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Abstract. We continue the investigation of interactive proofs with
bounded communication, as initiated by Goldreich and Hastad (IPL
1998). Let L be a language that has an interactive proof in which the
prover sends few (say b) bits to the verifier. We prove that the com-
plement L has a constant-round interactive proof of complexity that
depends only exponentially on b. This provides the first evidence that
for NP-complete languages, we cannot expect interactive provers to be
much more “laconic” than the standard NP proof. When the proof
system is further restricted (e.g., when b = 1, or when we have perfect
completeness), we get significantly better upper bounds on the complex-
ity of L.
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1. Introduction

Interactive proof systems were introduce by Goldwasser, Micali and Rack-
off [GMRS89] in order to capture the most general way in which one party
can efficiently verify claims made by another, more powerful party.! That is,
interactive proof systems are two-party randomized protocols through which
a computationally unbounded prover can convince a probabilistic polynomial-
time verifier of the membership of a common input in a predetermined lan-
guage. Thus, interactive proof systems generalize and contain as a special case
the traditional “NP-proof systems” (in which verification is deterministic and
“non-interactive” ).

It is well-known that this generalization buys us a lot: The IP Characteriza-
tion Theorem of Lund, Fortnow, Karloff, Nisan and Shamir [LFKN92, Sha92]

! Arthur-Merlin games, introduced by Babai [Bab85], are a special type of interactive
proofs in which the verifier is restricted to send the outcome of each coin it tosses. Such proof
systems are also called public coin, and are known to be as expressive as general interactive
proofs [GS89]. We warn that the latter assertion refers to the entire class but not to refined
complexity measures such as the total number of bits sent by the prover (considered below).
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states that every language in PSPACE has an interactive proof system (and it
is easy to see that only languages in PSPACE have interactive proof systems).

It is well-known that the strong expressive power of interactive proofs is
largely due to the presence of interaction. In particular, interactive proofs in
which a single message is sent (like in NP-proofs) yield a complexity class
(known as MA) that seems very close to NP. It is interesting to explore what
happens between these extremes of unbounded interaction and no interaction.
That is, what 1s the expressive power of interactive proofs that utilize a bounded,
but nonzero, amount of interaction?

1.1. Prior work regarding interactive proofs with bounded interac-
tion.

Interactive Proofs with Few Messages. The earliest investigations of
the above question examined the message complexity of interactive proofs, i.e.,
the number of messages exchanged. (Sometimes, we refer to rounds, which
are a pair of verifier-prover messages.) The Speedup Theorem of Babai and
Moran [BM88] (together with [GS89]) shows that the number of messages in
an interactive proof can be always reduced by a constant factor (provided the
number of messages remains at least 2). On the other hand, there is a large gap
between constant-round interactive proofs and unrestricted interactive proofs.
As mentioned above, all of PSPACE has a general interactive proof [LFKN92,
Sha92]. In contrast, the class AM of problems with constant-round interactive
proofs is believed to be relatively close to NP. Specifically, AM lies in the
second level of the polynomial-time hierarchy [BM88], cannot contain coNP
unless the polynomial-time hierarchy collapses [BHZ87|, and actually equals
NP under plausible circuit complexity assumptions [AK97, KvM99, MV99].

Laconic Provers. A more refined investigation of the above question was
initiated by Goldreich and Hastad [GH98|, who gave bounds on the complex-
ity of languages possessing interactive proofs with various restrictions on the
number of bits of communication (and/or randomness) used. One of the re-
strictions they considered, and the main focus of our investigation, limits the
number of bits sent from the prover to the verifier by some bound b. That is,
what languages can be proven by “laconic” provers?

Since the prover is trying to convey something to the verifier, this seems to
be the most interesting direction of communication. Moreover, for applications
of interactive proofs (e.g., in cryptographic protocols), it models the common
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situation in which communication is more expensive in one direction (e.g., if
the prover is a hand-held wireless device).

On one hand, we know of interactive proofs for several “hard” problems
(e.g., QUADRATIC NONRESIDUOSITY [GMR89], GRAPH NONISOMORPHISM [GMW91],
and others [GK93, GG00, SV03]) in which the communication from the prover
to the verifier is severely bounded (in fact, to one bit). On the other hand,
laconic provers exist only for problems in BPPNF (resp., BPP in case the
proof system is of the public-coin type) [GH98|. Furthermore, it was conjec-
tured that NP-complete problems cannot have general interactive proofs with
laconic provers (but the results in [GH98] fall short of supporting this conjec-
ture). In this work, we provide strong support for this conjecture.

1.2. New results regarding interactive proofs with bounded interac-
tion. Our main focus is on laconic provers; that is, on interactive proofs in
which the total number of bits sent by the prover is bounded.

Laconic Provers. Consider interactive proofs in which the prover sends
at most b = b(n) bits to the verifier on inputs of length n. Goldreich and
Hastad [GH98, Thm. 4] placed such languages in BPTIME(T)NP where
T = poly(n) - 2°°¥(®) which clearly implies nothing for languages in NP. In
contrast, we show that the complements of such languages have constant-round
interactive proofs of complexity 7" (i.e., the verifier’s computation time and the
total communication is bounded by 7T'). In particular, NP-complete problems
cannot have interactive proofs in which the prover sends poly-logarithmically
many bits to the verifier, unless coNP is in the quasi-polynomial analogue
of AM. In fact, assuming NP has constant-round interactive proofs with
logarithmic prover-to-verifier communication we conclude coNP C AM. As
mentioned above, this is highly unlikely. We obtain stronger results in two
special cases:

1. We show that if a language has an interactive proof of perfect complete-
ness (i.e., zero error probability on YES instances) in which the prover
sends at most b(n) bits, then it is in coNTIME(T), where T'(n) =
2%() . poly(n). Thus, unless NP = coNP, NP-complete languages can-
not have interactive proof systems of perfect completeness in which the
prover sends logarithmically many bits.

2. We show that if a language has an interactive proof in which the prover
sends a single bit (with some restrictions on the error probabilities), then
it has a statistical zero-knowledge interactive proof; that is, is in the
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class SZK. This is a stronger conclusion than our main result because
SZK C AM N coAM, as shown by Fortnow [For89] and Aiello and
Hastad [AH91]. Recalling that Sahai and Vadhan [SV03] showed that
any language in SZK has an interactive proof in which the prover sends
a single bit, we obtain a surprising equivalence between these two classes.

Interactive Proofs with Few Messages. We obtain one (apparently) new
result regarding message complexity. A question that is left open by the re-
sults mentioned earlier is what happens “in between” constant rounds and
polynomially many rounds. Phrased differently, can the Speedup Theorem of
Babai and Moran be improved to show that m(n)-message interactive proofs
can be emulated by (and hence are no more powerful than) m/(n)-message in-
teractive proofs for some m’ = o(m)? By combining careful parameterizations
of [LFKN92, Sha92] and [BM88], we observe that such an improvement speedup
is unlikely. More precisely, for every nice function m, we show that there is
a language which has an m(n)-message interactive proof but not an o(m(n))-
message one, provided that #SAT is not contained in the sub-exponential ana-
logue of coAM.

1.3. Additional related work. We note that Goldreich and Hastad [GH9S|
have presented significantly stronger results regarding interactive proofs with
laconic provers when further restrictions are imposed on the interactive proof.
In particular, they obtain an upper bound of BPTIME(T) (rather than BPTIME(T)NP),
with 7' = 2P°¥() . poly(n), for languages possessing either of the following kinds
of interactive proofs: (1) public-coin proofs in which the prover sends at most

b bits, (2) proofs in which the communication in both directions is bounded by
b.

Multi-prover interactive proofs and PCP. The expressive power of multi-
prover interactive proofs (MIP’s) and probabilistically checkable proofs (PCP’s)
with low communication has been the focus of extensive research. Much of
this research is motivated by the importance of the communication parameter
in the applications of MIP/PCP to inapproximability. In particular, Bellare,
Goldreich, and Sudan [BGS98]| give negative results about the expressive power
of “laconic” PCP’s and MIP’s. Since one-query PCP’s are equivalent to inter-
active proofs in which the prover sends a single message, our results provide
bounds on the former.
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Knowledge complexity of interactive proofs. Our work is also related to
work on knowledge complexity. Knowledge complexity, proposed by [GMR89],
aims to measure how much “knowledge” is leaked from the prover to the ver-
ifier in an interactive proof. Several measures of knowledge complexity were
proposed by Goldreich and Petrank [GP99], and a series of works provided up-
per bounds on the complexity of languages having interactive proofs with low
knowledge complexity (see [GOP98, PT96] for results regarding the main no-
tion of knowledge complexity and [GP99, ABV95, SV03] for results regarding
alternative notions). These results are related to, but incomparable to ours.

For example, Petrank and Tardos [PT96] showed that languages having
knowledge complexity & = O(logn) are contained in AM N coAM. While
it is true that the knowledge complexity of an interactive proof is bounded
by the amount of prover-to-verifier communication, their result does not yield
anything interesting for laconic interactive proofs. The reason is that their
result only applies to interactive proofs with error probabilities significantly
smaller than 27, and it is easy to see that interactive proofs with prover-to-
verifier communication £ = O(logn) and error probability noticeably smaller
than 27% only capture BPP (and hence are uninteresting). In contrast, our
results apply even for constant error probabilities.

Sahai and Vadhan [SV03] (improving [GP99]) showed that languages with
logarithmic knowledge complexity in the “hint sense” collapse to SZK, and
their result applies even if the error probabilities are constant. However, this
is also incomparable to ours, because the “hint sense” is the one measure of
knowledge complexity which is not bounded by the prover-to-verifier commu-
nication. (Indeed, the “hint sense” formulation was dismissed as a satisfactory
definition of knowledge complexity by Goldreich and Petrank [GP99] because
of the above and related issues. Still knowledge complexity in the “hint sense”
yields an interesting extension of zero-knowledge.)

Computationally-sound interactive proofs. Finally, it is important to
note that the situation is dramatically different for argument systems [BCC88]
(also known as computationally sound proofs). These are like interactive proofs,
but the soundness condition is restricted to polynomial-time provers. Kil-
ian [Kil92] showed that NP has laconic argument systems if strong collision-
resistant hash functions exist. Specifically, under a strong enough (but still
plausible) assumption, NP has public-coin arguments in which the verifier’s
randomness and the communication in both directions is polylogarithmic. Com-
bined with [GH98], this provides a strong separation between the efficiency of
arguments versus interactive proofs for NP. Our results extend this separation
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to the case that only the prover-to-verifier communication is counted (and the
interactive proof is not required to be public coin).

1.4. Organization and techniques. In Section 2 we recall some relevant
definitions, notations and results of prior work. Using these notations, in Sec-
tion 3, we state our results and compare them to prior work. Directions for
further research are suggested in Section 9.

In Sections 4 and 5, we study laconic provers who send only one message
(or even a single bit). The main technical contribution of these sections is
a sequence of reductions among various forms of proof systems with the end
result being a statistical zero-knowledge proof system.

In Section 6 we consider laconic provers of perfect completeness. We reduce
the analysis of such proof systems to a classical result in game theory.

The main result of this paper is proven in Section 7. The main technical
contribution is a proof system for proving a (quite tight) lower bound on the
sum of exponentially many (e.g., 2") quanities, where each quantity is eas-
ily verifiable. The basic idea is to cluster these quantities according to their
approximate magnitude, randomly select a few clusters (with probability pro-
portional to the cluster’s “weight”) and sample each selected cluster via an
adequate protocol. We stress that the novelty of this proof system is in estab-
lishing quite tight lower bounds (e.g., tight up to a factor of 1 £ o(1)) rather
than lower bounds that may be off by a much larger factor (e.g., a factor of n).

In Section 8, we present a message complexity hierarchy (based on a rea-
sonable conjecture regarding #SAT). The result follows immediately from
refined versions of known results; specifically, the interactive proof for #SAT
of Shamir [Sha92] (following [LFKN92|) and the Speedup Theorem of Babai
and Moran [BM&8].

For sake of self-containment and clarity, we provide detailed analysis of
refined variants of two known results: the set sampling/lower-bound protocol
of [BM88, GS89, AH91] and the Speedup Theorem of [BM88]. We beleive that
these refined variants, provided in Appendices A and B, may be useful for
future reference.

2. Preliminaries

We assume that the reader is familiar with the basic concepts underlying in-
teractive proofs (and public-coin interactive proofs); see, e.g., [Sip97, Gol99,
Vad00]. Throughout, we work with interactive proofs for promise problems
rather than languages. A promise problem II = (Ily, IIy) is a pair of disjoint
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sets of strings, corresponding to YES and NO instances, respectively. In other
words, a promise problem is simply a decision problem in which some inputs
are excluded. The definition of interactive proofs is extended to promise prob-
lems in the natural way: we require that when the input is a YES instance, the
prover convinces the verifier to accept with high probability (completeness);
and when the input is a NO instance, the verifier accepts with low probability
no matter what strategy the prover follows (soundness). Working with promise
problems rather than languages only makes our results stronger (except for one
direction of Theorem 4.6).

2.1. Notation. We denote by IP(b, m) (resp., AM(b, m)) the class of prob-
lems having interactive proofs (resp., public-coin interactive proofs) in which
the prover sends a total of at most b bits, and the total number of messages
exchanged (in both directions) is at most m. Note that b and m are integer
functions of the common input length, denoted n. When b is not polynomial
in n, it will be understood that we talk of a generalization in which the verifier
is allowed time polynomial in b and n (rather than just in n). Unless specified
differently, we refer to proof systems with completeness probability-bound 2/3
and soundness probability-bound 1/3.

We denote IP(b) = IP(b, 2b); that is, making only the trivial bound on the
number of messages exchanged. We denote by IP' the analogue of IP when

the proof system has perfect completeness (i.e., completeness probability 1).

The class of problems with constant-round interactive proofs is denoted AM o

AM(poly(n),2) = IP(poly(n),O(1)). (The second equality is by Theorems 2.3
and 2.4 below.) When we wish to specify the completeness probability-bound
¢ = ¢(n) and soundness probability-bound s = s(n) we will use subscripts:
IP., and AM_,. Unless otherwise specified, we always assume that c(n) >

s(n) + 1/ poly(n).

Comments: Our notations are not universally acceptable. In some other

works IP(r) denotes IP(poly(n), r). Furthermore, whereas the definition AMY

AM(poly(n), 2) is standard, the class IP is typically defined as IP(poly(n), poly(n)).
Finally, sometimes (e.g., see above) we refer to hierarchies such as IP(-,-) by
the notation IP.

2.2. Interactive proofs with bounded interaction. Using the above no-
tations, we recall some results that are relevant to our study.
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Our starting point. The main results of Goldreich and Hastad are the start-
ing point (and point of reference) for our work.

THEOREM 2.1 ([GH98]). AM(b, m) C BPTIME(poly(2°, m™, n)).

THEOREM 2.2 ([GH98]). IP(b,m) C BPTIME(poly(2°, m™, n))NP.

Theorem 2.1 is stated merely for sake of perspective. Our results relate to and
improve upon Theorem 2.2 (which relates to general interactive proofs rather
than to public-coin ones). We stress that the transformation from general inter-
active proofs to public-coin ones (see Theorem 2.4) does not preserve the total
number of bits sent by the prover. In fact, very laconic provers (i.e., in which
the prover sends a single bit) are known for several problems that are widely
believed not to be in BPP. (Examples of such problems include QUADRATIC
NONRESIDUOSITY [GMRS89], GRAPH NONISOMORPHISM [GMWO91], and the
DISCRETE LOGARITHM PROBLEM [GK93].)

Results used. We will use some (parametrized) extensions of known re-
sults. Except for the second inclusion in Theorem 2.3 (which is justified in
Appendix B), all the extensions (or parameterized versions) are straightfor-
ward from the corresponding original work.

THEOREM 2.3 (Speedup Theorem [BMS8§|).

AM(b,m) € AM(? - poly(m), [m/2]) € AM((b-m)°™, 2).

THEOREM 2.4 (AM emulation of IP [GS89]). IP (b, m) C AM(poly(b,n), m+
2).

THEOREM 2.5 ([BHZ87]). If coNP C AM(b,2), then Xo C IIx(poly(n,b)).
In particular, if coNP C AM, then the polynomial-time hierarchy collapses
to PH = 22 = ]._.[2.

Above and throughout the paper, 3;(t(n)) (resp., ILi(¢(n))) denotes the class

of problems accepted by t(n)-time alternating Turing machines with ¢ alterna-

tions beginning with an existential (resp., universal) quantifier. Thus, 3; e

¥i(poly(n)) and Hidéfl_[i(poly(n)) comprise the i® level of the polynomial-time
hierarchy.
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2.3. Statistical Zero Knowledge (SZK). We will also consider SZK,
the class of problems possessing statistical zero-knowledge interactive proofs.
Rather than reviewing the definition of SZK here, we will use a recent charac-
terization of SZK in terms of complete problems. For random variables X and
Y, let A(X,Y) denote their statistical difference (or variation distance, i.e.,
A(X,Y) = maxg |Pr[X € S]—Pr[Y € S]], which equals - > |Pr[X = 2] —
Pr[Y =z||). We consider distributions (or random variables) specified by
(“sampling”) circuits; that is, a circuit with m input gates and n output gates
can be viewed as a sampling algorithm for the distribution on {0,1}" that is
induced on the output gates by evaluating the circuit on m random input bits.
STATISTICAL DIFFERENCE is the promise problem SD = (SDy, SDy), where

SDy = {(X,Y) : A(X,Y) >2/3}
SDy = {(X,Y) : A(X,Y)<1/3}.

Recall that X and Y represent probability distributions specified by corre-
sponding sampling circuits (z.e., circuits C) and Cy such that evaluating C
(resp., C1) on the uniform distribution yields a random variable distributed
as X (resp., Y)). More generally, for any 1 > o > > 0, we will consider
variants SD®”, where the thresholds of 2/3 and 1/3 are replaced with a and
[ respectively.

THEOREM 2.6 (Complete Problem for SZK [SV03]). For any constants 1 >
o? > [ > 0, the problem SD*” is complete for SZK. That is, SD*” is in
SZK, and every problem in SZK is reducible to SD“? via a polynomial-time
(many-one) reduction.

Thus, instead of placing certain problems in the class SZK (resp., showing
that SZK has certain interactive proofs), we may reduce these problems to SD
(resp., show that SD has such an interactive proof). Indeed, we use the fact
that SZK is closed under many-one reductions [SVO03].

Other results used. The following results about SZK are also relevant to
us:

THEOREM 2.7 ([For89, AH91]). SZK C AM N coAM.

THEOREM 2.8 ([Oka00]). SZK is closed under complement.
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THEOREM 2.9 ([SV03]). SZK C IP;_5-n 1/5(1).

2.4. Probabilistically Checkable Proofs (PCP). As stated in the intro-
duction, some of our results can be viewed in terms of probabilistically checkable
proofs. Loosely speaking, a probabilistically checkable proof system consists of
a probabilistic polynomial-time verifier having access to an oracle which repre-
sents a proof in redundant form. Typically, the verifier accesses only few of the
oracle bits, and these bit positions are determined by the outcome of the veri-
fier’s coin tosses. For completeness and soundness bounds ¢ and s, it is required
that the verifier accepts any YES instance & with probability at least ¢(|z|) (i.e.,
when given access to an adequate oracle), whereas it accepts any NO instance
x with probability at most s(|x|) no matter which oracle is used. Whenever
this holds and if the verifier uses at most 7(|z|) random bits and makes at
most ¢(]z|) boolean queries, we say that the problem is in PCP, 4(r,¢q). For
logarithmically bounded ¢, we will also say that the problem has amortized
query complexity m, and denote the class of problems having amortized

query complexity g (and randomness complexity r) by PCP(r,q). (For further
discussion of these notions, see [BGS98].) It will be interesting to contrast our
results with the following known results:

THEOREM 2.10 (Sec. 10.2 in [BGS98]).
(i) PCP_(poly(n),1) C AM, for any functions c, s.

(ii)) PCP(O(logn),1 —¢) C P, for every constant € > 0.

We also consider free-bit complexity of PCP systems. Loosely speaking, here
one distinguishes queries for which the verifier compares the answer against a
value determined by previously obtained answers, from queries in which the ver-
ifier only records the answer for future usage. The latter queries are called free
(as the “acceptable answers” to them are not determined). By FPCP, ,(r, f)
we denote the class of problems having a PCP, 4(r, ¢)-system in which at most
f < ¢ queries are free. (Actually, the definition of free-bit complexity also
requires polynomial-time reconstruction of the 2/ acceptable answers.)

THEOREM 2.11 (Sec. 10.3 in [BGS98]). FPCP, s(poly(n),0) C coNP, for any
function s < 1.

3. Formal Statement of Results

We improve over Theorem 2.2, and address most of the open problems sug-
gested in [GH98, Sec. 3]. Our main results are listed below.
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3.1. On provers that send only one bit. For one bit of prover-to-verifier
communication, we obtain a collapse to SZK.

THEOREM 3.1. For every pair of constants ¢, s such that 1 > ¢* > s > ¢/2 > 0,
IP. (1) = SZK.

Viewed in terms of PCP systems, this says that PCP, 4 (poly(n),1) = SZK,
for any 1 > ¢ > s > ¢/2 > 0. For this range of ¢ and s, the latter improves
over the bound provided by Part i of Theorem 2.10. Combining Theorems 3.1
and 2.8, we get:

COROLLARY 3.2. For every c,s as in Theorem 3.1, IP. (1) is closed under
complement.

Theorem 3.1 can be generalized to non-constant completeness and soundness
bounds as follows.

THEOREM 3.3. For every constant 6 > 0, and every pair of functions ¢, s such
that c(n)*™ > s(n), IP. (1) C SZK. In fact, this holds even for non-constant
6 =Q(1/logn).

3.2. On provers that send only one message. We are sometimes able to
reduce proof systems with a laconic prover that sends a single message to the
above case (of provers that send only one bit).

THEOREM 3.4. For every b =b(n) = O(logn), ¢ = ¢(n), and s = s(n) satisfy-
ings <272 TP, (b,2) CIP4(1) where s' = 1—exp (—O (s2°/(1 — 5?2%)?)).

Applying Theorem 3.3, this gives:
COROLLARY 3.5. IP_(b,2) C SZK, provided the following conditions hold:
(i) b= O(logn) and s < 27%/2.
(ii) s2°/(1 — s%2°)% = O(logn).
(iii) ¢ > 1 —exp (—rs2°/(1 — s?2°)%), where & is a universal constant.

(Condition (ii) guarantees that 1 — s’ = exp(—0(s2°/(1 — s22%)?)) is at least
1/ poly(n), and Condition (iii) guarantees that ¢* > s'.) In particular, the
above conditions are satisfied in the following two cases:

1. b=0(ogn), s =0(27%) =1-Q(1) and ¢ = 1 — o(1).
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2. b < 2log, logym, 5 = (1— Q1)) - 272 and ¢ > 1 — exp(~w(2"12).

Viewed in terms of PCP systems, the above results refer to a generalization of
PCP in which non-boolean queries are allowed. Specifically, the above results
refer to a PCP system in which a single query is made and is answered by
a b-bit long string. The amortized query complexity of such a scheme may
be viewed as m, and so the setting in Item 2 asserts that 1-query PCP
with polynomial randomness, constant (or even double-logarithmic) answer
size, perfect completeness, and amortized query complexity below 2 is in SZK.
This is slightly related to Part ii of Theorem 2.10 that refers to amortized
query complexity below 1 but in a different PCP model (which, on one hand,
allows many Boolean queries and arbitrary completeness bound, but on the
other hand allows only logarithmic randomness).

3.3. On provers that send a bounded number of bits. For more bits of
communication, we first obtain the following result for interactive proofs with
perfect completeness (denoted by IP™):

THEOREM 3.6. IP™(b) C coNTIME(2"-poly(n)). In particular, IP*(O(logn)) C
coNP.

In the general case (i.e., with imperfect completeness), we prove:

THEOREM 3.7. IP(b,m) C coAM(2° - poly(m™,n), O(m)). In particular,
IP(O(logn),m) C coAM(poly(n),O(m)), for m = O(logn/loglogn),

The above theorems provide first evidence that NP-complete problems cannot
have interactive proof systems in which the prover sends very few bits. Further
evidence toward this claim is obtained by applying Theorems 2.3 and 2.5:

COROLLARY 3.8. IP(b,m) C coAM(poly(2°, m™,n)™,2). In particular, IP(O(logn), O(1)) C
coAM and IP(polylogn) C coAM.

COROLLARY 3.9. NP ¢ IP(O(logn), O(1)) unless the polynomial-time hier-
archy collapses (to Yo = Il5). NP ¢ IP(polylogn) unless 35 C II,.

Above, coAM and ﬁ2 denote the quasipolynomial-time (2P°V1°6™) analogues
of coAM and I1,.

3.4. On provers that send a bounded number of messages. Finally,
we mention our result on message complexity. (A more precise statement is
contained in Section 8.)
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THEOREM 3.10. Let m(n) < n/logn be any “nice” growing function and sup-
pose that #SAT ¢ AM(2°) 2). Then AM(poly(n), m(n)) # AM(poly(n), o(m(n)).

Theorem 3.10 asserts that a stronger round-reduction than the one provided by
the Speedup Theorem of [BM88| (i.e., Theorem 2.3) is unlikely, unless one can
present an unexpectedly-short two-message proof for non-satisfiability. Note
that, by Theorem 2.4, it is irrelevant whether we use IP or AM in Theo-
rem 3.10.

4. On Extremely Laconic Provers (Saying Only One Bit)

In this section, we prove Theorem 3.1 (i.e., relate IP(1) and SZK). The proof
is based on the following lemma, along with previous results.

LEMMA 4.1. For every two constants c, s, every problem in IP, ;(1) reduces to
SD<®.

Recall that SD* is the promise problem STATISTICAL DIFFERENCE (as defined
in Section 2.3).

PrROOF. Let (P, V) be an interactive proof for some problem so that the
prover sends a single bit during the entire interaction. Thus, on input x and
internal coin tosses 7, the verifier first sends a message, denoted y = V,(r), the
prover answers with a bit, denoted o € {0, 1}, and the verifier decides whether
to accept or reject by evaluating the predicate V,(r, o) € {0,1}.

To demonstrate the main idea, we consider first the natural case in which
for every pair (z,7) there exists ezactly one o such that V. (r,0) = 1. (Note
that otherwise the interaction on input x and verifier’s internal coin tosses r is
redundant, because the verifier’s final decision is unaffected by it.) Actually,
the lemma is proved by reducing the general case to this special case (see
Claim 4.4) and treating the special case (Claim 4.2).

The special case — unique (acceptable) answers. A proof system is
said to have unique answers if for every pair (x,r) there exists a single o such
that V,(r,0) = 1.

CraM 4.2. If a problem has an IP. (1) proof system with unique answers,
then it reduces to SD?**~ 11,

Note that the hypothesis can be satisfied only if s > 1/2.
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ProOOF. Let 0,(r) denote the unique o satisfying V,(r, o) = 1. The prover’s
ability to convince the verifier is related to the amount of information regarding
o.(r) that is revealed by V,(r). For example, if for some z and random r, the
value of 0, (r) is determined by V,.(r) then the prover can convince the verifier to
accept x with probability 1 (by replying with o,(r)). If, on the other hand, for
some ¢ and random r, the value of o,(r) is statistically independent of V()
(and unbiased), then there is no way for the prover to convince the verifier
to accept x with probability higher than 1/2. This suggests the reduction
x> (CL,C2), where C1(r) ¥ (Vo (r), 0o (r)) and C2(r) & (Vo (r), 72(r)), where
b denotes the complement of a bit b.

Now we relate the statistical difference between the distributions sampled
by C! and C? to the maximum acceptance probability of the verifier. Since
the first components of C! and C? are distributed identically, their statistical
difference is exactly the average over the first component V,(r) of the statistical
difference between the second components conditioned on V,(r). That is,

A(lea Cazz) = yE A (0w|y70_w|y)] )
where o,|, denotes the distribution of o,(r) when 7 is uniformly distributed
among {r': V,(r') = y}. Forany y and b € {0,1}, let g}, denote the probability
that o,|, = b. Then, for any fixed y, A (04|, 0zly) = |G11y — Gop| = 2¢y — 1,

where ¢, def maxbe{o,l}{qu} > % So, we have:

A(C;, C2) = E [2¢,—1].

y—Vz

On the other hand, the optimal prover strategy in (P, V') is: upon receiving y,
respond with b that maximizes gy,. When the prover follows this strategy, we
have

Pr[V accepts ] = E [g,].
y—Va
Putting the last two equations together, we conclude that A(CL C?) = 2 -
Pr[V accepts ] — 1. (Recall that under the hypothesis of the special case, for
every x the prover may convince the verifier to accept x with probability at
least 1/2 (and so such a proof system must have soundness bound at least
1/2).) Thus if the proof system has completeness and soundness bounds ¢
and s, respectively, then the reduction maps instances to pairs having distance
bounds 2¢ — 1 and 2s — 1, respectively. This establishes Claim 4.2. [ |
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REMARK 4.3. The result of Claim 4.2 can be reversed in the sense that SD**~ 1271 ¢
IP,,(1). Specifically, consider the interactive proof system for SD*” in which
the verifier selects at random a single sample from one of the two distributions
and asks the prover to guess which of the distributions this sample came from.
If the distributions are at distance 6 then the prover succeeds with probability
%-i— g. Thus, applying this proof system to SD?~?*7! we obtain completeness

and soundness bounds % + ZC;1 = c and % + 25;1 = s, respectively.

The general case. We now proceed to deal with the general case in which
there may exist pairs (x,r) so that either both ¢’s or none of them satisfy
Vi(r,0) = 1. We do so by reducing the general case to the special case.

CrAIM 4.4. If a problem is in IP. (1), then it has an IP (112 (145)/2(1) proof
system with unique answers.

Clearly, Lemma 4.1 follows by combining Claims 4.2 and 4.4.

ProOOF. Let (P, V) be a general IP. proof system. Consider the following
modified verifier strategy, denoted V.

1. Generate coin tosses r for the original verifier V.

2. Depending on the number j of possible prover responses o for which
Ve(r,0) =1, proceed as follows:

Case j = 2: Send the prover a special “respond with 1” message, and
accept if and only if the prover responds with 1.

Case j = 1: Randomly do one of the following (each with probability
1/2):
o Send the prover y = V,(r) and accept if and only if the prover
responds with the unique o such that V,(r,0) = 1.

o Send the prover a special “respond with 1” message, and ac-
cept if and only if the prover responds with 1.

Case j = 0: Choose a random bit 0. Send the prover a special “guess
my bit” message, and accept if and only if the prover responds with
.

For all possible choices of the coin tosses of V', there is exactly one prover
response that will make V' accept. Hence V' satisfies the conditions of the
special case. To establish Claim 4.4, we show that if an optimal prover makes
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V' accept with probability 6, then an optimal prover makes V' accept with
probability (1 4 6)/2. To see this, observe that an optimal prover strategy P’
for V' consists of always responding “1” to the special messages, and otherwise
responding as an optimal prover P for V. It can be verified by inspection that,
conditioned on each value of j, if P makes V' accept with probability 6,, then P’
makes V' accept with probability (14 6;)/2. (That is, ¢; is the probability that
V' accepts when interacting with an optimal prover, conditioned on V selecting
a random 7 for which there are j accepting answers (i.e., j = [{o : Vi (r,0) =
1}|) Indeed, 60 = 0, 62 = 1, and 61 > 1/2) |

Combining Claims 4.2 and 4.4, the lemma (i.e., Lemma 4.1) follows. Specif-
ically, by Claim 4.4, any problem in IP. (1) has a unique-answer (1-bit) in-
teractive proof with completeness and soundness bounds ¢ = (1 + ¢)/2 and
s = (1 + s)/2, respectively. By Claim 4.2, the latter interactive proof sys-
tem implies that the problem is reducible to SD* 121 = gpes (since

2 —1=(14¢)—1=cand2¢ —1=(1+s)—1=25). [

PrROOF OF THEOREM 3.1. Let ¢ and s satisfy the conditions in Theorem 3.1
(which asserts that IP. (1) equals SZK). The inclusion of IP (1) in SZK
follows by combining Lemma 4.1 and Theorem 2.6: That is, IP. (1) reduces
to SD**, which (for 1 > ¢* > s > 0) resides in SZK.
The opposite inclusion (i.e., of SZK in IP_ (1)) follows from Theorem 2.9.
Specifically, recall that ¢ < 1 and s > ¢/2, and let € > 0 be such that c+¢ <1
and s > (¢/2) + e. For any problem in SZK, consider a verifier that executes
the IP;_5-n 1/5(1) proof system of Theorem 2.9 with probability ¢ +¢ < 1
and otherwise rejects without any interaction. This yields a proof system with
completeness (¢ +¢€) - (1 — 27 ™) > ¢ (for sufficiently large n), and soundness
(c+e€)-(1/2) < s. [
To generalize the above to non-constant completeness and soundness bounds
and prove Theorem 3.3, we use the following transformation.

LeEMMA 4.5 (Polarization Lemma [SV03]). There is an algorithm that takes as
input a quintuple (X,Y, «, 3, k), where X and Y are random variables specified
by circuits and o* > (3, and outputs a pair of random variables (X',Y") such
that:

AX,)Y)>a = AXY)>1-27"
AX,)Y)<B = AX,Y) <27
The running time of the algorithm is polynomial in the description of X and

Y as well as in the k - exp(1/6)/(a — ), where 6 = %ggg —-2>0.
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ProOOF OF THEOREM 3.3. Let ¢,s be as in the theorem and consider any
problem II in IP_4(1). The proof of Lemma 4.1 shows how from any instance
x of T, we can construct in polynomial time a pair of random variables (X, Y")
whose statistical difference is at least ¢(|z|) (resp., at most s(|z|)) when x
is a YES instance (resp., NO instance). Applying the Polarization Lemma to
(X,Y) with a = ¢(|z|), 8 = s(|z|), and k = 2, gives a reduction from II
to SD¥*1/* which is in SZK. This reduction is computable in polynomial
time because 1/(a— ) = 1/(c — s) < poly(|z|) (by the definition of IP) and
exp(1/6) < poly(|z|) since 6 = 2(1/1og|z|) (by hypothesis). [

On the limitations regarding ¢ and s. The ¢ > s constraint in Theo-
rem 3.1 is due to the analogous constraint in Theorem 2.6 (which in turn stems
from the limitation in Lemma 4.5). Recall that, for every 1 > o > f > 0,
every problem in SZK reduces to SD*” (cf. [SV03]). However, it is not known
whether SD*” is in SZK for every 1 > a > [ > 0 (rather than for every
1> a* > >0 as in Theorem 2.6). In fact, the latter is an intriguing open
problem, and we establish its equivalence to a question regarding IP (1) (for
arbitrary 1 > ¢ > s > ¢/2 > 0).

THEOREM 4.6. The following hypotheses are equivalent.
(i) For all o, 3 such that 1 > o > 3 > 0, SD*” is in SZK.

(ii) For all constants c, s such that 1 > c¢> s> ¢/2>0,IP. (1) C SZK.

Recall that SZK C IP (1), for every ¢, s such that 1 > ¢ > s > ¢/2 > 0.
(Note that this was actually established in the above proof of Theorem 3.1,
since the actual conditions used were ¢ < 1 and s > ¢/2.)

Proor. The direction (i)=-(ii) is proven in the same way as Theorem 3.1,
except that we now use Hypothesis (i) instead of Theorem 2.6: Specifically,
IP. (1) reduces to SD® (for every ¢,s by Lemma 4.1), and Hypothesis (i)
asserts that the latter resides in SZK.

The direction (ii)=(i) is proven by recalling that SD*” is in IP 1 a)/2.(144)2(1)
(see [SV03] and Remark 4.3), which by Hypothesis (ii) is contained in SZK
(since (1 +a)/2> (1+3)/2 > (14 a)/4 holds for any 1 > o > 3 > 0). |

Finally, we remark that the condition s > ¢/2 in Theorem 3.1 (or, more gener-
ally, for SZK C IP_ (1)) seems necessary becuase of the following result.

PROPOSITION 4.7 (cf., [Vad99, Prop 4.1.2]). For every c, s such that s < ¢/2,
IP, (1) = BPP.
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5. On Laconic Provers That Send One Message

In this section, we prove Theorem 3.4, which reduces 2-message proof systems
with a laconic prover to proof systems in which the prover sends only one bit.
Let (P, V) be an IP, (b,2) proof system, with s < 27%2. As in Section 4, we
may assume that on input z and internal coin tosses r, the verifier first sends a
message y = V,(7), the prover answers with a string z € {0, 1}, and the verifier
decides whether to accept or reject by evaluating the predicate V,(r, z) € {0,1}.
We obtain a new proof system (P’, V') by randomly “hashing” the prover’s
responses to one bit.

CONSTRUCTION 5.1 (Modified Proof System (P’,V’)). On input x, the par-
ties behave as follows:

(i) V': Choose r uniformly, and let y = V,(r). Choose a random function
h:{0,1}* — {0,1}. Send y and h to P'.

(ii) P': Let z = P(z,y), and 0 = h(z). Send o to V".

(iii) V': Accept if there exists aw € {0, 1}° such that h(w) = o and V,(r,w) =
1.

Clearly, the prover-to-verifier communication of (P’,V’) is one bit, and the
verifier’s program can be implemented poly(n) - 2°. Also, it is clear that the
modified prover can convince the modified verifier to accept any input with
probability that is lower bounded by the corresponding probability in the orig-
inal proof system. Our focus is thus on analyzing the soundness of the modified
proof system.

The basic intuition is that the impossibility of determining a good prover
answer for the verifier’s message y in (P, V) means that it is hard to predict
the hash-value of such a good answer (under a random hash function). This
intuition is very clear in case the original system has unique acceptable answers,
but it holds also in general. Specifically, consider a typical message y, and two
random 7;’s that may lead to it (i.e., y = V,(r;)). Assuming that z is a
NO-instance, in case of unique acceptable answers, it is likely that the (unique)
good answer for r; differs from the (unique) good answer for 75, and furthermore
(with probability 1/2) these different good answers have different hash-values
under a random hash function. This contributes to the rejection probability
of V/(z). In the general case, when z is a NO-instance, it is unlikely that the
set of good answers for r; has a non-empty intersection with the set of good
answer for 7 (or else P could make V' accept). Furthermore, with positive
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probability (which is exponential in the cardinality of these sets), a random hash
function maps the two sets to different values, which contributes to the rejection
probability of V/(z). Lastly, the expected cardinality of these sets can be upper-
bounded (by s2°, due to the soundness of V). The actual analysis follows, where
we first handle the (easy) special case of unique acceptable answers.

5.1. Acceptance probabilities — unique answers. FEven more than in
Section 4, it is illuminating to first analyze the natural special case of unique
answers. That is, we assume that for every pair (z,7) there exists ezactly one
z such that V,(r,z) = 1. We refer to the proof system (P’, V') as derived by
Construction 5.1.

Cram 5.2. If (P,V) has unique answers, then (P',V') has completeness ¢ =
(14 ¢)/2 and soundness s' = (1 + \/s)/2. Moreover, (P', V') also has unique
answers.

Note that ¢ > cand 1 — s' > 125. On the other hand, s’ < ¢ if and only if
5 < c2.

Proor. We start by establishing the completeness bound, letting « be an
arbitrary YES-instance. Note that whenever z succeeds in making V' accept, it
is the case that b = h(z) succeeds in making V' accept. (That is, if V' accepts
z on coins 7 then V' accepts b = h(z) on coins (r, h), for any h.) On the other
hand, if V' does not accept z on coins r, then V' accepts b = h(z) on coins (r, h)
with probability 1/2 for a uniformly chosen h. Specifically, V' accepts b = h(z)

on coins (r, h) if the unique w # z that is accepted by V' on coins 7 satisfies
def

h(w) = h(z). Thus, V' accepts P'(V!(r,h)) = h(P(V,(r))) with probability

PV, P(Va(r) = 1+ 5 Pro[Va(r, P(V(r) £ 1

(14 Pr [Va(r, P(Va(r))) = 1])
+c
5

1
2
1

>

This establishes the claimed completeness bound. (We comment that unique-
ness of the acceptable answer was not important above; what we actually need
and use is that for every r there exists a w such that V,(r,w) = 1.)
Establishing the soundness bound is (as usual) more involved. We fix an
arbitrary NO-instance x (which we will hereafter drop from the notation). For a
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V message y and a P response z, let ¢, denote the probability that V" accepts
the prover response z given that V’s message is y. That is,

det [{7:V(r) =y and V(r,z) = 1}|
el {r: V() =y}
The optimal prover strategy (for convincing V') is to respond with z that
maximizes the above probability, and this strategy succeeds with probability
¢y = max;{q.),}. By the soundness (of V'), we have E,[¢,| < s, where here and
below the distribution of y is as induced by V,, (when applied to a random r).
Similarly, for a V' message (y,h) and a P’ response o € {0,1}, let q;|y7h
denote the probability that V' accepts the prover response o given that V' sent
(y,h). Using the unique answers hypothesis, observe that the prover response

0 makes V' accept iff the response 1 makes V' reject. Thus, q6|y p =1 —q’lly e 1t

follows that the optimal strategy (for convincing V') succeeds with probability

1 1
Gy = WX Gojy s Dijyn} = 5 T |dopyn — 5 -
We will now relate s' = Eyxlq, ;] to Eylg,] < s. Using the unique answers

hypothesis, note that gy, , = > c-1(0) dely = 2, dely * X=(h), Where x.(h) is a
random variable (defined over the space of h’s) indicating the event h(z) = 0.
Over the choice of the totally random function A, the y.’s are independent
random variables, each with expectation 1/2 and variance 1/4. Thus,

Zqu'XZ(h’)] = Zqu'% = %

Elay,] = E

and

Vary [gh,0| = Var [, a0 (0] = 2.2,

max:{q.|, } _q
< 1 ‘ ZZQZ\y_Iy

(5.3)
Combining (5.3) with the fact that E(X)? < E(X?) for every random variable

X, we get
2
<
y,h

5 |
y,h

This implies that

1 2

, 1

Qolyh — )

= E[V]?r [96|y,hﬂ < E [q_y} =

1
5 Iy o
Y=l 2+E[

and the claim follows. [ |



On Interactive Proofs with a Laconic Prover 21

REMARK 5.4. When s > 1/2, the soundness bound stated above can be im-
proved to (1 + /1 —2s(1 —s))/2. This is obtained by replacing (5.3) with
Varn(gy, »] = 12,43, < (@) + (1 — ¢,)*)/4, and obtaining s' = Eynlq) ;] =
3 + Ey[Vara[ay, , )"

REMARK 5.5. The above analysis only requires the values of the hash function
h to be pairwise independent, so V' can restrict its choice of h to any pairwise
independent family (e.g., inner product modulo 2 with a random vector). This
can eliminate the exponential dependence on b in the running-time of V' if the
original protocol has the property that the unique accepting prover response
can be computed from V'’s coin tosses r in polynomial time. As pointed out
by an anonymous referee, the modified construction corresponds to having P’
send the value of a random location in the Hadamard encoding of the unique
acceptable answer, whereas Construction 5.1 corresponds to using the Long-

Code (of [BGS98]).

Combining Claims 5.2 and 4.2, we get

COROLLARY 5.6. For constants ¢ > s, if a problem has an IP . (O(logn), 2)

proof system with unique answers, then it reduces to SDVs, Hence, if ¢* > s
then this problem is in SZK.

By Remark 5.5, the above extends also to IP. ;(poly(n),2) proof system with
unique answers, provided that the unique accepting prover response can be
computed in polynomial-time (from the common input and V’s coin tosses).

ProoF. By Claim 5.2, for ¢ = (1+ ¢)/2 and s’ = (1 + /s)/2, the problem
has an IP. 4(1,2) proof system with unique answers. By Claim 4.2, any such
problem reduces to SD?* =121 Recalling that (2¢ —1,25' —1) = (¢, \/5), the
first claim follows. The second claim follows by Theorem 2.6. |

REMARK 5.7. We note that the unique answers property has a “zero-knowledge”
flavor. Specifically, consider a simulator that executes the verifier strategy and
uses the unique accepting answer as the simulated prover message. The statisti-
cal difference between this simulation and the (honest) verifier’s view is at most
the completeness error 1—c. If the completeness error is negligible, membership
in SZK follows immediately. Thus, what is interesting about Corollary 5.6 is
that it applies even when the completeness error is constant.
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The PCP perspective. Observe that IP(b,2) systems with unique answers
correspond to PCP systems with zero free-bit complexity in which a single
(non-Boolean) query is made and is answered by a b-bit string. Viewed in these
terms, Corollary 5.6 asserts that, for ¢* > s, PCP, , schemes with zero free-bit
complexity in which a single (non-Boolean) query is made (and is answered by a
logarithmically-long bit string) exist only for problems in SZK. This is slightly
related to Theorem 2.11 that refers to arbitrary PCP; ; schemes with free-bit
complexity zero (which are placed in coNP). Note that the hypotheses of the
two results are incomparable: here we allow arbitrary ¢ > s'/* but require a
single (non-Boolean) query, whereas Theorem 2.11 requires ¢ = 1 but allows
an arbitrary number of (Boolean) queries.

Generalized Statistical Difference. We consider the following many-distribution
version of STATISTICAL DIFFERENCE. For random variables X7, ..., X;, define

(5.8)
det 1

D(Xy, ..., X)) = t-ZmaX{Pr[Xl = 2], Pr[X, = 2],...,Pr[X, = 2]} € E 1} .

For ¢t = 2, the function D is related to the statistical difference between the two

distributions: A(X,Y) =2-D(X,Y)—1 (i.e., D(X,Y) = (1 + A(X,Y))/2).
Furthermore, D(Xj, ..., X}) is the acceptance probability of the verifier in the
following interactive proof system, executed on common input X, ..., X;:

1. The verifier selects uniformly 7 € [t], generates a sample z from X; (i.e.,
xr «— X;), and sends z to the prover.

2. The prover tries to guess 7; that is, the optimal prover responds with j
such that Pr[X; = z] = max{Pr[X; = 2|, Pr[X, = 2], ..., Pr[X} = «z]}.

3. The verifier accepts if and only if + = j.

Note that the above (IP(log,t,2)) interactive proof system has unique an-
swers. Thus applying Corollary 5.6 it follows that, for a* > 3, the problem
of distinguishing between the case that D(Xj, ..., X;) > « from the case that
D(Xy,...,X;) < fis in SZK. That is, for a* > (3, the promise problem
GSD*? = (GSD$, GSDY) is in SZK, where

GSDy = {(X1,...,Xy) @ D(Xy,...,Xy) > a}
GSDY, = {(X1,.. X)) : D(Xy,.., X;) < B}
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5.2. Acceptance probabilities — general case. The following lemma
establishes the bounds claimed in Theorem 3.4. Again, we refer to the proof
system (P, V') as derived by Construction 5.1 (from a proof system (P, V)
having completeness and soundness bounds ¢ and s, which (like b) may be
functions of n).

LEMMA 5.9. The proof system (P’, V') has completeness ¢’ = ¢ and soundness
s' =1 —exp(—0(52°/(1 — 5?2%)?)), provided s < 27%/2.

ProOF. The completeness bound is established similarly to the way this
was done in the unique answer case. It still holds (here) that whenever z =
P(z,y) succeeds in making V' accept (which happens probability at least ¢),
the answer o = h(z) succeeds in making V' accept. However, since we are not
guaranteed here that for every r there exists a w that is acceptable by V. (i.e,
that V,(r,w) = 1), we cannot benefit from the cases in which V' does not accept
z (but does accept w). Thus, we get a completeness bound of ¢ (rather than
(c+1)/2).

For the analysis of the soundness bound, we adopt some of the notation
used in the unique answers case: that is, ¢y, ¢, = max.{q.}, q;|y7h and
Qyn = max{q6|y7h, qi‘yyh} are as in Claim 5.2. Unlike the unique answers case, it
is no longer true that g, , = 1/2+ g, , —1/2|, because it may be the case that
both (or neither) of the answers 0 and 1 make V" accept. Instead, let R, denote
the set of coin tosses (of V) leading to message y, and let A, C {0,1}° denote

the set of P responses making V' accept on coin tosses 7. (For aset S C {0,1}°,
def

we let h(.S) denote the image of S under h; i.e., h(S) = {h(s): s € S}.) Then,
for any o € {0,1} (and any y and h),

Golyn = Pr [0 € h(A,)],

TeERy

since V' accepts o if there exists an element of h~'(co) that would make V'
accept (i.e., is in R,). Observe that for any fixed y and h

max{q()‘yyh,q'”y’h} = max{ Pr [0 € h(A,)], Pr [1 € h,(AT)]}

TERy re€Ry

< Pr [0€h(A,) orlehn(A,))

r0,m1E€ERy

= 1— Pr [0¢h(4,,)and 1¢ h(A,)]

70,71E€ERy
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Thus, we can bound the soundness of (P, V") as follows:

/

s = Eld
y7h[q%h]

= yE;l [maX{Q(I)\y,ha qg\y,h}}
< 1— Pr [0€h(4,,)and1¢ h(A4,)]

y:h7T0:T1 eRy

Since h is a total function (from {0, 1}° to {0,1}), the sets A,, and A,, must be
disjoint in order for both 0 ¢ h(A,,) and 1 ¢ h(A,,) (since otherwise h(A,, N
A, ) € {0,1} is non-empty and must contain either 0 or 1). Furthermore, if
A,, and A, are disjoint, then the probability (over the choice of h) that both
0 ¢ h(A,,) and 1 ¢ h(A,,) occurs is exactly 2740l . 2714nl = 2= (Ar[+An]),
Thus, for any bound B, we get

(5.10) s < 1= Pr  [0¢h(A,) and 1 ¢ h(A,,)]
y,h,r0,m1ERy
9b
= 1- Pr  [A,NA, =0and|A,|+|A4, =i -27"
P Y,m0,71ERy
(5.11) < 1— Pr [A4,NA, =0and |A,|+|A,|<B]-27°
y,r0,r1E€ERy

Thus, we now lower bound the probability, that A,, and A,, are disjoint and
not too large.

CLAIM 5.12. Let 6 =1 — (s?2°)/3 > 0. Then

452° 62
Pr {ATOmATl =0 and |A,| + |4, < 22| > 5

y,r0,m1E€ERy L

Observe that s < 27%/2 guarantees that § > 0. Combining Claim 5.12 with the
bound (on s') provided by (5.11), implies that the soundness error of (P', V')
1s at most

62 4520
(5.13) 1- <5> PR

4520
Using 6 = 1 — (s22°)1/3 = Q(1 — s22%), we get (62/2)-2 &2 > 270(s2"/(1=s2)2)
and Lemma 5.9 follows. Thus, we proceed with the proof of Claim 5.12.
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For a fixed y and any z, Pr,er, [z € A;] = ¢y < ¢, (by definition), and
PrT07T1ERy [Z € Aro N Arl] = qf‘y < q;. Thus,

Prid, N A, #0] = Prld,nd,|>1]

70,71 70,71
< E |40 A

T0,T1

Z Pr [z€ A,,NA,]

T0,T1E€ Ry

IA

2b. qz.

Since E,[¢,] < s, we have Pr,[¢, < s/(1 —6)] > ¢. Thus,

s
= > < — - = <
y#o,l:r)lreRy [Ar N A =0] 2 f;r [qy 11— (5} y,ro,};reRy {ATO N =0a, <
2
s

> §.1— .20

- ( <1 — 6) )

= 6

where the last equality merely uses § = 1—(s?2%)!/3. Turning to the complement
of the second event, we see that
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where the last inequality is due to the soundness of V' (which implies, as a very
restricted case, that any fixed prover strategy z is accepted with probability at
most s). This establishes Claim 5.12, and thereby Lemma 5.9. |

PROOF OF THEOREM 3.4: For b = O(logn), given an IP, ((b,2) proof sys-
tem (P,V), we modify it into an IP. »(1,2) proof system (P’, V') as in Con-
struction 5.1. By Lemma 5.9 (using s < 27%2), we have ¢ = ¢ and s' =
1 — exp(—O(s2°/(1 — s?2%)?)) as required by Theorem 3.4. [

—_
|

(o9
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6. On Laconic Provers with Perfect Completeness

In this section, we prove Theorem 3.6.

THEOREM (Theorem 3.6, restated). If a problem Il has an interactive proof
system with perfect completeness in which the prover-to-verifier communication
is at most b(+) bits then 11 € coNTIME(2!™) . poly(n)).

Proor. We take a slightly unusual look at the interactive proof system for
II, viewing it as a “progressively finite game” between two players P* and V*.
Player P* corresponds to the usual prover strategy and its aim is to make the
original verifier accept the common input. Player V* is a “cheating verifier”
and its aim is to produce an interaction that looks legal and still makes the
original verifier reject the common input.

To make this precise, let b = b(n) be the bound on the prover-to-verifier
communication in the original interactive proof (on inputs of length n), and let
m = m(n) be the number of messages exchanged. Without loss of generality, we
may assume that V sends all its coin tosses in the last message. A transcriptis a
sequence of m strings, corresponding to (possible) messages exchanged between
P and V. We call a transcript ¢ consistent (for x) if every verifier message in
t is the message V' would have sent given input x, the previous messages in ¢,
and the coin tosses specified by the last message in t. We call a consistent ¢
rejecting if V' would reject at the end of such an interaction.

Now, the game between P and V" has the same structure as the interaction
between P and V' on input z: a total of m messages are exchanged and P}
is allowed to send at most b bits. The game between P and V) yields a
transcript t. We say that V' wins if ¢ is consistent and rejecting, and that P
wins otherwise. We stress that V¥ need not emulate the original verifier nor is
it necessarily implemented in probabilistic polynomial time.

The above constitutes a “perfect information finite game in extensive form”
(also known as a “progressively finite game”) and Zermelo’s Theorem (cf.,
[Tuc95, Sec. 10.2]) says that exactly one of the two players has a winning
strategy — that is, a (deterministic) strategy that will guarantee its victory no
matter how the other player acts.

Using the perfect completeness condition, we infer that if the common input
x is a YES instance (of IT) then there exists a winning strategy for P*. (This is
because the optimal prover for the original interactive proot wins whenever V*
plays in a manner consistent with some sequence of coin tosses for the original
verifier, and it wins by definition if the V* plays inconsistently with any such
sequence.) On the other hand, by the soundness condition, if the common
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input is a NO instance then there exists no winning strategy for P¥. (This is
because in this case no prover strategy can convince the original verifier with
probability 1.) By Zermelo’s Theorem, it follows that whenever the common
input is a NO instance (of II) there exists a winning strategy for V.*.

Thus, a proof that x is a NO instance (of II) consists of a winning strategy
for V. Such strategy is a function mapping partial transcripts of P} messages
to the next V¥ message. Thus, such a strategy is fully specified by a function
from W?_,{0,1}° to {0, 1}P°¥(™) and has description length poly(n)- 2%+, To
verify that such a function constitutes a winning strategy for V', one merely
tries all possible deterministic strategies for P’ (i.e., all possible b(n)-bit long
strings). The theorem follows. [

REMARK 6.1. As pointed out by an anonymous referee, Theorem 3.6 can be
proven without reference to game theory, however we feel that the game theo-
retic proof is more insightful. The alternative proof is based on considering the
quantified boolean formula that represents the (perfect completeness) accep-
tance criterion of the original proof system. Next, one observes that negating
this formula yields a sequence of polynomially-many Boolean quantifiers with
at most b universal quantifiers. Thus, a proof that x is a NO-instance consists of
an adequate sequence of 2° assignments to all existentially-quantified variables,
where the simplest way of formulating the notion of an adequate sequence is
via a b-move game (or a tree of depth b).

7. On General Laconic Provers

In this section, we prove Theorem 3.7 (i.e., IP (b, m) C coAM(2°-poly(m™, n), O(m))).
That is, for any problem that has a laconic interactive proof, we will construct
an interactive proof of few rounds for its complement.

Conventions. Let (P, V) be an interactive proof for IT so that, on common
input x, the prover sends a total of at most b(|x|) bits, and the total number
of messages exchanged (in both directions) is at most m(|z|). To simplify the
following exposition, we denote by n = n(|z|) the number of coins tossed by V
on common input x (so n = poly(|z|)). We adopt several of the conventions
from Section 6. Specifically, we assume, without loss of generality, that the
last message is by V' and it consists of Vs entire sequence of coins. Recall
that a transcript ¢ of a possible (P, V') interaction is called consistent (for x) if
every verifier message in ¢ is the message V' would have sent given input x, the
previous messages in ¢, and the coin tosses specified by the last message in ¢.
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More generally, we say that a transcript prefix o s consistent if there exists a
sequence of verifier coin tosses that would give rise to all the verifier messages
contained in 0. We call a full transcript ¢ rejecting if it is consistent and V
would reject at the end of such an interaction.

For simplicity of exposition, we assume that the length of the next prover
message is determined by the transcipt of the interaction so far.

Without loss of generality, we may assume that P is an optimal prover with
respect to V; that is, for every x and every prefix o of a possible transcript (even
with suboptimal prover moves), P responds so as to maximize the acceptance
probability of V.

The Rejecting Sets. Our aim is to devise an O(m)-message interactive proof
system for IT (i.e., the complement of IT). Following the ideas of Goldwasser
and Sipser [GS89], for any possible prefix of a (P, V)-interaction, we consider
the set of verifier coins that are consistent with this prefix and make V' reject
when interacting with P. For YES instances of II (i.e., NO instances of II), these
sets are typically large, whereas for NO instances of II (i.e., YES instances of II)
they are typically small.

We devise an interactive proof for proving that such sets are large. As we
shall see below, we need to show that the sets corresponding to all (i.e., 2°)
possible prover moves are large. (This is in contrast to [GS89], where it was only
necessary to consider sets corresponding to the optimal prover moves. This is
because the aim in [GS89] was to prove (via a public-coin protocol) membership
in II itself, and so the sets considered there corresponded to verifier coins that
are consistent with a given prefix and make V' accept when interacting with
P.)

Specifically, for any fixed common input = and any possible prefix o of an
(P, V)-interaction, let REJ, (o) denote the set of verifier coins that are consistent
with ¢ and make V reject when interacting with P. Note that these sets
REJ,(0) depend on the prover strategy P; there may be several different optimal
prover strategies, and each may cause the verifier to accept on different coin
tosses. However, it is important to note that the size of REJ,(0) is the same
no matter which optimal prover strategy P is used.

We now discuss some basic properties of these “rejecting sets.” Recall that,
when interacting with the optimal prover P, the verifier V rejects a YES instance
(resp., NO instance) of IT with probability at most 5 (resp., at least 2). Letting
A denote the empty prefix, it follows that, depending on 2’s membership in II,
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we have:
. = 2
(7.1) YES instance of II:  |REJ (A)| > 3 2",
— 1
(7.2) NO instance of II:  |REJ,())] < 3 2",

For any possible prover move « following a prefix ¢ it holds that |REJ,(0)| <
|IREJ,(0a)| with equality holding for at least one « (i.e., the a chosen by an
optimal P to be its next move). Thus,

(7.3) prover move: |[REJ,(0)| = min{|REJ,(ca)|}.

For the next verifier move following a prefix ¢ it holds that REJ,(0) =
UgREJ, (o). Thus,

(7.4) verifier move: |REJ,(0)| = Z |REJ, (0 3)].
B

7.1. Motivation to the protocol. Fixing a common input z (supposedly
a YES instance of II), our goal is to prove that |REJ,(A)| > 2 -2". This is done
recursively following the round structure of (P,V'). Suppose that we currently
need to prove that |REJ,(0)| > N. We consider three cases.

Case 1: 0 1s a full transcript. In this case, it is easy to generate the set
REJ,(0) (which is either an empty or a singleton set) and to compare its
size to V.

(Recall that by our conventions, the last verifier message consists of the
outcomes of all the coins the verifier has tossed during the interaction.
Thus, the latter sequence is easily extracted from o, and one can easily
determine whether or not o is rejecting.)

Case 2: the next message 1s by P. Specifically, suppose that the next mes-
sage is (a prover message) of length ¢. Then, by Equation (7.3), we just
prove recursively that |REJ, (o) > N for every a € {0,1}%.

This means branching in parallel to 2¢ recursive proofs, yielding a total
branching factor of 2° (in all rounds). Indeed, here is where the bound
on the total number of bits sent by P is used.



30  Goldreich, Vadhan & Wigderson

Case 3: the next message s by V. In case the next message is a verifier
message, by Equation (7.4) we need to prove that }_;|REJ,(08)] > N.
Note that the number of possible verifier messages may be huge (i.e.,
exponential in n), and thus we cannot afford to examine each term in
the sum. Instead, we let the prover supply a succinct representation of
a sequence {Ng} such that > 75 Ny ~ N and [REJ,(0f)| > Nj for every
(. This succinct representation should allow the new verifier to verify
that both conditions hold. The verification will use parallel executions of
a constant-round sampling protocol as well as poly(m) parallel recursive
calls (i.e., to verify |REJ,(0f)| > Nj for poly(m)-many (’s).

This means branching in parallel to poly(m) recursive proofs, yielding a
total branching factor of poly(m)™? = m®™ (in all rounds).

Further details regarding the implementation of Case 3 are indeed in place.
As a warm-up, suppose that all non-empty REJ,(0[3)’s are of the same size.
In such a case, the prover can state this size, denoted N’, and prove that
there are at least N/N' non-empty REJ,(03)’s each having size N'. Intuitively,
the prover can prove this claim by employing a (standard) set lower-bound
protocol (cf. [BM88, GS89, AH91]). Such a protocol has constant number of
rounds, and produces a ( for which the prover has to recursively prove that
|IREJ,(0f)| > N'. Unfortunately, things are not that simple, because it is
not necessarily the case that all non-empty REJ,(03)’s are of the same size.
Consequently, a more refined approach seems to be necessary.

The way Goldwasser and Sipser [GS89] dealt with this difficulty (i.e., that
not all the sets are the same size) was to group the sets into clusters according
to their approximate size; say, the i*® cluster contains all sets of size between
2¢ and 27!, Since there are only n such clusters, at least one of them must
account for at least a 1/n fraction of the total sum, and we can recursively
proceed with just that one cluster using the approach above. Clearly, such
an approach incurs at least a factor n loss of accuracy with each round. To
compensate for this loss, [GS89] first reduced the error of the proof system
dramatically (to increase the gap in the set sizes that is guaranteed between
YES and NO instances). However, we cannot afford such an error reduction
because it blows up the prover-to-verifier communication.

Wishing to avoid the corresponding cost, we do not apply any error re-
duction on the interactive proof (P, V'), but rather use it directly. Instead of
focusing on one cluster (i.e., the “heaviest” one), we simultaneously consider
all clusters. Towards the recursive calls, we select a sample of poly(m)-many
clusters (according to their weights) and generate poly(m)-many elements in
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each selected cluster. Loosely speaking, in the recursive calls, we shall verify
that each of these elements is indeed in the corresponding cluster.

To summarize, the succinct representation used in implementing Case 3
consists of a sequence of sizes of the corresponding clusters, where we use a
more refined clustering than [GS89]; that is, the i*® cluster contains all sets of
size between (1 + €)" and (1 + €)1, where € = ©(1/m). In other words, we
are clustering all §;’s having |REJ, (0 ;)| & (1+€)" into the i*" cluster, and the
prover only provides the number of such f3;’s. Letting ¢; be the claimed size of
the i* cluster, we need to verify that ), ¢;-(1+¢€)* > N, and check recursively
that these claimed sizes are essentially correct. The latter check is performed
by selecting a weighted sample of clusters and sampling elements from each
selected cluster.

The fact that we select a sample of clusters rather than working on all
of them allows the complexity of our protocol to relate to poly(m)™ rather
than to n™. (Recall that n = poly(|z|), whereas m may be very small (e.g.,
m = loglog|z|).)

The analysis of our protocol relies on a delicate combinatorial lemma re-
garding the clustering of sets by their size (Lemma 7.8 below), rather than on
much simpler versions that are quite straightforward.

7.2. The actual protocol. Recall that the size of |REJ,(A\)| depends on
whether x is a YES instance or a NO instance of 1I, and that the ratio between

these two cases is at least a factor of 2. Let p & 21/(m+2) = 1 4 1/0(m). We
start the protocol with the aim to prove that |REJ,(A)| > 2 - 2" (which indeed
holds in case x € Ilygs), whereas in case x € IIxo the size of REJ,(A) is off
by a factor of p™t!. We hope that after i = 1,...,m iterations, the relevant
sets in case # € IIyo will be off by a factor of p™*1~%. The discrepancy will
be easily detectable at the end of the last iteration. (In the description that
follows, p = (1 +¢€)%.)

Our protocol utilizes a constant-round (public-coin) protocol for sampling in
arbitrary sets. The protocol is invoked so to enable a probabilistic polynomial-
time player (called the wverifier) to sample in a set, which is implicitly defined
via some common input, and this player will be assisted by a computationally
unbounded player (called the prover) that the first player does not trust. The
first player will be given an integer, denoted N, that is supposed to be a valid
lower-bound on the size of the set, denoted S. The names given above to the
two parties fit the standard conventions regarding interactive proofs as well
as fit our application (in which the high-level verifier will play the role of the
verifier in the sampling protocol). The sampling protocol satisfies the following
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two properties:

1. If both players are honest, agree to sample a set S C {0,1}", and the

verifier has a wvalid lower bound on |S|, then, with overwhelmingly high
probability, the verifier will output an element of S.

. If both players agree to sample a set S C {0,1}", and the (honest) verifier

has a (possibly invalid) lower bound N on |S] (i.e., possibly |S| < N),
then no matter how the prover behaves, with probability at least 1 — ‘Nﬂ —

m, the verifier will not output an element of S.

(In fact, for any S’ C S, the probability that the output is in S’ is at

B 1
most 5+ + poly(n).)

Protocols satisfying the above properties are implicit in the literature (cf., [BMS8S,
GS89, AH91|). For sake of self-containment, we present such a protocol in Ap-
pendix A.

CONSTRUCTION 7.5 (main and recursive protocols). The common input to the
main protocol is a string x (supposedly in Ilygs). Let b = b(|z|), m = m(|z|),
n = n(|z|) and p be as above. Let e = 1/O(m) and t = n/log(1+¢€) = O(n/e).

Main protocol: Invoke the recursive protocol (P,V) on input (z, A, 3 - 2").

The verifier accepts if and only if V returns true.

(Motivation: If z € IIygg then |[REJ,(A)] > 2 -2").

Recursive protocol (P,V): Oninput (z,0, N), depending on o, perform one

of the following:

Case of full transcript: In this case, o is a full transcript of (P,V).
If o is a consistent transcript that makes V reject and N =1 then
the verifier V returns true. Otherwise, (i.e., N # 1 or o does not
make V reject), the verifier V returns false. (Note that the higher
level never invokes the protocol with N < 1.)

Case of next move by P: In this case, the next message w.r.t. o is
a message by P. Let us denote the length of this message by /.
Here the parties invoke 2¢ parallel executions of (P, V), with inputs
(z,0a, N), corresponding to all possible o € {0,1}¢. The verifier V
returns true if and only if all these executions return true.

Case of next move by V: In this case, the next message w.r.t. o is a
verifier message.
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(i) Prover’s initial message: The prover P computes so, ..., s; such
that s; = |C;|, where the message class C; is defined as follows:

(7.6) C; ¥ 4B |REI(0B)] > (1 + €)'}

The prover P sends sg, ..., s, to V.

(Motivation: C; D C;4; and thus s; should be greater or equal
t0 8;i41. Similarly, Y20 |C; \ Ciqa| - (14 €)' > |REJ,(0)], and
thus "' (s; — sit1) - (1 + €)*"* should be greater than N.)

(ii) Verifier’s initial checks: If s; < s;41, for some i, then the verifier
V aborts with output false. If > i (si—sip1) - (1+e) " < N
then the verifier V aborts with output false.

(iii) Verifier’s selection of classes: The verifier randomly selects a
sequence of w = poly(m) indices ig, iy, ...,%, 1 such that iy =
0 and for each j > 1 the index i, is selected independently
according to the following distribution Z that assigns i € [t]
probability proportional to (1 + €)'s;. That is,

. (1 —+ G)iSZ'
S (L4 e)Fsy

(iv) Samplingin (the selected) classes: In parallel, for allj = 0,1, ..., w—
1, the parties run a sampling protocol to obtain w samples (sup-
posedly) in C;,, where the verifier enters s;, as input to this
sampling protocol. All invocations are with deviation parame-
ter €/16 and probability parameter 27 (see Appendix A). De-
note the w? samples obtained by (3;x);r, where §3;} is the k'™
sample generated supposedly in C;. .

(Motivation: If f3; is indeed in Cj; then |[REJ.(0f;x)| > (1 +
€)4.)

(v) Recursive calls: The parties invoke W ' w? parallel executions
of (P,V), with corresponding inputs (x,00;x, (1 + €)%). The
verifier V returns true if and only if all these executions return
true.

(7.7) Pr[T = i

Since the body of the recursive protocol (i.e., without the recursive calls) can be
implemented by a constant-round (public-coin) protocol, our main protocol has
O(m) messages (and is of the public-coin type). The total number of bottom-
level recursive calls invoked by the main protocol is 2° - W™ = 20 . ;O™ and
so the overall complexity is 2° - m@™) - poly(n, m, 1/e) = 2° - mO™ . poly(n).
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Motivation to the analysis: Assuming that the sampling protocol works
perfectly (in case both parties are honest), it follows that z € Ilygg is always
accepted by V. (Unfortunately, the sampling protocol does carry a small prob-
ability of error, and so the actual analysis of this case is also postponed to
the next subsection.) On the other hand, if # € IIxo and P wishes not to
fail V’s initial checks (of Step ii), then P must provide many over-estimated
s;’s in each recursive call in which it is asked to prove an over-estimated size
bound. Furthermore, the probability mass of these over-estimated s;’s (w.r.t.
the distribution in (7.7)) is at least 1/O(m), and so some over-estimated s; will
be selected w.h.p. (in Step iii). (The different treatment of sq is due to some
technicality.) For each such over-estimated s;, taking a large sample is likely to
yield a § for which (14 ¢)* is also an over-estimation. Thus, an over-estimation
for some claim at some recursive level is propagated to next recursive level.
Needless to say, the above is merely a very rough sketch; the actual analysis is
provided in the next subsection.

7.3. Analysis. The following lemma plays a key role in our analysis.

LEMMA 7.8. Let S C {0,1}" be a nonempty set, € > 0, t = n/log(1 + ¢), and
{Ss} be a partition of S. For every integer i, define

def

(7.9) Ci={B ]85 = (1+¢€)'}
Indeed, C; is defined also for ¢ < 0, and in this case it equals Cy. Then:

(i) There exist sg > s1 > -+ > s > $441 = 0 such that s; < |C;| for all

1=0,...,t and
t

D (i = sis) - (L4 > |s].
i=0
Furthermore, setting s; = |C;|, for all i’s, will do.

(ii) Let € > 0 and ¢ € N. Suppose that sy > s1 > -+ > s > 5,41 = 0 and
that
t £41
i+1 (1+¢)
(7.10) ;(si —s5i41) - (1+ e > Toap 15|
Let T be the probability distribution on [t] that assigns i € [t] probability
mass proportional to (1+ €)'s; (as in Equation 7.7). Then either |C_,| <
(1 —¢)-s9 or
.Pli_”Ci_A <(1—¢€)-s] >¢€.
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We apply Lemma 7.8 with S = REJ,(0) and Sg = REJ,(03). Part i implies that
if |REJ,(0)] > N and the prover sets the s;’s as directed by the protocol (i.e.,
to equal the |C;|’s defined in (7.6)) then the verifier does not abort in Step ii.
Furthermore, with overwhelmingly high probability, the recursive calls will be
invoked with valid lower-bound claims (i.e., |REJ,(0f;1)| > (1 + €)%). On the

other hand, Part ii asserts that if % - |[REJ,(0)| < N and the verifier does

not abort in Step ii, then in Step iii the verifier is likely to select an index in

Idéf{z' 2 |Cize| < (1—¢€)-s;}, where the |C;|’s are as in (7.6). Specifically, either

0 € I in which case 7 is always in I or each i; hits I with probability at least
¢ (which will be set to equal 1/O(m)). Loosely speaking, for each i; € I, with
probability at least ¢, each sample (3 that is generated with size parameter s;;
is not in C;,_; that is, with probability at least €, |[REJ,(03)| < (1 + €)%, in
contrast to the recursive call that uses a size lower-bound of (1+¢)%. Thus, in

such a case, we started with an over-estimate factor of ((1;’_62,[;1 = ll_t f)2 (1+e)",
and invoke a recursive call with an over-estimate factor of (1+ €)*. But before

applying Lemma 7.8, let us establish its correctness.

ProoF. First, we note that

—+oo t
(711) D (G = [Cipa]) - (14" < [S] < D (G = |Cial) - (1 + &,
1=—00 1=0

because (1 + €)' < |Sg| < (1 + €)™ for every 3 € C;\ Ciy1. Thus, Part i
follows by setting s; = |C;], for ¢ = 0, ..., t.
Part ii is established by the following claim and an application of Markov’s
inequality (z.e., for X = |C;_|/s;, which is non-negative, it holds that Pr[X >
1-¢]<E[X]/(1-¢)<1-=¢).

CrAamM 7.12. Suppose that (7.10) holds and |C_y| > (1 — €') - so. Then
[|Cz'—Z|

E

1—T S;

} < (1-¢€)%

To prove this claim, we first expand the expectation:

E [|C,-—z|} _ i (1+€)-s; _|Cz'—l|

o CH — S (I4ek-s, s

S 1+ |Ciy
Z::l(]‘ + G)i * 5
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We rewrite both the numerator and denominator using the following identity,
which holds for any sequence of numbers xy, ..., x; and x;; = 0:

i=1

This gives:

7.13
( ) iEI

[|Cz'—Z|] _ 1O+ 3o (Cinel = [Cisael) - (L €)'
5i =80 + D i_o(8i = si1) - (L +€)f

We upper-bound the numerator as follows:

t
—1Cel + D (ICicel = [Cipael) - (1 + €)°
=0

< —C+ 1+ S|
< —(1=€)? s+ (1+¢) - |9
t

< —(1-€)P 5o+ (1—¢€)?- Z(Si — 5i1) - (L +€)’

where the first inequality is due to (7.11), the second inequality is due to the
claim’s second hypothesis (i.e., |C_4| > (1—¢€)-s0 > (1—¢)?-5p), and the third
inequality is due to the claim’s first hypothesis (i.e., (7.10)). Substituting this
upper-bound into (7.13) establishes Claim 7.12 and thereby Lemma 7.8. W

PROOF OF THEOREM 3.7. Construction 7.5 yields a (public-coin) protocol
which satisfies the complexity bounds asserted in Theorem 3.7 (i.e., it ex-
changes O(m) messages and the total complexity is at most 2° - poly(n, m™)).
It is left to show that this protocol constitutes an interactive proof system for
II. This fact is established in the following two claims.

CLAIM 7.14 (completeness). If x € Tlygs and the prover plays as directed,
then V accepts with probability at least 2/3.

ProoOF. We will show (below) that, with probability at least 2/3, all recursive
calls are with inputs (z,0, N) satistfying |REJ,(0)| > N. Applying Part i of
Lemma 7.8 with S = REJ,(0) and Sz = REJ,(0f3), it then follows that (when
the prover sets the s;’s as directed by the protocol) the verifier does not abort
in Step ii (because Y ;_ (si — si11) - (14 €)™+ > |REI,(0)| > N). Furthermore,
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in this case, all the bottom-level recursive calls are with inputs (x, 0, N) that
satisfy |REJ,(0)] > N > 1 (because N > 1 in each call), and since such o fully
specifies V’s coins it must be that |[REJ,(0)] =1 = N (because for such a full
transcript o it must be that [REJ,(0)| < 1). Thus, all the bottom-level calls
return true, and thus all recursive calls return true.

We now show that, with probability at least 2/3, all calls at each level of
the recursion are with inputs (z, o, N) satistying |[REJ,(c)| > N. This is shown
by induction on the recursion level, using the fact that the number of recursive
calls (in each level) is less than (2m)°®). The basis of the induction holds
because at the top level the input is (2, A, 2 - 2") and |[REJ,(A)] > 2 - 2" holds
(since x € Ilygs). For the induction step we show that if |REJ, ()| > N for
some recursive execution with input (x, o, V), then, for each recursive call that
is directly invoked by the former execution, with probability at least 1 — 27",
the input (z, o', N') associated with the recursive call satisfies |REJ,(0")] > N'.
Thus, if the induction hypothesis holds for some level, then, with probability
at least 1 — (2m)°® . 27% > 1 — L it holds also for the next level.

We consider two cases. In case the next message is by P, we have |REJ,(0a)| >
N for every possible « (by (7.3)), and so the recursive calls (z, oa, N) satisfy
the condition. In case the next message is by V, it holds that the s;’s sent by
P satisfy s; = |C;|, where the C;’s are as in (7.6). Thus, for every 4; selected in
Step iii, it holds that |C;;| > s;,. Thus, each invocation of the sampling proto-
col in Step iv, is likely to return a sample in the corresponding C; ; specifically
(by Part i of Lemma A.2), with probability at least 1 — 2" the sampled Bk
is in C;,. In this case, the resulting recursive call with input (z, 03, , (1+€)")
satisfies |REJ,(00,%)] > (1 +€)4. |

CrAM 7.15 (soundness). If z € IIxo then, no matter how the prover plays,
the verifier V' accepts with probability at most 1/3 (provided € < 1/cm for a
sufficiently large constant c).

Proor. We may assume, without loss of generality, that in each recursive call
the prover supplies a list of s;’s that pass the verifier’s initial check (of Step ii).
We will show, by induction on the recursion depth d = 0,1, ..., m, that with
high probability, one of the recursive calls at level d is with an input (z, o, N)
that satisfies |REJ,(0)] < (1 + €)2=(m+D) . N. Thus, the last recursion level
has a call an input (z, 0, N) that satisfies |REJ,(0)] < (1+¢) - N. If N > 1
then such a call returns false, causing the verifier to reject (i.e., return false
to the main protocol). Otherwise, it must be that N = 1 and REJ,(0) = 0,
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which means that ¢ is not a consistent rejecting transcript, and so this call also
returns false. Thus, we may focus on proving the above inductive claim.

The induction basis holds because it refers to the main protocol’s call to the
recursive protocol, a call that is with input (z, A, -2") that satisfies [REJ,(A)| <
Loom < (1+€) @D . 227 (since z € lIno and € < 1/cm). Specifically, we
may use € ~ (In2)/(2m + 1) so that (1 + ¢)*"*! = 2 holds.

We now turn to the induction step. We assume that there is a level d
recursive-call with input (z, o, V) that satisfies |REJ,(0)| < (1 +¢)2¢Cm+D. N,
We will show that, with probability at least 1 — 27P°Y(™) > 1 — 1/3m, this
level d recursive-call invokes a level d + 1 call with an input (x,0’, N') that
satisfies |REJ,(0")| < (1 4 €)HD=Cm+1) . N’ We consider two cases. In case
the next message is by P, for some «, we have |REJ,(0a)| = |REJ,(0)| <
(1 4+ €)24-Cm+D) . N < (1 4 ¢)2d+)=-Cm+) . N (where the equality is due to
(7.3)), and so the recursive calls (z, o, N) satisty the condition.

The more involved case is when the next message is by V. Using the
hypothesis that the list of s;’s (supplied by the prover) passes the verifier’s
initial check (of Step ii), we may invoke Part ii of Lemma 7.8 with S = REJ,(0),?
S = REJ,(0f), € ~ ¢/2 (so that (1—¢)?=1+¢€) and { = (2m+1)—2d—2
(so that (1 + €)@m+D=2d — (1 4+ ¢)**1/(1 — ¢')?). For Cy’s as in (7.6) and
= {i 1 |Cie] < (1 =€) -s;}, it follows that either ig = 0 € I or for every
J =1,...,w—1, the index 7; selected in Step iii is in / with probability at least
¢’. Thus, with probability at least 1 — 27 P°¥(™)one of the i;’s (possibly i)
selected in Step iii is in /. For the rest of the argument, let us fix a 5 such that
i; € 1. By the definition of I and Cj, it follows that

{8 : [REI(0B)] > (1 +€)5 7} = 1Cii—e] < (1—€)-s5;.

Thus, in each of the w corresponding invocations of the sampling protocol (in
Step iv), with probability at least € — 4 - 5% = Q(1/m), we generate 3 & C;, _y;
this follows by using Part sampling.lem.2 of Lemma A.2, with N = s; and
S" = Ci; 4, and observing that 1 — % > €' (and that the deviation parameter
equals €/16). It follows that (in each of these w invocations), with probability

at least 2(1/m), the generated [ is such that
IREJ(00)] < (14+€)5 ¢ = (14 ¢) (@mD2d=2) (] 4 ¢)is

Thus, with probability at least 1—2~P°Y(™) one of the Bjx’s generated in Step iv
satisfies |REJ,(08;1)] < (14 €)2@HD=Cm+D) (1 4 €)% which implies that the

“Lemma 7.8 requires that S # @, but if REJ, (o) = () then REJ, (03;1) = 0, for all recursive
calls, and the induction step trivially holds.



On Interactive Proofs with a Laconic Prover 39

corresponding recursive call is with input (2,0 0,4, (1 + €)%) that satisfies the
induction claim. This establishes the induction step, and the claim follows. W

8. A Message Complexity Hierarchy

In this section, we give evidence that the Speedup Theorem (Thm. 2.3) cannot
be improved. To do so, for every “nice” function m(), we give a problem that
has an interactive proof with m messages but is unlikely to have an interactive
proof with o(m) messages.

First, we formalize what we mean by a “nice” function. For a function
f:N =N, let f~'(n) be the least m such that f(m) > n. We say that f is
nice if (a) f(n) and f~!(n) are computable in time poly(n) (b) f is monotone
increasing (not necessarily strict), and (¢) f(f1(n)) = O(n). Note that these
conditions are satisfied by functions such as logn, log®n, n¢, and n.

The problems we consider are variants of #SAT, which was shown to be
in IP in [LFKNO92]. Recall that the decisional version of the counting problem
#SAT is

HSAT & {(¢, k) : ¢ has at most k satisfying assignments}.

For a nice function v : N — N satisfying v(n) < n, we define

#SAT, ¥ {(¢, k) € #SAT : ¢ has at most v(||) variables}.
By refining the standard proof system for #SAT, we have:
THEOREM 8.1 (refining [LFKN92, Sha92|). For every nice function v(n),

#SAT, € AM(poly(n), m), where m(n) = v(n)/log,n.

ProoOF SKETCH. We begin by sketching what the standard interactive proof
for #SAT (e.g., as presented in [Sip97, Gol99, Vad00]) gives for an instance
of #SAT,. The common input is a pair (¢, k), where ¢ is of length n and has
v = v(n) variables. The prover sends the verifier the number k' of satisfying
assignments of ¢, and the verifier checks that k' < k. Then, the prover and
verifier extend ¢ : {0,1}" — {0,1} to a polynomial ¢ : F* — F of degree at
most n over some sufficiently large finite field F and the problem is reduced to
proving a statement of the form:

(8.2) Y Y B w) =,

z1€{0,1} x2€{0,1} z,€40,1}
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In each round of the protocol, one variable of ¢ is “eliminated”. More precisely,
in the #*" round, the prover sends the verifier a univariate polynomial

def ~
pz(x) = Z Z @(ala"'7ai—17'xaxi—|—17"'axv)7

$i+16{0,1} 131,6{0,1}

where «aq, ..., a;_; are elements of the field determined by earlier rounds of the
protocol. Then the verifier checks that p;(0) + p;(1) = p;—1(a;—1), and chooses
«; uniformly from F. (pg is defined to be constant polynomial k', and at the
end, the verifier checks that p,(a,) = @¢(aq,...,ay).)

To reduce the message complexity of the proof system, we instead work with
¢ = O(logn) variables at a time, like done in [BFLS91, AS98]. Let H be any
canonical subset of F of size 2¢, and let 7 = (7y,...,m) be a bijection from H
to {0, 1}*. By interpolation, each m; can be extended to a degree |H| = poly(n)
polynomial 7; : F — F which agrees with m; on H. Consider the polynomial
f :F/* — T defined by

f (yl; e '7yv/f) = 35 (ﬁl(yl)a s 77}€(y1)7 s 77~r1(yv/f); e '77~r€(yv/l)) .

Two key points are that f is still of degree poly(n) (because ¢ and the 7;’s
have degree poly(n)) and that f is just as easy to evaluate as ¢. Now proving
Equation 8.2 becomes equivalent to proving

(8.3) Z Z Z Fis e s yope) = K.

y1€H y2€H Yose€H

This can be done in almost exactly the same way as before, eliminating one
variable at a time, except that instead of checking p;(0) + p;(1) = p; 1( 1),
the verifier must check that 3 s, pi(8) = pi—1(ci-1). The representation of
the p;’s and the evaluation of this sum are still feasible because the degree of
f is poly(n) and H is of size poly(n). The analysis of the new proof system is
identical to that of the original, with a slight loss in the soundness due to the
fact that the degree of f is larger than that of ¢. |

Now we observe that it is unlikely that #SAT, has a proof system with
substantially less rounds, because this would yield shorter than expected (two-
message) proofs for non-satisfiability:

PROPOSITION 8.4. Let v be any nice function satisfying w(logn) < v(n) < n.
If #SAT ¢ AM(2°™) 2), then for every m : N — N such that m(n) =
o(v(n)/log, n):

#SAT, ¢ TP (poly(n), m)
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ProoF. Suppose #SAT, € IP(poly(n), m), where m(n) = o(v(n)/logn).
Combining Theorems 2.4 and 2.3, we have

#SAT, IP (poly(n), m

AM (poly(n), m + 2)
AM (poly(n)?™, 2)
— AM (20 m- logn)7 2)

AM (2°0),2).

N 1N m

Now we can obtain a proof system for #SAT by padding. Given an instance
(o, k) of #SAT of length n, if we pad it to length N = v~!(n), then it has
at most n < v(/N) variables. So we can view it as an N-bit long instance
of #SAT, and execute the above AM(2°“(")) 2) proof system on it. This
gives a 2-message proof system for #SAT that on instances of length n has
bit complexity

poly(N, 20Ny = 9o(v(N)) — goln)

where the first equality is because v(/N) = w(log N), and the second because
N =v"t(n). [

Proor orF THEOREM 3.10: Combining Theorem 8.1 and Proposition 8.4
(and assuming #SAT ¢ AM(2°M, 2)), we have for every nice and super-
logarithmic v : N — N (such that v(n) < n)

#SAT, € AM(poly(n),m) \ AM(poly(n), o(m))

where m(n) = v(n)/log, n. Theorem 3.10 follows. [

9. Directions for Further Work

There are clearly several places where quantitative improvements to our results
would be desirable. As discussed in Section 4, it would be very interesting to
remove the ¢ > s constraint in Theorem 3.1 (or to give evidence that it is
necessary). The constraints on the completeness and soundness in our results
for general 1-message proof systems (in Section 5) are even more severe, and do
not stem solely from constraints in previous results about SZK. Another place
where it is not clear that our bounds are quantitatively optimal involves the
complexity bounds in our results for general IP(b). Specifically, it is unclear
whether the m™ complexity in Theorem 3.7 and the additional exponent of
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m incurred in Corollary 3.9 are necessary. (In fact, removing the m™ from
Theorems 2.1 and 2.2 was stated as an open problem in [GH98].)

Another direction for further work is to unify these results with those which
bound the complexity of interactive proofs with low knowledge complexity. As
mentioned in Section 1.3, those works are incomparable to ours. For example,
the results of [PT96] require that the error probabilities are exponentially small
in the knowledge complexity, and the results of [SV03] only apply to knowledge
complexity in the “hint sense” (which is not bounded by the prover-to-verifier
communication). Can one give evidence that NP does not have interactive
proofs of low knowledge complexity k£ (in the usual sense) where the error
probabilities are larger than 27%? The strongest imaginable statement of this
form would say that interactive proofs with logarithmic knowledge complexity
and constant error probabilities capture exactly SZK; such a result would
simultaneously subsume all of our results and those mentioned above.
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A. Sampling Sets of Known Cardinality

The following protocol is a variant of known protocols for sampling NP-sets
of known cardinality. (By sampling an NP-set, we actually mean sampling a
“slice” of such a set; that is, for some n € N, the slice is a subset S, of {0,1}",
specified by a string a € {0,1}P°¥("™) | where the set {(a,z) : x € S, } is an NP-
set.) In fact, we will present a two-party protocol for sampling in arbitrary sets,
while ignoring the issue of verifying membership in the set. In correspondence
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with common applications as well as with the respective computing powers of
the parties, we call the parties verifier and prover. Indeed, the verifier strategy
presented below is implementable in probabilistic polynomial-time, whereas
this is not necessarily the case for the prover.

Standard sampling protocol utilize a family of pairwise independent hash
functions (¢f., [BM88, GS89, AHI1]). In order to obtain improved performance
(in Item i of Lemma A.2 below), we use in our protocol hash functions that
are 2k-wise independent. More precisely, a set of hash functions H,, ¢ is 2k-wise
independent if, for every 2k distinct preimages (in {0,1}"), the correspond-
ing images, under a function uniformly selected in H, 4, are independent and
uniformly distributed in the range ({0,1}%). One efficient construction of such
hash functions is obtained by considering the set of all 2k — 1 degree univariate
polynomials over GF'(2") = {0,1}", and taking the ¢-bit prefix of the value of
such polynomials (on an evaluation point).

CONSTRUCTION A.1 (a sampling protocol). The common input is an integer
n, a string a € {0, 1}P°¥(") specifying a set S s, C {0,1}", and an integer
N which is supposed to equal |S]|.

Error parameters: a deviation error € > 0 and a probability error 6 > 0.

Protocol: The parties set k = log,(1/8) and ¢ % |log,(¢*N/2k?)|. Thus,
27N s 2
Assuming that ¢ > 0, we denote by H, , a family of efficient 2k-wise

independent hashing functions. Otherwise (i.e., for { < 0), we redefine

(%0 and let H, ¢ be the singleton set containing the function h mapping

{0,1}" to the all-zero string (and so satisfying h='(0%) = {0,1}").
(i) The verifier uniformly selects h € H, 4, and sends it to the prover.

(ii) Upon receiving h € H,, 4, the prover responds with a list of ¢ ot (1-
€) - & strings in S N h71(0%). Denote the list sent to the verifier
YLy oees Yt

(iii) The verifier performs a superficial examination of the list and pro-

duces a corresponding output. That is:

(a) Reject illegal lists: The verifier checks that all the y;’s are dis-
tinct, and that h(y;) = 0° for every i = 1,...,t. If any of these
conditions is not satisfied, the verifier outputs a special error
symbol, denoted 1.
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(b) Act on legal lists: Assuming that the above conditions hold, the
verifier selects uniformly i € {1, ...,t}, and outputs y;.

The above protocol exchanges two messages, and the messages being sent have
length poly(% - log(1/6)). The verifier is of the public-coin type and can be
implemented in probabilistic polynomial-time. Clearly, the verifier’s output is
either an n-bit long string or the error symbol L. A cheating prover may easily
cause the verifier to always output L, but this means that the verifier detects
that the prover is cheating. In case S is a slice of an NP-set, the protocol can be
augmented with NP-witnesses, and the verifier may avoid outputting elements
not in S (and output L whenever such an element is presented to it). As we
shall show, the essential feature of the above protocol is that the prover cannot
restrict the output to a too small set (see Item ii below).

LEMMA A.2 (analysis of the sampling protocol). Suppose that 6 < € < 1/3
and that the verifier follows the prescribed program.

(i) If N = |S| and the prover follows the prescribed program then, with
probability at least 1 — 6, the verifier outputs an element of \S.

(ii) For every set S’ C {0,1}" and every N < 2", no matter what the prover
does, the probability that the verifier output resides in S’ is at most
15|
N + 4e.

Proor. We start with Part i, and ignore the case ¢ = 0 (which is obvious).
In case £ > 0, we define 0-1 random variables ¢, such that ¢, < 1 if h(z) = 0°
and (, 210 otherwise. Clearly, for every x € S, it holds that E((,) = Pr[(, =
1] = 27, and the (,’s are 2k-wise independent. Denoting ¢, = ¢, — 2~¢ and
employing standard analysis (using |S| > 2¢7) we get

= \2k
E[(CeesC)"]
(T8
E [Zwl,...,w2k65 Hfil _137.:|
€2k . (272)% . |S|2k
|S|k . ka . (Z—Z)k
€2k . (272)% . |S|2k

k2'2l k
B <e2-|5|) '

ers <33

LzES T 9=t
]

PI‘h |:

> 6-2_£:| <
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Using |S| = N and 2k? - 2¢ < 8N < €2N (where the first inequality is due to
0 <log,(e2N/2k?)), we get:

k2. 20\ "
Pry [|[[{z € S: h(z) =0} —27°-N| > e-27°-N] < (e SI>

2.
< 27k =%

Thus, with probability at least 1 — ¢, the cardinality of the set SN A 1(0%) is
at least t = (1 —¢)-27“- N (and at most (1 +¢)-27¢- N). Part i follows.

We now turn to Part ii. Suppose that |S’| > €- N (otherwise, if |S’| < €- N,
we may augment S’ with eV — |.S’| elements of {0,1}"\ S’). Applying a similar
argument as above to the set S’, we conclude that with probability at least

Y
1- (%) , the set h=1(0%) contains at most (1 +¢) -2 |S’| members of S".
Then, using €2 - |S'| > N > 2k? - 2¢, it follows that with probability at least

1—6:

1" AH0Y] < (1+e€)-275 19
1+e¢ |9 ;
1—€¢ N

where the equality is due to ¢t = (1 — €) - 27% - N. Thus, the probability that
Rl

the output resides in the set S’ is bounded by 6 + % =, Where the first term

accounts for the probability that ¢ % |S"Nh(0)] is greater than 1= - % -,
tl

and the second term is an upper bound on % (which holds otherwise). Using

6 < € < 1/3 and recalling that the original S’ was possibly augmented so that
|S’| > eN, the probability that the output resides in S’ is upper-bounded by

1+¢e max(|5'], e-N) |57 1S’
6—1—1_6- N < e+ (14 3¢) -max N € <46+N
and the lemma follows. [ |

B. Some Comments regarding Theorem 2.3

Recall that Theorem 2.3 is equivalent to the following two claims:

(B.1) AM(b, m)
(B.2) AM(b, m)

AM(b? - poly(m), [m/2]),
AM((b-m)°™ 2).

N 1N
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As stated in the main text, (B.1) is implicit in the work of Babai and Moran [BM8S|.
However, (B.2) does not follow by merely applying (B.1) for [log, m] times (un-
less m is a constant), because such a sequence of applications does not allow
to keep track of the computational complexity of the verifier. The problem
is that (B.1) does not assert that the computational complexity of the new
verifier is polynomial in the computational complexity of the original verifier
(but rather that if the latter is polynomial in n + b then the former is poly-
nomial in n + b = n + b? - poly(m)). Indeed, by going into the original proof
of (B.1), one may verify that the computational complexity of the new verifier
is polynomially related to that of the original verifier, because the new verifier
just manipulates the new messages, derives one set of original messages and
applies the original verifier to it. Still, it seems nicer (and more convincing) to
present a direct proof of (B.2). This is done by “unraveling”the recursion, and
“optimizing” things a little (as done below).

We assume that the reader is familiar with the terminology of public-coin
(a.k.a Arthur-Merlin) interactive proofs, where the verifier is called Arthur
and the prover is called Merlin. By possibly using padding, we may assuine,
without loss of generality, that all Arthur’s messages are of the same length n.
Starting with an AM(b, m) system, we modify it so that each Merlin message
has length exactly b. (This increases the total number of bits sent by the prover
by a factor of m, but we do not care.) Let us denote a generic message of Arthur
by a € {0,1}", and a generic message of Merlin’s by 3 € {0, 1}°.

For sake of perspective and as a warm-up, we start (see Section B.1) by
presenting the main idea of the Babai-Moran transformation [BM88], and recall
(in Section B.2) how it is applied in order to cut the number of rounds by half
and establish (B.1). However, one may skip these preliminaries and proceed
directly to Section B.3, where we prove (B.2).

B.1. The basic switch (from MA to AM). Westart by recalling the main
idea underlying the transformation of Babai and Moran [BM88]. An Arthur—
Merlin proof system can be viewed as a game between an honest Arthur and
Merlin that alternate in taking moves such that Arthur takes random moves
and Merlin takes optimal ones with respect to a fixed predicate that is evaluated
on the full transcript of the game’s execution. The value of the game is defined
as the expected value of an execution of the game (when played against an
optimal Merlin).

The basic idea is to transform an MA-game (i.e., a two-move game in which
Merlin moves first and Arthur follows) into an AM-game (in which Arthur
moves first and Merlin follows). That is, in the original game Merlin first sends
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B € {0,1}°, Arthur responds with a random a € {0,1}", and the value of
the game is defined given by v(f5,«). Then, (for ¢ to be specified) we switch
the order of moves by letting Arthur first send a random sequence (o', ..., a') €
{0,1}™ then Merlin responds with an 8 € {0, 1}° and the value is defined as the
average of the values v(f3,a?), over i = 1,...,t. Using t = O(b), this guarantees
that for every 3 € {0,1}° with very high probability (i.e., probability at least
1—27%72)_ the value of the modified game (i.e., 2 3> v(8, ') for random o’s)
approximates the value of the original game (i.e., Eo(3,a)) up to an additive
constant. Thus:

1 t
lPrt[VﬂE{O,l}b ‘th B, a)| >

a,...,Q
IRRRE) i=1

e~ =

1
E] < 209703 <

This immediately implies that the class M A is contained in the class AM. A
similar reasoning can be applied to longer games (by considering the value of the
residual game after two moves) implies that the class A(MA) is contained in
the class AAM(MA) ! = A(MA) 1. This implies AM(poly,O(1)) = AM
and, more generally, AM(poly,b+ O(1)) = AM(poly, b) (for any b > 2).

B.2. Concurrent switches in mid-game ([MAMA]" to [AMMA]" =
[AM]"A). Sequential applications of the “MA-to-AM switch” allow to reduce
the number of rounds by any additive constant. In order to cut the number of
rounds by a constant, one may apply the “MA-to-AM switch” concurrently to
disjoint segments of the game. That is, suppose that the original game proceeds
in r stages, where the i*® stage (i € [r]) is as follows:

1. Merlin selects (; 1 € {0,1}°,
2. Arthur responds with a random ay;_; € {0,1}",
3. Merlin selects By € {0, 1},

4. Arthur responds with a random ay; € {0,1}",

The value of the corresponding execution of the game is defined as v(f, ay, fa,
9, ey Bor1, @2p_1, Por, . ). For t = poly(r) - b, we transform the above game
into the following corresponding r-stage game, where the i'" stage (i € [r]) is
as follows:

1. Arthur selects a random sequence (ad; i, ..., abh;_;) € {0, 1},

2. Merlin responds with a single 35;_; € {0,11}°,
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3. Merlin further selects and sends a sequence (34;, ..., %) € {0, 1},

4. Arthur responds with a random ¢; € [t] and a random ay; € {0,1}",

C1

The value of the corresponding execution of the game is defined as v(f, o', 35",
Q9 ey Por1, 501, Por, aigr). Observe that, starting from a game of the form
(MA)* = (MAMA)", we have obtained a game of the form (AMMA)" =
A(MA)".

Each of the r switches is analyzed by first considering a random choice of
Arthur’s first move and the average over its choices of ¢; € [t] in its second

move. Specifically, for 7 = (ﬂl; ai, By, g, ..y ﬁ2(1‘71)71; Q2(i—1)—1, ﬁZ(ifl)a 042(1‘71));

Ui(ﬁzpla Q215 Bais Qs ovvy Bor—1, Qor—1, Bor, 042r)

def 5
= U(% Boi—1, i1, Poi, @2y ..., Por—1, Car_1, Bor, @zr) )

7(7) « max{ E [maX{E [v(7, 521‘1,04%1;521,0420]}]} -
Bai—1 Q2i—1 24 a2q

That is, 7(7) is the value of the game conditioned on the 2i — 2 first messages

having transcript 7. The key observation is that for any 7 and every [;_1,

with probability at least 1 — (1/10r) - 27 over the choice random sequence

(ad; 1y..,ab, ) € {0,1} we have

t
1 . . ‘
— E max { E [0(7, Bai-1, 09y, B35 i) ] }
t j=1 By o2
E E [7(7. 5 )] | £
- max v i—15 Q2i—1, P2i, (24 PIPRE
Nl vl od Vs P2i-15 X241, P24, Q2 107

Applying the same reasoning to each possible By 1 € {0, 1}, we conclude that
with probability at least 1 — (1/107) over the choice of the a3, ;s,

1
max E [0(7, Baic1, g1, Boiyani)]} = 9(Y) £ — .
ﬂ2i—1:ﬂ%—;7---7ﬂéi{ciya2i[ (’Y friza 2=l ﬂz 2 )]} (’}/) 107

In the actual analysis we consider p o poly(r) parallel executions of each of
the games, and define the value of each parallel game to be the average of the
values of the corresponding copies.® One may show that each of the 7 switches

3This part of the analysis is different from the analysis in [BM88]. In [BMS&8] one first
reduces the error probability of the original game (also by parallel executions), and argues
that each of the residual values to be considered is very likely to be very close to either 0 or
1. Here by considering the value of the average of p copies, we can relate the likely value of
this average to its expected value.
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approximately maintains the value of the original game. That is, for every
i =0,...,r, consider the value of the (p-parallel) game obtained by performing
only the first ¢ switches. Denote these (p-parallel) games by Gy, ..., G, and
note that Gy is the (p-parallel version of the) original (M AMA)" game, and G,
is the resulting (p-parallel) A(MA)" game. For every ¢ = 1,...,r, we consider
the difference between the value of G;_; and the value of GG;. For any fixed
transcript of the first ¢ — 1 stages, with probability at least 1 — (1/10r) the
values of the residual executions of G;_; and G; differ by at most 1 — (1/10r).
Thus, with probability at least 9/10, the value of a random execution of G, is
within 0.1 of the (expected) value of Gy (which equals the expected value of
the original game).

B.3. A direct approach (to placing (AM)" in AM). Think of the orig-
inal 2r + 1-message (MA)"M game as a tree of depth 7 with nodes being
labeled by Merlin moves (each in {0,1}°) and edges being labeled by Arthur
moves (each in {0,1}"). Thus, the tree has (2")" leaves. Each Merlin strategy
corresponds to a different node-labeling of the tree, whereas the edge labels
are fixed. Such a vertex-labeling assigns Boolean values to the leaves (in corre-
spondence to A’s decision), and by this to all internal nodes such that the value
of an internal node is the average of the value of its 2" children. The value of
a specific Merlin strategy is just the value of the root under the corresponding
vertex-labeling.

Following [GH98], we consider selecting a random subtree of the above tree
so that for each internal node we select at random ¢ = poly(r) - b children.
Again, each specific Merlin strategy used as vertex-labeling (of the random
sub-tree) defines a value of the root, a value that corresponds to a new game
in which Arthur’s moves are restricted to this subtree. We shall prove that,
with high probability over the choice of the random subtree, for each specific
Merlin strategy (i.e., a labeling of all vertices in the full tree), the value of the
subtree approximates the value of the full tree. This leads to the following new
(2-message) AM game:

1. Arthur selects and sends Merlin a random subtree.

2. Merlin provides a labeling of the vertices in this subtree.

Arthur computes the value of the root of the subtree, under the vertex-labeling
(provided by Merlin), and decides accordingly. Note that all complexities (i.e.,
the number of bits sent by Merlin as well as the computational complexity
of the new Arthur) are related to the size of the subtree, which equals " =
(poly(r) - b)" = b°(") (since b > 7).
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Analysis:  We consider hybrid tree distributions in which the first 7 top levels
are as in a random subtree, and the bottom r — 7 levels are as in the full tree
(i.e., span all (2")"~* leaves). The zero hybrid (i.e., ¢ = 0) corresponds to the
full tree, and the r*® hybrid is a random subtree. We will show that for every
i = 0,..,7r — 1, with probability 1 — (1/107), for every vertex-labeling (i.e.,
Merlin strategy) of levels 0, ..., 7 and the best possible Merlin strategy for levels
i+1,...,7, the (random) value of the i+1° hybrid approximates the value of the
i*™® hybrid up to an additive term of 1/107. It follows that, with probability at
least 0.9, the value of a random subtree (under the best labeling) approximates
the value of the full tree (under the best labeling) up to an additive term of
0.1.

Consider any fixed tree T" of the i*® hybrid, and the random 7 + 1°* hybrid
trees obtained by selecting a sample of ¢ vertices out of the 2" children of each
level i node v in T'. (Recall: The root is zero level, and the leaves are at level r.)
For each vertex-labeling of levels 0, ..., 7, we consider the best possible Merlin
strategy for levels i+ 1, ..., 7. Such strategy assigns values to all vertices of level
7,....t + 1 of 7', and the value of any level ¢ node vertex is merely the average
of the value of its children. Specifically, the value at a leaf is determined by
the path to the leaf (which correspond to the edge labels) and by the labels of
the vertices on this path, where the first ¢ + 1 vertex-labels are determined by
the fixed labeling of levels 0, ..., 7, and the labels of vertices at levels 1 + 1, ..., r
are determined by the optimal Merlin moves. The values of all other internal
nodes are determined recursively as the average of the values of their children,
where nodes at levels i + 1,...,7 — 1 have 2" children (as in the original tree),
nodes at level ¢ have ¢t random children, and nodes at levels 0, ...,2 — 1, have ¢
children as determined by 7'.

Our aim is to prove that, with high probability over the choice of children
for the i** level nodes, the value of each of these nodes under any labeling of
the vertices in levels 0, ..., 7 is approximately the average of the values of all its
2" children. Thus, the i + 1°* hybrid approximates the " hybrid.

Fixing any level 7 node vertex, denoted v, and any vertex-labeling for levels
0,...,4, we consider the value of v in the random (7 + 1*") hybrid tree (which
extends 7). Actually, we only fix the vertex-labeling of v and its ancestors,
because only these labels affect the value of the vertices in the subtree rooted
at v. For each such labeling, with probability at least 1 — 29Ut the average
value of ¢ random children of v approximates the average value of all 2" children
of v up to an additive ¢ = 1/10r. Since there are at most 201" < 27 possible
labelings to the vertices along this path, with probability 1 — 27 . 2=/ for
every vertex-labeling of levels 0, ..., 7, the value of v in T is within 1/10r of its
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value in a random ¢ + 1** hybrid tree obtained from T (by sampling its level
i + 1 nodes). In case the above holds, we call v a good vertex, otherwise we
call it bad; that is, v is good with probability at least 1 — 27 - 2—Ut/7?) Using
t > Cr?-(b+rlogt+log 107) for a sufficiently large constant C (e.g., t = O(rb)),
we conclude that each level 7 vertex is bad with probability at most 20" /€7 <
2 Tlogat-loga 10r — ¢ /10r. Thus, with probability at least 1 — (1/10r), all
vertices of the 7" level are good. This means that, with probability at least
1 — (1/107), for every vertex-labeling of levels 0, ...,7, the values of all level
i nodes in the i 4+ 1°* hybrid tree obtained from 7' is within 1/107 of their
corresponding values in 7'.

Considering all possible T7s and doing the same for all neighboring hybrid
pairs it follows that (as claimed above), with probability at least 0.9, the value
of a random subtree (under the best labeling) approximates the value of the
full tree (under the best labeling) up to an additive term of 0.1. Hence we
obtain AM(b, 4r) € AM(t" -b,2), and (B.2) follows (since t = O(r*b) = p°W).
(If one cares then AM(b, 47) C AM(b" - O(r)*,2).)
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