
Simpler Session-Key Generation from
Short Random Passwords∗

Minh-Huyen Nguyen † Salil Vadhan ‡

November 10, 2006

Abstract
Goldreich and Lindell (CRYPTO `01) recently presented the �rst protocol for password-

authenticated key exchange in the standard model (with no common reference string
or set-up assumptions other than the shared password). However, their protocol uses
several heavy tools and has a complicated analysis.

We present a simpli�cation of the Goldreich�Lindell (GL) protocol and analysis for
the special case when the dictionary is of the form D = {0, 1}d i.e., the password is
a short string chosen uniformly at random (in the spirit of an ATM PIN number).
The security bound achieved by our protocol is somewhat worse than the GL protocol.
Roughly speaking, our protocol guarantees that the adversary can �break� the scheme
with probability at most O(poly(n)/|D|)Ω(1), whereas the GL protocol guarantees a
bound of O(1/|D|).

We also present an alternative, more natural de�nition of security than the �aug-
mented de�nition� of Goldreich and Lindell, and prove that the two de�nitions are
equivalent.

Keywords: human-memorizable passwords, key exchange, authentication, cryptographic
protocols, secure two-party computation

∗An extended abstract of this paper appeared in the First Theory of Cryptography Conference (TCC
`04) [23].

†Harvard University, 33 Oxford Street, Cambridge, MA 02138. E-mail: mnguyen@eecs.harvard.edu.
Supported by NSF grant CCR-0205423 and ONR grant N00014-04-1-0478.

‡Harvard University, 33 Oxford Street, Cambridge, MA 02138. E-mail: salil@eecs.harvard.edu. Sup-
ported by NSF grant CCR-0205423, a Sloan Research Fellowship, and ONR grant N00014-04-1-0478. Part
of this work done while at the Radcli�e Institute for Advanced Study.

Contents
1 Introduction 1

2 De�nition of Security 5
2.1 The Initial De�nition . 6
2.2 Security with Respect to the Session-Key Challenge 7
2.3 Security with Respect to the Environment 9

3 An Overview of the Protocol 15
3.1 Secure Polynomial Evaluation . 15
3.2 Motivation for our Protocol . 16
3.3 Tools Used in our Protocol . 17
3.4 Description of our Protocol . 19

4 Main Security Theorems 20
4.1 Overview of the proof of Theorem 4.2 . 21

5 Proof of Security against Passive Adversaries 25

6 Key-Match Property for the First Scheduling 26

7 Key-Match Property for the Second Scheduling 29
7.1 Mental Experiment . 30
7.2 Reduction to the Mental Experiment . 31

8 Adapting the GL Techniques to our Protocol 32
8.1 Simulation of the (A,C ′) Execution . 33
8.2 Simulation of the (C, B) Execution . 35
8.3 Security Theorem . 38

9 Additional Security Theorems 40

References 43

A Secure Two-Party Computation 46

B Almost Pairwise Independence 47

1 Introduction
What is the minimal amount of information that two parties must share in order to perform
nontrivial cryptography? This fundamental question is at the heart of many of the major
distinctions we draw in cryptography. Classical private-key cryptography assumes that the
legitimate parties share a long random key. Public-key cryptography mitigates this by al-
lowing the sharing of information to be done through public keys that need not be hidden
from the adversary. However, in both cases, the amount of information shared by the legiti-
mate parties (e.g., as measured by mutual information) needs to be quite large. Indeed, the
traditional view is that security comes from the adversary's inability to exhaustively search
the keyspace.

Thus it is very natural to ask: can we do nontrivial cryptography using �low-entropy�
keys (i.e., using a keyspace that is feasible to exhaustively search) ? In addition to being a
natural theoretical question, it has clear relevance to the many �real-life� situations where we
need security but only have a low-entropy key (e.g., an ATM PIN number, or human-chosen
password on a website).

Public-key cryptography provides an initial positive answer to this question: key-exchange
protocols, as in [10], do not require any prior shared information. However, this holds only
for passive adversaries, and it is well known that without any prior shared information
between the legitimate parties, an active adversary can always succeed through a person-
in-the-middle attack. Thus, it remains an interesting question to achieve security against
active adversaries using a low-entropy shared key. This has led researchers to consider the
problem of password-authenticated key exchange, which we describe next.

Password-Authenticated Key Exchange. The password-authenticated key exchange
problem was �rst suggested as a topic for research by Bellovin and Merritt [4]. We assume
that two parties, Alice and Bob, share a password w chosen uniformly at random from
a dictionary D ⊆ {0, 1}n. This dictionary can be very small, e.g., |D| = poly(n), and
in particular it may be feasible for an adversary to exhaustively search it. Our aim is to
construct a protocol enabling Alice and Bob to generate a �random� session key K ∈ {0, 1}n,
which they can subsequently use for standard private-key cryptography. We consider an
active adversary that completely controls the communication channel between Alice and
Bob. The adversary can intercept, modify, drop, and delay messages, and in particular can
attempt to impersonate either party through a person-in-the-middle attack.

Our goal is that, even after the adversary mounts such an attack, Alice and Bob will
generate a session key that is �indistinguishable� from uniform even given the adversary's
view. However, our ability to achieve this goal is limited by two unpreventable attacks. First,
since the adversary can block all communication, it can prevent one or both of the parties
from completing the protocol and obtaining a session key. Second, the adversary can guess a
password w̃ chosen uniformly from the dictionary D and attempt to impersonate one of the
parties. With probability 1/|D|, the guess equals the real password (i.e., w̃ = w), and the
adversary will succeed in the impersonation and therefore learn the session key. Thus, we
revise our goal to e�ectively limit the adversary to these two attacks. Various formalizations
for this problem have been developed through several works [3, 18, 26, 2, 7, 15]. We follow
the de�nitional framework of Goldreich and Lindell [15], which is described in more detail

1

in Sec. 2.
In addition to addressing what can be done with a minimal amount of shared information,

the study of this problem is useful as another testbed for developing our understanding of
concurrency in cryptographic protocols. The concurrency implicitly arises from the person-
in-the-middle attack, which we can view as two simultaneous executions of the protocol, one
between Alice and the adversary and the other between Bob and the adversary.

The �rst protocols for the password-authenticated key exchange problem were proposed
in the security literature, based on informal de�nitions and heuristic arguments (e.g., [5,
28]). The �rst rigorous proofs of security were given in the ideal cipher and random oracle
models [2, 7, 20]. Only recently were rigorous solutions without random oracles given, in
independent works by Goldreich and Lindell [15] and Katz, Ostrovsky, and Yung [19]. One
of the main di�erences between these two protocols is that the KOY protocol (and the
subsequent protocol of [13]) is in the �public parameters model,� requiring a string to be
generated and published by a trusted third party, whereas the GL protocol requires no set-
up assumption other than the shared password. Thus, even though the KOY protocol has
a number of practical and theoretical advantages over the GL protocol (which we will not
enumerate here), the GL protocol is more relevant to our initial question about the minimal
amount of shared information needed for nontrivial cryptography.

The Goldreich�Lindell Protocol. As mentioned above, the Goldreich�Lindell proto-
col [15] is remarkable in that the only set-up assumption it requires is that the two parties
share a password chosen at random from an arbitrary dictionary. Furthermore, their protocol
can be based on general complexity assumptions (i.e., the existence of enhanced trapdoor
permutations), can be implemented in a constant number of rounds (under stronger as-
sumptions), and achieves a nearly optimal security bound (the adversary has probability
only O(1/|D|) of �breaking� the scheme).

Despite giving such a strong result, the Goldreich�Lindell protocol does not leave us
with a good understanding of the password-authenticated key-exchange problem. First, the
protocol makes use of several �heavy� tools: secure two-party polynomial evaluation (building
on [22], who observed that this yields a protocol for password-authenticated key exchange
against passive adversaries), nonmalleable commitments (as suggested in [6]), and the speci�c
concurrent zero-knowledge proof of Richardson and Kilian [25]. It is unclear whether all of
these tools are really essential for solving the key-exchange problem. Second, the proof
of the protocol's security is extremely complicated. Goldreich and Lindell do introduce
nice techniques for analyzing concurrent executions (arising from the person-in-the-middle
attack) of two-party protocols whose security is only guaranteed in the stand-alone setting
(e.g. the polynomial evaluation), but these techniques are applied in an intricate manner that
seems inextricably tied to the presence of the nonmalleable commitment and zero-knowledge
proof. Finally, �nding an e�cient instantiation of the Goldreich�Lindell protocol would
require �nding e�cient instantiations of all three of the heavy tools mentioned above, which
seems di�cult. In particular, the Richardson-Kilian zero-knowledge proof is used to prove an
NP statement that asserts the consistency of a transcript of the nonmalleable commitment,
a standard commitment, and the output of an iterated one-way permutation. For such an
NP statement, it seems di�cult to avoid using a generic zero-knowledge proof system for

2

NP, which is almost always ine�cient due to the use of Cook's theorem.

Our Protocol. Our main result is a simpli�cation of the Goldreich�Lindell protocol and
analysis for the special case when the dictionary is of the form D = {0, 1}d, i.e., the password
is a short string chosen uniformly at random from {0, 1}d, for d ≥ 3 log n where n is the
security parameter. More generally, the password can be chosen uniformly at random from
any �xed dictionary of size 2d whose elements we can e�ciently enumerate (because the
enumeration provides a bijection with {0, 1}d). Note that this special case still retains the
main features of the problem: the person-in-the-middle attack and the resulting concurrency
issues are still present, and the adversary can still exhaustively search the dictionary (since
we allow the password length d to be as small as O(log n), where n is the security parameter).
Our protocol is still far from practical (and cannot be used with passwords as short as 4-digit
ATM numbers), but we view it as a theoretical step in our understanding of a natural and
important cryptographic problem.

Though our protocol cannot be used directly for arbitrary dictionaries, it can be converted
into one for arbitrary dictionaries in the common reference string model (using the common
reference string as the seed of a randomness extractor [24]). For dictionaries D ⊂ {0, 1}n,
the common reference string is a uniform string of only logarithmic length (speci�cally,
O(log n + log |D|)), and thus retains the spirit of minimizing the amount of shared infor-
mation between the legitimate parties. In contrast, the previous protocols in the public
parameters model [19, 13] require a public string of length poly(n) with special number-
theoretic structure.

The main way in which we simplify the GL protocol is that we remove the nonmal-
leable commitments and the Richardson�Kilian zero-knowledge proof. Instead, our proto-
col combines secure polynomial evaluation with a combinatorial tool (i.e., almost pairwise-
independent hashing), in addition to using �lightweight� cryptographic primitives also used
in [15] (one-way permutations, one-time MACs, standard commitments). Our analysis is
also similarly simpler. While it has the same overall structure as the analysis in [15] and
utilizes their techniques for applying the stand-alone properties of the polynomial evaluation
in the concurrent setting, it avoids dealing with the nonmalleable commitments and the
zero-knowledge proof (which is the most complex part of the GL analysis).

Removing the nonmalleable commitments and the RK zero-knowledge proof has two ad-
ditional implications. First, �nding an e�cient implementation of our protocol only requires
�nding an e�cient protocol for secure polynomial evaluation (in fact, only for linear poly-
nomials).1 Since this is a highly structured special case of secure two-party computation, it
does not seem beyond reach to �nd an e�cient protocol. Indeed, Naor and Pinkas [22] have
already given an e�cient polynomial evaluation protocol for passive adversaries. Second, our
protocol can be implemented in a constant number of rounds assuming only the existence of
trapdoor permutations, whereas implementing the Goldreich�Lindell protocol in a constant
number of rounds requires additional assumptions, such as the existence of claw-free permu-
tations (for a round-e�cient version of the Richardson-Kilian zero-knowledge proof, see [15])

1Actually, we require a slightly augmented form of polynomial evaluation, in which one of the parties
commits to its input beforehand and the protocol ensures consistency with this committed input.

3

and some sort of exponential hardness assumption (to use [1] and obtain constant-round
non-malleable commitments). Though our protocol is not e�cient and cannot be used in
practice, this theoretical work will hopefully help lead the way to protocols that are both
simpler and e�cient.

We note that the security bound achieved by our protocol is somewhat worse than in
previous works. Roughly speaking, our protocol for a password chosen uniformly at random
from the dictionary D = {0, 1}d guarantees that the adversary can �break� the scheme with
probability at most O (n3/|D|)1/4, whereas previous works guarantee a bound of O(1/|D|).
A security bound with linear dependency on the size of the dictionary is of course preferable
for both conceptual and practical reasons, but again, our protocol should be viewed as a
stepping stone towards more e�cient protocols with better security bounds.

An additional result in our paper involves the de�nition of security in [15]. As pointed
out by Racko� (cf., [2]), it is important that a key exchange protocol provide security even if
the party who completes the protocol �rst starts using the generated key in some application
before the second party completes the protocol. In order to address this issue, Goldreich and
Lindell [15] augmented their de�nition with a �session-key challenge�, in which the adversary
is given either the generated key or a uniform string with probability 1/2 upon the �rst party's
completion of the protocol. We present an arguably more natural de�nition that directly
models the use of the generated key in an arbitrary application, and prove its equivalence
to the augmented de�nition of Goldreich and Lindell [15]. (This result is analogous to the
result of Shoup [26] for non-password-based key exchange protocols.)

Organization. In Section 2, we formalize the problem of session-key generation using
human passwords. We �rst provide the basic security de�nition of Goldreich and Lindell
[15] and give their augmented de�nition (which deals with the issue of one party using
the generated key before the other party completes the protocol). We then present our
alternative, more natural de�nition of security and prove its equivalence to the augmented
de�nition of Goldreich and Lindell.

In Section 3, we provide an overview of our protocol. It was observed in [22] that a secure
protocol for polynomial evaluation yields a protocol for session-key generation that is secure
against passive adversaries. In [15], Goldreich and Lindell work from the intuition that by
augmenting a secure protocol for polynomial evaluation with additional mechanisms, one can
obtain a protocol for session-key generation that is secure against active adversaries. Our
protocol also comes from this intuition, but the additional tools we are using are di�erent.

In Section 4, we state our main security theorems and provide an overview of the proof
of security. As in [15], the proof reduces the case of active adversaries to the case of passive
adversaries by establishing a �Key-Match Property,� which states that if certain �pre-keys�
computed by the two honest parties are di�erent, then one of the parties will reject with
high probability.

Section 5 contains the proof of security against passive adversaries. In Sections 6 and 7,
we establish the Key-Match Property (each section handling a di�erent `scheduling' of the
two concurrent interactions between the adversary and the honest parties). It is here that
our analysis di�ers from and is signi�cantly simpler than that of Goldreich and Lindell [15].
In Section 8, we adapt the proofs of [15] to show that the simulation-based de�nition of

4

security against active adversaries is satis�ed.
In Section 9, we state additional security theorems and show how the shared dictionary

D = {0, 1}d can be realized from several other types of dictionaries. In Appendix A, we
recall de�nitions of secure two-party computation and in Appendix B we give a construction
of almost pairwise-independent hash functions that can be used in our protocol.

2 De�nition of Security
We adopt the notation of Goldreich and Lindell and refer the reader to [15] for more details.

• C denotes the probabilistic polynomial time adversary through which the honest parties
A and B communicate. We model this communication by giving C oracle access to
a single copy of A and a single copy of B. Here the oracles A and B have memory
and represent honest parties executing the session-key generation protocol. We denote
by CA(x),B(y)(σ) an execution of C with auxiliary input σ when it communicates with
A and B, with respective inputs x and y. The output of the channel C from this
execution is denoted by output

(
CA(x),B(y)(σ)

)
.

• The security parameter is denoted by n. The password dictionary is denoted by D ⊆
{0, 1}n and we write ε = 1

|D| .

We denote by Un the uniform distribution over strings of length n, by neg(n) an arbitrary
negligible function, and write x

R← S when x is chosen uniformly from the set S.

For a function γ : N → [0, 1], we say that the probability ensembles {Xn} and {Yn} are
(1−γ)-indistinguishable (denoted by {Xn}

γ≡{Yn}) if for every probabilistic polynomial-time
distinguisher D, every polynomial p, every n, and every auxiliary input σn ∈ {0, 1}p(n), we
have

|Pr [D(Xn, σn) = 1]− Pr [D(Yn, σn) = 1] | < γ(n) + neg(n).

We say that {Xn} and {Yn} are computationally indistinguishable, which we denote by
Xn

comp≡ Yn, if they are 1-indistinguishable. We say that {Xn} is (1− γ)-pseudorandom if it
is (1− γ)-indistinguishable from Un.

We will also consider indistinguishability for probability ensembles {Xw}w∈S and {Yw}w∈S

that are indexed by a set of strings S in which case we require that for every probabilistic
polynomial-time distinguisher D, every polynomial p, every w ∈ S, and every auxiliary input
σ ∈ {0, 1}p(|w|), we have:

|Pr [D(Xw, w, σ) = 1]− Pr [D(Yw, w, σ) = 1] | < γ(|w|) + neg(|w|).

We will now formalize the problem of session-key generation using human passwords. We
�rst provide the basic security de�nition of Goldreich and Lindell [15] in Section 2.1 and give
their augmented de�nition (which deals with the issue of one party using the generated key
before the other party completes the protocol) in Section 2.2. In Section 2.3, we present our
alternative, more natural de�nition of security and prove its equivalence to the augmented
de�nition of Goldreich and Lindell.

5

2.1 The Initial De�nition
The de�nition in [15] follows the standard paradigm for secure computation: de�ne an ideal
functionality (using a trusted third party) and require that every adversary attacking the
real protocol can be simulated by an ideal adversary attacking the ideal functionality. Note
that in the real protocol, the active adversary C can prevent one or both of the parties A
and B from having an output. Thus, in the ideal model, we will allow Cideal to specify two
input bits, decA

C and decB
C , that determine whether A and B obtain a session key or not.

Ideal model Let A,B be the honest parties and let Cideal be any probabilistic polynomial-
time ideal adversary with auxiliary input σ.

1. A and B receive w
R←D.

2. A and B both send w to the trusted party.
3. Cideal sends (decA

C , decB
C) to the trusted party.

4. The trusted party chooses K
R← {0, 1}n. For each party i ∈ {A,B}, the trusted

party sends K if deci
C = 1 and sends ⊥ if deci

C = 0. Hence output(A) = K if
decA

C = 1, and ⊥ otherwise (output(B) is de�ned similarly).

The ideal distribution is de�ned by:

IDEALCideal
(D, σ) = (w, output(A), output(B), output(Cideal(σ))).

We note that this description of the ideal model di�ers slightly from the original def-
inition in [15] since we allow B to �nish �rst and A to reject in the ideal model (this
is to take into account protocols in which no party is guaranteed to terminate with a
session key). However, as described in Section 3.3, our protocol will guarantee that A
always accepts. Moreover, we will show that any real adversary can be simulated by
an ideal adversary who always chooses A to conclude �rst and accept.

Real model Let A,B be the honest parties and let C be any probabilistic polynomial-time
real adversary with auxiliary input σ.
At some initialization stage, A and B receive w

R←D. The real protocol is executed by A
and B communicating via C. We will augment C's view of the protocol with A and B's
decision bits, denoted by decA and decB, where decA = reject if output(A) = ⊥, and
decA = accept otherwise (decB is de�ned similarly). (Indeed, in typical applications,
the decisions of A and B will be learned by the real adversary C: if A obtains a
session key, then it will use it afterwards; otherwise, A will stop communication or
try to re-initiate an execution of the protocol.) C's augmented view is denoted by
output(CA(w),B(w)(σ)).
The real distribution is de�ned by:

REALC(D, σ) = (w, output(A), output(B), output(CA(w),B(w)(σ))).

6

One might want to say that a protocol for password-based session-key generation is
secure if the above ideal and real distributions are computationally indistinguishable. Un-
fortunately, as pointed in [15], an active adversary can guess the password and successfully
impersonate one of the parties with probability 1

|D| . This implies that the real and ideal dis-
tributions are always distinguishable with probability at least 1

|D| . Thus we will only require
that the distributions be distinguishable with probability at most O(γ) where the goal is to
make γ as close to 1

|D| as possible. In the case of a passive adversary, we require that the real
and ideal distributions be computationally indistinguishable (for all subsequent de�nitions,
this requirement will be implicit).

De�nition 2.1 (Initial de�nition) A protocol for password-based authenticated session-
key generation is (1− γ)-secure for the dictionary D ⊆ {0, 1}n (where γ is a function of the
dictionary size |D| and n) if:

1. For every real passive adversary, there exists an ideal adversary Cideal that always sends
(1,1) to the trusted party such that for every auxiliary input σ ∈ {0, 1}poly(n),

{IDEALCideal
(D, σ)} comp≡ {REALC(D, σ)}.

2. For every real adversary C, there exists an ideal adversary Cideal such that for every
auxiliary input σ ∈ {0, 1}poly(n),

{IDEALCideal
(D, σ)} O(γ)≡ {REALC(D, σ)}.

By the discussion above, the best we can hope for is γ = 1
|D| . Note that in [15], their

de�nition and protocol refer to any dictionary D ⊆ {0, 1}n and γ = 1
|D| . In contrast, our

protocol will be (1− γ)-secure for dictionaries of the form D = {0, 1}d and γ =
(

poly(n)
|D|

)Ω(1)

.
Following [15] (but unlike some of the other previous work), the above de�nition refers

to only a single execution of the session-key generation protocol. As in [15], it can be shown
that security is maintained for multiple sequential executions, but security is not guaranteed
for concurrent executions using the same password.

2.2 Security with Respect to the Session-Key Challenge
The above de�nition is actually not completely satisfying because of a subtle point raised
by Racko�: the adversary controls the scheduling of the interactions (A,C) and (C, B)
so the honest parties do not necessarily end at the same time. Assume that A completes
the protocol �rst. Then A might use its session key KA before the interaction (C, B) is
completed: A's use of KA leaks information which C might use in its interaction with B to
learn KA, KB or the password w.

In [15], Goldreich and Lindell augment the above de�nition with a session-key challenge
to address this issue. Suppose that A completes the protocol �rst and outputs a session key
K, then the adversary is given a session key challenge Kβ, which is the session key K with
probability 1/2 (i.e., β = 1) or a truly random string K0 with probability 1/2 (i.e., β = 0).

7

The adversary C will be given the session-key challenge in both the ideal and real models,
as soon as the �rst honest party outputs a session key K. We call the resulting de�nition
security with respect to the session-key challenge.

Ideal model Let A,B be the honest parties and let Cideal be any probabilistic polynomial-
time ideal adversary with auxiliary input σ.

1. A and B receive w
R←D.

2. A and B both send w to the trusted party
3. Cideal decides which party i ∈ {A,B} concludes �rst and whether it is a successful

execution or not, i.e., Cideal sends a pair (i, deci
C) to the trusted party.

4. The trusted party chooses K
R← {0, 1}n. If deci

C = 1, the trusted party sends K
to party i; otherwise it sends ⊥.

5. Session-key challenge: if party i received ⊥, then the trusted party gives ⊥ to
Cideal. Otherwise, the trusted party chooses β

R←{0, 1} and gives Cideal the string
Kβ where K1 = K and K0

R←{0, 1}n.
6. Cideal decides whether the second party's execution is successful or not, i.e., Cideal

sends decj
C for j 6= i to the trusted party.

7. If decj
C = 1, the trusted party sends K to party j. Otherwise, it sends ⊥.

The augmented ideal distribution is de�ned by:

IDEAL− SKCideal
(D, σ) = (w, output(A), output(B), output(Cideal(σ,Kβ)), β).

Real model At some initialization stage, A and B receive w
R← D. C has oracle access

to a single copy of A(w) and a single copy of B(w). The adversary C controls which
party (A or B) concludes �rst. If the �rst party concludes with ⊥, then C is given ⊥.
If the �rst party concluding outputs locally a session key K, then a bit β

R← {0, 1} is
chosen and C is given the session-key challenge Kβ where K1 = K and K0

R← {0, 1}n.
C completes its interaction with the other party.
The augmented real distribution is de�ned by:

REAL− SKC(D, σ) = (w, output(A), output(B), output(CA(w),B(w)(σ,Kβ)), β).

De�nition 2.2 (Security with respect to the session-key challenge [15]) A protocol
for password-based authenticated session-key generation is (1− γ)-secure with respect to the
session-key challenge for the dictionary D ⊆ {0, 1}n if for every real adversary C, there exists
Cideal such that for every auxiliary input σ ∈ {0, 1}poly(n),

{IDEAL− SKCideal
(D, σ)} O(γ)≡ {REAL− SKC(D, σ)}.

8

Goldreich and Lindell give some intuition as to why the session-key challenge solves the
�aw mentioned earlier. First, note that the ideal adversary cannot distinguish between the
case β = 0 and the case β = 1 since in the ideal model, both K0 and K are truly uniform
strings. Consider the real adversary who has been given the session-key challenge: if C has
been given K0, then the session-key challenge does not help C in attacking the protocol,
since C could generate K0 on its own. Suppose that instead C has been given K and that
C can somehow use it to attack the protocol (this corresponds to the situation where A uses
the session-key K; C(K) can simulate A's use of the key), then it would mean that C can
tell whether β = 0 or β = 1, which is not possible if the protocol is secure with respect to
the session-key challenge.

2.3 Security with Respect to the Environment
Suppose that A completes the protocol �rst and outputs a session key K. Our intuitive
notion of security is that no matter how A uses its session-key K before the execution (C, B)
is completed, the ideal and real distributions should be (1 − O(γ))-indistinguishable. It is
not immediate that the session-key challenge captures this. Thus we propose an alternative
augmentation to De�nition 2.1 that corresponds more directly to this goal.

We model the di�erent ways the party A could use its session-key K by considering
an arbitrary probabilistic polynomial time machine Z that is given the key K (as soon as
A outputs a session-key K) and interacts with the adversary in both the ideal and real
models. This is similar to the �application� queries in Shoup's model for (non-password-
based) secure key-exchange [26], which was later extended to password protocols in [7]. Z
can also be thought of in terms of �environment� as in Canetti's notion of UC security [8]: Z
models an arbitrary environment (or application) in which the key generated by the session-
key generation protocol is used (note that this is not as general as the de�nition of Canetti
since the environment Z is only given the session-key and not the password w).

Examples of environments follow:

1. Z(K) = ⊥: A does not use its session-key.

2. Z(K) = K: A publicly outputs its session-key.

3. Z(K) =

{
K with probability 1/2,
Un with probability 1/2.

This corresponds to the session-key challenge.

4. Z(K) = EncK(0n): A uses its session-key for secure private-key encryption.

5. C sends a query m1, Z(K) answers with EncK(m1), C sends a query m2, Z(K) answers
with EncK(m2) and so on. This corresponds to an interactive environment Z which
models a chosen plaintext attack.

We call the de�nition obtained by adding (in both the ideal and real models) the en-
vironment Z security with respect to the environment. Informally, a real protocol is secure

9

with respect to the environment if every adversary attacking the real protocol and inter-
acting with an arbitrary environment can be simulated, with probability 1 − O(γ), by an
ideal adversary attacking the ideal functionality and interacting with the same environment
in the ideal model. (More precisely, for every real adversary, there should be a single ideal
adversary that simulates it well for every environment.)

Ideal model Let A and B be the honest parties, Cideal any probabilistic polynomial-time
ideal adversary with auxiliary input σ and Z any probabilistic polynomial-time with
auxiliary input τ .

1. A and B receive w
R←D.

2. A and B both send w to the trusted party.
3. Cideal decides which party i ∈ {A,B} concludes �rst and whether it is a successful

execution or not, i.e., Cideal sends (i, deci
C) to the trusted party.

4. The trusted party chooses K
R← {0, 1}n. If deci

C = 1, it sets L1 = K; otherwise,
L1 = ⊥. The trusted party sends L1 to party i and Z.

5. Cideal interacts with Z(L1, τ).
6. Cideal decides whether the second party's execution is successful or not, i.e., Cideal

sends decj
C for j 6= i to the trusted party.

7. If decj
C = 1, the trusted party sets L2 = K; otherwise, L2 = ⊥. It sends L2 to

party j.

The ideal distribution is de�ned by:

IDEALZ,τ,Cideal
(D, σ) = (w, output(A), output(B), output(Z(L1, τ)), output(Cideal

Z(L1,τ)(σ))).

Real model At some initialization stage, A and B receive w
R←D. C has oracle access to a

single copy of A(w) and a single copy of B(w). The adversary C controls which party
(A or B) concludes �rst. Let M1 ∈ {0, 1}n ∪ ⊥ be the output of the �rst concluding
party. C interacts with Z(M1, τ) and completes its interaction with the other party.
The real distribution is de�ned by:

REALZ,τ,C(D, σ) = (w, output(A), output(B), output(Z(M1, τ)), output(CA(w),B(w),Z(M1,τ)(σ))).

De�nition 2.3 (Security with respect to the environment) A protocol for password-
based authenticated session-key generation is (1− γ)-secure with respect to the environment
for the dictionary D ⊆ {0, 1}n if for every probabilistic polynomial-time C, there exists Cideal

such that for every auxiliary input σ ∈ {0, 1}poly(n) and every probabilistic polynomial-time
Z with every auxiliary input τ ∈ {0, 1}poly(n),

{IDEALZ,τ,Cideal
(D, σ)} O(γ)≡ {REALZ,τ,C(D, σ)}.

10

Note that security with respect to the environment implies security with respect to the
session-key challenge since it su�ces to consider the probabilistic polynomial-time Z(K)

which generates β
R← {0, 1} and outputs the key K if β = 1 or a truly random string K0 if

β = 0. We show that the two de�nitions are actually equivalent:

Theorem 2.4 A protocol (A,B) is (1 − γ)-secure with respect to the session-key challenge
i� it is (1− γ)-secure with respect to the environment.

This is similar to a result of Shoup [26] showing the equivalence of his de�nition and
the Bellare-Rogaway [3] de�nition for non-password-based key exchange. The �application�
queries in Shoup's de�nition are analogous to our environment Z, and the �test� queries in
[3] are analogous to the session-key challenge. Though both of these de�nitions have been
extended to password-authenticated key exchange [7, 2], it is not immediate that Shoup's
equivalence result extends directly to our setting. For example, the de�nitions of [3, 2] are
not simulation-based and do not directly require that the password remain pseudorandom,
whereas here we are relating two simulation-based de�nitions that do ensure the password's
secrecy.

Given Theorem 2.4, the relationship between security with respect to the environment
and security with respect to the session-key challenge is analogous to the relationship be-
tween semantic security and indistinguishability for encryption schemes [17, 21]. Though
both are equivalent, the former captures our intuitive notion of security better, but the lat-
ter is typically easier to establish for a given protocol (as it involves only taking into account
a speci�c environment Z).

The intuition for the proof of Theorem 2.4 is that for every adversary C against security
with respect to the environment, there exists an adversary C ′ against security with respect
to the session-key challenge that can simulate both the environment Z and C. Indeed, C ′

is given the session-key challenge Kβ and can simulate both Z(Kβ) and C (interacting with
Z(Kβ)) on its own using Kβ. Note that here Z is only run with the actual session key with
probability 1/2 (namely, when β = 1), whereas the de�nition of security with respect to
the environment always refers to Z run with the true session key. Intuitively, however, this
di�erence should not matter, because the two cases β = 0 and β = 1 are indistinguishable
in the ideal model for security with respect to the session-key challenge.

Proof: For conciseness of notation in the proof, we omit �output� in the distributions.
Let (A,B) be a protocol that is secure with respect to the session-key challenge. To

prove the theorem, it su�ces to prove that De�nition 2.3 holds that is, for every probabilistic
polynomial-time C, there exists a probabilistic polynomial-time Cideal such that for every Z
and every auxiliary input τ :

{w, A,B, Z(M1, τ), CA(w),B(w),Z(M1,τ)(σ)} O(γ)≡ {w,A, B, Z(L1, τ), Cideal
Z(L1,τ)(σ)},

where M1 is the output of the �rst concluding party in the real execution CA(w),B(w) and L1

is the output of the �rst concluding party in the ideal execution.

11

We denote by M2 the output of the second concluding party in the real execution
CA(w),B(w) and by L2 the output of the second concluding party in the ideal execution. Hence,
we want to prove that for every probabilistic polynomial-time C, there exists a probabilistic
polynomial-time Cideal such that for every Z and every auxiliary input τ :

{w, M1,M2, Z(M1, τ), CA(w),B(w),Z(M1,τ)(σ)} O(γ)≡ {w, L1, L2, Z(L1, τ), Cideal
Z(L1,τ)(σ)}

where we also require that if Cideal sets i ∈ {A,B} as the �rst concluding party, then i
concludes �rst in the simulated view Cideal outputs.

Let us consider the session-key challenge given to the adversary in both the ideal and
real models of De�nition 2.2:

• In the ideal model of De�nition 2.2, the trusted party gives the adversary Cideal the
session-key challenge Kβ

Kβ =

{
L1 if β = 1 or L1 = ⊥,

Un if β = 0 and L1 6= ⊥.

• In the real model of De�nition 2.2, the trusted party gives the adversary C the session-
key challenge Kβ

Kβ =

{
M1 if β = 1 or M1 = ⊥,

Un if β = 0 and M1 6= ⊥.

We �x the real adversary C (against security with respect to the environment) and de�ne
the real adversary C ′ (against security with respect to the session-key challenge) that, on
auxiliary input (σ, τ) and upon receiving K from the �rst concluding party, simulates Z(K, τ)
and C on its own. Hence C ′A(w),B(w)(σ, τ,K) ≡ {K, τ, CA(w),B(w),Z(K,τ)(σ)}. We now apply
De�nition 2.2 for the real adversary C ′.

By security with respect to the session-key challenge, there exists an ideal adversary
Cideal

′ such that

IDEAL− SKC′ideal

O(γ)≡ REAL− SKC′

⇒ {w, L1, L2, C
′
ideal(σ, τ, Kβ), β} O(γ)≡ {w, M1,M2, C

′A(w),B(w)(σ, τ, Kβ), β}.

Moreover, as β has only two possible values, we know that:

{w, L1, L2, C
′
ideal(σ, τ, L1)}

O(γ)≡ {w, M1,M2, C
′A(w),B(w)(σ, τ,M1)} (1)

{w,L1, L2, C
′
ideal(σ, τ,K0)}

O(γ)≡ {w, M1,M2, C
′A(w),B(w)(σ, τ,K0)}. (2)

We will �rst prove that the real outputs of the honest parties are indistinguishable from
ideal outputs, even when the environment Z is present. This is formalized by the following
claim:

12

Claim 2.5 For every Z, every τ and every σ,

{w, M2,M1, τ, C
A(w),B(w),Z(M1,τ)(σ)} O(γ)≡ {w, L2, L1, τ, C

A(w),B(w),Z(L1,τ)(σ)},
where Mi is the output of the ith concluding party in the real execution CA(w),B(w) and L1, L2

are de�ned as follows:

• if the �rst party in the real execution CA(w),B(w) accepts, then L1 = Un. Otherwise,
L1 = ⊥.

• if the second party in the real execution CA(w),B(w) accepts and L1 6= ⊥, then L2 = L1.
If the second party accepts and L1 = ⊥, then L2 = Un. If the second party rejects, then
L2 = ⊥.

Proof of claim:
By de�nition of C ′ and Equation (1), we know that

{w,M2, M1, τ, C
A(w),B(w),Z(M1,τ)(σ)} ≡ {w, M2, C

′A(w),B(w)(σ, τ, M1)}
O(γ)≡ {w, L2, C

′
ideal(σ, τ, L1)}.

Again, by de�nition of C ′, we have

{w,L2, L1, τ, C
A(w),B(w),Z(L1,τ)(σ)} ≡ {w, L2, C

′A(w),B(w)(σ, τ, L1)}.
Note that in both the real and ideal models, the string K0 is distributed identi-
cally to L1, hence by Equation (2), we have

{w,C ′A(w),B(w)(σ, τ, L1)}
O(γ)≡ {w, C′

ideal(σ, τ, L1)}
⇒ {w, L2, C

′A(w),B(w)(σ, τ, L1)}
O(γ)≡ {w, L2, C

′
ideal(σ, τ, L1)}.

¤

We will now prove that if the real outputs of the honest parties are replaced by ideal
outputs, then the protocol leaks no information about the password w.

Claim 2.6 For every Z, every τ and every σ,

{w,L2, L1, τ, C
A(w),B(w),Z(L1,τ)(σ)} O(γ)≡ {w̃, L2, L1, τ, C

A(w),B(w),Z(L1,τ)(σ)},

where w̃
R←D and L1, L2 are de�ned as follows:

• if the �rst party in the real execution CA(w),B(w) accepts, then L1 = Un. Otherwise,
L1 = ⊥.

• if the second party in the real execution CA(w),B(w) accepts and L1 6= ⊥, then L2 = L1.
If the second party accepts and L1 = ⊥, then L2 = Un. If the second party rejects, then
L2 = ⊥.

13

Proof of claim: We de�ne the real adversary C ′′ (against security with respect
to the session-key challenge) that, on auxiliary input (σ, τ) and upon receiving
L1 from the �rst concluding party, simulates Z(L1, τ) and C on its own such
that C ′′A(w),B(w)(σ, τ, L1) ≡ {L2, L1, τ, C

A(w),B(w),Z(L1,τ)}, where L2 is computed
according to the above rule. Since L1 is distributed identically to K0, by security
with respect to the session-key challenge (for the case where β = 0) there exists
C′′

ideal such that

{w, C′′
ideal(σ, τ, L1)}

O(γ)≡ {w, C ′′A(w),B(w)(σ, τ, L1)}, (3)

which in turn implies (by non-uniform indistinguishability or samplability of D)

{w̃, C′′
ideal(σ, τ, L1)}

O(γ)≡ {w̃, C ′′A(w),B(w)(σ, τ, L1)}, (4)

where w̃
R←D. Note that in the ideal model, the adversary C′′

ideal(σ, τ, L1) learns
nothing about the password w since L1 is independent of the password w. Hence
we have

{w̃, C′′
ideal(σ, τ, L1)} ≡ {w, C′′

ideal(σ, τ, L1)}. (5)
From Equations (3), (4), (5) and transitivity of indistinguishability, we conclude
that

{w, C ′′A(w),B(w)(σ, τ, L1)}
O(γ)≡ {w̃, C ′′A(w),B(w)(σ, τ, L1)}.

¤

Note that the distributions {w̃, L2, L1, τ, C
A(w),B(w),Z(L1,τ)(σ)} and {w,L2, L1, τ, C

A(w̃),B(w̃),Z(L1,τ)(σ)},
where w̃

R←D, are equivalent. Combining Claims 2.5 and 2.6, we obtain

{w, M1,M2, τ, C
A(w),B(w),Z(M1,τ)(σ)} O(γ)≡ {w, L1, L2, τ, C

A(w̃),B(w̃),Z(L1,τ)(σ)}.

We now describe the ideal adversary Cideal
Z(L1,τ)(σ) that simulates CA(w̃),B(w̃),Z(L1,τ)(σ):

1. Cideal generates a random password w̃
R←D and simulates the honest parties A and B

in the interaction (A(w̃), B(w̃)).

2. Let i ∈ {A,B} be the �rst party to conclude in the simulated execution. Party i
outputs a decision bit deci and a key L1 in the simulated execution. As soon as the
�rst party in the simulated execution concludes, Cideal sends (i, deci) to the trusted
party.

3. Cideal interacts with Z(L1, τ) and continue the simulated execution.

4. Let j ∈ {A,B} be the second party to conclude in the simulated execution. Party j
outputs a decision bit decj and a key L2 in the simulated execution. As soon as the
second party in the simulated execution concludes, Cideal sends (j, decj) to the trusted
party.

14

Hence, for any probabilistic polynomial-time C, there exists Cideal such that for every Z
and every τ :

{w, M1,M2, Z(M1, τ), CA(w),B(w),Z(M1,τ)(σ)} O(γ)≡ {w,L1, L2, Z(L1, τ), Cideal
Z(L1,τ)(σ)}.

Note that the O(·) in O(γ) hides a constant factor lost in the proof. Speci�cally, the proof
shows that if the real and ideal distributions in De�nition 2.3 are (1− γ)-indistinguishable,
then the real and ideal distributions in De�nition 2.2 are (1− 3γ)-indistinguishable.

3 An Overview of the Protocol
Before presenting our protocol, we introduce the polynomial evaluation functionality, which
is an important tool for the rest of the paper. In [22], it is observed that a secure protocol
for polynomial evaluation immediately yields a protocol for session-key generation that is
secure against passive adversaries. In [15], Goldreich and Lindell work from the intuition
(from [6]) that by augmenting a secure protocol for polynomial evaluation with additional
mechanisms, one can obtain a protocol for session-key generation that is secure against
active adversaries. Our protocol also comes from this intuition, but the additional tools we
are using are di�erent.

3.1 Secure Polynomial Evaluation
In a secure polynomial evaluation, a party A knows a polynomial Q over some �eld F and a
party B wishes to learn the value Q(x) for some element x ∈ F such that A learns nothing
about x and B learns nothing else about the polynomial Q but the value Q(x). More
speci�cally, for our problem, we will assume that F = GF(2n) ≈ {0, 1}n, Q is a non-constant
linear polynomial over F, and x is a string in {0, 1}n.

De�nition 3.1 (Polynomial evaluation) The polynomial evaluation functionality is de-
�ned as:

Inputs The input of A is a non-constant linear polynomial Q over GF(2n). The input of B
is a value x ∈ GF(2n).

Outputs B receives Q(x). A receives nothing.

As observed in [22], a secure protocol for polynomial evaluation yields immediately a
protocol for session-key generation that is secure against passive adversaries as follows: A
chooses a random linear non-constant polynomial Q, and A and B engage in a secure polyno-
mial evaluation protocol, where A inputs Q and B inputs w, so that B obtains Q(w). Since
A has both Q and w, A can also obtain Q(w), and the session key is set to be K = Q(w).

This protocol is secure against passive adversaries because the key K is a random string
(since Q is a random polynomial), and it can be shown that an eavesdropper learns nothing
about w or Q(w) (due to the security of the polynomial evaluation).

15

However, the protocol is not secure against active adversaries. For example, an active
adversary C can input a �xed polynomial QC in its interaction with B, say the identity
polynomial id, and a �xed password wC in its interaction with A. A outputs the session
key QA(w) and B outputs the session key QC(w) = w. With probability 1 − 2−n, the two
session keys are di�erent, whereas the de�nition of security requires them to be equal with
probability 1−O(γ).

A C B

QA -

KA = QA(w)

¾ wC

- QA(wC)

QC - ¾ w

- QC(w)

KB = QC(w)

Figure 1: Protocol that is insecure against active adversaries

3.2 Motivation for our Protocol
The main de�ciency of the secure polynomial evaluation protocol against active adversaries
is that it does not guarantee that A and B output the same random session key. Somehow,
the parties have to check that they computed the same random session key before starting
to use it. It can be shown that A's session key KA = QA(w) is pseudorandom to the ad-
versary, so A can start using it without leaking information. However, B cannot use its key
KB = QC(w) because it might belong to a set of polynomial size (for example, if QC = id,
then QC(w) ∈ D where the dictionary is by de�nition a small set). Hence Goldreich and
Lindell added a validation phase in which A sends a message to B so that B can check if
it computed the same session key, say A sends f 2n(KA) where f is a one-way permutation.
Since f 2n is a 1-1 map, this uniquely de�nes KA (the session-key used now consists of hard-
core bits of f i(KA), for i = 0, · · · , n− 1) : B will compute f 2n(KB) and compare it with the
value it received.

But it is still not clear that this candidate protocol is secure. Recall that the security of
the polynomial evaluation protocol applies only in the stand-alone setting and guarantees
nothing in the concurrent setting. In particular, it might be that C inputs a polynomial
QC in the polynomial evaluation between C and B such that the polynomials QA and QC

are related in some manner, say for any w ∈ D, it is easy to compute the correct validation
message f 2n(QC(w)) given the value of f 2n(QA(w)); yet B's key does not equal A's key.

To prevent this from happening, Goldreich and Lindell force the polynomial Q input
in the polynomial evaluation phase to be consistent with the message sent in the valida-
tion phase (which is supposedly f 2n(Q(w))). The parties have to commit to their inputs
at the beginning and then prove in a zero-knowledge manner that the messages sent in

16

the validation phase are consistent with these commitments. Because of the person-in-the-
middle attack and the concurrency issues mentioned earlier, Goldreich and Lindell cannot
use standard commitment schemes and standard zero-knowledge proofs but rather they use
non-malleable commitments and the speci�c zero-knowledge proof of Richardson and Kilian.

Our approach is to allow C to input a polynomial QC related to QA, but to prevent
C from being able to compute a correct validation message with respect to B's session-
key, even given A's validation message. Suppose that the parties have access to a family
of pairwise-independent hash functions H. In the validation phase, we require A to send
h(f 2n(KA)) = h(f 2n(QA(w))) for some function h

R←H. Then, even if KA = QA(w) and
KB = QC(w) are related (but distinct), the values h(f 2n(KA)) and h(f 2n(KB)) will be in-
dependent and C cannot do much better than randomly guess the value of h(f 2n(KB)).

One di�culty arises at this point: the parties have to agree on a common random hash
function h

R←H. But the honest parties A and B only share the randomness coming from
the password w so this password w has to be enough to agree on a random hash function. To
make this possible, we assume that the password is of the form (w,w′) where w and w′ are
chosen independently of one another: w is chosen at random from an arbitrary dictionary
D ⊆ {0, 1}n and w′ is uniformly distributed in D′ = {0, 1}d′ . (For example, these can be
obtained by splitting a single random password from {0, 1}d′′ into two parts.) The �rst
part of the password, w, will be used in the polynomial evaluation protocol whereas the
second part of the password, w′, will be used as the index of a hash function. Indeed, if
we assume that D′ = {0, 1}d′ , there exists a family of almost pairwise-independent hash
functions H = {h : {0, 1}n → {0, 1}m}, where each hash function is indexed by a password
w′ ∈ D′ and m = Ω(d′) (see proof in Appendix B).

We formalize these ideas in the protocol described below.

3.3 Tools Used in our Protocol
As in [15], we will need a secure protocol for an augmented version of polynomial evaluation.
We refer the reader to Appendix A for more details on secure two-party computation.

De�nition 3.2 (Augmented polynomial evaluation) The augmented polynomial eval-
uation functionality is de�ned as:

Initial phase A sends a commitment cA = Commit(QA, rA) to a linear non-constant poly-
nomial QA for a randomly chosen rA. B receives a commitment cB. We assume that
the commitment scheme used is perfectly binding and computationally hiding.

Inputs The input of A is a linear non-constant polynomial QA, a commitment cA to QA

and a corresponding decommitment rA. The input of B is a value x ∈ GF(2n) and a
commitment cB.

Outputs • In the case of correct inputs, i.e., cA = cB and cA = Commit(QA, rA), B
receives QA(x) and A receives nothing.

17

• In the case of incorrect inputs, i.e., cA 6= cB or cA 6= Commit(QA, rA), B receives
a special failure symbol ⊥ and A receives nothing.

The other cryptographic tools we will need are:

Commitment scheme: Let Commit be a perfectly binding, computationally hiding string
commitment.

Seed-committed pseudorandom generator: similarly to [15], we will use the seed-committed
pseudorandom generator G(s) = (b(s)b(f(s)) · · · b(fn+`−1(s))fn+`(s)) where f is a one-
way permutation with hardcore bit b.

One-time MAC with pseudorandomness property: Let MAC be a message authen-
tication code for message space {0, 1}p(n) (for a polynomial p(n) to be speci�ed later)
using keys of length ` = `(n) that is secure against one query attack, i.e., a probabilistic
polynomial-time A that queries the tagging algorithm MACK on at most one message
of its choice cannot produce a valid forgery on a di�erent message. Additionally, we
will require the following pseudorandomness property:

• Let K be a uniform key of length `

• The adversary queries the tagging algorithm MACK on the message m of its choice
• The adversary selects m′ 6= m. We require that the value MACK(m′) be pseudo-

random with respect to the adversary's view.

Two examples of such a MAC are:

• MACs(m) = fs(m) where {fs}s∈{0,1}` is a pseudorandom function family
• MACa,b(m) = am + b where `(n) = 2p(n) and a, b ∈ GF(2`/2).

Almost pairwise-independent hash functions: The family of functions H = {hw′ :
{0, 1}n → {0, 1}m}w′∈{0,1}d′ is said to be almost pairwise-independent with parameter µ
if:

1. (uniformity) ∀x ∈ {0, 1}n, hw′(x) is uniform over {0, 1}m.
2. (pairwise independence) ∀x1 6= x2 ∈ {0, 1}n,∀y1, y2 ∈ {0, 1}m,

Pr
w′∈{0,1}d′

[hw′(x2) = y2|hw′(x1) = y1] ≤ µ.

We also require that for a �xed w′ ∈ {0, 1}d′ the function hw′ be regular i.e., it is 2n−m

to 1. In other words, hw′(Un) ≡ Um.

Lemma 3.3 (Appendix B) For D′ = {0, 1}d′ there exists a family of almost pairwise-
independent hash functions H = {hw′ : {0, 1}n → {0, 1}m}w′∈D′ with parameter µ =

O
(

n
|D′|1/3 log |D′|

)
.

18

3.4 Description of our Protocol
The formal description of the protocol follows (see Figure 2 for an overview).

Protocol 3.4 1. Inputs: The parties A and B have a joint password (w,w′), where w
is chosen at random from an arbitrary dictionary D ⊆ {0, 1}n and w′ is uniformly
distributed in D′ = {0, 1}d′ . (Throughout, we will view D′ as a subset of {0, 1}n after
appropriate padding for consistency with Section 2 where the security parameter is
de�ned to be the length of the password). w and w′ are chosen independently.

2. Commitment: A chooses a random non-constant linear polynomial QA over GF(2n)
and random coins rA and sends cA = Commit(QA, rA). B receives some commitment
cB.

3. Augmented polynomial evaluation

(a) A and B engage in a polynomial evaluation protocol: A inputs the polynomial
QA, the commitment cA and the random coins rA it used for the commitment; B
inputs the commitment cB it received and the password w viewed as an element
of GF(2n).

(b) The output of B is denoted ΠB, which is supposed to be equal to QA(w).
(c) A internally computes ΠA = QA(w).

4. Validation

(a) A sends the string yA = hw′(f
n+`(ΠA)), where f is a one-way permutation and

H = {hw′}w′∈{0,1}d′ is a family of almost pairwise-independent hash functions.
(b) Let tA be the session transcript so far as seen by A. A computes k1(ΠA) =

b(ΠA) · · · b(f `−1(ΠA)) and sends the string zA = MACk1(ΠA)(tA).

5. Decision

(a) A always accepts and outputs k2(ΠA) = b(f `(ΠA)) · · · b(f `+n−1(ΠA))

(b) B accepts (this event is denoted by decB = accept) if the strings yB and zB it
received satisfy the following conditions :
• yB = hw′(f

n+`(ΠB))

• Verk1(ΠB)(tB, zB) = accept, where tB is the session transcript so far as seen
by B and k1(ΠB) is de�ned analogously to k1(ΠA).

If ΠB = ⊥, then B will immediately reject.
If B accepts, it outputs k2(ΠB) = b(f `(ΠB)) · · · b(f `+n−1(ΠB)).

19

A has (w, w′) and picks a random QA B has (w, w′)

Commitment cA
def
= Commit(QA, rA) cB-

Secure polynomial evaluation
QA, cA, rA - ¾ w, cB

- ΠB

ΠA
def
= QA(w)

Hash yA
def
= hw′(f

n+`(ΠA)) yB-

MAC of transcript zA
def
= MACk1(ΠA)(tA) - zB

Output key k2(ΠA)

Accept if ΠB 6= ⊥, yB = hw′(f
n+`(ΠB))

& Verk1(ΠB)(tB, zB) = accept

If accept, output key k2(ΠB)

Figure 2: Overview of our protocol

4 Main Security Theorems
We begin by stating our protocol's security against passive adversaries.

Theorem 4.1 Protocol 3.4 is secure for the dictionary D×D′ = D×{0, 1}d′ against passive
adversaries. More formally, for every passive probabilistic polynomial-time real adversary C,
there exists an ideal adversary Cideal that always sends (decA

C , decB
C) = (1, 1) to the trusted

party such that for every auxiliary input σ ∈ {0, 1}poly(n):

{IDEALCideal
(D ×D′, σ)} comp≡ {REALC(D ×D′, σ)}.

The proof of Theorem 4.1 is given in Section 5.
Next we state the basic security theorem against active adversaries, in the plain model

with a dictionary of the form D × {0, 1}d′ .

Theorem 4.2 Protocol 3.4 is (1 − γ)-secure with respect to the environment (equivalently,
with respect to the session-key challenge) for the dictionary D × D′ = D × {0, 1}d′, for
γ = max

{
1
|D| ,

(
poly(n)
|D′|

)Ω(1)
}
. More precisely, γ = max

{
1
|D| , O

(
n

|D′|1/3

)}
.

In Section 9 we show how the shared dictionary of the form D × {0, 1}d required in
Theorem 4.2 can be realized from several other types of dictionaries D′′, achieving security
bounds of the form (poly(n)/|D′′|)Ω(1) in all cases.

20

4.1 Overview of the proof of Theorem 4.2
Notations.

• Without loss of generality, we will assume that the real adversary's output equals its
view of the execution (since the output is e�ciently computable from the view). We
will also often omit the auxiliary input σ of the adversary.

• Recall that we denote by CA(w,w′),B(w,w′) an execution of C when it communicates with
A and B, with common input (w,w′). We denote by CA(QA,w,w′),B(w,w′) the execution
of C with A and B where QA speci�es the random non-constant linear polynomial to
be used by A.

• A channel C is reliable in a given protocol execution if C runs the (A,C) and (C, B)
executions in a synchronized manner and does not modify any message sent by A or
B. If C was reliable in the given execution, we denote this event by reliableC = true;
otherwise, we write reliableC = false.

Structure of the proof. We will mostly focus on the basic GL de�nition (De�nition 2.1),
but after each step we will describe the modi�cations needed to handle the session-key
challenge of De�nition 2.2. (This is easier than directly proving security for an arbitrary
environment as in De�nition 2.3 because it only requires taking into account a speci�c envi-
ronment Z corresponding to the session-key challenge).

Similarly to [15], the proof of Theorem 4.2 is in four steps:

1. Key-Match Property: In Sections 6 and 7, we show that if ΠA 6= ΠB, then B will
reject with probability 1−O(γ).

2. Simulation of the (C, B) interaction: In Section 8.2, we show that if the Key-
Match Property holds, then the interaction (C, B) can be simulated by an adversary
C ′ interacting only with A, even if the interaction (A,C) is concurrent.

3. Simulation of the (A,C ′) interaction: In Section 8.1, we show that the interaction
(A,C ′) as a stand-alone can be simulated.

4. In Section 8.3, we combine the above steps and obtain a proof of security against active
adversaries. The real adversary's view of the concurrent interactions (A,C) and (C, B)
can be simulated by a probabilistic polynomial-time C ′′ that is non-interactive and can
therefore be simulated by an ideal adversary with no input.

As in [15], the main part of the proof of Theorem 4.2 is the Key-Match Property. Once
the Key-Match Property is established, we can easily adapt the proofs in [15] to our speci�c
protocol to build an ideal adversary that simulates the real adversary's view.

Theorem 4.3 (Key-Match Property) For every probabilistic polynomial-time real ad-
versary C and all su�ciently large values of n

Pr [decB = accept ∧ ΠA 6= ΠB] < 2µ + ε + neg(n)

21

where ε = 1
|D| and µ = O

(
n

|D′|1/3 log |D′|

)
.

The main part of our proof that is new (and simpler than [15]) is the Key-Match Prop-
erty. As noted in the introduction, the adversary C has total control over the scheduling
of the two interactions (A,C) and (C, B). Hence the Key-Match Property will be proved
for every possible scheduling case, including those for which these interactions are concur-
rent. Nevertheless, the Key-Match Property will be established by tools of secure two-party
computation, which a priori only guarantee security in the stand-alone setting.

For each scheduling, we want to bound from above the probability Pr [decB = accept ∧ ΠA 6= ΠB].
Recall that B accepts i� two conditions are satis�ed: the string yB received must equal
hw′(f

n+`(ΠB)) and the MAC zB received must be a valid MAC, i.e., Verk1(ΠB)(tB, zB) =
accept. Hence, to obtain an upper bound we can omit the veri�cation of the MAC by B
and only consider the probability that C succeeds in sending the value hw′(f

n+`(ΠB)) when
ΠA 6= ΠB. (As in [15], the MAC is only used to reduce the simulation of active adversaries
to the simulation of passive adversaries plus the key-match property.) For convenience, we
will decompose the adversary into two algorithms.

• The �rst algorithm is denoted by C. C is the channel through which A and B commu-
nicate. For a given execution, we denote by CA(QA,w,w′),B(w,w′) the view of C when it
communicates with A and B with respective inputs (QA, w, w′) and (w,w′) until just
before C sends a string yB to B.

• The second algorithm is denoted by Chash. Chash takes as an input the above view
CA(QA,w,w′),B(w,w′) and tries to compute the hash value hw′(f

n+`(ΠB)).

Hence to establish the Key-Match Property, for each scheduling, we will bound from above
the probability

Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f
n+`(ΠB)) ∧ ΠA 6= ΠB

]
.

Note that since B always rejects if ΠB = ⊥, we can adopt the convention that

Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f
n+`(ΠB)) ∧ ΠB = ⊥

]
= 0.

We consider two scheduling cases (see Figures 3 and 4):

Scheduling 1 : C sends the commitment cB to B after A sends the hash value yA.
The intuition for this case is that we have two sequential executions (A,C) and (C, B).
Using the security of the polynomial evaluation (A,C), we show that even if C receives
yA, the hash index w′ is (1 − ε)-pseudorandom with respect to the adversary's view.
Hence, by the uniformity property of the hash functions, C cannot do much better
than randomly guess the value of hw′(f

n+`(ΠB)). The full proof for this scheduling is
in Section 6.

Scheduling 2 : C sends the commitment cB to B before A sends the hash value yA.
The almost pairwise independence property means that for �xed values x1 6= x2 ∈
{0, 1}n, if the index w′ is chosen at random and independently of x1 and x2, then being

22

given the value hw′(x1) does not help one guess the value hw′(x2). Before yA is sent,
the hash index w′ is random (since it has not been used by A or B). Thus, if we show
that the values ΠA and ΠB are determined before yA is sent, then w′ is independent of
x1 = fn+`(ΠA) and x2 = fn+`(ΠB) and the adversary cannot guess hw′(x2) even given
yA = hw(x1). ΠA is determined before yA is sent by the de�nition of the protocol.
ΠB is determined because the commitment cB is a perfectly binding commitment to
some value QC , and thus the security of augmented polynomial evaluation implies that
ΠB equals QC(w) (or ⊥) except with negligible probability. The full proof for this
scheduling is in Section 7.

23

Polynomial
evaluation

cA = Commit(QA, rA)
-

QA, cA, rA -

ΠA
def
= QA(w)

yA -
zA -

-
cB

Polynomial
evaluation

w, cB¾

ΠB-

-
yB

A(QA, w, w′) C B(w, w′)

Figure 3: First scheduling

Polynomial
evaluation

cA = Commit(QA, rA)
-

QA, cA, rA -

ΠA
def
= QA(w)

yA -
zA -

-
cB

Polynomial
evaluation

w, cB¾

ΠB-

-
yB

A(QA, w, w′) C B(w, w′)

Figure 4: Second scheduling

24

5 Proof of Security against Passive Adversaries
Theorem 5.1 Protocol 3.4 is secure for the dictionary D×D′ = D×{0, 1}d′ against passive
adversaries. More formally, for every passive probabilistic polynomial-time real adversary C,
there exists an ideal adversary Cideal that always sends (decA

C , decB
C) = (1, 1) to the trusted

party such that for every auxiliary input σ ∈ {0, 1}poly(n):

{IDEALCideal
(D ×D′, σ)} comp≡ {REALC(D ×D′, σ)}.

Recall that a passive adversary just eavesdrops on the interaction between the honest par-
ties so in this case, the parties A and B output the same session-key (output(A) = output(B))
and both accept. In the ideal model, the session-key Kideal is distributed according to Un.

Thus, to prove Theorem 5.1, it su�ces to prove the following proposition:

Proposition 5.2 For every passive probabilistic polynomial-time real adversary C, there
exists an ideal adversary Cideal such that

{w, w′, output(A), output(CA(w,w′),B(w,w′))} comp≡ {w, w′, Un, output(Cideal)}.

Proof: The view of the real adversary consists of a transcript of the execution of the
protocol by A and B. We can think of this transcript as the concatenation of:

• The commitment to QA and the transcript of the augmented polynomial evaluation.
We denote these by T (QA, w).

• The hash value yA
def
= hw′(f

n+`(ΠA)) where ΠA
def
= QA(w).

• The MAC-key k1(ΠA) (it su�ces to include the MAC-key rather than the MAC itself,
since the latter is easily computable from the MAC-key and the transcript so far).

Claim 5.3
{w, QA, T (QA, w)} comp≡ {w, QA, T (Q̃A, w̃)},

where QA and Q̃A are random non-constant linear polynomials and w, w̃ are taken uniformly
at random (and independently) from D.

Proof Sketch: The claim follows from the security of the augmented polynomial evalua-
tion.

The commitment scheme we consider is computationally hiding hence a commitment to
QA is indistinguishable from a commitment to Q̃A. Note that non-constant linear polyno-
mials are connected i.e., for every QA and Q̃A, there exists Q̂A and values x1 and x2 such
that QA(x1) = Q̂A(x1) and Q̃A(x2) = Q̂A(x2). Combining this connectedness property with
the security of the augmented polynomial evaluation, we know (see Claim 5.2 in [15]) that
∀w, QA, w̃, Q̃A,

T (QA, w)
comp≡ T (Q̃A, w̃).

This implies that {w, QA, T (QA, w)} comp≡ {w, QA, T (Q̃A, w̃)}. ¤

25

Claim 5.3 implies that

{w, QA(w), T (QA, w)} comp≡ {w, QA(w), T (Q̃A, w̃)}
≡ {w, Un, T (Q̃A, w̃)} (6)

where Equation (6) comes from the fact that for a random QA, ΠA = QA(w) is uniformly
distributed in {0, 1}n and QA is independent of T (Q̃A, w̃).

Note that w′ is independent from the variables in Equation (6) hence we have:

{w, w′, QA(w), T (QA, w)} comp≡ {w, w′, Un, T (Q̃A, w̃)}.
We can then apply the deterministic polytime function G(·) = (fn+`(·), k1(·), k2(·)) to the
third component of each distribution to obtain:

{w, w′, k2(ΠA), fn+`(ΠA), k1(ΠA), T (QA, w)}comp≡ {w, w′, k2(Un), fn+`(Un), k1(Un), T (Q̃A, w̃)}.
Since G(s) = (fn+`(s), k1(s), k2(s)) is a pseudorandom generator, we have:

{w, w′, k2(ΠA), fn+`(ΠA), k1(ΠA), T (QA, w)} comp≡ {w, w′, U1
n, U2

n, U`, T (Q̃A, w̃)}
⇒ {w, w′, k2(ΠA), hw′(f

n+`(ΠA)), k1(ΠA), T (QA, w)} comp≡ {w, w′, U1
n, hw′(U

2
n), U`, T (Q̃A, w̃)}.

For a �xed w′ ∈ D′, hw′ is a regular map, so we obtain

{w, w′, k2(ΠA), hw′(f
n+`(ΠA)), k1(ΠA), T (QA, w)} comp≡ {w, w′, U1

n, Um, U`, T (Q̃A, w̃)}.
The ideal adversary Cideal will do the following:

1. Generate a random password w̃ ∈ D and a random non-constant linear polynomial Q̃A

2. Simulate the honest parties in the augmented polynomial evaluation to produce the
transcript T (Q̃A, w̃)

3. Generate random strings Um and U`.

4. Output (Um, U`, T (Q̃A, w̃)).

6 Key-Match Property for the First Scheduling
Scheduling 1 is de�ned as �C sends the commitment cB to B after A sends yA�. Without
loss of generality we can assume that C sends the commitment cB to B after A sends zA

(since obtaining zA can only help C). As outlined in Section 4, we want to upperbound the
probability that B accepts and ΠA 6= ΠB for this scheduling.

The intuition for the Key-Match Property for Scheduling 1 is that we have two sequential
executions (A,C) and (C,B). Using the security of the polynomial evaluation (A, C), we
show that even if C receives yA, the hash index w′ is (1− ε)-pseudorandom with respect to
the adversary's view. Hence, by the uniformity property of the hash functions, C cannot do

26

much better than randomly guess the value of hw′(f
n+`(ΠB)), and thus B will reject this

hash value with high probability. Note that this argument only uses the uniformity of the
hash functions (rather than their pairwise independence) and does not explicitly rely on the
condition ΠA 6= ΠB. (Nevertheless, the analysis implies that ΠA 6= ΠB with high probability
in this scheduling; otherwise, the adversary could compute the hash value by just copying.)
In the second scheduling, we will directly exploit both the pairwise independence and the
condition ΠA 6= ΠB.

Proposition 6.1 For every probabilistic polynomial-time real adversary C and all su�-
ciently large values of n

Pr [decB = accept ∧ ΠA 6= ΠB ∧ Sch1] < ε + µ + neg(n)

where ε = 1
D and µ = O

(
n

|D′|1/3 log |D′|

)
. Sch1 denotes the event that the execution follows the

�rst scheduling.

Proof: From the discussion in Section 4, recall that:

Pr [decB = accept ∧ ΠA 6= ΠB ∧ Sch1]

≤ Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f
n+`(ΠB)) ∧ ΠA 6= ΠB ∧ Sch1

]
,

where we denote by CA(QA,w,w′),B(w,w′) the view of the channel C when it communicates with
A and B with respective inputs (QA, w, w′) and (w, w′) until just before C sends a string yB

to B and Chash is a probabilistic polynomial-algorithm that takes as an input the above view
CA(QA,w,w′),B(w,w′) and tries to compute the hash value hw′(f

n+`(ΠB)).
We decompose the adversary into two algorithms:

• C1 refers to the adversary until just before the commitment cB is sent. Let (τ, yA, zA)
denote the view of the adversary C1 when interacting with A(QA, w, w′).

• C2 refers to the adversary once the (A,C) interaction is over, i.e., C2 will be given as
inputs (τ, yA, zA). Since C2 and B are executing the secure (augmented) polynomial
evaluation in the stand-alone setting, we know that there exists an ideal adversary
C2,ideal such that for every τ, yA, zA,

{ΠB,ideal, C2,ideal
B(w,cB)(τ, yA, zA)} comp≡ {ΠB, C

B(w,cB)
2 (τ, yA, zA)},

where ΠB,ideal
def
= output(BC2,ideal(τ,yA,zA)(w, cB)) and ΠB

def
= output(BC2(τ,yA,zA)(w, cB)).

Let use this ideal adversary C2,ideal in the above expression:

Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f
n+`(ΠB)) ∧ ΠA 6= ΠB ∧ Sch1

]

≤ Pr
[
Chash(C

B(w,cB)
2 (τ, yA, zA)) = hw′(f

n+`(ΠB)) ∧ Sch1
]

≤ Pr
[
Chash(C2,ideal

B(w,cB)(τ, yA, zA)) = hw′(f
n+`(ΠB,ideal)) ∧ Sch1

]
+ neg(n) (7)

≤ Pr
[
Chash

′(τ, hw′(f
n+`(ΠA)), k1(ΠA)) = hw′(f

n+`(QC(w)))
]
+ neg(n)

27

where Chash
′ simulates C2,ideal's view of the ideal polynomial evaluation with B and QC is

C2,ideal's input (wlog we will assume that we are in the correct input case in the augmented
polynomial evaluation (C,B) since by convention we de�ne Chash(σ) 6= hw′(f

n+`(ΠB)) if
ΠB = ⊥). Equation (7) comes from the fact that the security of the augmented polynomial
evaluation (C,B) holds even for �xed inputs (w, cB, τ, yA, zA) and with advice string (w′, ΠA)
given to the distinguisher.

We will now prove that the hash index w′ is (1 − ε)-pseudorandom with respect to the
inputs given to Chash

′ (as well as w). This will imply that the value hw′(f
n+`(QC(w))) is

(1 − ε)-indistinguishable from uniform. Thus hw′(f
n+`(QC(w))) will be predicted by Chash

′

with probability at most ε + 2−m and this will establish the key-match property for this
scheduling.

To establish that the hash index w′ is (1 − ε)-pseudorandom with respect to the inputs
given to Chash

′, we will show that (QA(w)) is (1− ε)-pseudorandom to the adversary hence
the hash hw′(f

n+`(ΠA)) is a uniform string to the adversary that does not convey information
about the hash index w′. This is formalized by the following lemma.

Lemma 6.2 For every probabilistic polynomial-time adversary C ′ interacting with A(QA)

who halts after the augmented polynomial evaluation, {w, QA(w), C ′A(QA)} ε≡{w,Un, C ′A(QA)}.

Proof: C ′ receives a commitment cA = Commit(QA, rA) from A before executing the secure
protocol for augmented polynomial evaluation. By security of the augmented polynomial
evaluation, we know that there exists an ideal adversary C′

ideal such that for every QA, cA, rA,
we have C ′A(QA,cA,rA)

comp≡ C′
ideal

A(QA,cA,rA)(cA). Without loss of generality, we will assume that
we are in the correct input case so that C′

ideal always receives QA(wC) for some input wC =

C′
ideal(cA). Hence for every w,QA, cA, rA, we have C ′A(QA,cA,rA)

comp≡ C′
ideal(cA, wC , QA(wC)).

We want to show that

{w,QA(w), Commit(QA), wC , QA(wC)} ε≡ {w, Un, Commit(QA), wC , QA(wC)},

where wC = C′
ideal(Commit(QA)).

• By the hiding property of the commitment scheme, we can replace the commitment to
QA by a commitment to 02n in the distributions. This makes wC = C′

ideal(Commit(02n)),
which is independent of QA.

• Since wC is independent of w, the probability that wC = w is at most ε = 1
|D| .

• If w 6= wC , QA(w) is within 2−n statistical distance of Un (since QA(w) cannot take the
value QA(wc)) and independent of QA(wC) by pairwise independence of (non-constant
linear) polynomials. Hence we have:

{w,QA(w), Commit(02n), wC , QA(wC)|wC 6= w}comp≡ {w,Un, Commit(02n), wC , QA(wC)|wC 6= w}.

28

By Lemma 6.2, we have:
{w, ΠA, τ} ε≡ {w, Un, τ}

Note that w′ is independent of all the above variables; hence we have:

{w, w′, ΠA, τ} ε≡ {w,w′, Un, τ}.
We can then apply the deterministic polytime function (hw′(f

n+`(·)), k1(·)) using the second
component w′ to the third component of each distribution to obtain:

{w,w′, τ, hw′(f
n+`(ΠA)), k1(ΠA)} ε≡ {w, w′, τ, hw′(f

n+`(Un)), k1(Un)}.
By applying the polytime function C2,ideal(·) to the last three components of each distribution,
we have:

{w, w′, τ, hw′(f
n+`(ΠA)), k1(ΠA), QC} ε≡ {w, w′, τ, hw′(f

n+`(Un)), k1(Un), Q̃C}, (8)

where QC = C2,ideal(τ, yA, zA) and Q̃C = C2,ideal(τ, hw′(f
n+`(Un)), k1(Un)).

We will now give an upper bound on the probability that Chash
′ computes a correct

validation message:

Pr
[
Chash

′(τ, hw′(f
n+`(ΠA)), k1(ΠA), QC) = hw′(f

n+`(QC(w)))
]

≤ Pr
[
Chash

′(τ, hw′(f
n+`(Un)), k1(Un), Q̃C) = hw′(f

n+`(Q̃C(w)))
]

+ ε + neg(n) (9)

≤ Pr
[
Chash

′(τ, Um, U`, Q̃C) = hw′(f
n+`(Q̃C(w)))

]
+ ε + neg(n) (10)

≤ ε + 2−m + neg(n).

Equation (9) follows from Equation (8) and Equation (10) follows from the fact that G(s) =
(fn+`(s), k1(s)) is a pseudorandom generator. The last inequality follows because the inputs
to Chash

′ are independent of w′.

7 Key-Match Property for the Second Scheduling
Recall that Scheduling 2 is de�ned as �C sends the commitment cB to B before A sends yA�.

The proof for this case relies on the almost pairwise independence property of the hash
function hw′ , which says that for any two distinct values x1, x2 ∈ {0, 1}n, if the index w′ is
chosen at random and independently of x1 and x2, then being given the value hw′(x1) does
not help one guess the value hw′(x2). Before yA is sent, the hash index w′ is random (since it
has not been used by A or B). Thus, if we show that the values ΠA and ΠB are determined
before yA is sent, then w′ is independent of x1 = fn+`(ΠA) and x2 = fn+`(ΠB) and the
adversary cannot do much better than randomly guess hw′(x2).

ΠA is certainly determined before yA is sent (since A computes yA based on ΠA). For
ΠB, we observe that the security of augmented polynomial evaluation implies that, except
with negligible probability, ΠB = QC(w) for a polynomial QC such that cB = Commit(QC)
(unless ΠB = ⊥, in which case B will certainly reject). Since cB is sent before yA (by the
de�nition of Scheduling 2) and the commitment is perfectly binding, it follows that QC (and
hence ΠB) is determined before yA is sent.

29

7.1 Mental Experiment
Before proving the Key-Match Property for Scheduling 2, we will �rst consider a �Mental
Experiment� where the adversary must explicitly output the polynomial QC . In the next
section, we will reduce the Key-Match Property for Scheduling 2 to this Mental Experiment.

Protocol 7.1 (Mental Experiment) 1. Inputs: There are three parties A,B, Cm in-
volved in the protocol. A and B have a joint password (w,w′) R←D×D′. In addition,
A is given a random non-constant linear polynomial QA.

2. A sends QA to Cm.

3. Cm computes QC = Cm(QA) and sends it to B.

4. B sends w to C.

5. A computes QA(w) and sends yA = hw′(f
n+`(QA(w))) to C. Note that the scheduling

�QC is sent before yA� is enforced.

6. Cm sends a string yB to B.

The Mental Experiment is derived from the original protocol by giving A's inputs to the
adversary Cm so that Cm can simulate the (A,C) interaction on its own. The crucial point
of the Mental Experiment is that Cm sends the polynomial QC to B in the clear, therefore
committing to it. Hence the points QA(w) and QC(w) are well-de�ned and independent of
the hash index w′ so that we can apply almost pairwise independence.

Proposition 7.2 In the above Mental Experiment, for every (even computationally un-
bounded) adversary Cm, we have

Pr
[
Chash(C

A(QA,w,w′),B(w,w′)
m) = hw′(f

n+`(QC(w))) ∧QA(w) 6= QC(w)
]
≤ µ,

where Chash is a probabilistic polynomial-algorithm that takes as an input the above view
C

A(QA,w,w′),B(w,w′)
m and tries to compute the hash value hw′(f

n+`(QC(w))).

Proof: By de�nition of the Mental Experiment, (QA(w), QC(w)) can be computed from
the view of the adversary Cmbefore yA = hw′(f

n+`(QA(w))) is sent. Thus the values
(QA(w), QC(w)) are independent of the hash index w′. Hence we obtain:

Pr
[
Chash(C

A(QA,w,w′),B(w,w′)
m) = hw′(f

n+`(QC(w))) ∧QA(w) 6= QC(w)
]

≤ Pr
[
Chash(Cm(QA, QC , w, hw′(f

n+`(QA(w))))) = hw′(f
n+`(QC(w))) ∧QA(w) 6= QC(w)

]

≤ µ

where the last inequality follows from almost pairwise independence (the index of the hash
function w′ is random and independent from the points fn+`(QA(w)) and fn+`(QC(w))).

30

7.2 Reduction to the Mental Experiment
Proposition 7.3 For every probabilistic polynomial-time real adversary C,

Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f
n+`(ΠB)) ∧ ΠA 6= ΠB ∧ Sch2

]
≤ µ + neg(n).

Proposition 7.3 will be proved via a reduction to the Mental Experiment. We want to
show that if an adversary succeeds in computing the correct hash value yB in the original
protocol, then we can build an adversary that computes the correct hash value in the Mental
Experiment (and we know how to upper bound this success probability by Proposition 7.2).

In the Mental Experiment, the adversary Cm is forced to send the value QC in the clear
before receiving yA = hw′(f

n+`(ΠA)). This is analogous to forcing the adversary C to open
its commitment cB = Commit(QC) in the original protocol. Thus, given an adversary C for
the original protocol, we can build a corresponding adversary Cm in the mental experiment
in the following natural way: run C until the commitment cB must be opened, open the
commitment to QC by exhaustive search, and then continue to run the adversary C. Note
that we can a�ord the exhaustive search because the Mental Experiment is secure even
against computationally unbounded adversaries Cm (cf. Proposition 7.2).

Actually, another di�erence between Scheduling 2 and the mental experiment is the
possibility that B's output ΠB from the polynomial evaluation (B, C) may di�er from QC(w).
However, we will argue that, by the security of augmented polynomial evaluation, ΠB equals
either QC(w) or ⊥ (except with negligible probability). In case B's output is ⊥, B will
certainly reject and the Key-Match Property will be satis�ed.

Proof: Since Commit is a perfectly binding commitment, the commitment cB can be
opened to a unique value, which we denote as QC . (Actually, it may be the case that cB has
no valid opening, in which case we write QC = ⊥.)

Then we can break the analysis into three cases, depending on whether ΠB equals QC(w),
⊥, or some other value. (In case QC = ⊥, we de�ne QC(w) = ⊥.)

Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f
n+`(ΠB)) ∧ ΠA 6= ΠB ∧ Sch2

]

≤ Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f
n+`(ΠB)) ∧ ΠA 6= ΠB ∧ Sch2 ∧ ΠB = QC(w)

]

+ Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f
n+`(ΠB)) ∧ ΠA 6= ΠB ∧ Sch2 ∧ ΠB = ⊥

]

+ Pr
[
Chash(C

A(QA,w,w′),B(w,w′)
= hw′(f

n+`(ΠB)) ∧ ΠA 6= ΠB ∧ Sch2 ∧ ΠB /∈ {QC(w),⊥}
]
.

Thus it su�ces to bound each of the three probabilities on the right-hand side above.
The second probability (case ΠB = ⊥) is zero by convention (recall that, in the original
protocol, B always rejects when ΠB = ⊥). The third probability (case ΠB /∈ {QC(w),⊥})
is negligible by the security of augmented polynomial evaluation. To see this, note that we
can simulate the polynomial evaluation (C, B) by an ideal polynomial evaluation, where we
give the ideal adversary the entire state of A and C after the commitment cB is sent. In
the ideal setting, it always holds that ΠB ∈ {QC(w),⊥}. Thus, the same must hold with

31

probability 1 − neg(n) in the real evaluation; otherwise, the real and ideal settings could
be distinguished by a polynomial-time algorithm that has QC(w) hardwired in as auxiliary
input.

We are left with bounding the �rst probability, which corresponds to the case that ΠB =
QC(w). We handle this case by a reduction to the Mental Experiment. Speci�cally we
convert C to an adversary Cm in the Mental Experiment by using exhaustive search to open
the commitment cB:

1. Simulating the (A,C) polynomial evaluation: Once A sends QA to Cm, Cm

simulates on its own the beginning of the augmented polynomial evaluation between
A(QA) and C until C outputs its commitment cB.

2. Opening the commitment: Using exhaustive search, Cm computes the unique value
QC such that cB = Commit(QC , r) for some r. (If there is no such r, Cm sets QC = ⊥.)
Cm sends QC to B.

3. Simulating the (C, B) polynomial evaluation: Cm receives w from B and yA =
hw′(f

n+`(ΠA)) from A. This gives Cm enough information to simulate the rest of both
the (A, C) and (C,B) interactions on its own. In particular, Cm obtains and outputs
the value yB = Chash(C

A(QA,w,w′),B(w,w′)).
Observe that:

Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f
n+`(ΠB)) ∧ ΠA 6= ΠB ∧ Sch2 ∧ ΠB = QC(w)

]

≤ Pr
[
Chash(C

A(QA,w,w′),B(w,w′)
m) = hw′(f

n+`(QC(w))) ∧QA(w) 6= QC(w)
]

≤ µ,

where the last inequality is by the security of the Mental Experiment (Proposition 7.2). This
completes the proof of the Key-Match Property for the Second Scheduling (Proposition 7.3).

8 Adapting the GL Techniques to our Protocol
Now that we have established the Key-Match Property, we will adapt the proofs of [15] to
our protocol for the following steps:
Simulation of the (C, B) interaction: we show that the interaction (C,B) can be sim-

ulated by an adversary C ′ interacting only with A, even if the interaction (A,C) is
concurrent.

Simulation of the (A,C ′) interaction: we show that the interaction (A,C ′) as a stand-
alone protocol can be simulated.

Combining the above steps: by combining the above simulations, we obtain a proof of
security against active adversaries.

For the sake of simplicity, we will �rst present the simulation of the (A,C ′) interaction.
For each step, the modi�cations necessary to take into account the session-key challenge of
De�nition 2.2 are given.

32

8.1 Simulation of the (A,C ′) Execution
We will show that the view of C ′ when interacting with A only can be simulated by a
non-interactive machine C ′′ in the following proposition.

Proposition 8.1 For the dictionary D × D′ = D × {0, 1}d′, for every polytime channel C ′

interacting with A only, there exists a non-interactive C ′′ such that for every auxiliary input
σ,

{w, w′, k2(ΠA), output(C ′A(QA,w,w′)(σ))} ε≡ {w, w′, Un, output(C ′′(σ))}
where ε = 1

|D| .

Proof:
By Lemma 6.2, we know that after the augmented polynomial evaluation, {w, ΠA} is

(1− ε)-indistinguishable from {w, Un} with respect to C ′'s view, that is

{w, ΠA, C ′A(QA)} ε≡ {w,Un, C ′A(QA)}.

Note that w′ is independent of all the above variables hence we have

{w, w′, ΠA, C ′A(QA)} ε≡ {w,w′, Un, C
′A(QA)}. (11)

We will use Equation (11) to establish that the session-key generated by A and the
validation messages sent by A are pseudorandom with respect to the adversary's view. This
is formalized by the following lemma.

Lemma 8.2 For the dictionary D×D′ = D×{0, 1}d′, for every polytime channel C ′ inter-
acting with A only, we have:

{w, w′, k2(ΠA), k1(ΠA), MACk1(ΠA)(tA), hw′(f
n+`(ΠA)), C ′A(QA)}

ε≡ {w, w′, U1
n, U`, MACU`

(tA), Um, C ′A(QA)}.

Proof of Lemma 8.2: We �rst apply the polytime function G(·) = (fn+`(·), k1(·), k2(·))
to the third component of the distributions in Equation 11 hence:

{w,w′, k2(ΠA), k1(ΠA), fn+`(ΠA), C ′A(QA)} ε≡ {w,w′, k2(Un), k1(Un), fn+`(Un), C ′A(QA)}.

Since G is a pseudorandom generator, this implies that:

{w, w′, k2(ΠA), k1(ΠA), fn+`(ΠA), C ′A(QA)} ε≡ {w, w′, U1
n, U`, U

2
n, C ′A(QA)}.

By uniformity of the almost pairwise-independent hash functions, we obtain:

{w, w′, k2(ΠA), MACk1(ΠA)(tA), hw′(f
n+`(ΠA)), C ′A(QA)} ε≡{w, w′, U1

n, MACU`
(tA), Um, C ′A(QA)},

(12)
where tA is A(QA)'s transcript of the commitment and the augmented polynomial evaluation,
which can be computed from C ′A(QA).

33

The non-interactive adversary C ′′ will do the following:

1. Generate a random non-constant linear polynomial QA.

2. Simulate the interaction between C ′ and A(QA), from which it can compute the tran-
script tA.

3. Generate random strings U` and Um

4. Output (C ′A(QA), Um, MACU`
(tA)).

Since the view of the adversary C ′ interacting with A only consists of C ′A(QA), yA =
hw′(f

n+`(ΠA)), and zA = MACk1(ΠA)(tA), Equation (12) establishes that

{w,w′, k2(ΠA), output(C ′A(QA,w,w′)} ε≡ {w, w′, Un, output(C ′′)}.

Augmented de�nition for Proposition 8.1. Intuitively, handling the session-key chal-
lenge should be easy because the whole point of the session-key challenge is to deal with two
concurrent executions (A,C) and (C,B) but here we are only considering a single execution
(A,C ′).

We know that

{w,w′, k2(ΠA), C ′A(QA,w,w′)(σ)} ε≡ {w,w′, Un, C ′′(σ)}.

The session-key challenge is given to C ′ only after the entire execution (A,C ′) has been
completed (recall that in our protocol A always accepts). The session-key challenge can
be generated from each distribution by the distinguisher. We de�ne C ′A(QA,w,w′)(σ,Kβ)

def
=

(C ′A(QA,w,w′)(σ), Kβ) and C ′′(σ,Kβ)
def
= (C ′′(σ), Kβ). By the above discussion we have:

{w,w′, k2(ΠA), C ′A(QA,w,w′)(σ,Kβ), β} ε≡ {w, w′, Un, C
′′(σ,Kβ), β}

where on the left-hand side Kβ is given when A concludes and is de�ned as:

Kβ =

{
k2(ΠA) if β = 1

U ′
n if β = 0

and on the right-hand side Kβ is de�ned as

Kβ =

{
Un if β = 1

U ′
n if β = 0.

34

8.2 Simulation of the (C,B) Execution
In the following proposition, we will show that the interaction (C,B) can be simulated by
an adversary C ′ interacting only with A, even if the interaction (A,C) is concurrent.

Proposition 8.3 For the dictionary D × D′ = D × {0, 1}d′, for every real adversary C
interacting with A and B, there exists a probabilistic polynomial-time C ′ interacting only
with A such that for every auxiliary input σ ∈ {0, 1}poly(n)

{w, w′, k2(ΠA), output(C ′A(QA,w,w′)(σ))} ε+η≡ {w,w′, k2(ΠA), output(CA(QA,w,w′),B(w,w′)(σ))}

where η = 2µ + ε.

The proof of Proposition 8.3 relies on two facts:

• it is easy to simulate B in the augmented polynomial evaluation by security of two-
party computation (see Lemma 8.4)

• B's decision bit can be simulated with high probability because of the Key-Match
Property (see Lemma 8.6). We need for C ′ to simulate B's decision bit because the
view of the real adversary CA(QA,w,w′),B(w,w′) includes B's decision bit.

Note that Proposition 8.3 only refers to simulating the view of the real adversary C (which
includes B's decision bit) rather than the outputs of all the parties.

We �rst show that B can be simulated in the augmented polynomial evaluation in the
following lemma.

Lemma 8.4 Let C̃ be a real adversary interacting with A and a modi�ed party B6dec (B6dec

does the same as B except that it does not output a decision bit). There exists C ′ interacting
only with A such that:

{w,w′, k2(ΠA), output(C ′A(QA,w,w′)(σ))} comp≡ {w, w′, k2(ΠA), output(C̃A(QA,w,w′),B6dec(w)(σ))}

where on the left-hand side k2(ΠA) refers to the output of A in the execution C ′A(QA,w,w′)(σ)
and on the right-hand side k2(ΠA) refers to the output of A in the execution C̃A(QA,w,w′),B 6dec(w)(σ).

Proof: Note that these distributions do not refer to B 6dec's output from the polynomial
evaluation, hence we can switch B 6dec's input from w to a random password w̃ ∈ D via the
following claim.

Claim 8.5 For every w, w′, QA, w̃ and auxiliary input σ ∈ {0, 1}poly(n),

{output(A), C̃A(QA,w,w′),B6dec(w)(σ)} comp≡ {output(A), C̃A(QA,w,w′),B6dec(w̃)(σ)},

where on the left-hand side output(A) refers to the output of A in the execution C̃A(QA,w,w′),B 6dec(w)(σ)
and on the right-hand side output(A) refers to the output of A in the execution C̃A(QA,w,w′),B 6dec(w̃)(σ).

35

Proof of claim: De�ne C ′ that on input (w, w′, QA) simulates the entire (A,C)
execution, including computing output(A), on its own:

C ′B6dec(w)(w,w′, QA, σ) ≡ {output(A), C̃A(QA,w,w′),B6dec(w)(σ)}
C ′B6dec(w̃)(w,w′, QA, σ) ≡ {output(A), C̃A(QA,w,w′),B6dec(w̃)(σ)}.

Since C ′ and B 6dec are executing the secure polynomial evaluation protocol in
the stand-alone setting, there exists an ideal adversary C′

ideal such that for every
w, w′, QA, w̃, σ,

C′
ideal(w,w′, QA, σ)

comp≡ C ′B6dec(w)(w,w′, QA, σ)

C′
ideal(w,w′, QA, σ)

comp≡ C ′B6dec(w̃)(w,w′, QA, σ).

By transitivity of indistinguishability, we obtain the lemma. ¤
By Claim 8.5, we have that for every w, w′, QA, w̃,

{output(A), C̃A(QA,w,w′),B6dec(w)(σ)} comp≡ {output(A), C̃A(QA,w,w′),B6dec(w̃)(σ)}.
Applying this to w,w′ and QA chosen uniformly at random, we obtain:

{w, w′, QA(w), output(C̃A(QA,w,w′),B 6dec(w̃)(σ))}comp≡ {w,w′, QA(w), output(C̃A(QA,w,w′),B6dec(w)(σ))}.
(13)

Hence for any adversary C̃ interacting with A and B 6dec, we build an adversary C ′ that
simulates B6dec on its own as follows:

1. generate an arbitrary element w̃

2. simulate the polynomial evaluation between C and B 6dec(w̃)

Thus C ′ only interacts with A(QA, w, w′) and we have:

{w,w′, QA(w), output(C ′A(QA,w,w′)
(σ))} comp≡ {w,w′, QA(w), output(C̃A(QA,w,w′),B6dec(w̃)(σ))}.

(14)
Combining Equations (13) and (14) and recalling that k2(ΠA) = k2(QA(w)), the lemma
follows.

Augmented de�nition for Lemma 8.4. In the case of the augmented de�nition, the
proof of Lemma 8.4 still holds because Claim 8.5 will hold for every session-key challenge
given by A. Hence we have

{w, w′, k2(ΠA), output(C ′A(QA,w,w′)(σ,Kβ)), β}comp≡ {w, w′, k2(ΠA), output(C̃A(QA,w,w′),B6dec(w)(σ,Kβ)), β}
where Kβ is given when A concludes and is de�ned as:

Kβ =

{
k2(ΠA) if β = 1

U ′
n if β = 0.

To establish Proposition 8.3, it remains to show that B's decision bit can be simulated
with high probability.

36

Lemma 8.6 Let C be a real adversary interacting with A and B. There exists C̃ interacting
with A and B 6dec such that

{w, w′, k2(ΠA), output(C̃A(QA,w,w′),B6dec(w)(σ))}ε+η≡ {w, w′, k2(ΠA), output(CA(QA,w,w′),B(w,w′)(σ))}.
Proof: The proof of Lemma 8.6 relies on the fact that the decision bit of B can be
predicted by C with high probability because of the Key-Match Property and the following
claim. Claim 8.7 below states that if ΠA = ΠB and the adversary C was not reliable (hence
the transcripts tA and tB di�er), then the adversary cannot compute a MAC such that B
will accept. Hence the decision bit of B can be predicted by C with high probability: if C
is reliable, then B will accept; otherwise, B will reject.

Claim 8.7 For every C interacting with A and B 6dec, the probability that tB 6= tA and C
computes MACk1(ΠA)(tB) is at most ε + neg(n).

Proof of claim: First, we will remove B by modifying C into C ′ from
Lemma 8.4, that simulates B in the polynomial evaluation phase. We know
from Lemma 8.2 that:

{w, w′, k2(ΠA), k1(ΠA), MACk1(ΠA)(tA), hw′(f
n+`(ΠA)), C ′A(QA)}

ε≡ {w, w′, U1
n, U`, MACU`

(tA), Um, C ′A(QA)}.
We will bound the probability that the adversary computes the correct MAC

for t 6= tA:
Pr

[
Cmac(C

′A(QA), hw′(f
n+`(ΠA)), MACk1(ΠA)(tA)) = MACk1(ΠA)(t)

]

≤ Pr
[
Cmac(C

′A(QA), Um, MACU`
(tA)) = MACU`

(t)
]
+ ε + neg(n)

≤ ε + neg(n)

where the last inequality comes from the one-time MAC with pseudorandomness
property. ¤

Using Claim 8.7, we obtain the following adversary C̃: C̃ interacts with A and B6dec by
passing their messages to C. Since C̃ has the transcript of the interactions (A,C) and (C, B),
C̃ can tell whether C was reliable or not. If C was reliable, C̃ predicts that decB = accept

(since B always accepts if C is reliable), otherwise, it predicts decB = reject. We know that
Pr

[
C̃ predicts incorrectly

]
= Pr [decB = accept ∧ reliableC = false]. In order to prove

Lemma 8.6, it remains to show that for any C,
Pr [decB = accept ∧ reliableC = false] < ε + η + neg(n).

We will break the probability that B accepts when C was not reliable into the following
cases:

Pr [decB = accept ∧ reliableC = false]

= Pr [decB = accept ∧ reliableC = false ∧ ΠA 6= ΠB]

+ Pr [decB = accept ∧ reliableC = false ∧ ΠA = ΠB]

≤ (η + neg(n)) + (ε + neg(n))

≤ ε + η + neg(n).

37

The �rst step just considers whether the keys ΠA and ΠB are equal. The second step follows
from the Key-Match Property (we know that if ΠA 6= ΠB, then with high probability, B
will reject) and Claim 8.7 (we know that if C was not reliable i.e., t 6= tA, then with high
probability C will not compute the correct MAC for t and B will reject).

Augmented de�nition for Lemma 8.6.
C is not reliable and B concludes �rst: C̃ will set B's simulated decision bit to be

decB = reject and its simulated session-key challenge to be ⊥. Note that if B
concludes �rst, then with high probability B would indeed reject (which follows from
the fact that if C is not reliable, then with high probability B will reject as shown
above).

A concludes �rst: Lemma 8.6 must be slightly modi�ed. One can show using Lemma 8.2
that the probability that tB 6= tA and C computes MACk1(ΠA)(tB) is at most ε+neg(n)
even if k2(ΠA) = kA is given.

From the above two arguments, we have:

{w, w′, k2(ΠA), output(C̃A(QA,w,w′),B6dec(w)(σ,Kβ)), β}
ε+η≡ {w, w′, k2(ΠA), output(CA(QA,w,w′),B(w,w′)(σ,Kβ)), β},

where on left-hand side Kβ is given when A concludes and is de�ned as:

Kβ =

{
k2(ΠA) if β = 1

U ′
n if β = 0

and on the right-hand side the session-key challenge Kβ is given once the �rst party (either
A or B) concludes with output L1 and is de�ned as:

Kβ =

{
L1 if β = 1 or L1 = ⊥
U ′

n if β = 0 and L1 6= ⊥.

8.3 Security Theorem
Combining Propositions 8.3 and 8.1, we will now prove our basic security theorem against
active adversaries. Using the simulations guaranteed by Propositions 8.3 and 8.1 we are
guaranteed the existence of a non-interactive adversary C ′′ whose view is indistinguishable
from that of a real adversary C interacting with A and B.

We will need to modify this non-interactive adversary C ′′ into an ideal adversary (as in
De�nitions 2.1 and 2.2) as well as include the inputs and outputs of the honest parties A
and B in the ideal and real distributions.

Theorem 8.8 (Theorem 4.2, restated) For the dictionary D × D′ = D × {0, 1}d′, for
every probabilistic polynomial-time real adversary C, there exists a polynomial-time ideal
model adversary Ĉ for De�nition 2.2 such that for any σ ∈ {0, 1}poly(n)

{IDEALĈ(D, σ)} 3ε+2η≡ {REALC(D, σ)}

38

where η = 2µ + ε.

Theorem 4.2 follows from the above by noting that the two distributions are (1−O(γ))-
indistinguishable for γ = max{ε, µ}, where ε = 1/|D| and µ = O(n/|D′|1/3 log |D′|) =
O(n/|D′|1/3).

Proof: From the previous two sections, we know that there exists a non-interactive C ′′

such that
{w,w′, Un, C

′′(σ)} 2ε+η≡ {w,w′, k2(ΠA), output(CA,B(σ))}.
The ideal model adversary Ĉ does the following:

• Ĉ decides that A will conclude �rst and accept in the ideal model.

• C invokes C ′′ that is non-interactive.

• According to the view output by C ′′, Ĉ will decide whether B accepts or not in the
ideal execution.

• Ĉ outputs the output of C ′′.

⇒ {w,w′, Un, Ĉ(σ)} 2ε+η≡ {w, w′, k2(ΠA), output(CA,B(σ))}. (15)
We now need to include B's output in the above distributions. Let D be a distinguisher

for IDEALĈ and REALC . We will consider the di�erent cases, whether B accepts or not.

If B rejects

Pr [D(IDEALĈ) = 1 ∧ decB = reject] = Pr
[
D(w, w′, Un,⊥, Ĉ) = 1 ∧ decB = reject

]
.

Pr [D(REALC) = 1 ∧ decB = reject] = Pr
[
D(w, w′, k2(ΠA),⊥, CA,B) = 1 ∧ decB = reject

]
.

In the ideal model, we are guaranteed that when B rejects, Ĉ will send b = 0
to the trusted party, causing B to output ⊥. In the real protocol, when B re-
jects, it always outputs ⊥. But B's decision bit is contained in the view Ĉ (as
simulated by C ′′) and in the view CA,B so by Equation (15) the di�erence between
Pr [D(IDEALĈ) = 1 ∧ decB = reject] and Pr [D(REALC) = 1 ∧ decB = reject] is at
most 2ε + η + neg(n).

If B accepts • suppose C was reliable: in the real model, B always accepts and outputs
k2(ΠA); in the ideal model, B outputs Un. C is acting like a passive adversary, so
we know that IDEALĈ

comp≡ REALC .
• suppose C was not reliable, but B accepts. From the proof of Theorem 8.3, we

know that Pr [decB = accept ∧ reliableC = false] ≤ ε + η + neg(n), whether in
the real model or in the one simulated by Ĉ.

39

|Pr [D(IDEALĈ) = 1 ∧ decB = accept ∧ reliableC = false]

− Pr [D(REALC) = 1 ∧ decB = accept ∧ reliableC = false] |
≤ ε + η + neg(n).

Combining all the above cases, we have that the ideal distribution and the real distribu-
tion are distinguishable with probability at most 3ε + 2η.

Augmented de�nition for Theorem 8.8. From the previous sections, we know that

{w, w′, Un, C ′′(σ,Kβ), β} 2ε+η≡ {w, w′, k2(ΠA), CA,B(σ,Kβ), β}

where on the left-hand side Kβ is de�ned as

Kβ =

{
Un if β = 1

U ′
n if β = 0

and on the right-hand side the session-key challenge Kβ is given once the �rst party (either
A or B) concludes with output L1:

Kβ =

{
L1 if β = 1 or L1 = ⊥
Un if β = 0 and L1 6= ⊥.

The ideal adversary Ĉ does the following:

• Ĉ decides that A will conclude �rst and accept. The trusted party chooses β
R←{0, 1}

and gives Ĉ the string Kβ where

Kβ =

{
Un if β = 1

U ′
n if β = 0.

• C invokes C ′′(σ,Kβ) that is non-interactive.

• According to the view output by C ′′, Ĉ will decide whether B accepts or not in the
ideal execution.

• Ĉ outputs the output of C ′′(σ,Kβ).

9 Additional Security Theorems
We will now show the shared dictionary of the form D × {0, 1}d required in Theorem 4.2
can be realized from several other types of dictionaries D′′, achieving security bounds of the
form (poly(n)/|D′′|)Ω(1) in all cases.

40

Single Random Password. We can split a single random password from a dictionary
D′′ = {0, 1}d′′ into two parts, one of length d and one of length d′ = d′′ − d. Optimizing, we
set d = (d′′ − 3 log n)/4, and obtain a security bound of

γ = max

{
1

2d
, O

(n

2d′/3

)}
= O

(
n3

|D′′|
)1/4

.

Arbitrary Password with Common Random String. We can convert a password
from an arbitrary dictionary D′′′ ⊆ {0, 1}n into a single random password (as in the previous
construction) in the common random string model, using randomness extractors, which we
de�ne now.

A random variable X is a k-source if for all x, Pr [X = x] ≤ 2−k. (In other words, X
has min-entropy at least k.) Note that the uniform distribution on D′′′ is a k-source for
k = log |D′′′|.

De�nition 9.1 ([24]) A function Ext : {0, 1}n × {0, 1}` → {0, 1}m is a (strong) (k, α)-
extractor if for every k-source X on {0, 1}n, the random variable (U`, Ext(X,U`)) is α-close
to (U`, Um).

That is, using a random seed of length `, the function Ext extracts m almost-uniform
bits from the k-source X. We call Ext explicit if it is computable in polynomial time (in n
and `).

We will use the following construction of �low min-entropy� extractors.

Lemma 9.2 ([27]) For every n, k ≤ n, and α > 0, there exists an explicit (k, α)-extractor
Ext : {0, 1}n×{0, 1}` → {0, 1}m with ` = O(log n+m)+2 log(1/α) and m = k−2 log(1/α)−
O(1).

To use extractors with our protocol, we view the common random string as the seed for
the extractor, and apply the extractor to convert the password from the arbitrary dictionary
D′′′ ⊆ {0, 1}n into d′′ = m almost-uniform bits, which we use in place of the �single random
password� in the previous construction. We pay an additive loss of α (the error of the
extractor) in the security bound, and also lose because the extractor cannot extract all of
the min-entropy in the source (i.e. d′′ will be smaller than log |D′′′|). Optimizing with the
extractor of Lemma 9.2, we set k = log |D′′′| and α = (n3/|D′′′|)1/6, and obtain d′′ = m =
k − 2 log(1/α)−O(1), i.e. |D′′| = 2d′′ = Ω(α2 · 2k) = Ω(n · |D′′′|2/3). Then we have:

γ = O

(
n3

|D′′|
)1/4

= O

(
n3

n · |D′′′|2/3

)1/4

= O

(
n3

|D′′′|
)1/6

,

for a �nal security bound of

γ + α = O

(
n3

|D′′′|
)1/6

.

The length of our common random string is ` = O(log n+k) = O(log n+log |D′′′|). Note
that this is only logarithmic in the security parameter n, whereas the protocols of [19, 13]
require common reference strings of length polynomially related to n. On the other hand,

41

using our protocol requires knowing (or assuming) a lower bound on the size of the dictionary
(and this lower bound is what determines the security). The protocols of [15, 19, 13] do not
require such a lower bound.

Two Independent Passwords. If the parties share two independent passwords w1, w2

coming from arbitrary dictionaries D1,D2 ⊆ {0, 1}r, then they can apply a (seedless) ex-
tractor for 2 independent weak random sources [9] to convert these into a single random
password. Even better is to use the following variant of 2-source extractors:

De�nition 9.3 ([11]) A function Ble : {0, 1}r × {0, 1}r → {0, 1}m is a (strong) (k1, k2, α)-
blender if for every k1-source X1 and independent k2-source X2 on {0, 1}r, the random
variable (X1, Ble(X1, X2)) is α-close to (X1, Um).

Thus, if the parties share two independent passwords w1, w2 coming from arbitrary
dictionaries, a strong blender can be used to convert w2 into an almost-uniform string
w′ = Ble(w1, w2) that is essentially independent of the other password, and thus (w1, w

′)
can be used in our original construction. Nonconstructively, strong (k1, k2, α)-blenders are
known to exist with m = k2−2 log(1/α)−O(1), provided that k1 > log r+2 log(1/α)+O(1).
If there were explicit constructions matching these parameters, we would obtain a protocol
with security bound of

γ = O

(
max

{(
n

|D1|
)1/2

,

(
n3

|D2|
)1/4

})
.

Unfortunately, explicit constructions of blenders (or 2-source extractors) are only known
in cases when either k1 or k2 are at least r/2. (See [12] and the references therein for the
current state-of-the-art.) Thus we would not obtain a protocol that could work for arbitrary
dictionaries D1,D2 ⊆ {0, 1}n of size poly(n). However, these constructions do allow us to
obtain a protocol for arbitrary dictionaries D1,D2 ⊆ {0, 1}r of size, say, 2.51r, for r ≤ n and
even r = O(log n).

42

Acknowledgments
We thank Oded Goldreich and Yehuda Lindell for their encouragement and an inspiring
discussion which led to a major simpli�cation of our protocol. We are also grateful to Mihir
Bellare for pointing out the extension of our protocol to arbitrary dictionaries in the common
random string model. We thank the referees for their many helpful comments, one of which
led to a substantial simpli�cation and improvement to the analysis in Section 7.

References
[1] Barak, B.: Constant-Round Coin-Tossing With a Man in the Middle or Realizing the

Shared Random String Model. IEEE Symposium on Foundations of Computer Science
(2002) 345�355.

[2] Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure against
Dictionary Attacks. Advances in Cryptology - Eurocrypt 2000 Proceedings, Lecture
Notes in Computer Science 1807 (2000) 139�155.

[3] Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. Advances in
Cryptology - Crypto 93 Proceedings, Lecture Notes in Computer Science 773 (1994)
232�249.

[4] Bellovin, S., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols Se-
cure Against Dictionary Attacks. ACM/IEEE Symposium on Research in Security and
Privacy (1992) 72�84.

[5] Bellovin, S., Merritt, M.: Augmented Encrypted Key Exchange: A Password-Based
Protocol Secure against Dictionary Attacks and Password File Compromise. ACM Con-
ference on Computer and Communications Security (1993) 244�250.

[6] Boyarsky, M.: Public-Key Cryptography and Password Protocols: The Multi-User Case.
ACM Conference on Computer and Communications Security (1999) 63�72.

[7] Boyko, V., MacKenzie, P., Patel, S.: Provably Secure Password-Authenticated Key
Exchange Using Di�e-Hellman. Advances in Cryptology - Eurocrypt 2000 Proceedings,
Lecture Notes in Computer Science 1807 (2000) 156�171.

[8] Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. IEEE Symposium on Foundations of Computer Science (2001) 136�145.

[9] Chor, B., Goldreich, O.: Unbiased Bits from Sources of Weak Randomness and Proba-
bilistic Communication Complexity. SIAM Journal on Computing 17:2 (1988) 230�261.

[10] Di�e, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on Infor-
mation Theory 22:6 (1976) 644�654.

43

[11] Dodis, Y., Oliveira, R.: On Extracting Private Randomness over a Public Channel.
Approximation, Randomization, and Combinatorial Optimization. Proc. of APPROX
2003 and RANDOM 2003, Lecture Notes in Computer Science 2764 (2003) 252�263.

[12] Dodis, Y., Elbaz, A., Raz, R., Oliveira, R.: Improved Randomness Extraction from
Two Independent Sources. Approximation, Randomization, and Combinatorial Opti-
mization. Proc. of APPROX 2004 and RANDOM 2004, Lecture Notes in Computer
Science (2004).

[13] Gennaro, R., Lindell, Y.: A Framework for Password-Based Authenticated Key Ex-
change. Advances in Cryptology - Eurocrypt 2003 Proceedings, Lecture Notes in Com-
puter Science 2656 (2003) 524�543.

[14] Goldreich, O.: Foundations of Cryptography, Volume 2. Cambridge University Press
(2004).

[15] Goldreich, O., Lindell, Y.: Session-Key Generation Using Human Passwords Only. Ad-
vances in Cryptology - Crypto 2001 Proceedings, Lecture Notes in Computer Science
2139 (2001) 408�432. Full version to appear in Journal of Cryptology.

[16] Goldreich, O., Wigderson, A.: Tiny Families of Functions with Random Properties:
A Quality-Size Trade-o� for Hashing. Random Structures and Algorithms 11:4 (1997)
315�343.

[17] Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and System
Sciences 28:2 (1984) 270�299.

[18] Halevi, S., Krawczyk, H.: Public-Key Cryptography and Password Protocols. ACM
Conference on Computer and Communications Security (1998) 122�131.

[19] Katz, J., Ostrovsky, R., Yung, M.: E�cient Password-Authenticated Key Exchange
Using Human-Memorable Passwords. Advances in Cryptology - Eurocrypt 2001 Pro-
ceedings, Lecture Notes in Computer Science 2045 (2001) 475�494.

[20] MacKenzie, P., Patel, S., Swaminathan, R.: Password authenticated key exchange based
on RSA. In ASIACRYPT (2000) 599�613.

[21] Micali, S., Racko�, C., Sloan, B.: The Notion of Security for Probabilistic Cryptosys-
tems. SIAM Journal on Computing 17 (1988) 412�426.

[22] Naor, M., Pinkas, B.: Oblivious Transfer and Polynomial Evaluation. ACM Symposium
on Theory of Computing (1999) 245�254.

[23] Nguyen, M.-H., Vadhan, S.: Simpler Session-Key Generation from Short Random Pass-
words. Proceedings of the First Theory of Cryptography Conference (TCC `04), Lecture
Notes in Computer Science 2951 (2004) 428�445.

[24] Nisan, N., Zuckerman, D.: Randomness is Linear in Space. Journal of Computer and
System Sciences 52:1 (1996) 43�52.

44

[25] Richardson, R., Kilian, J.: On the Concurrent Composition of Zero-Knowledge Proofs.
Advances in Cryptology - Eurocrypt 99 Proceedings, Lecture Notes in Computer Science
1592 (1999) 415�431.

[26] Shoup, V.: On Formal Models for Secure Key Exchange. Cryptology ePrint Archive
(1999) Report 1999/012.

[27] Srinivasan, A., Zuckerman, D.: Computing with Very Weak Random Sources. SIAM
Journal on Computing 28:4 (1999) 1453�1459.

[28] Steiner, M., Tsudik, G., Waidner, M.: Re�nement and Extension of Encrypted Key
Exchange. Operating Systems Review 29:3 (1995) 22�30.

[29] Yao, A.: How to Generate and Exchange Secrets. IEEE Symposium on Foundations of
Computer Science (1986) 162�167.

45

A Secure Two-Party Computation
This presentation is taken from [14]. We will describe secure two-party computation for
the special case of single-output functionalities, i.e., functionalities where only one party
obtains an output. Indeed, we will only use tools from secure two-party computation when
dealing with the augmented polynomial evaluation functionality, which is a single-output
functionality. Furthermore, for simplicity, we will restrict our description to the case where
none of the parties aborts and at least one of the two parties is honest.

Let f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗ be a deterministic single-output functionality,
i.e., f is of the form f(x, y) = (f1(x, y), λ).

We �rst de�ne the ideal model:

Inputs Each party obtains an input denoted x and y respectively.

Sending inputs to the trusted party An honest party will always send its input x or
y to the trusted party. A malicious party will send some input x′ or y′, which may
depend on its initial input and auxiliary input.

Answer of the trusted party Upon obtaining (x, y), the trusted party will reply with
f1(x, y) to the �rst party.

Output An honest party will always output the message obtained from the trusted party.
A malicious party may output a polytime computable function of its initial input, its
auxiliary input and the message obtained from the trusted party.

Let (B1, B2) be a pair of probabilistic polynomial-time strategies in the ideal model, such
that at least one of the two parties is honest. The joint distribution of f under (B1, B2) in
the ideal model, on input pair (x, y) and auxiliary input z, denoted by IDEALf,B1(z),B2(z), is:

• in the case where B1 is honest, IDEALf,B1(z),B2(z)(x, y) = (f1(x,B2(y, z)), B2(y, z, λ)).

• in the case where B2 is honest, IDEALf,B1(z),B2(z)(x, y) = (B1(x, z, f1(B1(x, z), y)), λ).

We now describe the real model. Let Π be a two-party protocol for computing f . Let
(A1, A2) be a pair of probabilistic polynomial-time representing strategies in the real model,
such that at least one of two parties is honest (i.e., follows the strategy speci�ed by Π). The
joint execution of Π under (A1, A2) in the real model, on input pair (x, y) and auxiliary input
z, denoted by REALΠ,A1(z),A2(z) is de�ned as the output pair resulting from the interaction
between A1(x, z) and A2(x, z).

De�nition A.1 Let f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗ be a deterministic single-output
functionality and Π be a two-party protocol for computing f . Protocol Π securely computes
f if for every probabilistic polynomial-time pair (A1, A2) (such that at least one party follows
the strategy speci�ed by Π), there exists a probabilistic polynomial-time pair (B1, B2) (such
that the corresponding party is honest in the ideal model) such that:

{IDEALf,B1(z),B2(z)(x, y)}x,y,z

comp≡ {REALΠ,A1(z),A2(z)(x, y)}x,y,z

.

46

Assuming the existence of enhanced trapdoor permutations, it is known how to obtain a
secure protocol for any two-party computation ([29], see [14]).

B Almost Pairwise Independence
Here we recall a standard construction of almost pairwise-independent hash functions, mod-
i�ed to ensure that all of the hash functions are regular (which is typically not required in
the de�nition of almost pairwise independence).

Lemma B.1 For a given dictionary D′ = {0, 1}d′ ⊆ {0, 1}n, there exists a family of almost
pairwise-independent hash functions H = {hw′ : {0, 1}n → {0, 1}m} for µ = O

(
n

d′2d′/3

)
=

O
(

n
|D′|1/3 log |D′|

)
.

Proof Sketch: Set m = bd′/3c and let F be the �nite �eld GF(2m). Let k = dn/me. An
element p = (p0, p1, · · · , pk−1) ∈ Fk can be seen as the coe�cients of a polynomial of degree
at most (k − 1) over the �nite �eld F.

Let the index w′ be a triple (α, β, γ) ∈ F×F×F. We de�ne the hash function hw′ = hα,β,γ

as follows:
hα,β,γ =

{
α · p(β) + γ α 6= 0

p(β) + γ α = 0.

That is, we evaluate the polynomial p at the point β ∈ F, and then apply the linear function
x 7→ α · x + γ (unless α = 0, in which case we use x 7→ x + γ). Note that it requires 3m ≤ d′

bits to specify w′ = (α, β, γ) and the hash functions have input length k ·m ≥ n.
We will now verify that H = {hα,β,γ : Fk → F} is a family of almost pairwise-independent

hash functions. For the uniformity condition, note that for every p ∈ F k, when we choose
(α, β, γ) uniformly at random from F×F×F, it holds that hα,β,γ(p) is uniform over F; indeed
this holds even when α, β are �xed and γ is chosen uniformly at random. For a �xed index
(α, β, γ) ∈ F × F × F and a �xed element y ∈ F, Prp∈Fk [hα,β,γ(p) = y] = 1/|F|, hence the
function hα,β,γ is regular.

For the almost pairwise-independence, we will show that

Pr
α,β,γ

[hα,β,γ(q) = y2|hα,β,γ(p) = y1] ≤ k + 1

|F| = O

(
n/d′

2d′/3

)
.

for all p 6= q ∈ Fk, and y1, y2 ∈ F. To bound this, we �rst note that:

Pr
α,β,γ

[hα,β,γ(q) = y2|hα,β,γ(p) = y1] =
Prα,β,γ[hα,β,γ(p) = y1 ∧ hα,β,γ(q) = y2]

Prα,β,γ[hα,β,γ(p) = y1]

= |F| · Pr
α,β,γ

[hα,β,γ(p) = y1 ∧ hα,β,γ(q) = y2].

Thus it su�ces to show that

Pr
α,β,γ

[hα,β,γ(p) = y1 ∧ hα,β,γ(q) = y2] ≤ k + 1

|F|2 .

Let p, q, y1, y2 be �xed.

47

• Suppose p(β) = q(β) (i.e. β is a root of the polynomial (p − q), which happens with
probability at most (k−1)/|F|). Then hα,β,γ(p) = hα,β,γ(q) for every α, γ, and this value
is distributed uniformly at random in F (over the choice of γ). Thus, the probability
that hα,β,γ(p) = y1 and hα,β,γ(q) = y2 is at most 1/|F| (given that p(β) = q(β)).

• Suppose p(β) 6= q(β). Then, over the choice α, γ, the values α ·p(β)+γ and α ·q(β)+γ
are uniform and independent in F. Thus, the probability that α · p(β) + γ = y1 and
α · q(β) + γ = y2 equals 1/|F|2. However, we need to bound this probability for hα,β,γ,
which di�ers from these in case α = 0. But the probability (over α and γ) that α = 0
and h0,β,γ(p) = p(β) + γ = y1 is 1/|F|2.

In total, we have

Pr
α,β,γ

[hα,β,γ(p) = y1 ∧ hα,β,γ(q) = y2] ≤ k − 1

|F| · 1

|F| +
2

|F|2 =
k + 1

|F|2 ,

as desired. ¤

48

