′′ and Gcon are almost the same in Stage 4 below. Since G′ is
nearly regular, it is easy to get a regular graph by adding small number of edges.
The main challenge is to ensure that Greg has short mixing time, which we do by
using a generalization of the notion of visiting length.

STAGE 3 Now we have (near-)regularity, we work on consistent labelling. There
is a simple graph operation that converts a regular graph Greg to a consistently
labelled graph Gcon. The operation will preserve both the connectivity and mixing
time. Note that the algorithm applies the operation to G′ to construct G′′ instead
of applying the operation to Greg, as we do not know how to construct Greg in
logspace.

STAGE 4 The algorithm now applies pseudorandom walk generator of [Reingold
et al. 2006] to G′′. If the pseudorandom walk generator is applied to Gcon, then by
the property of pseudorandom walk generator and short mixing time ofGcon, a short
pseudorandom walk will end inside the cloud of t with non-negligible probability. It
can be shown that the behavior of pseudorandom walk on G′′ and Gcon are almost
the same. (The error is roughly ε times the length of walk, which can be made
small because the walk is short.) Hence, the pseudorandom walk on G′′ will end
inside the cloud of t with positive probability as well. By enumerating all seeds,
the algorithm can find a path from the cloud of s to the cloud of t in G′′, which
can then be projected to a path from s to t in G.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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As mentioned in the introduction, our algorithm is inspired by and shares a
similar structure of the result of [Reingold et al. 2006] showing that a pseudorandom
walk generator for (arbitrarily labelled) regular digraphs implies a pseudorandom
walk generator for all poly-mixing digraphs. There are several reasons that the
proof in [Reingold et al. 2006] is not directly applicable:

(1) In [Reingold et al. 2006], G′ is only part of the analysis and does not need to
be explicitly constructed by the algorithm in logspace. The reason is that G′

and Greg can be labelled in such a way that the projection of walks from G′

to G can be done without actually knowing G. However, this labelling is far
from consistent (on Greg), which is ok because the result of [Reingold et al.
2006] assumes the existence of a pseudorandom walk generator for arbitrary
labellings. Here we only want to use the (known) pseudorandom walk generator
for consistently labelled graphs. To get a consistent labelling, we construct G′

explicitly and then apply Stage 3.
(2) Even with knowledge of stationary probability, it is not clear how to carry

out the construction of G′ in [Reingold et al. 2006] in logspace. In the first
step of the proof of [Reingold et al. 2006], they add some edges to G to make
the stationary probability of every vertex non-negligible. However, it is not
clear how to compute the new stationary distribution in logspace. Therefore,
we skip this step and deal with vertices having exponentially small stationary
probability directly in our analysis.

4. PROOF OF THE MAIN THEOREM

We prove the main theorem by solving the path finding problem in this section
following the outline in the previous section. Let G be an input graph satisfying
the promise. That is, G is a n-vertex, d-outregular digraph, and vertices s and
t in G are connected. Furthermore, let π(·) be an (accurate4) input stationary
distribution, and πs(·) be the restriction of π to the strongly connected component
of supp(π) containing S. We have γπs , πs(s), πs(t) ≥ 1/k.

Let ε = (ndk)−c for a constant c to be determined later. Let N = d5n/ε2e, and
D = d5N/εe be blow up factors for vertices and edges. By adding self-loops, we
may assume without loss of generality that the out-degree d is divisible by 4, and
G is 3/4-lazy.

4.1 Construct nearly regular graph G′ from G

Roughly speaking, our goal is to improve the regularity of G while preserving the
mixing time. From G, we will construct in logspace a nearly regular digraph G′

with a few additional properties. We want to preserve the connectivity of G, and
want to be able to project a path in G′ to a path in G. We want G′ to have short
mixing time, and by the way we control the mixing time, we also need G′ to be
1/2-lazy.

Let us start with regularity. We can think of a random walk on G from a
stationary distribution π as a flow with no source or sink. Each vertex v has

4As mentioned in the previous section, we will deal with approximate input stationary distribution

in Section 4.5.
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probability mass π(v). Each edge (v, u) carries π(v)/d flow from v to u. Note that
regular graphs are characterized by the stationary distribution π being uniform —
every vertex has equal mass 1/n, and each edge carries equal flow 1/(nd). Observing
this, it is natural to attempt to split each vertex and edge proportional to the mass
contained in each vertex and the flow carried by each edge.

For motivation, we begin by describing an ideal construction in which we ignore
round-off errors. Specifically, we convert G to a N -vertex, dD-regular graph G′ as
follows. For each vertex v in G, we blow it up to a cloud of π(v)N vertices Cv so
that each new vertex contains exactly 1/N probability mass. For each edge (v, u)
in G, we blow it up by a factor D for each vertex in Cv. More precisely, for each
edge (v, u) in G, and each v̂ ∈ Cv, (v, u) induces D outgoing edges from v̂ to Cu
and we spread these edges uniformly over Cu. That is, each û ∈ Cu receives D/|Cu|
edges from v̂. Note that (v, u) carries π(v)/d flow in G, and blows up to π(v)N ·D
edges in G′, so each induced edge shares (π(v)/d)/(π(v)N · D) = 1/(dDN) flow
from the original edge. Intuitively, since each vertex has equal probability mass
(namely, 1/N) and each edge carries equal flow (namely, 1/(dDN)), we expect G′

to be regular.
However, we cannot actually perform the ideal construction, because π(v)N and

D/|Cu| may not be integers. Thus we consider a more general construction. Let
a(v) be the vertex blow-up factor and b(v) be the edge blow-up factor of vertex v
in G. Now, for each vertex v, we blow up it into a cloud of a(v) vertices Cv. For
each edge (v, u), and each v̂ ∈ Cv, (v, u) induces b(v) outgoing edges from v̂ to Cu,
spread as uniformly as possible. That is, each û ∈ Cu receives either db(v)/a(u)e
or bb(v)/a(u)c incoming edges from v̂. Phrased in this way, the ideal construction
sets a(v) = π(v)N , and b(v) = D for every v.

It is natural to set a(v) = dπ(v)Ne; we will discuss how to set b(v) shortly. Note
that each edge (v, u) in G carries flow π(v)/d, and induces a(v) ·b(v) edges in G′. So
each induced edge shares (π(v)/d)/(a(v) · b(v)) flow from (v, u). It turns out that
if every edge in G′ shares roughly 1/(dDN) flow, then the stationary distribution
of G′ will be well-behaved, and we can show that indeg(v̂) ≈ outdeg(v̂) for every
v̂ ∈ G′. Thus, we set b(v) =

⌈
π(v)N
a(v) D

⌉
. Note that when π(v) is not too small,

a(v) = dπ(v)Ne ≈ π(v)N , so b(v) ≈ D, and (π(v)/d)/(a(v) · b(v)) ≈ 1/(dDN),
similar to the ideal construction.

It can be shown that setting a(v) = dπ(v)Ne, and b(v) =
⌈
π(v)N
dπ(v)NeD

⌉
indeed

makes G′ nearly dD-regular in the following sense: Except for at most εN bad
vertices in G′, every vertex v̂ satisfies (1 − O(ε))dD ≤ indeg(v̂), outdeg(v̂) ≤ (1 +
O(ε))dD.

Before we actually prove this claim, we discuss one more technical twist to make
G′ 1/2-lazy. Recall that G is 3/4-lazy, so each vertex v has at least 3d/4 self-loops.
We transfer d/2 self-loops of v in G to b(v) ·(d/2) self-loops for each v̂ in G′, and use
the aforementioned rule to transfer the remaining d/2 edges. This clearly makes G′

1/2-lazy. We also note that each of the rest d/4 self-loops of v induces bb(v)/a(v)c
copy of cliques on Cv by the aforementioned rule.

Formally, the algorithm to convert G to G′ is as follows.

(1) For each vertex v in G, we blow up v to a cloud Cv in G′ with size a(v) =
ACM Journal Name, Vol. V, No. N, Month 20YY.
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dπ(v)Ne.

(2) For each vertex v in G, and each v̂ ∈ Cv, d/2 self-loops of v induce b(v) · (d/2)
self-loops on v̂, and each remaining outgoing edge (v, u) induces b(v) edges
which are spread as uniformly as possible from v̂ to Cu; that is, every û ∈ Cu
gets db(v)/a(u)e or bb(v)/a(u)c corresponding edges from v̂.

It is not hard to see that given G and the input stationary distribution π(·), G′
can be constructed in logspace: For each vertex v, the blow-up factors a(v) and
b(v) are easy to compute since the arithmetic only involves numbers of logarithmic
bit-length,5 and it is easy to spread b(v) edges to a cloud of size a(u). Note that Cs
and Ct have size at least N/k, and G′ has at most N + n vertices, so the density
of Cs and Ct is at least 1/2k. The following lemma says that the in-degree and
out-degree of any v̂ in G′ are close.

Lemma 4.1. For every v̂ ∈ Cv, we have outdeg(v̂) ≤ dD, and:

dD ·
(
π(v)N
dπ(v)Ne

)
≤ outdeg(v̂) ≤ dD ·

(
π(v)N
dπ(v)Ne

+ ε

)
,

dD ·
(
π(v)N
dπ(v)Ne

− ε
)
≤ indeg(v̂) ≤ dD ·

(
π(v)N
dπ(v)Ne

+ ε

)
.

Proof. The out-degree of v̂ is just d · b(v) = d ·
(⌈

π(v)N
dπ(v)NeD

⌉)
. Since π(v)N

dπ(v)Ne ≤ 1,
we have outdeg(v̂) ≤ dD. Furthermore,

dD ·
(
π(v)N
dπ(v)Ne

)
≤ outdeg(v̂) ≤ dD ·

(
π(v)N
dπ(v)Ne

+
1
D

)
≤ dD ·

(
π(v)N
dπ(v)Ne

+ ε

)
.

To compute the in-degree, recall that for each (u, v) ∈ E, each û ∈ Cu will give v̂
either bb(u)/a(v)c or db(u)/a(v)e incoming edges. Therefore, the in-degree of v̂ is
bounded by

∑
(u,v)∈E

a(u)
(
b(u)
a(v)

− 1
)
≤ indeg(v̂) ≤

∑
(u,v)∈E

a(u)
(
b(u)
a(v)

+ 1
)
.

5Recall that 1/poly(n, d, k)-approximation of π(·) is suffices (which we will argue in the end), so

π(·) can be expressed in logarithmic bits.
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Thus,

indeg(v̂) ≥
∑

(u,v)∈E

a(u)
(
b(u)
a(v)

− 1
)

≥
∑

(u,v)∈E

a(u)
(

1
a(v)

(
π(u)N
a(u)

D

)
− 1
)

≥
∑

(u,v)∈E

(
π(u)N
a(v)

D

)
−

∑
(u,v)∈E

a(u)

≥ dD ·
(
π(v)N
a(v)

)
−

∑
(u,v)∈E

(π(u)N + 1) [since
∑

(u,v)∈E

π(u) = d · π(v).]

= dD ·
(
π(v)N
a(v)

)
− (d · π(v)N + dn)

= dD ·
(
π(v)N
dπ(v)Ne

− π(v)N + n

D

)
≥ dD ·

(
π(v)N
dπ(v)Ne

− ε
)

Similarly,

indeg(v̂) ≤
∑

(u,v)∈E

a(u)
(
b(u)
a(v)

+ 1
)

≤
∑

(u,v)∈E

a(u)
(

1
a(v)

(
π(u)N
a(u)

D + 1
)

+ 1
)

≤
∑

(u,v)∈E

(
π(u)N
a(v)

D

)
+ 2

∑
(u,v)∈E

a(u)

≤ dD ·
(
π(v)N
dπ(v)Ne

+ 2
(
π(v)N + n

D

))
≤ dD ·

(
π(v)N
dπ(v)Ne

+ ε

)

The lemma implies that when π(v)N
dπ(v)Ne is close to 1, v̂ is nearly dD-regular. This

leads to the definition of good/bad vertex.

Definition 4.2. A vertex v in G is good if π(v) > 1/(εN) = Θ(ε/n). Other-
wise, v is bad. A vertex v̂ ∈ Cv in G′ is good (resp., bad) if v is good (resp. bad)
in G.

The following two simple lemmas show that good vertices are nearly dD-regular,
and the number of bad vertices is small.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Lemma 4.3. For every good vertex v̂ in G′, we have

outdeg(v̂) ∈ [(1− ε)dD, dD]
indeg(v̂) ∈ [(1− 2ε)dD, (1 + ε)dD]

Proof. π(v) > 1/(εN) implies ε > 1/(π(v)N). So

1 ≥ π(v)N
dπ(v)Ne

≥ π(v)N
π(v)N + 1

≥ 1− 1
π(v)N

> 1− ε.

The lemma follows by applying Lemma 4.1.

Lemma 4.4. The number of bad vertices in G′ is at most εN .

Proof. There are at most n bad vertices in G. Each of them blows up to at most
d(1/εN) ·Ne ≤ ((1/ε) + 1) vertices in G′. So the number of bad vertices is at most
n · ((1/ε) + 1) ≤ εN .

Let us study the relation between G and G′. Note that G′ is obtained by blowing
up each vertex and edge of G by a certain factor, on the cloud level, G′ has the
same structure as G. That is, for every two vertices u, v of G and every û ∈ Cu,
the fraction of edges leaving û that enter Cv equals the fraction of edges leaving u
that lead to v. Therefore, we can project a path from û ∈ Cu to v̂ ∈ Cv in G′ to a
path from u to v in G, and project a stationary distribution π′ of G′ to a stationary
distribution π of G by defining π(v) =

∑
v̂∈Cv π

′(v̂). Furthermore, a random walk
on G′ is projected to a random walk on G.

Conversely, a path (resp., a stationary distribution) on G can be lifted to a path
(resp., a stationary distribution) on G′. By lifting we mean the projection of a lifted
object is again the original object. It is easy to see that for any path from u to v in
G, there exists lifted paths from some û ∈ Cu to some v̂ ∈ Cv. Given a stationary
distribution π of G, we can obtain a lifted stationary distribution of G′ by the
stationary distribution of a random walk starting from certain distribution. Let α
be a distribution on G′ defined as follows. For each vertex v ∈ G, set α(v̂) = π(v)
for some v̂ ∈ Cv and α(v̂′) = 0 for all other v̂′ ∈ Cv. Since G′ is 1/2-lazy, the
random walk started at α converges to a stationary distribution π′. Note that the
projection of this random walk is a random walk on G starting from stationary
distribution π. Hence, the projected distribution is always π, and in particular, the
projection of π′ is π.

Let π′ and π′s be lifted stationary distributions of the input stationary distribution
π and πs respectively. For the above discussion, we know that G′ preserves the
connectivity of Cs and Ct, and on the cloud level, preserves the visiting length,
which leads to the following definition.

Definition 4.5. Let M be a Markov chain, and S be a set of vertices in M .
The generalized visiting length of S, denoted `S(M), is the smallest number ` such
that from every vertex v reachable from S, a random walk of length ` from v visits
S with probability at least 1/2.

The above discussion implies that the generalized visiting length `Cs(G
′) in G′

is equal to the visiting length `s(G) in G. Note that by Lemma 2.7, `s(G) =
O(nk3 log d) = poly(n, d, k) is short in the sense that it is independent of ε. Hence,
on the cloud level, the mixing time of G′ should be short as well. Moreover, the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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cliques induced by at least d/4 self-loops on each vertex should imply quick mixing
inside each cloud. We may thus expect G′ to have short mixing time. The following
lemma formalize this intuition.

Lemma 4.6. Let M be a 1/2-lazy Markov chain. Suppose there is a vertex set
S with generalized visiting length ` that satisfies M(s1, s2) ≥ 1/(8|S|) for every
s1, s2 ∈ S. Then M has a stationary distribution π (with S ⊂ supp(π)) such that
the conductance satisfies hπ(M) ≥ 1/(32`), and hence the spectral gap satisfies
γπ(M) ≥ 1/(211 · `2).

Proof. Let π be a stationary distribution of a random walk starting from any
s ∈ S. Since every vertex reachable from S can reach S, S ⊂ supp(π), and π is
the unique stationary distribution supported on the strongly connected component
containing S.

Let A be any set with 0 < π(A) ≤ 1/2. Observe that∑
u∈A,v 6∈A π(u)M(u, v)

π(A)
=

Pr[X ∈ A ∧X ′ /∈ A]
π(A)

= Pr[X ′ /∈ A|X ∈ A],

where X is a vertex chosen randomly according to π, and X ′ is a random step from
X. Let SA = S∩A, and SĀ = S∩Ā. Consider a random walkX1, . . . , X`+1 of length
`+1 starting from the stationary distribution π. We lower bound Pr[X ′ /∈ A|X ∈ A]
by the following two cases.

Case I:|SĀ| ≥ |SA|

` · Pr[X ∈ A ∧X ′ /∈ A] ≥ Pr[∃i ≤ ` s.t. Xi ∈ A ∧Xi+1 /∈ A]
≥ Pr[X1 ∈ A and ∃i ≤ ` s.t. (Xi ∈ S ∧Xi+1 ∈ SĀ)]

≥ π(A) · 1
2
· |SĀ|

8|S|

≥ 1
32
π(A)

where the second-to-last inequality follows by the following observation. The event
in the second line says that the walk (i) starts from A, (ii) visits some vertex s ∈ S
at some point, and then (iii) goes to SĀ from s ∈ S in the next step. Since X1 is
drawn from the stationary distribution π, (i) happens with probability π(A). By
the definition of generalized visiting length, (ii) happens with probability at least
1/2. Finally, since M(s1, s2) ≥ 1/(8|S|) for every s1, s2 ∈ S, (iii) happens with
probability at least |SĀ|/(8|S|). Similarly,

Case II:|SA| > |SĀ|

` · Pr[X ∈ A ∧X ′ /∈ A] = ` · Pr[X ∈ Ā ∧X ′ /∈ Ā]
≥ Pr[∃i ≤ ` s.t. Xi ∈ Ā ∧Xi+1 /∈ Ā]
≥ Pr[X1 ∈ Ā and ∃i ≤ ` s.t. (Xi ∈ S ∧Xi+1 ∈ SA)]

≥ π(Ā) · 1
2
· |SA|

8|S|

≥ 1
32
π(A)
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Therefore, we can conclude that Pr[X ′ /∈ A|X ∈ A] ≥ 1/(32 · `) for any A such that
0 < π(A) ≤ 1/2, and hence hπ(M) ≥ 1/(32`).

Let M ′ be the transition matrix for the random walk on G′. Note that for all
ŝ1, ŝ2 ∈ Cs, M ′(ŝ1, ŝ2) ≥ 1/(6|Cs|) > 1/(8|Cs|) is satisfied by the cliques on Cs
induced by d/4 self-loops of s ∈ G. A straightforward application of Lemma 4.6
shows that γπ′s(G

′) ≥ 1/(211 · (`Cs(G′))2) = 1/poly(n, d, k), which means G′ has
short mixing time, as desired.

To summarize, in this stage we construct G′ from G in logspace with the following
properties.

(1) G′ is nearly dD-regular: There are at most εN bad vertices in G′, and for all
good vertices v̂ ∈ G′, (1−O(ε))dD ≤ indeg(v̂), outdeg(v̂) ≤ (1 +O(ε))dD.

(2) G′ preserves the connectivity of Cs and Ct, and every path from Cs to Ct in
G′ can be projected to a path from s to t in G in logspace.

(3) G′ has short mixing time: The generalized visiting length of Cs in G′ is
O(nk3 log d) = poly(n, d, k), M ′(ŝ1, ŝ2) ≥ 1/(6|Cs|) for all ŝ1, ŝ2 ∈ Cs, and
the spectral gap of G′ is γπ′s(G

′) = poly(n, d, k).
(4) The sizes of Cs and Ct are at least N/k, and their density are at least 1/(2k).

4.2 G′ is close to a regular graph Greg

We emphasize that this stage is a mental experiment for the sake of the analysis
and so the algorithm does nothing in this stage. We show in analysis that by adding
at most O(kεdDN) edges, we can get a regular graph Greg with short mixing time.

Since the out-degree and in-degree of every vertex v̂ in G′ are bounded by (1 +
O(ε))dD, we can make G′ (1+O(ε))dD-regular by adding (1+O(ε))dD−outdeg(v̂)
outgoing edges from each vertex v̂. Doing so adds at most O(εdDN) edges because
each good vertex v̂ requires to add (1 + O(ε))dD − outdeg(v̂) = O(εdD) edges,
and there are at most εN bad vertices, each of which requires to add at most
O(dD) edges. However, note that the stationary distribution of a regular graph is
uniform, while there might be some (bad) vertices v̂ in G′ with exponentially small
stationary probability. Thus, the stationary distribution might change dramatically
under this operation, making it difficult to directly relate the spectral gap of G′ and
Greg. Instead, we control the mixing time by maintaining the generalized visiting
length and clique structure of Cs, as well as the laziness of the entire graph.

To maintain the generalized visiting length of Cs, we do not allow the set of
vertices reachable from Cs to increase when we add edges. Let V1 be the set of
vertices reachable from s in G, V2 the set of vertices that can reach s but are not
reachable from s, and V3 = V −V1−V2. Note that for every stationary distribution
π of G, π(V2) = 0. Hence, for every v ∈ V2, its vertex blow-up factor a(v) is 0,
which means v is “deleted” in G′.6 Let V ′1 and V ′3 be the set of vertices in G′

corresponding to V1 and V3, respectively. We have V ′ = V ′1 ∪ V ′3 , and V ′1 and V ′3
are disconnected, so we can make V ′1 regular by adding edges from V ′1 to V ′1 itself,
which will not increase the set of vertices reachable from Cs. We use the following
procedure to make V ′1 regular.

6This is no longer true when the input stationary distribution is not accurate; we will deal with

this issue in Section 4.5.

ACM Journal Name, Vol. V, No. N, Month 20YY.



S-T Connectivity on Digraphs with a Known Stationary Distribution · 17

(1) Make out-degree of each vertex at least (1− ε)dD. For each bad vertex v̂ ∈ V ′1
with outdeg(v̂) < (1− ε)dD, do the following:
(a) Add b((1− ε)dD − outdeg(v̂))/2c self-loops to v̂.
(b) Add d((1 − ε)dD − outdeg(v̂))/2e outgoing edges from v̂ to V ′1 , spread as

uniformly as possible. That is, every v̂′ gets t or t + 1 edges from v̂ for
some integer t. We always let ŝ ∈ Cs get t+ 1 edges when it is possible.

(2) Make the graph regular: Arbitrarily add edges in V ′1 to make the graph (1 +
2kε)dD-regular.

(3) Make the graph 1/2-lazy: Add 4kεdD self-loops to each v̂ ∈ V ′1 .

We need to argue that this procedure is always possible, but first provide some
intuition for the construction. If we add only small number of outgoing edges to
every vertex, then a short random walk will use original edges with high probability.
In this case, the generalized visiting length should not change too much. However,
a bad vertex v̂ may have small out-degree. We need to add many outgoing edges to
v̂ to make the graph regular. To make sure that v̂ does not increase the in-degree
of other vertices too much, and that a random walk can visit Cs from v̂ easily,
it is natural to spread the extra outgoing edges of v̂ as uniformly as possible. In
particular, a one-step random walk from v̂ using new outgoing edges of v̂ will visit
Cs with probability at least |Cs|/|V ′1 | = Ω(1/k). Therefore, we can expect the
generalized visiting length of Cs remains short.

We now argue that the above procedure is always possible. That is, after the
first step, the in-degree and out-degree of each vertex is less than (1 + 2kε)dD.
The out-degree part is trivial. For the in-degree part, let us first upper bound
the number of incoming edges added in step 1b. The number of bad vertices
is at most εN . Since Cs ⊂ V ′1 , |V ′1 | ≥ N/k. Each bad vertex adds at most
d(dD/2)/|V ′1 |e ≤ dD/(N/k) = kdD/N to the in-degree of each v̂ ∈ V ′1 . Hence the
in-degree is increased by at most (εN) · (kdD/N) = kεdD in step 1b. For a good
vertex v̂, v̂ does not get any self-loops in step 1a. By Lemma 4.3, the in-degree of
v̂ is at most (1 + ε)dD+ kεdD ≤ (1 + 2kε)dD after step 1b. For a bad vertex v̂, by
Lemma 4.1, indeg(v̂) ≤ outdeg(v̂) + εdD, so after step 1a, indeg(v̂) ≤ (1 + ε)dD,
and after step 1b, indeg(v̂) ≤ (1 + 2kε)dD. We also note that the resulting graph
is 1/2-lazy because G′ is 1/2-lazy and for each vertex, at least half of the outgoing
edges added by the above procedure are self-loops.

We now deal with V ′3 . Since V ′3 does not affect the generalized visiting length of
Cs, we can make it regular in the naive way described at beginning. To summarize,
we construct a 1/2-lazy, (1 + 6kε)dD-regular digraph Greg = (Vreg, Ereg) from G′

as follows.

—Vreg = V ′1 ∪ V ′3 .

—We make V ′1 1/2-lazy and regular by the above procedure.

—We make V ′3 1/2-lazy and regular by first adding (1 + 5kε)dD − outdeg(v̂) self-
loops to each v̂ ∈ V ′3 , and then make V ′3 (1 + 6kε)dD-regular arbitrarily.7

7The reason that we can not apply the algorithm for V ′1 to V ′3 is that |V ′3 | may be too small. In

this case, after step 1, the in-degree will be too large.
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The construction preserves the connectivity of Cs and Ct because the set of
vertices reachable from Cs remains the same. We next bound the generalized
visiting length of Cs. To simplify the presentation, we introduce the following
notation. Let G̃′ = (V ′1 , E

′
1) be the subgraph of G′ induced by V ′1 , and G̃reg be the

(strongly) connected component V ′1 in Greg. Let B1 be the edge set added to V ′1 in
step 1 above, and B2 be the edge set added to V ′1 in steps 2 and 3. Hence, G̃reg =
(V ′1 , E

′
1 ∪ B1 ∪ B2). Let `′ = `Cs(G̃

′) = `Cs(G
′), and `reg = `Cs(G̃reg) = `Cs(Greg)

be the generalized visiting length of Cs in G′ and Greg, respectively. Then we have:

Lemma 4.7. `reg = O(`′k).

Proof. Let ` = 3a`′k for some constant a to be determined later. Let v̂ be any
vertex reachable from Cs. Let w denote an `-step random walk in G̃reg from v̂. We
need to show Prw[w visits Cs] ≥ 1/2. Consider the following three events:

—E1: w uses at least ak edges in B1, and never visits Cs.
—E2: w uses at least one edge in B2, and never visits Cs.
—E3: w uses less than ak edges in B1, no edge in B2, and never visits Cs.

Clearly, Prw[w does not visit Cs] ≤ Prw[E1] + Prw[E2] + Prw[E3]. Let us upper
bound the three events.

Since each vertex û in G̃reg has at most an O(kε) fraction of outgoing edges from
B2, for each step the probability that w uses a B2 edge is at most O(kε). By a
union bound,

Pr
w

[E2] ≤ O(kε) · ` = O(aε`′k2).

To bound Prw[E1], we consider the following experiment: Let w′ be a random
walk starting from the same vertex v̂ that continues until it uses ak edges in B1.
Each time that w′ uses a B1 edge, w′ visits Cs with probability at least 1/(4k) (at
least 1/2 chance to use an edge added in step 1b, and the density of Cs is at least
1/(2k)). It follows that

Pr
w′

[w′ never visits Cs] ≤
(

1− 1
4k

)ak
≤ e−a/4.

To justify this bound, we can think of the random walk in the following way. At
each step w′ first tosses a biased coin to decide to use edge in B1 or in E ∪ B2,
and then chooses an edge from the chosen set uniformly. Note that the biased coin
depends on the fraction of B1 edges leaving the current vertex. Each time that w′

decides to choose a B1 edge, w′ will hit Cs with probability at least 1/(4k).
Now we can analyze the original walk w as follows:

Pr
w

[E1] = Pr
w′

[w′ never visits Cs and |w′| ≤ `] ≤ Pr
w′

[w′ never visits Cs] ≤ e−a/4.

To bound Prw[E3], we start with the following observation. Let r be an `′-step
random walk from any vertex v̂ on G̃reg and r′ be an `′-step random walk from the
same v̂ on G′. We have

Pr
r

[r only uses edges in E′1 and never visits Cs] ≤ Pr
r′

[r′ never visits Cs] ≤
1
2
,
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since each walk contained in the LHS event is also contained in the RHS event, and
the walk has greater probability mass in the RHS than in the LHS.

We now think of w as 3ak consecutive `′-step random walks in G̃reg. We call each
`′-step random walk a segment. We say that a segment is bad if the walk in that
segment only uses edges in E′1 and never visits Cs. From the above observation,
a segment is bad with probability at most 1/2, even conditioned on the previous
segments of the walk. By a Chernoff bound, we have

Pr
w

[# of bad segments ≥ 2ak] ≤ 2−Ω(ak)

However, note that any walk in E3 contains at least 2ak bad segments, so

Pr
w

[E3] ≤ Pr
w

[# of bad segments ≥ 2ak] ≤ 2−Ω(ak).

In sum, we have

Pr
w

[w does not visit S] ≤ Pr
w

[E1]+Pr
w

[E2]+Pr
w

[E3] ≤ e−a/4 +O(aε`′k2)+2−Ω(ak) <
1
2

for ε = (ndk)−c and a sufficiently large choice of the constants c and a.

Let Mreg be the transition matrix for the random walk on Greg, and let πreg be
the (uniform) stationary distribution on the (strongly) connected component V ′1 of
Greg. As Greg is 1/2-lazy, to apply Lemma 4.6, it remains to check Mreg(ŝ1, ŝ2) ≥
1/(8|Cs|) for all ŝ1, ŝ2 ∈ Cs. Recall that M ′(ŝ1, ŝ2) ≥ 1/(6|Cs|). Note that we
do not remove any edges in V ′1 in the construction, and the out-degree increases
by only 1 + O(kε) factor. So Mreg(ŝ1, ŝ2) ≥ 1/((1 + O(kε)) · 6|Cs|) ≥ 1/(8|Cs|).
Therefore, by Lemma 4.6, γπreg(Greg) ≥ 1/(211 · (`reg)2) = 1/poly(n, d, k).

Let Nreg be the number of vertices in Greg, and Dreg = (1+6kε)dD be the degree
of Greg. We summarize the properties of Greg as follows.

(1) Greg has at most O(kεDregNreg) additional edges to G′.
(2) Greg preserves the connectivity of Cs and Ct.
(3) Greg has short mixing time. The spectral gap ofGreg is γπreg(Greg) = 1/poly(n, d, k).
(4) |Cs|, |Ct| ≥ N/k ≥ Nreg/(2k), and πreg(Cs), πreg(Ct) ≥ 1/(2k).

4.3 Obtain a consistent labelling

The goal of this stage is to obtain a “consistent labelling” of edges so that we can
apply the pseudorandom walk generator of [Reingold et al. 2006] in next stage. We
achieve it by applying a simple lift operation to the graph.8 Given a labelled graph
H, the operation will output a labelled graph L(H) preserving the connectivity of
H. When H is d-regular, the lifted graph L(H) is simply the (“tensor” or “AND”)
product with a d-clique (with self-loops), so L(H) has the same spectral gap as H
(see, e.g., [Tanner 1984].) Furthermore, we can consistently label L(H). Hence, if
we applied the operation to Greg, the resulting graph Gcon = L(Greg) would be a
consistently labelled regular graph with short mixing time.

However, since we do not know how to compute Greg in logspace, our algorithm
will compute G′′ = L(G′) instead. G′′ is not regular and we do not know its mixing

8The lift operation defined here is not the same as the “lifts” of [Amit et al. 2001].
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time. Fortunately, we are able to argue that G′′ is close to Gcon, and so the behavior
of short (pseudo)random walks on G′′ and Gcon are very “similar”. Therefore, we
can apply the pseudorandom walk generator to G′′ instead of Gcon.

We start with a discussion about labellings.

Labelling. Let H be a digraph with n vertices such that every vertex has out-
degree at most dout and in-degree at most din. A two-way labelling of H gives each
edge (v, w) ∈ H an outgoing label of v in [dout], and an incoming label of w in
[din] such that the outgoing (resp., incoming) labels of each vertex v ∈ H are all
distinct. Such a graph together with its two-way labelling can be specified by a
rotation map RotH : [n]× [dout]→ ([n]× [din]) ∪ {⊥}, where RotH(v, i) = (w, j) if
there is an edge numbered i leaving v and it equals the edge numbered j entering
w, and RotH(v, i) = ⊥ if there is no edge numbered i leaving v. We say a rotation
map RotH has degree d if din = dout = d.

Note that we can compute a degree-Dreg rotation map RotG′ of G′ in logspace.
Furthermore, RotG′ can be extended to a rotation map RotGreg of Greg in such a
way that for every edge present in both G′ and Greg, it has the same outgoing and
incoming labels in G′ and Greg. In the following discussion, we assume G′ and Greg

are associated with rotation maps RotG′ and RotGreg that are compatible in this
sense.

A consistent labelling of a d-regular graph H gives each edge only one label in
[d] such that for each vertex v ∈ H, all of the edges leaving (resp., entering) v
have distinct labels. Hence, in terms of rotation maps, RotH defines a consistent
labelling iff for all v, i, RotH(v, i) = (w, i) for some w.

We define the lift operation in terms of rotation maps as follows.

Definition 4.8. Let H be a two-way labelled graph on n vertices with rotation
map RotH : [n]× [d]→ [n]× [d]∪{⊥}. The lift L(H) is a graph on [n]× [d] vertices
whose rotation map RotL(H) : ([n]× [d])× [d2]→ ([n]× [d])× [d2]∪{⊥} is as follows:

RotL(H)((v, k), (i, j)):

(1 ) If RotH(v, k + i) = (w, l), output ((w, l + j mod d), (i, j))
(2 ) If RotH(v, k + i) = ⊥, output ⊥.

where all arithmetic on elements of [d] is taken modulo d.

It is clear that RotL(H) can be computed in logspace if RotH can. We can think
of the operation as follows. The operation lifts each vertex in H to a cloud in L(H).
A vertex (v, k) in L(H) is the k-th vertex in the cloud of v. Staying at vertex (v, k)
in L(H) can be interpreted as staying at vertex v in H and facing toward the k-th
edge. Phrased in this way, the (i, j)-th neighbor of vertex (v, k) is obtained by the
following steps. Starting at vertex v and facing toward k-th edge in H, we (i) turn
to (k+ i)-th edge, (ii) go across the (k+ i)-th edge to vertex w and face to the l-th
edge, and then (iii) turn to the (l+ j)-th edge of w. We call step (ii) the H-step of
RotL(H)((v, k), (i, j)). Note that a H-step is simply following an edge of H.

It is easy to check that RotL(H) is a legal two-way labelling. All incoming edges of
vertex (w, l) have distinct incoming labels because the above procedure is invertible.
Indeed, if an incoming edge of (w, l) is labelled (i, j), then in the second step, it
must come from an edge with incoming label l − j at vertex w in H. Since H
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is two-way labelled, there is at most one such edge, say, from the k-th outgoing
edge of vertex v. Thus, the only edge incident to (w, l) with incoming label (i, j) is
(v, k − i).

Lemma 4.9. If H is d-regular, then

(1 ) L(H) is consistently labelled.
(2 ) γ(L(H)) = γ(H).

Proof.(sketch) The first statement follows because RotL(H)((v, k), (i, j)) is of the
form (·, (i, j)) unless it outputs ⊥, which will never happen when H is d-regular.

Intuitively, the second statement holds because a random neighbor of (v, k) in
L(H) is of the form (w, l) where w is a random neighbor of v in H and l is uniform
and independent of (v, k). Thus, the first component mixes at the same rate as in
H, and the second component mixes perfectly in one step. Formally, this can be
proved by observing that the transition matrix of L(H) equals the tensor product
of the transition matrices of H and the d-clique with self-loops (or as a special case
of the zig-zag theorems of [Reingold et al. 2001; Reingold et al. 2006]).

By Lemma 4.9, Gcon = L(Greg) is a consistently labelled (Nreg · Dreg)-vertex,
D2

reg-regular graph with the same spectral gap asGreg (with respect to the (uniform)
stationary distribution πcon on the union of clouds corresponding to vertices in V ′1 .)
Let C̃s = Cs × [Dreg] and C̃t = Ct × [Dreg] be the cloud of s and t in G′′. We have
πcon(C̃s) = πreg(Cs) and πcon(C̃t) = πreg(Ct).

Let us now consider G′′ = L(G′). It is easy to check from the definition that G′′

preserves the connectivity of C̃s and C̃t, and every path from C̃s to C̃t in G′′ can
be projected to a path from s to t in G.

We next study the difference between Gcon and G′′. From the fact that the
rotation maps of Greg and G′ are compatible, it follows that the rotation maps
of their lifts Gcon = L(Greg) and G′′ = L(G) are also compatible. Moreover,
RotG′′((v, k), (i, j)) = ⊥ iff RotG′(v, k+ i) = ⊥. That is, an edge of Gcon is missing
in G′′ iff the corresponding Greg-step is missing in G′. Let B be the set of pairs
(v, k) ∈ [Nreg] × [Dreg] such that RotG′(v, k) = ⊥. Note that the size of B is only
O(kεNregDreg).

To summarize, in this stage the algorithm first computes a rotation map RotG′
of G′, and then computes G′′ = L(G′) in logspace. Let Ncon = Nreg ·Dreg be the
number of vertices in Gcon, and Dcon = D2

reg be the degree of Gcon. We have the
following properties.

(1) Gcon has short mixing time. The spectral gap ofGcon is γπcon(Gcon) = γπreg(Greg) =
1/poly(n, d, k).

(2) In both G′′ and Gcon, the clouds C̃s and C̃t are connected, and every path from
C̃s to C̃t in G′′ can be projected to a path from s to t in G in logspace.

(3) An edge of Gcon is also an edge of G′′ iff the Greg-step of the edge is not in B.
The size of B is only O(kεNregDreg).

(4) |C̃s|, |C̃t| ≥ Ncon/(2k), and πcon(C̃s), πcon(C̃t) ≥ 1/(2k).

4.4 Find a path using the pseudorandom walk generator of Reingold et al.

We are ready to apply the pseudorandom walk generator of [Reingold et al. 2006]
to G′′ to find a path from s to t in G.
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Lemma 4.10 [Reingold et al. 2006]. For every N,D ∈ N, δ,γ > 0, there is a
generator PRG = PRGN,D,δ,γ : {0, 1}r → [D]` with seed length r = O(log(ND/δγ)),
and walk length ` = poly(1/γ) · log(ND/δ), computable in space O(log(ND/δγ))
such that for every (connected) consistently labelled N -vertices D-regular digraph
G with spectral gap γ and every vertex s in G, taking walk PRG(Ur) from s ends
at a distribution δ-close to uniform (in variation distance).

Let us first apply the above PRG toGcon. Set δ = 1/(4k). Note thatNcon, Dcon =
poly(n, d, k, 1/ε), and γ = γπcon(Gcon) = poly(n, d, k). Hence, PRG is computable
in logspace, the seed length r is logarithmic, and the walk length ` = poly(1/γ) ·
log(ND/δ) ≤ (ndk)a for some constant a (independent of the constant c in ε =
(ndk)−c.) Let us apply PRG(Ur) to Gcon with initial distribution uniform over
C̃s. The probability that the walk ends in C̃t is at least 1/(2k) − δ = 1/(4k).
In particular, this implies there is a vertex s̃ ∈ C̃s, a vertex t̃ ∈ C̃t, and a seed
x ∈ {0, 1}r such that PRG(x) gives a path from s̃ to t̃ in Gcon.

We next show that the PRG can produce a path from C̃s to C̃t such that all
edges in the path are also edges in G′′. It implies that when we apply PRG to G′′,
we can find a path from C̃s to C̃t, which can be projected to a path from s to t in
G, as desired.

Let p0 be the uniform distribution on C̃s. Let (e1, . . . , e`) ∈ [Dcon]` be any fixed
sequence of edge labels specifying a walk. Starting from p0, let p1, . . . , p` be the
distribution after each step. Since Gcon is consistently labelled, each pi is a uniform
distribution on some set of size |C̃s|. Now, consider one step that goes from pi to
pi+1 using edge label ei. Note that for any two distinct ṽ1, ṽ2 ∈ Gcon, the Greg-
steps of RotGcon(ṽ1, ei) and RotGcon(ṽ2, ei) are also distinct, so the probability that
the Greg-step of i-th step is in B is at most |B|/|C̃s| ≤ O(kεNcon)/(Ncon/(2k)) =
O(k2ε). By a union bound, the probability that an `-step walk ever uses an edge
whose Greg-step is in B is at most

` ·O(k2ε) ≤ (ndk)a ·O(k2 · (ndk)−c)� 1
4k

where we set c = a + 3. Note that if a walk only uses edges whose Greg-step is
not in B, then all edges are actually in G′′ and thus the walk is also a walk in
G′′. Since the above inequality holds for every fixed walk (e1, . . . , e`), it holds for
a pseudorandom walk starting from p0. Hence,

Pr[PRG(Ur) ends in C̃t and uses only edges in G′′] ≥ 1
4k
− ` ·O(k2ε) > 0.

We summarize the algorithm and show how it uses PRG to solve Known-
Stationary Find Path in deterministic logspace.

(1) Compute G′ from G as described in stage 1.

(2) Compute a two-way labelling of G′ and G′′ = L(G′) as described in stage 3.

(3) For each vertex s̃ ∈ C̃s and seed x ∈ {0, 1}r, compute the walk PRG(x) starting
from s̃ in G′′, and project the path to G (which might fail due to there being
no edge with a particular label.

(4) If we find a path from s to t, then output the path.
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The algorithm runs in deterministic logspace because every step does. Since the
probability that a pseudorandom walk in Gcon starting from uniform distribution
on C̃s ends in C̃t and uses only edges in G′′ is positive, there exists some s̃ ∈ C̃s
and x ∈ {0, 1}r such that the walk PRG(x) starting from s̃ will end in C̃t. Such a
path can be found by our algorithm and projected to a path from s to t in G.

4.5 Tolerating additive error in the input stationary distribution

We show that our algorithm still works when the input stationary distribution has
a small additive error δ = 1/poly(n, d, k). There are two places in the proof we
need to take care of this error.

Observe that the only place our algorithm uses the input stationary distribution
is in the first stage. We used the input stationary distribution to define the vertex
and edge blow-up factors a(v) and b(v), and showed in Lemma 4.1, 4.3, and 4.4
that G′ is nearly regular. As the purpose of that analysis is to tolerate the round-
off error as compared to the ideal construction, we can expect that our algorithm
will still work when the error of the input stationary distribution is as small as the
round-off error. Formally, it is not hard to check that when δ is small enough (e.g.,
δ = 1/ND), the above three lemmas are still true.

In Stage 2, we argued that since π(V2) = 0, all vertices v ∈ V2 are “deleted” in G′.
When the input stationary distribution has some additive error, the corresponding
vertex set V ′2 in G′ will be nonempty because the blow-up factors a(·) and b(·) are
no longer zero. However, as long as the size of V ′2 is small, say O(εN) vertices and
O(εND) edges, we can simply delete V ′2 from G′, and still set Vreg = V ′1 ∪V ′3 , while
maintaining all properties listed at the end of Section 4.2. When the error δ is small
enough, say δ ≤ 1/ND, we have a(v) = dpv ·Ne = 1 and b(v) = dpv ·NDe = 1 for
every v ∈ V2, so we delete at most n ≤ O(εN) vertices and nd ≤ O(εND) edges in
G′.

Note that in the rest of the proof, we do not use the input stationary distribution.
Therefore, our algorithm solves δ-Known-Stationary S-T Connectivity and
δ-Known-Stationary Find Path for δ = 1/ND in deterministic logspace.
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