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Abstract

We consider the following problem: for given n,M , produce a sequence X1, X2, . . . , Xn of
bits that fools every linear test modulo M . We present two constructions of generators for
such sequences. For every constant prime power M , the first construction has seed length
OM (log(n/ε)), which is optimal up to the hidden constant. (A similar construction was inde-
pendently discovered by Meka and Zuckerman [MZ].) The second construction works for every
M, n, and has seed length O(log n + log(M/ε) log(M log(1/ε))).

The problem we study is a generalization of the problem of constructing small bias distribu-
tions [NN], which are solutions to the M = 2 case. We note that even for the case M = 3 the best
previously known constructions were generators fooling general bounded-space computations,
and required O(log2 n) seed length.

For our first construction, we show how to employ recently constructed generators for se-
quences of elements of ZM that fool small-degree polynomials (modulo M). The most interesting
technical component of our second construction is a variant of the derandomized graph squaring
operation of [RV]. Our generalization handles a product of two distinct graphs with distinct
bounds on their expansion. This is then used to produce pseudorandom-walks where each step is
taken on a different regular directed graph (rather than pseudorandom walks on a single regular
directed graph as in [RTV, RV]).
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1 Introduction

Pseudorandomness is the theory of generating objects that “look random” despite being constructed
using little or no randomness. A primary application of pseudorandomness is to address the ques-
tion: Are randomized algorithms more powerful than deterministic ones? That is, how does ran-
domization trade off with other computational resources? Can every randomized algorithm be
converted into a deterministic one with only a polynomial slowdown (i.e., does BPP = P) or with
only a constant-factor increase in space (i.e., does RL = L)? The study of both these questions
has relied on pseudorandom bit generators that fool algorithms of limited computational powers.
In particular, generators that fool space-bounded algorithms [AKS, BNS, Nis, INW] were highly
instrumental in the study of the RL vs. L problem (e.g. used in the best known derandomization
of RL [SZ]).

While the currently available space-bounded generators are extremely powerful tools, their seed
length is still suboptimal. For example, if we want to fool a log n-space algorithm then known
generators require log2 n truly random bits (the seed) in order to generate up to polynomially
many pseudorandom bits. On the other hand, for several interesting special cases we do know
generators with almost optimal seed length. The special case which serves as a motivation for our
work is that of small-biased generators [NN]. These generators produce n bits X1, X2, . . . , Xn that
fool all linear tests modulo 2. In other words, for each subset T of the bits, the sum Σi∈T Xi mod 2
is uniformly distributed up to bias ε. Explicit constructions of ε-biased generators are known with
seed-length O(log(n/ε)), which is optimal up to the hidden constant [NN]. Even though linear
tests may seem very limited, ε-biased generators have turned out to be very versatile and useful
derandomization tools [NN, MNN, HPS, Nao, AM1, AR, BSVW, BV, Lov, Vio]

Given the several applications of distributions that fool linear tests modulo 2, it is natural to
consider the question of fooling modular sums for larger moduli. It turns out that the notion of
small-biased generators can be generalized to larger fields. Such generators produce a sequence
X1, X2, . . . , Xn of elements in a field F that fool every linear test over F. [Kat, AIK+, RSW,
EGL+, AM1]. In this work, instead, we consider a different generalization of ε-biased generators
where we insist on bit-generators. Namely we would like to generate a sequence X1, X2, . . . , Xn

of bits that fool every linear test modulo a given number M . For every sequence a1, a2, . . . , an of
integers in ZM = {0, 1, . . . , M − 1} we want the sum Σiai · Xi mod M to have almost the same
distribution (up to statistical distance at most ε) as in the case where the Xi’s are uniform and
independent random bits. (Note that this distribution may be far from the uniform distribution
over ZM , particularly when only a few ai’s are nonzero.) It turns out that even for M = 3 and even
if we limit all the ai’s to be either ones or zeros, the best generators that were known prior to this
work are generators that fool general space-bounded computations [Nis, INW], and required a seed
of length O(log2 n). Therefore, obtaining better pseudorandom bit generators that fool modular
sums may be considered a necessary step towards improved space-bounded generators. In addition,
we consider this notion to be a natural generalization of small-bias generators, which is a central
derandomization tool.

Our Results

We give two constructions of pseudorandom bit generators that fool modular sums.
Similarly to [MST], each construction is actually comprised of two generators: one that fools

summations Σiai · Xi in which only relatively few coefficients ai are not zero (the “low-weight”
case) and one that fools summations Σiai ·Xi such that many coefficients ai are not zero (the “high
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weight” case). The motivation is that fooling low-weight sums and fooling high-weight sums are
tasks of a different nature. In the high-weight case, if Ri are truly random bits, then Σiai · Ri

mod M is almost uniformly distributed in ZM . Thus, in analyzing our generator, we just need to
argue that Σiai ·Xi mod M is close to uniform, where X1, . . . , Xn is the output of the generator.

On the other hand, in the low-weight case the distribution may be far from uniform and therefore
we may need to imitate the behavior of a random sequence of bits more closely.

In each construction, we shall present two generators: one that is pseudorandom against low-
weight sums, and one that is pseudorandom against high-weight sums. We shall then combine them
by evaluating them on independently chosen seeds and XORing the two resulting sequences.

Construction Based on Pseudorandom Generators for Polynomials

In our first construction, we handle the case of M = 3 and any other fixed prime modulus M (in
fact, our construction works also for any fixed prime power). For these cases, our seed length is
O(log(n/ε)) as in the case of ε-biased generators (but the hidden constant depends exponentially
on M).

As mentioned above, for every fixed finite field F, there are nearly-optimal known generators
that construct a small-bias distribution X1, . . . , Xn of field elements, while our goal is to gener-
ate bits. A natural approach to construct a bit generator would be to sample a sequence of field
elements X1, . . . , Xn from a small bias distribution, to pick a function g : F → {0, 1} appropri-
ately, and to output the bits sequence g(X1), . . . , g(Xn). Unfortunately the small bias property for
g(X1), . . . , g(Xn) does not seem to follow from the small bias property of X1, . . . , Xn.

If, however, we start from a sequence of field elements X1, . . . , Xn that fools polynomials over F,
then we can make such an approach work, because g can be chosen to be itself a polynomial (of de-
gree Θ(|F|)). However, note that when |F| is odd, g cannot be balanced, and thus g(X1), . . . , g(Xn)
are only indistinguishable from independent biased coins. Thus, this approach only works when
the sum has sufficiently high weight so that both biased and unbiased random bits will yield a sum
that is almost uniformly distributed over |F|; specifically we need at least k non-zero coefficients
ai, where k = O(M2 log 1/ε). For fixed M , there are known constructions [BV, Lov, Vio] of pseu-
dorandom generators that fool polynomials of degree d over F = ZM , M prime, and which only
require seed length OM,d(log n/ε).

In order to fool low-weight sums, we observe that a bit generator X1, . . . , Xn which is ε-almost
k-wise independent fools, by definition, every sum

∑
i aiXi mod M of weight at most k, and that

such generators are known which require only seed length O(log n + k + log 1/ε).
A similar construction was independently discovered by Meka and Zuckerman [MZ].

Construction Based on the INW Generator

In our second construction, we give a pseudorandom bit generator that fools sums modulo any
given M (not necessarily prime) with seed length O(log n + log(M/ε) log(M log(1/ε))). In both
the low-weight and high-weight cases, this generator relies on versions of the Impagliazzo–Nisan–
Wigderson [INW] pseudorandom generator for space-bounded computation. Of course, modular
sums are a special case of space-bounded computations, and thus we could directly apply the INW
generator. But this would require seed length larger than log2 n. We obtain better bounds by more
indirect use of the INW generator inside our construction.

The most interesting technical contribution underlying this construction is a new analysis of
the derandomized graph squaring operation of [RV], which captures the effect of using the INW
generator to derandomize random walks on graphs. Here we study the analogue of derandomized
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squaring for taking products of two distinct Cayley graphs over an abelian group (namely ZM ). The
advantage of the new analysis is that it handles graphs that have distinct bounds on their expansion,
and works for bounding each eigenvalue separately. This is then used to produce pseudorandom-
walks where each step is taken on a different abelian Cayley graph (rather than pseudorandom
walks on a single graph as in [RTV, RV]).

For the purpose of this informal discussion we will assume that M is prime. (The idea for han-
dling composite M ’s is to analyze each Fourier coefficient of the distribution of the sum separately.
We defer further details to Section 2.1.)

Low-Weight Case. Let us first consider the case where the number of non-zero ai’s is at most
M ′ · log(1/ε), for M ′ = poly(M).1 As before, we could use an almost k-wise almost indepen-
dent distribution, but then our seed length would depend polynomially on M , while our goal is a
polylogarithmic dependency.

First, we use a hash function to split the index set [n] = {1, 2, . . . n} into B = O(M ′) disjoint
subsets Tj such that with high probability (say, 1 − ε/10) over the splitting, each set Tj contains
at most k = log(1/ε) indices i such that ai 6= 0. We show that the selection of the hash function
that determines the splitting can be done using O(log n + (log M/ε) · log(M log 1/ε)) random bits.

Once we have this partition, it is sufficient to independently sample in each block from an ε/B-
almost k-wise independent distribution, which requires s = O(log n + k + log(B/ε)) = O(log n +
log(M/ε)) random bits per block. Then we argue that it is not necessary for the sampling in different
blocks to be independent, and instead they can be sampled using a pseudorandom generator for
space-bounded computation [Nis, INW]. (This relies on the fact the computation

∑
i ai ·Xi mod M

can be performed in any order over the i’s, in particular the order suggested by
∑

j

∑
i∈Tj

ai ·
Xi mod M .) Using the INW generator, we can do all the sampling using O(s + log B · (log(B/ε) +
log M)) = O(log n + log M · log(M/ε)) random bits.

High-Weight Case. We now discuss the generator that fools sums with more than M ′ · log 1/ε
non-zero coefficients ai, for M ′ = poly(M). Here, we can think of the computation Σiai · Xi

mod M as an n-step walk over ZM that starts at 0. Unlike standard walks, each step is taken on
a different graph (over the same set of vertices, namely ZM ). Specifically, step i is taken on the
(directed) Cayley graph where every node v has two outgoing edges. The first edge is labeled 0
and goes into v itself (i.e., this edge is a self loop). The second edge is labeled 1 and goes into
v + ai mod M . Following the walk along the labels X1, X2, . . . , Xn arrives at the vertex Σiai ·Xi

mod M . If the Xi’s are uniform (i.e., we are taking a random walk) then the end vertex will be
almost uniformly distributed (because the number of steps is larger than M2 · log(1/ε)). What we
are seeking is a pseudorandom walk that is generated using much fewer truly random bits but still
converges to the uniform distribution (possibly slower, e.g. using M ′ · log 1/ε) steps).

Pseudorandom walk generators were constructed in [RTV, RV] for walks on a single regular
and connected graph. In our case, we are walking not on a single graph but rather on a sequence
of graphs, each of which is indeed regular. It turns out that the pseudorandom generators of
[RTV, RV] still work for a sequence of graphs rather than a single graph. The more difficult aspect
is that in our walk there is no uniform bound on the expansion of the graphs. In fact, the graphs
that correspond to ai = 0 are not connected at all (they consist solely of self loops). In our setting,
where the graphs are directed Cayley graphs for the abelian group ZM , we show how to generate
pseudorandom walks on graphs with varying bounds on expansion.

1In this preliminary version we did not try to optimize the various constants. In particular, in our analysis
M ′ = O(M24). We note that it can be made as small as O(M2+α) for any α > 0.
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We do this by a generalization of the derandomized graph product of [RV]. There, expanders
are used to generate two steps on a degree-D graph using less than 2 log D random bits, yet the
(spectral) expansion of the resulting graph is almost as good as the square of the original graph.
We analyze the analogous derandomization of two steps on two distinct (abelian Cayley) graphs
for which we may have distinct bounds on their expansion. Moreover, to handle composite M ,
we show that the expansion can be analyzed in each eigenspace separately. (For example, for
Z6 = Z2 × Z3, a sequence of even coefficients ai will yield a random walk that does not mix in
the Z2 component, but may mix in the Z3 component, and our pseudorandom generator needs to
preserve this property.)

To obtain our pseudorandom walk generator, we first randomly reorder the index set [n] so
that the nonzero coefficients are well-spread out, and then derandomize the walk by a recursive
application of our aforementioned derandomized product. As discussed in [RV], the resulting pseu-
dorandom walk generator is the same as the Impagliazzo–Nisan–Wigderson [INW] generator for
space-bounded computation, with a different setting of parameters that enables a much smaller
seed length than their analysis requires for general space-bounded algorithms.

2 Definitions and Tools

This section contains some of the preliminary definitions and tools. For lack of space we defer some
of the definitions and proofs to Appendix A.

We denote by Un the uniform distribution over {0, 1}n. We fix an integer M ≥ 2 for the rest of
the paper. We will be interested in constructing pseudorandom generators for bits, that fool sums
modulo M . We denote by ZM the set {0, 1, . . . ,M − 1} with arithmetic modulo M .

Definition 1. (pseudorandom distributions against modular sums) A random variable X = (X1, ..., Xn)
taking values in {0, 1}n is ε-pseudorandom against sums modulo M if for any a1, ..., an ∈ ZM , the
distribution of a1X1 + ... + anXn modulo M , is ε-close (in statistical distance) to the distribution
a1R1 + ... + anRn modulo M , where R1, ..., Rn are uniform and independent random bits.

Definition 2. (pseudorandom bit generators against modular sums) A function G : {0, 1}r →
{0, 1}n is an ε-pseudorandom bit generator against sums modulo M if the distribution G(Ur) is
ε-pseudorandom against sums modulo M .

Note that ε-biased generators is a special case of the definition of pseudorandom bit generators
against sums modulo M , for M = 2.

Our goal is to build generators that fool sums modulo M , where M can be either prime or
composite. Handling prime modulus is somewhat easier, and the following approach allows handling
both cases simultaneously. We will show that it is enough to construct pseudorandom generators
which fools the bias of a sum modulo M , and under this approach, there is no major difference
between primes and composites.

2.1 Small Bias Bit Generators

First we define the bias of a linear combination with coefficients a1, ..., an ∈ ZM , given some
distribution of X = (X1, ..., Xn) ∈ {0, 1}n:

Definition 3. Let X = (X1, ..., Xn) be a distribution over {0, 1}n, and a1, ..., an ∈ ZM be a
coefficient vector. We define the bias of a1, ..., an according to X to be

biasX(a1, .., an) = E
[
ω

∑
aiXi

]
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where ω = e2πi/M is a primitive M -th root of unity.

Notice that the bias can in general be a complex number, of absolute value at most 1.

Definition 4. We say a distribution X = (X1, ..., Xn) over n bits is ε-bit-biased against sums
modulo M if for any coefficient vector a1, ..., an ∈ ZM ,

|biasX(a1, ..., an)− biasUn(a1, ..., an)| ≤ ε

Let G : {0, 1}r → {0, 1}n be a bit generator. We shorthand biasG(a1, ..., an) for biasG(Ur)(a1, ..., an).

Definition 5. G : {0, 1}r → {0, 1}n is an ε-bit-biased generator against sums modulo M if the
distribution G(Ur) is ε-bit-biased against sums modulo M . That is, for any coefficient vector
(a1, ..., an),

|biasG(a1, ..., an)− biasUn(a1, ..., an)| ≤ ε

The name ‘bit-biased’ in the above definitions is meant to stress the difference from standard
ε-biased generators modulo M . Here we compare the bias of the generator to the bias of uniformly
selected bits (rather than uniformly selected elements in ZM ).

We now reduce the problem of constructing pseudorandom modular generators to that of con-
structing ε-bit-biased modular generators.

Lemma 1. Let X = (X1, ..., Xn) be an ε-bit-biased distribution against sums modulo M . Then X
is (ε

√
M)-pseudorandom against sums modulo M .

From now on, we focus on constructing ε-bit-biased generators. We will need to differentiate
two types of linear combinations, based on the number on non-zero terms in them.

Definition 6 (Weight of a coefficient vector). The weight of a linear combination with coefficients
a1, . . . , an ∈ ZM is the number of non-zero coefficients.

We will construct two generators: one fooling linear combination with small weights, and the
other fooling linear combinations with large weight. Our final generator will be the be the bitwise-
XOR of the two, where each is chosen independently. Lemma 11 shows this will result in an
ε-bit-biased generator fooling all linear combinations.

2.2 Hashing

We will use hashing as one of the major ingredients in our construction. A family of functions
{hr : [n] → [k]} is called a family of hash functions, if a randomly chosen function from the family
behaves pseudorandomly under some specific meaning. We consider a hash function H : [n] → [k]
to be a random variable depicting a randomly chosen function from the family. We say H can be
generated efficiently and explicitly using s random bits, if a random function in the family can be
sampled by a randomized polynomial-time algorithm using s random bits, and this function can
be evaluated using a deterministic polynomial-time algorithm.

The j-th bucket of H, for j ∈ [k], is the set of elements mapped to j, i.e.

{s ∈ [n] : H(s) = j}
Notice that buckets are random variables. We will in particular care about buckets, when we

limit our attention to subsets S ⊂ [n]. The j-th bucket of H with respect to S is defined to be the
set of elements of S mapped to j, i.e.

{s ∈ S : H(s) = j}.
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We will use three constructions of hash functions, given in Lemmas 14, 15 and 16. The con-
structions are based on almost t-wise independence. We define those and prove tail bounds as well
as the three families of hash functions in Appendix A.3.

2.3 Pseudorandom generators for small space

An ingredient in our construction is the small space pseudorandom generator of Impagliazzo, Nisan,
and Wigderson [INW]. See details in Appendix A.4.

3 Construction using PRG for low-degree polynomials

We present in this section a simple construction for prime power M , based on pseudorandom
generators for low-degree polynomials. This construction is optimal for constant M , achieving a
pseudorandom generator with seed length OM (log(1/ε)) (the constant depends exponentially on
M).

Let W = Ω(M3 log 1/ε). We will construct two generators: one for linear combinations of
weight at most W , and one for linear combinations of weight at least W . Lemma 11 shows that
the bitwise-XOR of the two generators is a pseudorandom generator for all linear combinations.

For small weights, we will use a distribution which is ε-close to W -wise independent variables.
Such a distribution trivially fools linear combinations of weight at most W . By Lemma 19, it can
be explicitly generated using O(log n + W + log 1/ε) = OM (log n/ε) random bits.

We now consider large weights. Let a1, . . . , an ∈ ZM be a coefficient vector of weight at least
W . Consider first the distribution of a1R1 + . . . anRn for independent and uniform bits R1, . . . , Rn.
By Lemma 12, |biasUn(a1, . . . , an)| < ε/2.

Consider now Ri ∈ {0, 1}, where Pr[Ri = 0] = c
M for some integer 1 ≤ c ≤ M − 1. Such a

distribution also gives bias of at most ε/4, given that W = Ω(M3 log(1/ε)) with a large enough
constant. By Lemma 13,

|biasR1,...,Rn∼( c
M

,1− c
M

)(a1, . . . , an)| < ε/4.

The benefit of using this skewed distribution, is that it can be simulated by low-degree polyno-
mials modulo M . Since we assume M is a prime power, there is a polynomial g(z) : ZM → ZM ,
which maps c elements of ZM to 0, and the rest to 1. For example, if M = pk, the polynomial
g(x) = x(p−1)pk−1

maps elements divisible by p to 0, and the rest to 1. The degree of this g is at
most M − 1.

Let Z1, . . . , Zn ∈ {0, 1}n be generated by g(Y1), . . . , g(Yn), where Y1, . . . , Yn ∈ ZM are uniform.
We thus have:

|biasZ1,...,Zn∼g(UZM
)n(a1, . . . , an)| < ε/4

We now use the fact that the bias is in fact the bias of a low-degree polynomial, to derandomize
the generation of Y1, . . . , Yn. We have:

biasZ1,...,Zn∼g(UZM
)n(a1, . . . , an) = EY1,...,Yn∈ZM

[ωa1g(Y1)+...+ang(Yn)]

We use a pseudorandom generator for low-degree polynomials, given by Viola [BV, Lov, Vio].
We note the results in these papers are stated for polynomials over prime finite fields, but they
hold also for polynomials over ZM .
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Lemma 2. Let f(x1, . . . , xn) be a degree-d polynomial over ZM . There is an explicit generator
G : {0, 1}r → Zn

M , such that the distribution of f(Zn
M ) and f(G(Ur)) are ε-close in statistical

distance. The number of random bits required is r = O(2d log(1/ε) + log n).

We use the generator of Lemma 2 for error ε/4 and degree d = M − 1. We thus get an explicit
generator for Y1, . . . , Yn ∈ ZM , such that:

|EY ′1 ,...,Y ′n∈G(Ur)[ω
a1g(Y ′1)+...+ang(Y ′n)]− EY1,...,Yn∈Zn

M
[ωa1g(Y1)+...+ang(Yn)]| < ε/4

Thus, if we set Xi = g(Y ′
i ) where Y ′

1 , . . . , Y
′
n are the output of G, we get an explicit generator,

such that
|biasX1,...,Xn∈g(G)(a1, . . . , an)| < ε/2

Thus, we got that the bias of the generator is ε close to the bias under the uniform distribution,
which is what we wanted, since both of them have absolute value below ε/2:

|biasX1,...,Xn∈g(G)(a1, . . . , an)− biasR1,...,Rn∈Un(a1, . . . , an)| < ε

The randomness requirement of our generator comes directly from that of G, which is O(2M−1 log(1/ε)+
log n) = OM (log(n/ε)) for constant M .

4 Construction Based on Pseudorandom Walk Generators

4.1 A generator for small sums

We construct an ε-bit-biased generator for weights at most W = 105M24 log(1/ε). Let a1, . . . , an ∈
ZM be a linear combination of weight at most W .

The construction has three stages:

1. Partitioning the set of indices [n] into W buckets using the hash function H1. Lemma 14
guarantees that with probability 1−ε/100, each bucket contains at most O(log(1/ε)) non-zero
coefficients.

2. For each bucket j, generate the Xi’s for i’s in the j’th bucket using almost O(log(1/ε))-wise
independent distribution.

3. Use the INW generator given by Lemma 20 to generate the W seeds for the O(log(1/ε))-wise
independent distributions used for the different buckets.

Lemma 3. The above construction is an ε-bit-biased generator against linear combinations of
weight at most W , using O(log n + log(M/ε) log(M log(1/ε))) random bits.

The proof appears in appendix B.1.

4.2 A generator for large sums

In this section we construct an ε-bit-biased distribution for linear combinations of weight at least
W = 105M24 log(1/ε),

Recall that by Lemma 12, when the weight is large, the bias under the uniform distribution is
small. Thus, to prove that a distribution is ε-bit-biased against large weight sums modulo M , it is
enough to show that its bias is also small. We construct our ε-bit-biased generator in three steps:
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• G1: a generator which has bias at most 1− 1
M2 on every linear combination which is not all

zeros.

• G2: a generator which has bias at most 1/2 on every linear combination of weight at least
100M24.

• G3: a generator which has bias at most ε/2 on every linear combination of weight at least
105M24 log 1/ε.

The generator G3 will be our ε-bit-biased generator for large weights. The main ingredient in
the construction will be a derandomized expander product, which we now define and analyze.

4.2.1 Derandomized expander products

Definition 7. We say an undirected graph H is a (2r, 2d, λ)-expander if H has 2r vertices, it is
regular of degree 2d and all eigenvalues but the first have absolute value at most λ. We will identify
the vertices of H with {0, 1}r, and the edges exiting each vertex with {0, 1}d in some arbitrary way.

We will need explicit constructions of expanders, which can be obtained from any one of various
known constructions [Mar1, GG, JM, AM2, AGM, LPS, Mar2, Mor, RVW]

Lemma 4. For some constant Q = 2q, there exist an efficient sequence Hk of (Qk, Q, 1/100)-
expanders.

We now define expander products of two generators with common seed length:

Definition 8. Let G′, G′′ : {0, 1}r → {0, 1}t be two bit generators. Let H be a (2r, 2d, λ)-expander.
We define G′ ⊗H G′′ : {0, 1}r+d → {0, 1}2t to be the concatenation (G′(x), G′′(y)), where x is a
random vertex in H, and y is a random neighbor of x in H.

We relate the bias of G′ ⊗H G′′ to the biases of G′ and G′′.

Lemma 5. Let G′, G′′ : {0, 1}r → {0, 1}t be two bit generators and let H be a (2r, 2d, λ)-expander.
Let (a1, ..., at),(b1, ..., bt) be two coefficient vectors. Then:

|bias(G′⊗HG′′)(Ur+d)(a1, ..., at, b1, ..., bt)| ≤ f(|biasG′(Ur)(a1, ..., at)|, |biasG′′(Ur)(b1, ..., bt)|)

where f(x, y) = xy + λ
√

1− x2
√

1− y2.

The proof appears in Appendix B.2. Some useful properties of the function f(x, y) are given in
Appendix B.3.

4.2.2 Construction of G1

We define now an iterated product, using the expander graphs H1,H2, . . . given by Lemma 4.

G′
1 = id : {0, 1}q → {0, 1}q

G′
2 = G′

1 ⊗H1 G′
1 : {0, 1}2q → {0, 1}2q

G′
3 = G′

2 ⊗H2 G′
2 : {0, 1}3q → {0, 1}4q

. . .

G′
` = G′

`−1 ⊗H`−1
G′

`−1 : {0, 1}`q → {0, 1}2`−1q
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We will take the first generator G1 : {0, 1}s1 → {0, 1}k to be G′
` for the minimal ` such that

2`−1q ≥ k. Thus, the seed length of this generator is

s1 = (log(k/q) + 1)q = O(log k)

We will show that the bias of G1 on a non-zero linear combination is at most 1− 1
M2 .

Lemma 6. Let a1, . . . , an ∈ ZM be a coefficient vector, which is not all zero. Let ` be the minimal
such that n ≤ 2`−1q. Apply G` as an ε-bit-biased generator to a1, . . . , an, by taking its first n bits.
Then:

biasG`
(a1, . . . , an) ≤ 1− 1

M2

The proof appears in Appendix B.4.

4.2.3 Construction of G2

We will construct G2 based on G1. We will prove in this subsection the following lemma:

Lemma 7. There exists an explicit generator G2 : {0, 1}r → {0, 1}n, such that for all coefficient
vectors a1, . . . , an of weight at least 100M24, we have:

biasG2(a1, . . . , an) ≤ 0.91.

The seed-length of G2 is r = O(log n + log2 M).

Assume first that we have the following special case where the non-zero coefficients are well-
spread out. Let k = 2`−1q, and n = k2s. Let a1, . . . , an be a coefficient vector, such that when
partitioned into 2s parts of size k, each part will contain at least one non-zero element. That is,
for all j ∈ [2s]:

weight(ajk+1, ajk+2, . . . , a(j+1)k) > 0

We first construct a generator G̃2 for such “well spread-out” linear combinations. We then show
how to use the hash function H2 to transform each linear combination of weight at least 100M24

to the well-spread out case.
We define G̃2 to be G′

`+s, defined in the previous subsection.

Lemma 8. Let k = 2`−1q, and n = k2s. Let a1, . . . , an be a coefficient vector such that for every
j ∈ [2s], weight(ajk+1, ajk+2, . . . , a(j+1)k) > 0. Then:

biasG′`+s
(a1, . . . , an) ≤ min(1− (9/8)s 1

M2
, 0.9)

In particular, if s ≥ 12 log M , then biasG′`+s
(a1, . . . , ak) ≤ 0.9.

The proof appears in Appendix B.5.
We now construct the generator G2 in three steps:

• Oblivious re-ordering of the coefficients, using the hash function H2, to guarantee w.h.p the
conditions of Lemma 8 (that the non-zero coefficients are well-spread out).

• Using G̃2 on the re-ordered coefficients.

• Returning the pseudorandom bits back to the original order.

9



More formally, let a1, . . . , an be a coefficient vector of weight at least 100M24. Let 2s be the
minimal power of two above M12. Let H2 : [n] → [2s] be a hash function, as given by Lemma 15.
We have that with probability of at least 0.99, all the M12 buckets of H2 are non-empty. Create
a re-ordering of the coefficient vector according to the buckets of H2. The new coefficient vector
a′1, . . . , a

′
n2s is defined as follows: Put the coefficients from the first bucket of H2 (i.e., ai’s such that

i falls in the first bucket) in the first n locations a′1, . . . , a
′
n, and pad them with zero coefficients to

have a block of length n. Put the coefficients from the second bucket of H2 in the next n locations
a′n+1, . . . , a

′
2n, and pad those also with zeros to have a block of length n. Continue in the same way

for all the 2s buckets.
Assuming all the buckets of H2 indeed are non-empty, the new coefficient vector a′1, . . . , a

′
n2s

fulfills the conditions of Lemma 8. Thus, we can use G̃2, and since s ≥ 12 log M , we get that:

biasG̃2
(a′1, . . . , a

′
n2s) ≤ 0.9 (given that all buckets are non-empty)

There is a probability of at most 0.01 that there is some empty bucket. In this case, we can
bound the bias by 1. Thus, we have that

biasG̃2
(a′1, . . . , a

′
n2s) ≤ 0.9 + 0.01 = 0.91

We now re-order the pseudorandom bits to the original order. Since the ordering of a′1, . . . , a
′
n2s

was oblivious of their values (and only relied on H2), we can obliviously reorder the coefficients
and their corresponding pseudorandom bits back to the original order, while keeping the same bias.
Thus we get that:

biasG2(a1, . . . , an) ≤ 0.9 + 0.01 = 0.91

We now analyze the randomness required for G2. The randomness required for H2 is O(log n +
log2 M), and the randomness required for G̃2 is O(log n+log M). Thus we get the total randomness
of G2 is O(log n + log2 M). The above discussion implies the proof of Lemma 7.

4.2.4 Construction of G3

We now use G2 to build our final ε-bit-biased generator G3. We prove in this section the following
lemma:

Lemma 9. There exists an explicit generator G3 : {0, 1}r → {0, 1}n, such that for all coefficient
vectors a1, . . . , an of weight at least 105M24 log(1/ε), we have:

biasG3(a1, . . . , an) ≤ ε/2.

The randomness required by G3 is r = O(log n + log(M/ε) log(M log(1/ε))).

The construction of G3 has three parts, and uses G2 as an intermediate construction:

• Use H3 to partition the inputs to O(log(1/ε)) buckets, such that with probability 1− ε/100,
most buckets contain at least 100M24 non-zero coefficients.

• Use G2 on each bucket.

• Combine the generators for the separate buckets using expander products.

We defer additional details and proof to Appendix B.6.
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[AKS] M. Ajtai, J. Komlós, and E. Szemerédi. Deterministic Simulation in LOGSPACE. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages
132–140, New York City, 25–27 May 1987.

[AGM] N. Alon, Z. Galil, and V. D. Milman. Better expanders and superconcentrators. J.
Algorithms, 8(3):337–347, 1987.

[AM1] N. Alon and Y. Mansour. ε-discrepancy sets and their application for interpolation of
sparse polynomials. Information Processing Letters, 54(6):337–342, 1995.

[AM2] N. Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and superconcen-
trators. J. Combin. Theory Ser. B, 38(1):73–88, 1985.

[AR] N. Alon and Y. Roichman. Random Cayley graphs and expanders. Random Structures
Algorithms, 5(2):271–284, 1994.

[BNS] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom generators for
logspace, and time-space trade-offs. Journal of Computer and System Sciences, pages
204–232, 15–17 May 1989.

[BR] M. Bellare and J. Rompel. Randomness-Efficient Oblivious Sampling. In 35th Annual
Symposium on Foundations of Computer Science, pages 276–287, Santa Fe, New Mexico,
20–22 Nov. 1994. IEEE.

[BSVW] E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson. Randomness-efficient low degree
tests and short PCPs via epsilon-biased sets. In Proceedings of the Thirty-Fifth Annual
ACM Symposium on Theory of Computing, pages 612–621 (electronic), New York, 2003.
ACM.

[BV] A. Bogdanov and E. Viola. Pseudorandom Bits for Polynomials. In FOCS, pages 41–51.
IEEE Computer Society, 2007.

[EGL+] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Velic̆ković. Efficient approximation of
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A Additional Definitions and Tools

Logarithms will always be taken in base 2, and we assume error terms ε are always of the form
ε = 2−2e

, so log log(1/ε) will always be an integer. For general error terms, this can be achieved by
at most squaring the error term, which will result in an additional constant multiplicative factor
in the seed length of our constructions.

Definition 9 (Statistical distance). The statistical distance between two random variables X,Y
taking values in ZM is

dist(X,Y ) =
1
2

M−1∑

i=0

|Pr[X = i]− Pr[Y = i]|.

The variables X and Y are said to be ε-close if their statistical distance is at most ε.

A.1 Proof of Lemma 1

We will need the following basic facts regarding Fourier coefficients for the proof of Lemma 1:

Definition 10 (Fourier coefficients). Let X be a random variable taking values in ZM . The k-th
Fourier coefficient of X is:

X̂k = EX∈ZM
[ωkX ]

where ω = e2πi/M is a primitive M -th root of unity

Fact 10. • For any distribution X, X̂0 = 1

• (Parseval identity) For any two distributions X,Y taking values in ZM ,

M−1∑

k=0

(P[X = k]−P[Y = k])2 =
1
M

M−1∑

k=0

(X̂k − Ŷk)2

Proof of Lemma 1. Let a1, ..., an ∈ ZM be a coefficient vector. Let Y =
∑

aiXi modulo M and
S =

∑
aiRi modulo M , where R1, ..., Rn are uniform and independent bits. We need to prove that

the statistical distance between Y and S is at most ε
√

M . Consider the k-th Fourier coefficients of
Y and S, for k ∈ ZM :

Ŷk = E[ωkY ] = E[ωk
∑

aiXi ]
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and similarly Ŝk = E[ωk
∑

aiRi ]. Applying the assumption that X is an ε-bit-biased distribution
modulo M for the coefficient vector ka1, ..., kan, we have that |Ŷk − Ŝk| ≤ ε. Using the Cauchy-
Schwartz inequality and the Parseval identity, we bound the statistical distance between Y and
S:

dist(Y, S) =
1
2

M−1∑

k=0

|P[Y = k]−P[S = k]|

≤
√

M

√√√√
M−1∑

k=0

|P[Y = k]−P[S = k]|2

=
√

M

√√√√ 1
M

M−1∑

k=0

|Ŷk − Ŝk|2 ≤ ε
√

M

Lemma 11. Fix a weight threshold W . Let X ′ = (X ′
1, ..., X

′
n) be a distribution over {0, 1}n such

that for any vector coefficient a1, ..., an of weight at most W ,

|biasX′(a1, ..., an)− biasUn(a1, ..., an)| ≤ ε.

Let X ′′ = (X ′′
1 , ..., X ′′

n) be a distribution over {0, 1}n such that for any vector coefficient a1, ..., an

of weight at least W ,
|biasX′(a1, ..., an)− biasUn(a1, ..., an)| ≤ ε.

Let X be the bitwise-XOR of two independent copies of X ′ and X ′′, i.e.

X = X ′ ⊕X ′′ = (X ′
1 ⊕X ′′

1 , ..., X ′
n ⊕X ′′

n).

Then X is ε-bit-biased against sums modulo M .

Proof. Let a1, ..., an be a coefficient vector of weight w. We need to prove that

|biasX(a1, ..., an)− biasUn(a1, ..., an)| ≤ ε

Assume that w ≤ W (the proof for the other case is analogous). Then:

|biasX′(a1, ..., an)− biasUn(a1, ..., an)| ≤ ε

Let x′′ = (x′′1, ..., x
′′
n) be any value for X ′′, and let A = {i : x′′i = 1}. We have:

biasX(a1, ..., an) = E
[
ω

∑
ai(X

′
i⊕X′′

i )
]

= E
[
ω

∑
i/∈A aiX

′
i+

∑
i∈A ai(1−X′

i)
]

where we used the simple identity x ⊕ 1 = 1 − x. Let b1, ..., bn be a coefficient vector defined by
bi = ai for i /∈ A and bi = −ai for i ∈ A. Thus:

biasX′⊕x′′(a1, ..., an) = ω
∑

i∈A aibiasX′(b1, ..., bn)

Similarly, since we can write the uniform distribution as Un ⊕ x′′, we have

biasUn(a1, ..., an) = biasUn⊕x′′(a1, ..., an) = ω
∑

i∈A aibiasUn(b1, ..., bn)
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Thus:

|biasX′⊕x′′(a1, ..., an)− biasUn(a1, ..., an)| =∣∣∣ω
∑

i∈A ai (biasX′(b1, ..., bn)− biasUn(b1, ..., bn))
∣∣∣ =

|biasX′(b1, ..., bn)− biasUn(b1, ..., bn)| ≤ ε

where the last inequality follows because the weight of b1, ..., bn is equal to the weight of a1, ..., an,
and so is also at most W . Taking average over x′′ ∈ X ′′ we get the required inequality.

A.2 Convergence of the bias for large weights

The bias of a coefficient vector with respect to the uniform distribution can be large if there are only
a few non-zero elements in the vector. However, when the weight is large, the bias is guaranteed
to be small.

Lemma 12. Let a1, ..., an be a linear combination of weight w. Then

|biasU (a1, ..., an)| ≤
(

1− 1
M2

)w

In particular, for w ≥ M2 log 1/ε the bias is at most ε/2.

Proof. By symmetry, we can assume w.l.o.g that a1, ..., at are the non-zero elements in the linear
combination.

|biasU (a1, ..., an)| = |Ex1,...,xn∈{0,1}n [ωa1x1+...+anxn ]| =
t∏

i=1

|Ex∈{0,1}[ωaix]|

Thus it is enough to bound Ex∈{0,1}[ωax] for a non-zero element a. We have:

|Ex∈{0,1}[ωax]| = |1 + ωa

2
| = |cos( a

M
π)| ≤ cos(

π

M
) ≤ 1− 1

M2
.

The last inequality follows since 1− 1
M2 ≤ e−1/M2

.

A similar result holds if we consider the bias of a large weight coefficient vector under a skewed
distribution.

Lemma 13. Let a1, ..., an be a linear combination of weight w. Let Z1, . . . ,Zn ∈ {0, 1} be indepen-
dently distributed with Pr[Zi = 0] = 1+α

2 , where |α| < 1. Then

|biasZ1,...,Zn(a1, ..., an)| ≤
(

1− O(α)
M2

)w

In particular, for w ≥ cM2 log 1/ε/α for a sufficiently large constant c, the bias is at most ε/2.
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A.3 Hashing

We will use the following three constructions of hash functions.

Lemma 14. Assume k is a power of 2. There exists a hash function H1 : [n] → [k] with the
following properties. Let S ⊂ [n] be of size at most k log(1/ε). The j-th bucket of H1 with respect
to S is said to be bad if it contains more than 100 log(1/ε) elements. H1 is said to be bad if at least
one bucket is bad. Then H1 is bad with probability at most ε/100. Moreover, H1 can be generated
explicitly and efficiently using O(log n + log(k/ε) log(k log(1/ε))) random bits.

Lemma 15. Assume k is a power of 2. There exists a hash function H2 : [n] → [k] with the
following properties. Let S ⊂ [n] be of size at least 100k2. The j-th bucket of H2 with respect to
S is said to be bad if it is empty. H2 is said to be bad if at least one bucket is bad. Then H2 is
bad with probability at most 1/100. Moreover, H2 can be generated explicitly and efficiently using
O(log n + log2 k) random bits.

Lemma 16. There exists a hash function H3 : [n] → [16 log(1/ε)] with the following properties.
Let S ⊂ [n] be of size at least 800k log(1/ε). The j-th bucket of H3 with respect to S is said to be
bad if it contains at most k elements. H3 is said to be bad if there are at least log(1/ε) bad buckets.
Then the probability for H3 being bad is at most ε/100. Moreover, H3 can be generated explicitly
and efficiently using O(log n + log(1/ε) log(k log(1/ε))) random bits.

The constructions of the hashes in Lemmas 14, 15 and 16 are based on almost t-wise indepen-
dence. We define those and prove tail bounds in the following subsection.

A.3.1 Tail bounds on almost t-wise independent variables

We start by defining t-wise independent random variables.

Definition 11 (t-wise independence). A sequence of random variables X1, . . . , Xn ∈ {0, 1} is said
to be t-wise independent if any t random variables in it are independent. That is, for any distinct
i1, . . . , it ∈ [n],

Pr[Xi1 = a1, . . . , Xit = at] =
t∏

j=1

Pr[Xij = aj ]

Bellare and Rompel [BR] proved tail bounds on t-wise independent distributions:

Lemma 17 (Lemma 2.3 in [BR]). Let X1, . . . , Xn ∈ {0, 1} be t-wise independent random variables,
for t ≥ 4 an even integer. Let X =

∑
Xi and µ = E[X]. Then for any A > 0:

Pr[|X − µ| ≥ A] ≤ 8
(

tµ + t2

A2

)t/2

.

We will need a version of Lemma 17 for random variables which are almost t-wise independent.

Definition 12 (almost t-wise independence). A sequence of random variables X1, . . . , Xn ∈ {0, 1}
is said to be δ-almost t-wise independent if any t random variables are δ-close in statistical distance
to independent. That is, for any distinct i1, . . . , it ∈ [n], Let X ′

i1
, . . . , X ′

it
be independent random

variables, such that X ′
ij

and Xij are identically distributed. Then

dist((Xi1 , . . . , Xit), (X
′
i1 , . . . , X

′
it)) ≤ δ
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Lemma 18. Let X1, . . . , Xn ∈ {0, 1} be δ-almost t-wise independent random variables, for t ≥ 4
an even integer. There exists a global constant c such that the following holds. Let X =

∑
Xi and

µ = E[X]. Then for any A > 0:

Pr[|X − µ| ≥ A] ≤ 8
(

tµ + t2

A2

)t/2

+ (n + µ)tδ

Proof sketch. The proof of Lemma 17 in [BR] is done by bounding the t-th moment of X − µ. Let
X ′

1, . . . , X
′
n be independent random variables, where X ′

i is distributed the same as Xi. Bellare and
Rompel [BR] prove:

E[(
∑

X ′
i − µ)t] ≤ 8

(
tµ + t2

A2

)t/2

.

The LHS is a polynomial in X ′
1, . . . , X

′
n of degree t, and the L1 norm of its coefficient is bounded

by (n + µ)t. Since X1, . . . , Xn are δ-almost t-wise independent, we have for every monomial of the
polynomial that

|E[
∏

Xij ]− E[
∏

X ′
ij ]| ≤ δ

Hence we get that
E[(

∑
Xi − µ)t] ≤ E[(

∑
X ′

i − µ)t] + (n + µ)tδ,

which finishes the proof.

Distributions which are δ-almost t-wise independent, where each bit is uniform in {0, 1}, can
be generated efficiently and explicitly.

Lemma 19. [NN] There is an explicit generator G : {0, 1}s → {0, 1}n which is δ-almost t-wise
independent, and each bit in the output of G is uniform, with s = O(log n + t + log(1/δ)).

A.3.2 Proofs of hashing lemmas

We now prove Lemma 14, Lemma 15 and Lemma 16.

Proof of Lemma 14. Construct H1 : [n] → [k] by taking n log k bits, which are δ-almost t-wise
independent. We will set t = 10 log(1/ε) if ε < 1/k, and t = 10 log(k/ε) otherwise, and we set
δ = 0.1ε2/((k + 2) log(1/ε))t.

We regard the output bits of H1 as n numbers, each log k-bits long. These define the images of
[n] under H1. This can be achieved by Lemma 19 using O(log n + log(k/ε) log(k log(1/ε))) random
bits.

Consider the j-th bucket. Let Zi be the indicator for i ∈ S that H1(i) = j. If the bits were
truly independent, we would have Pr[Zi = 1] = 1/k. Since t ≥ log k and any t bits are δ-close to
independent, we have:

Pr[Zi = 1] ≤ 1
k

+ δ ≤ 2
k

Let Z =
∑

i∈S Zi, and let µ = E[Z]. We have:

µ ≤ 2 log(1/ε)

We need to bound Pr[Z ≥ 10 log(1/ε)]. It is thus enough to bound the probability that |Z−µ| ≥
8 log(1/ε). Set A = 8 log(1/ε). We have by Lemma 18 that:

Pr[Z ≥ 10 log(1/ε)] ≤ 8
(

tµ + t2

A2

)t/2

+ |S|tδ ≤ 0.01min{ε/k, ε2}
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by our setting of the parameters.
Thus, union bounding over all k buckets, we get that the probability of having some bad bucket

is at most ε/100.

Proof of Lemma 15. Construct H2 : [n] → [k] by taking n log k bits, which are δ-almost t-wise
independent, for t = 100 log k and δ = 0.001kt. We regard those bits as n numbers, each log k-
bits long. These define the images of [n] under H2. This can be achieved by Lemma 19 using
O(log n + log2 k) random bits.

Consider the j-th bucket. Let Zi be the indicator for i ∈ S that H1(i) = j. If the bits were
truly independent, we would have Pr[Zi = 1] = 1/k. Since t ≥ log k and any t bits are δ-close to
independent, we have:

0.99
k

≤ 1
k
− δ ≤ Pr[Zi = 1] ≤ 1

k
+ δ ≤ 1.01

k

Let Z =
∑

i∈S Zi, and let µ = E[Z]. We have:

µ ≥ 99k

We need to bound Pr[Z = 0]. It is thus enough to bound the probability that |Z − µ| ≥ 99k.
Set A = 99k. We have by Lemma 18 that:

Pr[Z = 0] ≤ 8
(

tµ + t2

A2

)t/2

+ |S|tδ ≤ 0.01/k

by our setting of the parameters.
Thus, union bounding over all k buckets we get that the probability of having a bad bucket is

at most 1/100.

Proof of Lemma 16. Let ` = 16 log(1/ε). Construct H3 : [n] → [`] by taking n log ` bits, which
are δ-almost t-wise independent, for t = 100log(1/ε) and δ = 0.001ε20/(800k log(1/ε))t. We regard
those bits as n numbers, each log `-bits long. These define the images of [n] under H3. This can
be achieved by Lemma 19 using O(log n + log(1/ε) log(k log(1/ε))) random bits.

Let S ⊂ [n] be of size at least 800k log(1/ε). We need to bound the probability that there are
at least `/16 = log(1/ε) buckets, each containing at most k elements of S.

Let T ⊂ [`] be a subset of size `/16. We will upper bound the probability that the number of
elements mapped to T is at most k log(1/ε). Union bounding over all possible T will bound the
probability for having `/16 bad buckets.

Let Zi be the indicator that the i-th element of S is mapped to T , for 1 ≤ i ≤ 800k log(1/ε). If
the bits where independent, we would have Pr[Zi = 1] = 1/16. Since the bits are δ-almost t-wise
independent, and t ≥ log ` we have:

|Pr[Zi = 1]− 1
16
| ≤ δ

Let Z =
∑800k log(1/ε)

i=1 Zi. Let µ = E[Z]. We have

49 log(1/ε) ≤ µ ≤ 51 log(1/ε)

by our setting of δ.
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We need to bound the probability of the event that Z ≤ k log(1/ε). We have

Pr[Z ≤ k log(1/ε)] ≤ Pr[|Z − µ| ≥ 40k log(1/ε)]

Setting A = 40k log(1/ε), we get by lemma 18 that the probability is bounded by

Pr[Z ≤ k log(1/ε)] ≤8
(

tµ + t2

A2

)t/2

+ (800k log(1/ε))tδ

≤ ε20/100

by our setting of the parameters.
The number of different sets T ⊂ [`] of size `/16 is at most 2` = ε16. Thus union bounding over

all such T , we get that the probability of H3 having at least `/16 bad buckets is at most ε/100.

A.4 Pseudorandom generators for small space

An ingredient in our construction is the small space pseudorandom generator of Impagliazzo, Nisan,
and Wigderson [INW]. We first define branching program which is a non-uniform model of small-
space computations.

Definition 13 (Branching program). A branching program of length n, degree d and width w is a
layered graph with n + 1 layers, where each layer contains at most w vertices. From each vertex in
the i-th layer (1 ≤ i ≤ n) there are d outgoint edges, numbered 0, 1, . . . , d− 1. A vertex in the first
layer is designated as the start vertex. Running the branching program on an input x1, . . . , xn ∈ [d]
is done by following the path according to the inputs, starting at the start vertex. The output of
the branching program is the vertex reached in the last layer.

Definition 14 (Pseudorandom generator for branching programs). A pseudorandom generator for
branching programs of length n, degree d and width w with error ε is a function G : {0, 1}r → [d]n,
such that for any branching program of length n, degree d and width w, the statistical distance
between the output of the branching program when run on uniform element in [d]n, and the output
when run on G(Ur), is at most ε.

Lemma 20. [INW] There exists an explicit pseudorandom generators for branching programs of
length n, degree d, width w with error ε, which uses r = O(log d + log n(log(n/ε) + log w)) truly
random bits.

B Proofs and Details for Section 4

B.1 Proof of Lemma 3

Proof. Let a1, . . . , an be a linear combination of weight at most W . Let S be the set of non-zero
indices, S = {i ∈ [n] : ai 6= 0}. By our assumption |S| ≤ 105M24 log 1/ε.

Let bU be the bias of a1, . . . , an under the uniform distribution, that is,

bU = E(xi)i∈S∈U|S| [ω
∑

i∈S aixi ]

Let H1 : [n] → [M ′] be given by Lemma 14, where M ′ = 105M24. With probability 1− ε/100,
each bucket contains at most 100 log 1/ε elements of S. H1 requires O(log n+log(M/ε) log(M log(1/ε)))
random bits.
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Let Bj for j ∈ [M ′] denote the elements in the j-th bucket. We assume that |Bj | ≤ 100 log(1/ε)
for all j ∈ [M ′]. We can write the bias as:

bU =
∏

j∈[M ′]

E(xi)i∈Bj
∈U|Bj |

[ω
∑

i∈Bj
aixi ]

We now use a pseudorandom generator in each bucket. By Lemma 19, there is an explicit
generator G′ : {0, 1}s → {0, 1}n which is δ-almost t-wise independent, for t = 100 log(1/ε) and δ =
0.01ε/M ′, and each bit in the output of G is uniform. This requires s = O(log n+ log M + log 1/ε).

We apply an independent copy of G′ to each bucket, using the first ` bits of G′ if the bucket
contains ` elements.

The bias given by this generator is

bG′ =
∏

j∈[M ′]

E(xi)i∈Bj
∈G′(Us)[ω

∑
i∈Bj

aixi ]

We now compare bG′ to bU . In each bucket, since it contains at most t elements from S, the
distribution of the bits which correspond to S is δ-close to uniform. Since the bias is a function
with absolute value at most 1, we get that:

|E(xi)i∈Bj
∈G′(Us)[ω

∑
i∈Bj

aixi ]− E(xi)i∈Bj
∈U|Bj |

[ω
∑

i∈Bj
aixi ]| ≤ δ

Replacing the buckets one by one, we get that

|bG′ − bU | ≤ δM ′ < ε/2

Now, instead of using an independent seed for G′ in each bucket, we derandomize using the
INW generator given in Lemma 20. First, we can reorder the coefficients ai and the corresponding
bits Xi such that the bits in each bucket are consecutive. This is allowed since summing modulo
M is independent of the order of summation. Thus, we can consider an equivalent model using a
branching program. This branching program will be of length M ′ and width M . Each transition
in the branching program corresponds to adding the contribution of a bucket to the total sum
modulo M . The degree of the branching program thus corresponds to the number of seeds of G′,
i.e. d = 2s. In order to fool the bias with error ε/2, it suffices to fool this branching program with
the same error. By Lemma 20, this can be achieved by a generator G using

O(s + log M(log M + log(1/ε))).

Thus we have that:
|bG − bG′ | < ε/2

Combining all of the above, we get an ε-bit-biased generator for linear combinations of weight
at most 105M24 log 1/ε requiring a seed of length

O(log n + log(M/ε) log(M log(1/ε))).
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B.2 Proof of Lemma 5

Proof. Let u ∈ C2r
be a complex vector, whose elements are indexed by {0, 1}r. For s ∈ {0, 1}r

assume G′(s) = (x1, ..., xt). The s-th coordinate of u is defined to be us = ω
∑

aixi . Notice that
biasG′(Ur)(a1, ..., at) = 2−r

∑
s us, and all the elements of u have absolute value 1. Similarly define

v ∈ C2r
. For s ∈ {0, 1}r, if G′′(s) = (y1, ..., yt) then vs = ω

∑
biyi , and biasG′′(Ur)(b1, ..., bt) =

2−r
∑

s vs. Let G = G′ ⊗H G′′, and consider the bias of G on the concatenated coefficient vector
(a1, ..., at, b1, ..., bt).

biasG(Ur+d)(a1, ..., at, b1, ..., bt) = 2−(r+d)
∑

s′∼s′′
ω

∑
ai(G

′(s′))i+
∑

bi(G
′′(s′′))i = 2−(r+d)

∑

s′∼s′′
us′vs′′

where
∑

s′∼s′′
is the sum over all neighboring vertices s′, s′′ in H. Let MH be the adjacency matrix of

H, i.e. MH is a 2r × 2r matrix with (MH)s′,s′′ = 1 if s′, s′′ are neighbors in H, and (MH)s′,s′′ = 0
otherwise. We thus have that

biasG(Ur+d)(a1, ..., at, b1, ..., bt) = 2−(r+d)uT MHv

We now use the fact that H is an expander. Decompose u = α1 + u⊥, where 1 is the all ones
vector, and the sum of the elements of u⊥ is zero. Notice that α = biasG′(Ur)(a1, ..., at), and
‖u⊥‖2

2 = 2r(1− |α|2).
Similarly decompose v = β1 + v⊥. We also have β = biasG′′(Ur)(b1, ..., bt) and ‖v⊥‖2

2 = 2r(1 −
|β|2)

We now have:

|uT MHv| =|(α1 + u⊥)MH(β1 + v⊥)| = |αβ1T MH1 + u⊥MHv⊥| ≤
2r+d|α||β|+ λ‖u⊥‖2‖v⊥‖2 = 2r+d

(
|α||β|+ λ

√
1− |α|2

√
1− |β|2

)

B.3 Properties of the function f(x, y) from Lemma 5

Lemma 21. Let f(x, y) = fλ(x, y) = xy + λ
√

1− x2
√

1− y2, for 0 ≤ x, y ≤ 1. Then:

1. If x = 1 then f(x, y) = y (and vice versa).

2. f(x, y) ≤ xy + λ.

3. Assume λ < 1/4 and let c < 1/4. If x, y ≤ 1− c then f(x, y) ≤ 1− 9
8c.

Proof. (1) and (2) are immediate. To prove (3) let x = 1− a,y = 1− b. Then:

1− f(x, y) =1− f(1− a, 1− b) =

a + b− ab− λ
√

2a− a2
√

2b− b2 ≥
a + b− ab− 2λ

√
ab =

λ(
√

a−
√

b)2 + (1− λ)(a + b)− ab ≥
(1− λ)(a + b)− ab
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We now need to show that g(a, b) = (1− λ)(a + b) is at least 9
8c for c ≤ a, b ≤ 1. The function

g is multilinear, thus its minimum values are attained at the vertices of its domain:

g(a, b) ≥ min{g(c, c), g(c, 1), g(1, c), g(1, 1)}
It is now an easy calculation to show that each of these terms is at least 9

8c given that c ≤ 1/4 and
λ ≤ 1/4.

B.4 Proof of Lemma 6

Proof. We can assume w.l.o.g that n = 2`−1q by appending zeros to the end of the coefficient
vector. We prove by induction on `.

For ` = 1, G1 is the identity mapping. Let w ≥ 1 be the weight of a1, . . . , an. By Lemma 12,
the bias of a1, . . . , an is at most (1− 1

M2 )w.
We assume by induction the claim for ` − 1, and prove for `. Divide the coefficients into the

first and second halves, and define:

α = biasG`−1
(a1, . . . , an/2)

β = biasG`−1
(an/2+1, . . . , an)

Either the first half or the second half are not all zeros. Assume w.l.o.g it is the first half. Thus
by the induction assumption, α ≤ 1− 1

M2 . We now analyze two cases: either the second half is all
zeros, or not. In the first case, we have β = 1. Thus by Lemma 21 item (1) we have

biasG`
(a1, . . . , an) = biasG`−1⊗H`−1

G`−1
(a1, . . . , an) ≤ f1/100(α, 1) = α ≤ 1− 1

M2

In the latter case, we have by induction β ≤ 1 − 1
M2 . Thus by Lemma 21 item (3), since

α, β ≤ 1− 1
M2 we have

biasG`
(a1, . . . , an) = biasG`−1⊗H`−1

G`−1
(a1, . . . , an) ≤ f1/100(α, β) ≤ 1− 9

8
1

M2
≤ 1− 1

M2

B.5 Proof of Lemma 8

Proof. Proof by induction on s. For s = 0 this follows immediately from Lemma 6. Assume for
s − 1, and we will prove for s. Divide the coefficient vector into the first and second halves, and
define

α = biasG′`+s−1
(a1, . . . , an/2) and β = biasG′`+s−1

(an/2+1, . . . , an).

Also let δ = min(1− (9/8)s−1 1
M2 , 0.9), and let c = 1− δ. We have by induction that α, β ≤ δ.

We have:

biasG′`+s
(a1, . . . , an) = biasG′`+s−1⊗H`+s−1G′`+s−1

(a1, . . . , an) ≤ f1/100(α, β)

First assume δ = 0.9. Then by Lemma 21 item (2) we have:

biasG′`+s
(a1, . . . , an) ≤ f1/100(α, β) ≤ αβ + 1/100 ≤ (0.9)2 + 1/100 ≤ 0.9

Otherwise assume δ > 0.9. Thus δ = 1 − (9/8)s−1 1
M2 . By Lemma 21 item (3), since α, β ≤ δ,

we have:
biasG′`+s

(a1, . . . , an) ≤ f1/100(α, β) ≤ 1− (9/8)s 1
M2
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B.6 Proof of Lemma 9

Proof. The construction of G3 has three parts, and uses G2 as an intermediate construction:

• Use H3 to partition the inputs to O(log(1/ε)) buckets, such that with probability 1− ε/100,
most buckets contain at least 100M24 non-zero coefficients.

• Use G2 on each bucket.

• Combine the generators for the separate buckets using expander products.

First, we use H3 from Lemma 16 to partition the n inputs to t = 16 log(1/ε) buckets. We have
that with probability 1 − ε/100, there are at least 15 log(1/ε) buckets, each with at least 100M24

non-zero coefficients.
Let a′1, . . . , a

′
nt be a new coefficient vector defined as follows: Put the coefficients from the first

bucket of H3 in the first n locations a′1, . . . , a
′
n, and pad them with zero coefficients to have a block

of length n. Put the coefficients from the second bucket of H3 in the next n locations a′n+1, . . . , a
′
2n,

and pad those also with zeros to have a block of length n. Continue in the same way for all the 2s

buckets.
Consider now applying the ε-bit-biased generator G2 to each bucket, or equivalently, to each of

the t blocks of n coefficients in a′1, . . . , a
′
nt. Let bi be the bias of G2 applied to the i-th bucket/block.

Assuming that at least 15 log(1/ε) of the buckets contain at least 100M24 non-zero coefficients, we
get by Lemma 7 that for these buckets, bi ≤ 0.91. Thus, we get that with probability 1− ε/100:

t∏

i=1

bi ≤ 0.9115 log(1/ε) ≤ ε2

We will now use derandomized expander products to derandomize the selection of seeds of G2

for the different buckets. This will give our construction of G3.
First, we recall basic facts about expanders. Recall the expanders defined in Lemma 4: for some

constant Q = 2q, there exist a sequence Hk of (Qk, Q, 1/100)-expanders. The ` power of Hk, H`
k, is

a (Qk, Q`, 1/100`)-expander. Thus, for any required second eigenvalue λ, and for every k, we have
explicit expanders on Qk vertices, with second eigenvalue 1/100` < λ, and degree polynomial in λ.
We will use such expander in our construction.

Let λ1, λ2, . . . , λlog t be defined by

λi = 0.912i ∗ 0.01

We consider the following combination: Let Qk1 be the number of seeds of G2. Let H ′
1 = H`1

k1

be such that its second eigenvalue is at most λ1. Use H ′
1 to combine disjoint pairs: the first and

the second block, the third and the fourth block, and so on. Let Qk2 = Qk1+`1 be the seed of the
combined generator for a pair. Let H ′

2 = H`2
k2

be such that its second eigenvalue is at most λ2,
and use H ′

2 in the derandomized product of the first and second pair, third and fourth pair, and so
on. Continue in this fashion, reducing in each step the number of independent blocks by a factor
of 2. After log t steps, we have composed all the blocks. We now analyze the final bias, and the
randomness required.

The bias of the pairs, using H ′
1 in the expander product, is

fλ1(b1, b2), fλ1(b3, b4), fλ1(b5, b6), fλ1(b7, b8), . . .
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By Lemma 21, the biases are at most

b1b2 + λ1, b3b4 + λ1, b5b6 + λ1, b7b8 + λ1, . . .

Continuing in this fashion, we get that the final bias is at most

(((b1b2 + λ1)(b3b4 + λ1) + λ2)((b5b6 + λ1)(b7b8 + λ1) + λ2) + λ3) . . .

We need to bound this expression. Let ci be defined as follows: if bi ≤ 0.91, then set ci = 0.91,
and otherwise set ci = 1. Thus bi ≤ ci and

∏t
i=1 ci ≤ ε2. Thus, it is enough to bound

(((c1c2 + λ1)(c3c4 + λ1) + λ2)((c5c6 + λ1)(c7c8 + λ1) + λ2) + λ3) . . .

By our setting of λ1, λ2, . . ., we have that:

λ1 = 0.9120.01 ≤ 0.01c2i+1c2i+2 ∀i
λ2 = 0.9122

0.01 ≤ 0.01c4i+1c4i+2c4i+3c4i+4 ∀i

Thus we get that:

c1c2 + λ1 ≤ 1.01c1c2(c1c2 + λ1)(c3c4 + λ1) + λ2 ≤ 1.013c1c2c3c4

and in total, we get that the combined bias is at most

(1.01)t−1
t∏

i=1

bi ≤ (1.01)16 log(1/ε)(0.91)15 log(1/ε) ≤ ε−1.8 < ε/4

Thus, we get that with probability 1 − ε/100, the bias of G3 is at most ε/4. Thus, the total
bias of G3 is at most ε/2.

We now analyze the randomness requirements for G3. The randomness required for H3 is
O(log n + log(1/ε) log(M log(1/ε))). The randomness required for G2 is O(log n + log2 M), and the
random bits required for the derandomized product combination is

O(log λ1 + log λ2 + . . . + log λlog t) =

O(2 + 22 + 23 + . . . + 2log t) =

O(2log t) = O(t) = O(log 1/ε)

So in total, the randomness required for G3 is

O(log n + log(M/ε) log(M log(1/ε)))
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