Pseudorandom Bit Generators
that Fool Modular Sums

Shachar Lovett!, Omer Reingold?, Luca Trevisan®, and Salil Vadhan*

! Department of Computer Science, Weizmann Institute of Science, Rehovot 76100,
Israel. shachar.lovett@weizmann.ac.il *

2 Department of Computer Science, Weizmann Institute of Science, Rehovot 76100,
Israel. omer.reingold@weizmann.ac.il **

3 Computer Science Division, University of California, Berkeley, CA, USA.
luca@cs.berkeley.edu * **
4 School of Engineering and Applied Science, Harvard University, Cambridge, MA
02138. salil@eecs.harvard.edu '

Abstract. We consider the following problem: for given n, M, produce
a sequence Xi, Xa,...,X, of bits that fools every linear test modulo
M. We present two constructions of generators for such sequences. For
every constant prime power M, the first construction has seed length
O (log(n/e)), which is optimal up to the hidden constant. (A sim-
ilar construction was independently discovered by Meka and Zucker-
man [MZ]). The second construction works for every M, n, and has seed
length O(logn + log(M/€) log(M log(1/¢))).

The problem we study is a generalization of the problem of constructing
small bias distributions [NN], which are solutions to the M = 2 case. We
note that even for the case M = 3 the best previously known construc-
tions were generators fooling general bounded-space computations, and
required O(log? n) seed length.

For our first construction, we show how to employ recently constructed
generators for sequences of elements of Zjy; that fool small-degree poly-
nomials (modulo M). The most interesting technical component of our
second construction is a variant of the derandomized graph squaring
operation of [RV]. Our generalization handles a product of two distinct
graphs with distinct bounds on their expansion. This is then used to pro-
duce pseudorandom-walks where each step is taken on a different regular
directed graph (rather than pseudorandom walks on a single regular di-
rected graph as in [RTV,RV]).

* Research supported by the Israel Science Foundation (grant 1300/05).
** Research supported by US-Israel BSF grant 2006060.
*** This material is based upon work supported by the National Science Foundation
under grant No. CCF-0729137 and by the US-Israel BSF grant 2006060.
T Work done in part while visiting U.C. Berkeley, supported by the Miller Institute
for Basic Research in Science and a Guggenheim Fellowship. Also supported by
US-Israel BSF grant 2006060.

1 Introduction

Pseudorandomness is the theory of generating objects that “look random” de-
spite being constructed using little or no randomness. A primary application of
pseudorandomness is to address the question: Are randomized algorithms more
powerful than deterministic ones? That is, how does randomization trade off with
other computational resources? Can every randomized algorithm be converted
into a deterministic one with only a polynomial slowdown (i.e., does BPP = P)
or with only a constant-factor increase in space (i.e., does RL = L)? The study
of both these questions has relied on pseudorandom bit generators that fool al-
gorithms of limited computational powers. In particular, generators that fool
space-bounded algorithms [AKS,BNS,Nis,INW] were highly instrumental in the
study of the RL vs. L problem (e.g. used in the best known derandomization of
RL [SZ]).

While the currently available space-bounded generators are extremely pow-
erful tools, their seed length is still suboptimal. For example, if we want to
fool a log n-space algorithm then known generators require log? n truly random
bits (the seed) in order to generate up to polynomially many pseudorandom
bits. On the other hand, for several interesting special cases we do know gen-
erators with almost optimal seed length. The special case which serves as a
motivation for our work is that of small-biased generators [NN]. These gen-
erators produce n bits X1, Xs,...,X,, that fool all linear tests modulo 2. In
other words, for each subset T of the bits, the sum X;c7X; mod 2 is uni-
formly distributed up to bias e. Explicit constructions of e-biased generators
are known with seed-length O(log(n/e)), which is optimal up to the hidden
constant [NN]. Even though linear tests may seem very limited, e-biased gen-
erators have turned out to be very versatile and useful derandomization tools
[NN,MNN,HPS,Nao,AM,AR,BSVW BV Lov,Vio].

Given the several applications of distributions that fool linear tests modulo
2, it is natural to consider the question of fooling modular sums for larger mod-
uli. It turns out that the notion of small-biased generators can be generalized
to larger fields. Such generators produce a sequence X1, X, ..., X, of elements
in a field F that fool every linear test over F [Kat,AIK*™ RSW,EGLT,AM].> In
this work, instead, we consider a different generalization of e-biased generators
where we insist on bit-generators. Namely we would like to generate a sequence
X1, Xo,..., X, of bits that fool every linear test modulo a given number M.
For every sequence aq,as, ..., a, of integers in Zy; = {0,1,..., M — 1} we want
the sum), a; X; mod M to have almost the same distribution (up to statistical
distance at most ¢) as in the case where the X;’s are uniform and independent
random bits. (Note that this distribution may be far from the uniform distribu-
tion over Z,s, particularly when only a few a;’s are nonzero.) It turns out that

® More generally, an e-bias space over a finite abelian group G is a distribution D on
elements of G such that for every nontrivial character x : G — C, |E[x(D)]| < e. The
aforementioned results correspond to the special case G = F", using the fact that
the characters of F" are in one-to-one correspondence with linear functions F* — F.

even for M = 3 and even if we limit all the a;’s to be either ones or zeros, the best
generators that were known prior to this work are generators that fool general
space-bounded computations [Nis,INW], and required a seed of length O(log® n).
Therefore, obtaining better pseudorandom bit generators that fool modular sums
may be considered a necessary step towards improved space-bounded generators.
In addition, we consider this notion to be a natural generalization of that of a
small-bias generator, which is a central derandomization tool.

Our Results

We give two constructions of pseudorandom bit generators that fool modular
sums. Similarly to [MST], each construction is actually comprised of two gener-
ators: one that fools summations), a; X; in which only relatively few coefficients
a; are nonzero (the “low-weight” case) and one that fools summations), a;X; in
which many coefficients a; are nonzero (the “high weight” case). The motivation
is that fooling low-weight sums and fooling high-weight sums are tasks of a dif-
ferent nature. In the high-weight case, if R; are truly random bits, then X;a;R;
mod M is almost uniformly distributed in Zy; (at least when M is prime). Thus,
in analyzing our generator, we just need to argue that X;a; X; mod M is close
to uniform, where X1q,..., X, is the output of the generator.

On the other hand, in the low-weight case the distribution may be far from
uniform and therefore we may need to imitate the behavior of a random sequence
of bits more closely.

Thus, in each construction, we shall present two generators: one that is pseu-
dorandom against low-weight sums, and one that is pseudorandom against high-
weight sums. We shall then combine them by evaluating them on independently
chosen seeds and XORing the two resulting sequences.

Construction Based on Pseudorandom Generators for Polynomials

In our first construction, we handle the case of M = 3 and any other fixed prime
modulus M (in fact, our construction works also for any fixed prime power). For
these cases, our seed length is O(log(n/¢)) as in the case of e-biased generators
(but the hidden constant depends exponentially on M).

As mentioned above, for every fixed finite field F, there are nearly-optimal

known generators that construct a small-bias distribution Xi,...,X,, of field
elements, while our goal is to generate bits. A natural approach to construct a
bit generator would be to sample a sequence of field elements X5, ..., X,, from

a small-bias distribution, and output a bit-sequence ¢g(Xi),...,9(X,) for an
appropriate function g : F — {0,1}. Unfortunately the pseudorandomness of
9(X1),...,9(X,) against F-linear tests does not seem to follow from the small-
bias property of X1, ..., X,,. Indeed, when |F| is odd, then g cannot be balanced,
so at best we could hope is for g(X1),. .., g(X,) to be indistinguishable by linear
tests from a sequence of independent biased bits. But even this is not achievable

in general, if we only assume the pseudorandomness of Xi,..., X, against FF-
linear tests(as per the definition of small-bias space).

If, however, we start from a sequence of field elements X1, ..., X, that fools
polynomials over F, then we can indeed show that g(Xi),...,g(X,) is indis-
tinguishable by linear tests from independent biased bits. The reason is that g
can be chosen to be itself a polynomial (of degree d = O(|F|)), and thus any
F-linear test distinguisher on g(Xi),...,9(X,) yields a degree d distinguisher
on Xi,...,X,. Since we still only have indistinguishability from biased coins,
we only apply this approach when the coefficient vector has sufficiently high
weight so that both biased and unbiased random bits will yield a sum that is
almost uniformly distributed over |F|. Specifically, we need at least k non-zero
coefficients a;, where k = O(M?log 1/¢). For fixed M, there are known construc-
tions [BV,Lov,Vio] of pseudorandom generators that fool polynomials of degree
d over F = Zys, M prime, and which only require seed length Oy q(logn/e).

In order to fool low-weight sums, we observe that a bit generator Xi,..., X,
which is e-almost k-wise independent fools, by definition, every sum), a; X; mod
M of weight at most k, and that such generators are known which require only
seed length O(logn + k + log 1/¢).

A similar construction was independently discovered by Meka and Zucker-
man [MZ].

Construction Based on the INW Generator

In our second construction, we give a pseudorandom bit generator that fools
sums modulo any given M (not necessarily prime) with seed length O(logn +
log(M/e€)log(Mlog(1/€))). In both the low-weight and high-weight cases, this
generator relies on versions of the Impagliazzo—Nisan-Wigderson [INW] pseu-
dorandom generator for space-bounded computation. Of course, modular sums
are a special case of space-bounded computations, and thus we could directly
apply the INW generator. But this would require seed length larger than log? n.
We obtain better bounds by more indirect use of the INW generator inside our
construction.

The most interesting technical contribution underlying this construction is
a new analysis of the derandomized graph squaring operation of [RV], which
captures the effect of using the INW generator to derandomize random walks
on graphs. Here we study the analogue of derandomized squaring for taking
products of two distinct Cayley graphs over an abelian group (namely Zy).
The advantage of the new analysis is that it handles graphs that have distinct
bounds on their expansion, and works for bounding each eigenvalue separately.
This is then used to produce pseudorandom walks where each step is taken on

SLet F=7Zs,and g: Z3s — {0,1} be any nonconstant function. Let a be the element
of Zs such that a is the unique preimage of g(a). Let (X1,...,Xy) be uniformly
distributed over all elements of Zz where the number of a’s is divisible by 3. Then
3, g(X;) mod 3 is constant, but it can be shown that (Xi,...,X,) is a 272"
biased space.

a different abelian Cayley graph (rather than pseudorandom walks on a single
graph as in [RTV,RV]).

For the purpose of this informal discussion we will assume that M is prime.
(The idea for handling composite M’s is to analyze each Fourier coefficient of
the distribution of the sum separately. We defer further details to Section 2.1.)

Low-Weight Case. Let us first consider the case where the number of non-zero
a;’s is at most M’ -log(1/e), for M’ = poly(M).” As before, we could use an
almost k-wise independent distribution, but then our seed length would depend
polynomially on M, while our goal is a polylogarithmic dependency.

First, we use a hash function to split the index set [n] = {1,2,...,n} into
B = O(M’) disjoint subsets T; such that with high probability (say, 1 — ¢/10)
over the splitting, each set T contains at most k = log(1/e€) indices ¢ such that
a; # 0. We show that the selection of the hash function that determines the
splitting can be done using O(logn + (log M /e) - log(M log 1/¢)) random bits.

Once we have this partition, it is sufficient to independently sample in each
block from an e/B-almost k-wise independent distribution, which requires s =
O(logn + k + log(B/e)) = O(logn + log(M/e)) random bits per block. Then
we argue that it is not necessary for the sampling in different blocks to be in-
dependent, and instead they can be sampled using a pseudorandom generator
for space-bounded computation [Nis,INW]. (This relies on the fact the com-
putation . a;X; mod M can be performed in any order over the i’s, in par-
ticular the order suggested by 3_; ZieTj a; - X; mod M.) Using the INW gen-
erator, we can do all the sampling using O(s 4 log B - (log(B/€) + log M)) =
O(logn + log M -log(M/e)) random bits.

High-Weight Case. We now discuss the generator that fools sums with more
than M’ -log 1/e non-zero coefficients a;, for M’ = poly(M). Here, we can think
of the computation), a;X; mod M as an n-step walk over Zj, that starts
at 0. Unlike standard walks, each step is taken on a different graph (over the
same set of vertices, namely Z)s). Specifically, step ¢ is taken on the (directed)
Cayley graph where every node v has two outgoing edges. The first edge is
labeled 0 and goes into v itself (i.e., this edge is a self loop). The second edge
is labeled 1 and goes into v + a; mod M. Following the walk along the labels
X1, Xo,..., X, arrives at the vertex) . a;X; mod M. If the X;’s are uniform
(i.e., we are taking a random walk) then the end vertex will be almost uniformly
distributed (because the number of steps is larger than M2 -log(1/¢)). What we
are seeking is a pseudorandom walk that is generated using much fewer truly
random bits but still converges to the uniform distribution (possibly slower, e.g.
using M’ -log(1/¢) steps).

Pseudorandom walk generators were constructed in [RTV,RV] for walks on
a single regular and connected graph. In our case, we are walking not on a

" In this preliminary version we did not try to optimize the various constants. In
particular, in our analysis M’ = O(M24). We note that it can be made as small as
O(M?**) for any a > 0.

single graph but rather on a sequence of graphs, each of which is indeed regular.
It turns out that the pseudorandom generators of [RTV,RV] still work for a
sequence of graphs rather than a single graph. The more difficult aspect is that
in our walk there is no uniform bound on the expansion of the graphs. Indeed,
the graphs that correspond to a; = 0 are not connected at all (they consist solely
of self loops). In our setting, where the graphs are directed Cayley graphs for
the abelian group Z);, we show how to generate pseudorandom walks on graphs
with varying bounds on expansion.

We do this by a generalization of the derandomized graph product of [RV].
There, expanders are used to generate two steps on a degree-D graph using less
than 2log D random bits, yet the (spectral) expansion of the resulting graph is
almost as good as the square of the original graph. We analyze the analogous
derandomization of two steps on two distinct (abelian Cayley) graphs for which
we may have distinct bounds on their expansion. Moreover, to handle composite
M, we show that the expansion can be analyzed in each eigenspace separately.
(For example, for Zg = Zo x Zs3, a sequence of even coefficients a; will yield a
random walk that does not mix in the Zy component, but may mix in the Zj
component, and our pseudorandom generator needs to preserve this property.)

To obtain our pseudorandom walk generator, we first randomly reorder the
index set [n] so that the nonzero coefficients are well-spread out, and then deran-
domize the walk by a recursive application of our aforementioned derandomized
product. As discussed in [RV], the resulting pseudorandom walk generator is the
same as the Impagliazzo—Nisan-Wigderson [INW] generator for space-bounded
computation, with a different setting of parameters that enables a much smaller
seed length than their analysis requires for general space-bounded algorithms.

Discussion

The natural open problem left by our work is to reduce the seed length further,
ideally to O(log(nM/¢)), which can be shown to be possible via a nonconstructive
probabilistic argument. For achieving such optimal parameters, the modular
reduction is actually insignificant — it is equivalent to construct generators
such that for every bounded coefficient vector (ai,...,a,) € Z™ where each
la;| < M, Y, a; X; is statistically close to), a; R; as distributions on Z, where
(X1,...,Xp) is the output distribution of the generator, and (Ry,...,R,) is
the uniform distribution on {0,1}". ® As a result, such generators would also
“fool” linear threshold functions (halfspaces) whose coefficients are polynomially
bounded. Pseudorandom generators and related objects for threshold functions
(with no bound on the coefficients) have recently been studied in [RS,DGJ*],
with the latter achieving seed length O((logn) - log*(1/€)/€?).

8 Indeed, given any coefficient vector (as, ..., an) € Z", where each |a;| < M, we can
apply the generator for modulus M’ = M - n so that no modular reduction occurs.

2 Definitions and Tools

We denote by U, the uniform distribution over {0, 1}". We fix an integer M > 2
for the rest of the paper. We will be interested in constructing pseudorandom bit
generators that fool sums modulo M. We denote by Z, the set {0,1,..., M —1}
with arithmetic modulo M. Due to space limitations, we defer many of the proofs
to the full version of the paper.

Definition 2.1. The statistical distance between two random wvariables X,Y
taking values in Zy is dist(X,Y) = %Zf\igl |Pr[X = i] — Pr[Y = i]|. The
variables X and Y are said to be e-close if their statistical distance is at most €.

Definition 2.2. A random variable X = (X1,...,X,) taking values in {0,1}"
1s e-pseudorandom against sums modulo M if for any ay,...,an, € Zps, the
distribution of a1 X1 + - - + apX,, modulo M, is e-close (in statistical distance)
to the distribution a1 Ry + - - - + a, R, modulo M, where Ry, ..., R, are uniform
and independent random bits.

Definition 2.3. A function G : {0,1}" — {0,1}" is an e-pseudorandom bit
generator against sums modulo M if the distribution G(U,.) is e-pseudorandom
against sums modulo M .

Note that e-biased generators is a special case of the definition of pseudoran-
dom bit generators against sums modulo M, for M = 2.

Our goal is to build generators that fool sums modulo M, where M can be
either prime or composite. Handling prime modulus is somewhat easier, and the
approach in the following section allows handling both cases simultaneously. We
will show that it is enough to construct pseudorandom generators which fools the
bias of a sum modulo M, and under this approach, there is no major difference
between primes and composites.

2.1 Small Bias Bit Generators

First we define the bias of a linear combination with coefficients a1, ..., a, € Zy,
given some distribution of X = (Xy,...,X,) € {0,1}"™:

Definition 2.4. Let X = (X1,...,X,) be a distribution over {0,1}", and (aq, ...

Z%; a coefficient vector. We define the bias of a1, ..., ay according to X to be
biasx (a1, ..,an) =E [wz ‘“Xi}

2mi /M

where w = e 18 a primitive M-th root of unity.

Notice that the bias can in general be a complex number, of absolute value
at most 1.

7an) €

Definition 2.5. We say a distribution X = (X1,...,X,,) over n bits is e-bit-
biased against sums modulo M if for every coefficient vector (ay,...,an) € Z%;,

|biasx (a1, ...,a,) — biasy, (a1,...,a,)| <€

Let G:{0,1}" — {0,1}"™ be a bit generator. We shorthand biasg(a,...,a,)
for biasgry(as, ..., an).

Definition 2.6. G : {0,1}" — {0,1}" is an e-bit-biased generator against sums
modulo M if the distribution G(U,) is e-bit-biased against sums modulo M. That
is, for every coefficient vector (ai,...,ay),

|biasg(ai, . ..,a,) — biasy, (a1,...,a,)| <€

The name “bit-biased” in the above definitions is meant to stress the differ-
ence from standard e-biased generators modulo M. Here we compare the bias
under the generator to the bias under uniformly selected bits (rather than uni-
formly selected elements in Zyy).

We first reduce the problem of constructing pseudorandom modular genera-
tors to that of constructing e-bit-biased modular generators.

Lemma 2.7. Let X = (X1,...,X,) be an e-bit-biased distribution against sums
modulo M. Then X is (ev/ M)-pseudorandom against sums modulo M.

From now on, we focus on constructing e-bit-biased generators. We will need
to differentiate two types of linear combinations, based on the number on non-
zero terms in them.

Definition 2.8. The weight of a coefficient vector (a1,...,an) € Z%, is the
number of non-zero coefficients a;.

We will construct two generators: one fooling linear combination with small
weights, and the other fooling linear combinations with large weight. Our fi-
nal generator will be the be the bitwise-XOR of the two, where each is chosen
independently. The following lemma shows this will result in an e-bit-biased
generator fooling all linear combinations.

Lemma 2.9. Fiz a weight threshold W. Let X' = (X1,..., X}, be a distribution
over {0,1}™ such that for any vector coefficient ay, ..., a, of weight at most W,

|biasx/ (a1, ..., a,) — biasy, (a1,...,a,)| < e

Let X" = (XY{,..., X)) be a distribution over {0,1}"™ such that for any vector
coefficient ay, . ..,a, of weight at least W,

|biasx (a1, ..., a,) — biasy, (ai,...,a,)| < e
Let X be the bitwise-XOR of two independent copies of X' and X", i.e.
X=XaoX' =X aX,. . X &X").

Then X 1is e-bit-biased against sums modulo M.

Convergence of the bias for large weights The bias of a coefficient vector
with respect to the uniform distribution can be large if there are only a few
non-zero elements in the vector. However, when the weight is large, the bias is
guaranteed to be small.

Lemma 2.10. Let (ay,...,an) € Z7, be a coefficient vector of weight w. Then

. 1\"
|biasy (a1, ..., a,)| < (1 — W)

In particular, for w > M?log(1/€) the bias is at most €/2.

Notice that the above lemma holds for all coefficient vectors (ay,...,a,) and
moduli M, even when M is composite and the coefficients are not relatively
prime to M. For example, when M = 6 and (a1,...,a,) = (2,...,2). In such
a case, »;a;R; mod M does not converge to the uniform distribution on Z};,
but the above lemma still says that the bias tends to zero.

A similar result holds if we consider the bias of a large weight coefficient
vector under a skewed distribution.

Lemma 2.11. Let (a1,...,a,) € Z%; be a coefficient vector of weight w. Let
Zi, ... Zyn € {0,1} be independently distributed with Pr[Z; = 0] = (1 + «)/2.

Then
. 1—a? v
|biasz, ...z, (a1,...,a,) < [1— 92 e

In particular, for w > cM?log(1/€)/(1 — a?) for a sufficiently large constant c,
the bias is at most €/2.

2.2 Hashing

We use hashing as one of the ingredients in our construction. A family (multi-
set) of functions H = {h : [n] — [k]} is called a family of hash functions, if a
randomly chosen function from the family behaves pseudorandomly under some
specific meaning. We consider a hash function H : [n] — [k] to be a random
variable depicting a randomly chosen function from the family. We say H can
be generated efficiently and explicitly using s random bits, if a random func-
tion in the family can be sampled by a randomized polynomial-time algorithm
using s random bits, and this function can be evaluated using a deterministic
polynomial-time algorithm.

Fix S C [n]. We define the j-th bucket of H with respect to S, to be the set
of elements of S mapped by H into j, i.e. {s€ S: H(s)=j}=H'(j)NS.

We will use the following three constructions of hash functions.

Lemma 2.12. Assume k is a power of 2. There exists a hash function H; :
[n] — [k] such that for every set S C [n] of size at most klog(1/e), the probability
that Hy has a bucket H; () NS with more than 1001og(1/¢) elements is at most
€/100. Moreover, Hy can be generated explicitly and efficiently using O(logn +
log(k/€)log(klog(1/€))) random bits.

Lemma 2.13. Assume k is a power of 2. There exists a hash function Hso :
[n] — [k] such that for every S C [n] of size at least 100k?, the probability that
Hy has an empty bucket Hy*(j) N S is at most 1/100. Moreover, Ho can be
generated explicitly and efficiently using O(logn + log? k) random bits.

Lemma 2.14. There exists a hash function Hs : [n] — [161log(1/€)] such that
for every S C [n] of size at least 800k log(1/¢€), the probability that Hs has at least
log(1/€) buckets Hy *(j)NS with at most k elements is at most €/100. Moreover,
Hs can be generated explicitly and efficiently using O(log n+log(1/€)log(klog(1/€)))
random bits.

The constructions of the hashes in Lemmas 2.12, 2.13 and 2.14 are based on
almost t-wise independence. A sequence of random variables X1, ..., X,, € {0,1}
is said to be t-wise independent if any t random variables in it are independent.
It is said to be J-almost t-wise independent if any ¢ random variables in it
are d-close in statistical distance to independent. Explicit constructions of §-
almost t-wise independent distributions are known, with nearly optimal seed
length [NN,AGHP].

We identify a function h : [n] — [£], where £ is a power of 2, by a sequence
of nlog/ bits. We construct the hash functions by choosing the sequence of bits
according to an d-almost t-wise independent distribution, where the values of ¢
and t differ in the three constructions. The main tool in our analysis is a tail
bound on t-wise independent distributions, due to Bellare and Rompel [BR],
extended to the case of d-almost t-wise distributions. We defer further details
to the full version of the paper.

2.3 Pseudorandom generators for small space

An ingredient in our construction is the small-space pseudorandom generator of
Impagliazzo, Nisan, and Wigderson [INW]. We first define branching programs,
which form a non-uniform model of small-space computations.

Definition 2.15. A (read-once, oblivious) branching program of length n, de-
gree d and width w is a layered graph with n+1 layers, where each layer contains
at most w vertices. From each vertex in the i-th layer (1 < i < n) there are d
outgoint edges, numbered 0,1,...,d— 1. A vertex in the first layer is designated
as the start vertex. Running the branching program on an input x1,...,%, € [d]
is done by following the path according to the inputs, starting at the start vertex.
The output of the branching program is the vertex reached in the last layer.

Definition 2.16. A pseudorandom generator for branching programs of length
n, degree d and width w with error € is a function G : {0,1}" — [d]™, such that
for every branching program of length n, degree d and width w, the statisti-
cal distance between the output of the branching program when run on uniform
element in [d]", and the output when run on G(U,), is at most €.

Lemma 2.17. [INW] There exists an explicit pseudorandom generators for branch-
ing programs of length n, degree d, width w with error €, which uses r = O(log d+
(logn)(log(n/€) + logw)) truly random bits.

3 Construction using PRG for low-degree polynomials

We present in this section a simple construction for prime powers M, based
on pseudorandom generators for low-degree polynomials. This construction is
optimal for constant M, achieving a pseudorandom generator with seed length
O (log(1/€)) (where the constant depends exponentially on M).

Let W = 2(M3log 1/¢). We will construct two generators: one for coefficient
vectors of weight at most W, and one for coefficient vectors of weight at least W.
Lemma 2.9 shows that the bitwise-XOR of the two generators is a pseudorandom
generator for all coefficient vectors.

For small weights, we will use a distribution that is e-almost W-wise inde-
pendent. Such a distribution trivially fools coefficient vectors of weight at most
W. It can be explicitly generated using O(logn + W +log1/e) = Ops(logn/e)
random bits [NN].

For large weights, let (a1,...,a,) € Z; be a coefficient vector of weight at
least W. Consider first the distribution of ay Ry + ... a, R, for independent and
uniform bits Ry, ..., R,. By Lemma 2.10, |biasy, (a1,...,a,)| < €/2.

Consider now Z; € {0,1}, where Pr[Z; = 0] = ¢/M for some integer 1 < ¢ <
M — 1. By Lemma 2.11,

[biasz, .. z,~(c/m1—c/nny (@1, - an)| < €/4,

given that W = (M3 log(1/¢)) with a large enough hidden constant.

The benefit of using this skewed distribution, is that it can be simulated by
low-degree polynomials modulo M. Since we assume M is a prime power, there
is a polynomial g : Zjy; — Z); that maps some ¢ elements of Zy; to 0, and
the rest to 1. For example, if M = p*, the polynomial g(z) = pP=1p" maps
elements divisible by p to 0, and the rest to 1. The degree of this g is at most
M —1.

Let Z1,...,Z, € {0,1}"™ be generated by g(Y1),...,g(Y,), where Y7,...,Y, €
Zys are uniform and independent. We thus have:

|biathm,Zn~g(UzM)n(al, coap)| < €e/d
Note that

biasz,z, ~g(Uz,) (01, - an) = By, v, ez, w91 H ot ang O],

and that a19(Y1) + - - - + ang(Yy,) is a polynomial of degree deg(g) in Y1,..., Y.
Thus we can derandomize the choice of Y7, ..., Y], using a a pseudorandom gener-
ator for low-degree polynomials [BV,Lov,Vio]. We note the results in these papers
are stated for polynomials over prime finite fields, but they hold also for poly-
nomials over Zys, using small-bias spaces for Z%, [Kat,AIK™ RSW,EGL" ,AM]
as a building block.

Lemma 3.1. For every M,n,d € N, there is an explicit generator G : {0,1}" —
Z%; such that for every polynomial f : Z%, — Zpr of degree at most d, the dis-
tribution of f(Z%;) and f(G(U,)) are e-close in statistical distance. The number
of random bits required is r = O(d2%log(M/¢) + dlog(nM)).

We use the generator of Lemma 3.1 for error €¢/4 and degree d = M — 1.
We thus get an explicit generator whose output distribution (Y7{,...,Y;) € Z%,,
such that:

w9V tang (V)] Ey, ..

|E(Y1’ vl alg(yl”'"ﬂ”g(yn)ﬂ <e/d

Yaezy, W

Thus, if we define our generator G’ to output g¢(Y7y),...,g(Y,)), we have

Y/, ..., Y] are the output of G, we get an explicit generator,such that |biasg (a1, ..

€/2. Hence, we get that
|biasgr (a1, ..., an) — biasg(a, ..., a,)| <€

The randomness requirement of our generator comes directly from that of G,
which is O(M2M~1log(M/e€) + M log(nM)) = Oy (log(n/e)) for constant M.

4 Construction Based on Pseudorandom Walk
Generators

4.1 A generator for small sums

We construct an e-bit-biased generator for weights at most W = 10° M?* log(1/e).
Let (a1,...,an) € Z}; be a coefficient vector of weight at most W.
The construction has three stages:

1. Partitioning the set of indices [n] into W buckets using the hash function
H;. Lemma 2.12 guarantees that with probability at least 1 — ¢/100, each
bucket contains at most O(log(1/€)) non-zero coefficients.

2. For each bucket j, generate the X;’s for i’s in the j’th bucket using an almost
O(log(1/€))-wise independent distribution.

3. Use the INW generator given by Lemma 2.17 to generate the W seeds for the
O(log(1/€))-wise independent distributions used for the different buckets.

Lemma 4.1. The above construction is an e-bit-biased generator against coef-
ficient vectors of weight at most W, using O(logn + log(M/e) log(M log(1/€)))
random bits.

4.2 A generator for large sums

In this section we construct an e-bit-biased distribution for coefficient vectors of
weight at least W = 10° M?* log(1/e),

Recall that by Lemma 2.10, when the weight is large, the bias under the
uniform distribution is small. Thus, to prove that a distribution is e-bit-biased
against large weight sums modulo M, it is enough to show that its bias is also
small. We construct our e-bit-biased generator in three steps:

— (1: a generator that has bias at most 1 — 1/M? on every coefficient vector
which is not all zeros.

an)| <

— G2: a generator that has bias at most 0.91 on every coeflficient vector of
weight at least 100024,

— (3: a generator that has bias at most €/2 on every coefficient vector of weight
at least 10°M?*log1/e.

The generator G3 will be our e-bit-biased generator for large weights. We
will sketch the constructions of Gy, G5 and Gj3, deferring full details and proofs
to the full version of the paper. The main ingredient in the construction will be
a derandomized expander product, which we now define and analyze.

Derandomized expander products

Definition 4.2. We say an undirected graph H is a (27,27 \)-expander if H
has 2" wvertices, it is reqular of degree 2% and all eigenvalues but the first have
absolute value at most A. We will identify the vertices of H with {0,1}", and the
edges exiting each vertex with {0,1}? in some arbitrary way.

We will need explicit constructions of expanders, which can be obtained from

various known constructions.

Lemma 4.3. For some constant QQ = 29, there exist an efficient sequence Hy
of (Q*,Q,1/100)-expanders.

Impagliazzo, Nisan, and Wigderson [INW] compose two pseudorandom gen-
erators using an expander as follows:

Definition 4.4. Let G',G" : {0,1}" — {0,1}! be two bit generators. Let H
be a (27,2¢ \)-ezpander. We define G' @y G" : {0,1}7+4 — {0,1}2* to be the
concatenation (G'(x),G"(y)), where x is a random wvertex in H, and y is a
random neighbor of x in H.

Our main lemma relates the bias of G’ @y G to the biases of G’ and G”:
Lemma 4.5. Let G',G" : {0,1}" — {0,1}* be two bit generators and let H be a
(27,249, \)-expander. Let (ay,. .., a:),(by,...,bs) be two coefficient vectors. Then:

|biaS(G/®ng)(Ur+d)(CL17 ey Ay bl, ey bt)|
< fa([biasgr (v, (a1, - - ., ar)l, [bilasgr (v, (b1, - - -, be)])
where fx(z,y) = zy + A1 —22y/1 — y2.

The bounds of [RV] imply that if maxyez,\o|biasq (v,)(kai, ... kas)| < @

then maxyez,\o [biascre, W, o) (@1 a1, a)| < @? + X (1—2?) =
falz, x). If also maxyez,,\o |biasgr v,y (kb1, . . ., kby)| <y, then [RV] proof can be
extended to show maxyez,\o [bias(@ e a) @, 0)(Fa, ..., kag, kby, ... kby)| <

xy+ A- (1 —zy), which is a worse than our bound f(z,y) in case z # y and does
not suffice for our purposes. In addition, our result only requires a bound on the
bias for the specific coefficient vectors (aq,...,a:), (b1,...,b) of interest, and
not multiples of those coefficient vectors; this is crucial for our analysis when M
is composite (cf., discussion after Lemma 2.10). On the other hand, the results
of [RV] are more general in that they apply to generators G',G” that correspond
to random walks on any expander, not just Cayley graphs of Z,,.

Construction of G; As in [INW,RV], we iterate the above product. Like
[RV] we can use the constant-degree expander graphs Hy, Ha, ... of Lemma 4.3
(as opposed to the expanders of degree poly(nw/e) used by [INW] to prove
Lemma 2.17). We define G} : {0,1}% — {0,1}2" 4 iteratively. G} : {0,1}7 —
{0,1}9 is the identity mapping, and G}, = G}_, Qu, , Go_,;. We set G1 = G},
for the minimal ¢ such that 26*1q > n. We have:

Lemma 4.6. Let (a1,...,a,) € ZY; be a coefficient vector, which is not all
zeros. Then:
. 1
biasg, (a1,...,a,) <1 — ek
The seed-length of G1 is O(logn).
Construction of G2 We will construct Gy based on G;. Let (ay,...,a,) be a

coefficient vector. Assume first a special case: Let n = k2%, and partition the set
of coefficients into 2° consecutive parts, each of size k. Assume that each part
contain at least one non-zero coefficient. By Lemma 4.6, applying G to each
part independently gives bias of at most 1 — 1/M?2. We use this to analyze the
bias of G; when applied in the special case:

Lemma 4.7. Let n = k2°. Let ay,...,a, be a coefficient vector such that for
every j € [2°], weight(ajx+1, @jrt2, ... ag41)k) > 0. Then:

: : 9\° 1
biasg, (a1, . ..,a,) < min (1 - (8)]\42’0'9) .

In particular if s > 12log M, we have biasg, (a1, ..., a,) < 0.9.
We now construct the generator G5 in three steps:

— Obliviously partition the coefficients, using the hash function H,. Re-order
the coefficients according to the partition. This guarantees that with proba-
bility at least 0.99, the conditions of Lemma 4.7 hold.

— Use G1 on the re-ordered coefficients.

— Return the pseudorandom bits back to the original order.

‘We have:

Lemma 4.8. Let (a1,...,an) € Z}; be a coefficient vector, of weight at least
100M?*. Then:

biasg, (a1,...,a,) < 0.91.

The seed length of G is O(logn + log® M).

Construction of G3 We use G2 to build our final e-bit-biased generator Gs.
The construction of G5 has three parts:

— Use Hj to partition the inputs to O(log(1/¢€)) buckets, such that with proba-
bility 1 — €/100, most buckets contain at least 100M/?* non-zero coefficients.

— Use G5 on each bucket.

— Combine the generators for the separate buckets using expander products,
with expanders of growing degree as in [RV].

Lemma 4.9. Let (a1,...,a,) € Z}; be a coefficient vector, of weight at least
10°M**log(1/€). Then:

biasg, (a1, ..., a,) < €/2.

The randomness required by Gs is O(logn + log(M/e) log(M log(1/¢))).

Acknowledgments

We thank Emanuele Viola for drawing our attention to this problem. We thank
Andrej Bogdanov for helpful discussions.

References

[AIK*] M. Ajtai, H. Iwaniec, J. Komlés, J. Pintz, and E. Szemerédi. Construction of
a thin set with small Fourier coefficients. Bull. London Math. Soc., 22(6):583—
590, 1990.

[AKS] M. Ajtai, J. Komlds, and E. Szemerédi. Deterministic Simulation in
LOGSPACE. In Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, pages 132-140, New York City, 25—-27 May 1987.

[AGHP] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of al-
most k-wise independent random variables. Random Structures & Algorithms,
3(3):289-304, 1992.

[AM] N. Alon and Y. Mansour. e-discrepancy sets and their application for interpo-
lation of sparse polynomials. Information Processing Letters, 54(6):337-342,
1995.

[AR] N. Alon and Y. Roichman. Random Cayley graphs and expanders. Random
Structures Algorithms, 5(2):271-284, 1994.

[BNS] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom
generators for logspace, and time-space trade-offs. Journal of Computer and
System Sciences, pages 204-232, 15-17 May 1989.

[BR] M. Bellare and J. Rompel. Randomness-Efficient Oblivious Sampling. In
85th Annual Symposium on Foundations of Computer Science, pages 276287,
Santa Fe, New Mexico, 20-22 Nov. 1994. IEEE.

[BSVW] E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson. Randomness-
efficient low degree tests and short PCPs via epsilon-biased sets. In Proceedings
of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pages
612-621 (electronic), New York, 2003. ACM.

[BV]
[DGJ™]

[EGLY]
[HPS]
[INW]
[Kat]

[Lov]

[MZ]
[MST]

[MNN]

[NN]
[Nao]
[Nis]

[RS]

[RSW]

[RTV]

[RV]

[5Z]

[Vio]

A. Bogdanov and E. Viola. Pseudorandom Bits for Polynomials. In FOCS,
pages 41-51. IEEE Computer Society, 2007.

I. Diakonikolas, P. Gopalan, R. Jaiswal, R. A. Servedio, and E. Viola. Bounded
Independence Fools Halfspaces. CoRR, abs/0902.3757, 2009.

G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Velickovi¢. Efficient approx-
imation of product distributions. Random Structures Algorithms, 13(1):1-16,
1998.

J. Hastad, S. Phillips, and S. Safra. A well-characterized approximation prob-
lem. Information Processing Letters, 47(6):301-305, 1993.

R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for Network
Algorithms. In Proceedings of the Twenty-Sixth Annual ACM Symposium on
the Theory of Computing, pages 356-364, Montréal, Québec, Canada, 23-25
May 1994.

N. M. Katz. An estimate for character sums. Journal of the American Math-
ematical Society, 2(2):197-200, 1989.

S. Lovett. Unconditional pseudorandom generators for low degree polynomi-
als. In R. E. Ladner and C. Dwork, editors, STOC, pages 557-562. ACM,
2008.

R. Meka and D. Zuckerman. Small-Bias Spaces for Group Products. These
proceedings, 2009.

E. Mossel, A. Shpilka, and L. Trevisan. On e-biased generators in NC°. Ran-
dom Structures Algorithms, 29(1):56-81, 2006.

R. Motwani, J. Naor, and M. Naor. The probabilistic method yields de-
terministic parallel algorithms. Journal of Computer and System Sciences,
49(3):478-516, 1994.

J. Naor and M. Naor. Small-Bias Probability Spaces: Efficient Constructions
and Applications. SIAM J. Comput., 22(4):838-856, Aug. 1993.

M. Naor. Constructing Ramsey graphs from small probability spaces. Tech-
nical Report RJ 8810, IBM Research Report, 1992.

N. Nisan. Pseudorandom generators for space-bounded computation. Combi-
natorica, 12(4):449-461, 1992.

Y. Rabani and A. Shpilka. Explicit construction of a small epsilon-net for
linear threshold functions. In M. Mitzenmacher, editor, STOC, pages 649—
658. ACM, 2009.

A. Razborov, E. Szemerédi, and A. Wigderson. Constructing small sets that
are uniform in arithmetic progressions. Combinatorics, Probability and Com-
puting, 2(4):513-518, 1993.

O. Reingold, L. Trevisan, and S. Vadhan. Pseudorandom Walks in Regular
Digraphs and the RL vs. L Problem. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing (STOC ‘06), 21-23 May 2006. Prelimi-
nary version on FCCC, February 2005.

E. Rozenman and S. Vadhan. Derandomized Squaring of Graphs. In Proceed-
ings of the 8th International Workshop on Randomization and Computation
(RANDOM “05), number 3624 in Lecture Notes in Computer Science, pages
436-447, Berkeley, CA, August 2005. Springer.

M. Saks and S. Zhou. BPESPACE(S) C DSPACE(S%/2). Journal of Computer
and System Sciences, 58(2):376-403, 1999. 36th IEEE Symposium on the
Foundations of Computer Science (Milwaukee, WI, 1995).

E. Viola. The Sum of d Small-Bias Generators Fools Polynomials of Degree
d. In IEEE Conference on Computational Complezity, pages 124-127. IEEE
Computer Society, 2008.

