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Abstract

We present a Moente Carlo algorithm for testing multivariate polynomial identities over any field using
less random bits than other methods. To test if a polynomial Pz, ..., z,) is zero, our method uses
> i [log(d; + 1)] random bits , where d; is the degree of x; in P, to obtain any inverse polynomiat
error in polynomial time. The algorithm applies to polynomials given as a black box or in some implicit
representation such as a straight line program. Our method works by evaluating P at truncated formnal
power series representing square roots of irreducible polynomials over the field. This approach is similar
to [CK97], but with the advantage that the techniques are purely algebraic and apply to any field.

We view uncovering this algebraic structure as a step towards the derandomization of polynomial
identity testing, a long standing open question.

* Supported by the love of his wife and kids.
tSupl:narced by an NDSEG/DOD Graduate Fellowship.




1 Introduction

Checking multivariate polynomial identities of the form Py(z1,...,2,) = Pa(%1,...,2,) is a problem
central to both algorithm design and complexity theory. Algorithms such as the RNC algorithm for perfect
matching [Lov79, MVV87, CRS95], the BPP algorithm for testing equivalence of read-once branching pro-
grams [BCW80], and one of the randomized algorithms for testing multiset equality [BK95] rely on effi-
ciently checking if a multivariate polynomial is identically zero. Results in complexity theory such as IP =
PSPACE [LFKN90, Sha90], MIP = NEXPTIME [BFL90], and NP = PCP(logn, 1) [AS92, ALMT92] all
fundamentally rely on viewing a boolean assignment not as a group of bits, but as the values of a multivariate
polynomial. Testing if such a polynomial is identically zero is a procedure used frequently in this context.
In addition, many results in learning theory, and sparse multivariate polynomial interpolation also rely on
checking polynomial identities {Zip79, GKS90, CDGK91, RB91].

Clearly, the problem is easy if the input polynomials are given as lists of coefficients (known as standard
reduced form). However, in many cases the polynomials are given in some implicit representation such as
a symbolic determinant or as a product of multiple polynomials. Reducing a polynomial in such a succinct
representation to its standard form can take exponential time in the length of the description since there could
be an exponential number of non-zero coefficients that need to be determined. A property of many succinct
representations is that despite the fact that the reduced standard form of the polynomial may have exponential
size, it is possible to evaluate the polynomial at a given point in only polynomial time. For example, the
determinant can be evaluated in polynomial time, as can a polynomial sized product of polynomials.

Many randomized methods for checking polynomial identities have been discovered based on the as-
sumption that the polynomials can be evaluated efficiently. The basic scheme is to use randomization to
select a number of sample points on which the identity is checked by evaluation. The test accepts if the
identity is found to hold at all the sample points and rejects otherwise. Schwartz and Zippel discovered
in {Sch80] and {Zip79] that the probability that a non-zero multivariate polynomial evaluates to zero is smatl
as long as the point is selected at random from a large enough domain. In a recent development, Chen and
Kao [CK97] showed how to check if a polynomial with integer coefficients is zero using fewer random bits
than the Schwartz-Zippel method. Their method is to evaluate the polynomial at approximations of easily
computable irrational points. An innovative feature of Chen and Kao’s algorithm is that the error probability
of the test can be decreased by doing more computations instead of increasing the number of random bits
used. The main drawback of Chen and Kao’s algorithm is that it only applies to polynomials with integer
coefficients.

In this paper we extend Chen and Kao’s work by showing how to achieve the same result in any field.
Our result is obtained by uncovering the essential ingredients of Chen and Kao’s algorithm and abstracting
them. We obtain a purely algebraic formulation of the algorithm while Chen and Kao’s description relies on
the structure of the real numbers. We view uncovering this algebraic structure as a step towards the deran-
domization of polynomial identity checking.

Using the Schwartz-Zippel lemma and a simple counting argument, one can show that there exists a set §
of poly(s, d) points, so that any nonzero multivariate polynomial of *description size’ at most s and degree at
most d evaluates to non-zero on at least one of the points of 5. Finding such a set of points deterministically
would be a major breakthrough, as it would imply the derandomization of all polynomial identity testing, a
long standing open problem. Even for the case in which P is restricted to symbolic determinants with entries
that are Jinear forms in the input variables, it is not known how to construct such a set explicitly.

We view our work (as well as that of [CK97]) as restricting the domain in which one has to search for a set
of “good points.” Our purely algebraic approach, in contrast to that of [CK97], results in a highly structured
domain, whose algebraic properties might give insight into the search for good evaluation points.




1.1 Previous Algorithms

Let F be a field. For most of the paper, we assume that a multivariate polynomial P(z1,...,2,) with co-
efficients in F' is described by an efficient procedure for evaluating P given values for £y,...,z,. Sucha
procedure can, for example, be described by a straight line program doing computations in £. For example,
P could be a symbolic determinant over I, and the procedure would be any efficient method for comput-
ing the determinant. In Appendix A we discuss straight-line programs as well as the “Black Box” model, in
which P is represented by a black box that given values for z1, . . ., z,, evaluates P at that point.

We concentrate on algorithms for checking if the polynomial P(z1, .. ., %, } is zero since any polynomial
identity can be transformed into this form.

1.1.1 Schwartz-Zippel

The first randomized test was discovered both by Schwartz and Zippel. The method is based on the following
famous lemma.

Lemma 1.1 ([Sch80, Zip79]) Let d be the degree of P(x1,...,%,). Let S be a set of size at least Cd. If
P is not identically zero, then P(s1,...,8,) = O with probability at most % where s1,. .., 5, are chosen
uniformly and at random from §.

This lemmma immediately implies the following test:

-‘.1. Choose a random point (sy, .. ., s, ) from 5™, where § ¢ F, and || = 2d.
2. Evaluate P(s1,...,38,) using the procedure supplied for P.
3. Output *nonzero’if P(sy,...,8,) # 0, else output *probably zero’.

One technicality is that if the field F’ has fewer than 24 elements in it, then there is no set § large enough
to be used in the algorithm. In this case, § can be selected from an extension field of F' and P is evaluated
over the extension field. In Section A, we discuss how the given procedure for evaluating P can be modified
to evaluate P over an extension field.

Clearly if P = 0, the test always outputs *probably zero’which is the correct answer. On the other
hand, Lemnma 1.1 implies that if P 3 0, then the test is wrong with probability no more than -;— That is, the
error probability is at most % The algorithm clearly uses n[log 2d| random bits.

As discussed in [CK97], there are three basic methods to reduce the error probability of the Schwartz-
Zippel algorithm to 1/¢ for an arbitrary ¢. The first is to perform [log ¢] independent repetitions of the above
test, using [log t{n[log 2d] random bits. The second is to enlarge the size of S to be td (possibly moving
to an extension field of /") thus using n[log ¢d] random bits. The third, which works for ¢t < 2nMeg2d] j5 to
perform ¢ pairwise independent repetitions of the algorithm, thus using 2n [log 2d] random bits.

1.1.2 Chen-Kao

Recently, Chen and Kao [CK97] discovered a new algorithm for testing if a multivariate polynomial is iden-
tically zero. Their algorithm uses fewer random bits than the algorithm of Schwartz-Zippel in order to obtain
a given error probability. Chen and Kao’s algorithm only works for polynomials with infeger coefficients.

Chen and Kao’s basic strategy is to evaluate the polynomial P(z,...,%,) at a set of irrational points
T1,...7, € R. In their algorithm, each 7; is a sum of a small number of square roots of primes: =; =
3 :.; /Pij- They show that P(my, ..., m,) = 0ifand onlyif P is identically zero. That is, if you can evaluate
the polynomial P at this single point, then you can check if P is identically zero!
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Unfortunately, this does not immediately imply a testing algorithm since- P needs to be evaluated at in-
finite precision irrational numbers. To get around this problem, Chen and Kao approximate each /Pij by
7;; which is obtained by truncating the binary expansion of , /p;; at the £’th position. They then show that if
P is evaluated at the points 7; = Ei’ ;i OiiTij where o;; is randomly chosen to be +1 or —1, then the error
probability drops proportionately to 1/£. This implies the surprising result that any inverse polynomial error
can be achieved in polynomial time while using the same number of random bits!

For reference, we roughly describe the Chen-Kao algorithm below:

Let d; be the degree of z; in P.

- 1. Find Primes: Find the first ), log(d; + 1) primes p;;, 1 < ¢ < n, 1 < 7 < log(d; + 1).
2. Approximate Square Roots: Compute the r;;’s by computing the first £ bits of , /p;;.
3. Add Randomization: Set 7; = Ef‘j oi;Ti; where o;; is randomly chosen to be +1 or —1.

4. Evaluate Polynomial: Output ‘nonzero’if P(7y,...,Tn) # 0, else output ‘probably
Zeroc’.

From this description, we see that the Chen-Kao algorithm uses >, log,(d; + 1) random bits to achieve
any inverse polynomial error probability in polynomial time. This can be substantially lower than the number
of random bits used by Schwartz-Zippel, which is at least n log,(2d) to achieve an error probability of 1/2.
In the simple case that P is a multilinear polynomial of degree n, Chen-Kao use n random bits compared to
nlogn for Schwartz-Zippel.

1.1.3 Our Contribution

At first glance, it seems that the techniques of Chen and Kao cannot be extended to finite fields, since there
are no clear notions of primes or approximations in finite fields. This seems to imply that testing polynomial
identities over the integers is somehow easier than over an arbitrary field.

In this paper we show that this is not the case. We obtain results comparable to those of Chen and Kao
that hold for polynomials with coefficients from any field F. More specifically, we show that over any field
F it is possible to test if a multivariate polynomial P(zy, ..., 2,) is zero with any inverse polynomial error
probability in polynomial time, using only > log,{d; + 1) random bits (d; is the degree of z; in P).

The first obstacle in extending Chen and Kao’s approach is the lack of “primes” in arbitrary fields (or
even in finite fields). We overcome this by extending our view from the field ¥ to the ring of polynomials
Flz]. Now, it seems natural that irreducible polynomials over F' take the place of the primes in Chen and
Kao’s algorithm. But what is a square root of an irreducible polynomial? Clearly, irreducible polynomials do
not have square roots that are polynomials, but it turns out that they may have roots which are infinite power
series!!

For example, consider the polynomial = + 1 over the field with three elements. The square root of this
polynomial as an infinite power series is:

1-|-2a:—|—932+9:3+2m4+...

~ This notion of a root implies a natural extension of the notion of approximation. Namely, approximations
are obtained by truncating infinite power series at some power 2 (which can be viewed as taking the series
modulo z*). For example, the approximation of the square root of z + 1 modulo 22 in the field of three
elements is the polynomial 1 4 2.

! This is assuming that the field is not of characteristic 2. This case is treated in Section 5.




Thus, the intuition behind our algorithm can be summed up in the following table:

Primes — Irreducible Polynomials in F/z]
Square Roots -+ Infinite Power Series over I
Approximation — Square Roots mod &

Using this analogy, a rough description of our algorithm reads much the same as Chen and Kao’s algo-
rithm: ' '

1. Find Irreducible Polynomials: Find ), log(d; -- 1} distinct irreducible polynomials p;; (1 < i < n,
1 < 7 < log(d; + 1) that have square roots as infinite power series.

2. Approximate Square Roots: Compute approximations r;; to the square roots , /p;; modulo z¢. Note
that r;; is a polynomial.

3. Add Randomization: Set ¥; = }_.. oj;ri; Where o;; is randomly chosen to be 41 or —1. Note that
the 7'; are polynomials!

4. Evaluate Polynomial: Output *‘nonzero’if P(Ty,...,T,) # 0 (mod z%). Note that we evaluate
P after a univariate polynomial has been substituted in place of each of its variables.

We show that the error probability of this test can be reduced, in polynomial time, to any inverse poly-
nomial quantity by using approximations modulo larger powers of z.

1.2 Layout of the Paper

Section 2 describes some standard algebraic tools which our algorithm uses. Section 3 givesa more detailed
description of our algorithm, along with an example. In Section 4, we prove the correctness of our algorithm;
this section contains most of the technical contributions of this paper. We feel that the analysis of the algo-
rithm makes use of techniques that may be useful in other applications involving multivariate polynomials.

2 Algebraic Tools

In this section we describe the basic algebraic procedures that are used in the algorithm. We describe proce-
dures for;

-1. Finding irreducible polynomials that have square roots as power series.

2. Finding approximations to the square roots of irreducible polynomials.

Our goal in this section is to show efficient algorithms for each of the above tasks. However, in the interest
of clarity, we do not always describe the most efficient algorithms that are known.

In this section we assume that the field we are working over is not of characteristic 2. The case of char-
acteristic 2 is dealt with in Section 5.

2.1 Definitions

Let F' be a field of characteristic # 2. We denote by Fiz] the ring of polynomials over the field F, and by
F(z) the field of fractions of F[z]; in other words, () is the field of rational functions over F'. The ring
of formal power series over /' is denoted F{[z]]. We denote by Fa] the field extension of F' obtained by
adjoining to F an algebraic element c.




2.2 Finding Irreducible Polynomials and Approximating Square Roots

‘Not every ireducible polynomial has a square root as an formal power series. For example, over the rationals,
the polynomial £ —3 is irreducible, but does rorhave a square root as an formal power series since the constant
term of the series has to be +/3, which is irrational. This example shows that for an irreducible polynomial to
have a square root, its constant term must be a quadratic residue. Surprisingly, in fields of characteristic # 2,
this condition is also sufficient! This is a special case of a very useful construction called Hensel Lifting.

Hensel Lifting is described in two parts. First we state Hensel’'s Lemma which characterizes when a
polynomial equation with coefficients in F[z] has a root in F[[z]]. For example, finding a square root of a
polynomial f(z) € F[z] can be viewed as finding a root in F[[z]] of Z2 — f = 0. In Appendix D, we
describe a standard technique for finding approximations to these roots, given that they exist.

Lemma 2.1 (Hensel’s Lemma [Eis95, Cor. 74]) Let S(Z) be a polynomial with coefficients in Flz]. §
can be viewed as a bivariate polynomial S(Z, ) over I'. If there is a g € I’ such that:

1. S(Q,O) = {.
2. 85(0,0) # 0 where S7(7,3) = 2457,
Then, there exists a §(z) € F[[z]] such that 5(§(z), =) = 0.

Say we have an irreducible polynomial f{z) € F[z]. We can use Lemma 2.1 to find the conditions
under which f(z) has a square root in F[[z]]. Let S(Z, z) be the polynomial 5(Z,z) = Z? — f(z). The
two conditions of Lemma 2.1 are:

1. 5(g,0)= g% — fo = O where f; is the constant term of f. So, g'is a square root of foin F.
2. Sz(g,0) = 2g # 0. This is true as long as fo # 0, and F' is not of characteristic 2.

So, from Lemma 2.1 and our previous discussionit follows that f () has a square root as an formal power
series if and only if fy is a quadratic residue over F.

_ A proof of an even more general “Hensel’s lemma”’, which implies Lemma 2.1, can be found in {Eis95,
Ch. 7].

2.2.1 Finding Irreducible Polynomials With Square Roots

Lemma 2.1 tells us that any irredncible polynomial with a constant term that is a quadratic residue in /7, has a
square root in /'[[z]] (assuming that F' is not of characteristic 2). As a subroutine of our algorithm we need to
be able to find k such polynomials in F[z]. Clearly, if we can find k distinct, monic, irreducible polynomials
in F[z], then by multiplying each by its constant term we obtain a set of k irreducible polynomials that have
square roots in F{[z]]!

Luckily, finding & monic, irreducible polynomials in F is not hard. In fact, if we don’t care about being
as efficient as possible we can just hunt for them by brute force. That is, go through the monic elements of
Flz] one by one in order of degree, and check if any of the irreducible polynomials found so far divides them.
If none do, we have another irreducible polynomial, otherwise we move on to the next element of F{z]. The
following lemma says that if we want to find & polynomials this way, we don’t have to search very far.

Lemma 2.2 ? Let F be a finite field, and F[z) the ring of polynomials over F. Then, the number of irre-
ducible polynomials of degree at most n in Fiz| is at least (|[F|" — 1)/n.

2 Actually, in analogy to the famous Prime Number Theorem over Z, it is known that the number of irreducible polynomials of
degree n over F' is asymptoticto | F{"/n.




The proof of Lemma 2.2 is in Appendix E.

If & < | F|, we only need to use degree 1 polynomials: z —ey, z—ey, ...,z —e; where ¢; € F'. However,
if k > | F| then Lemma 2.2 says that we do not have to go over more than polynomial in k elements of F{z]
until we find £ monic, irreducible polynomials.

‘We have seen how to find a set of irreducible polynomials that have square roots as power series, but
how can we find approximations of the square roots efficiently? Luckily, there is a well known method for
finding square roots modulo z¢ using poly (£) algebraic operations in F. This is described in Appendix D.

Hensel lifting has been used for other algorithmic purposes, such as factoring sparse multivariate poly-
nomials [Zip79, Zip81, Kal82, v2GK85].

3 The Algorithm

In this section we give a formal description of our algorithm for testing if a multivariate polynomial is zero.
The algorithm is described and then a simple example of how the algorithm runs is presented. The proof of
correctness of the algorithm is in Section 4.

Inputs to the algorithm:

1. A multivariate polynomial P(z1,...,2,) € Flz1,...,z,] described by a “straight-line program”.
The algorithm checks if P is zero.

, l2. Upper bounds d;, T < ¢ < n on the maximum degree of z; in the polynomial P, and an upper bound
d on the total degree of P.

3. The desired probability of error, €, 0 < ¢ < 1.

The notion of a straight line program is defined and discussed in Appendix A.1 . In Appendix A.2, we
discuss our algorithm in the “Black Box™ medel, in which the pelynomial P is given as a black box that can
evaluate P at points in F™.

In most applications, the structure of P’ can be used to obtain the degree bounds. For example, if P is a
symbolic determinant, then the degree of any variable is not more that the number if times it appears in the
matrix (with multiplicity).

The algorithm: Oninput: P, d,d;, 1 < ¢ < n,and e

Find Irreducible Polynomials: Find 3, [log(d; + 1)] irreducible polynomials p;; (1 <i<n,1 < j <
[log(d; + 1)} that have square roots as infinite power series. Do this by computing by brute force the
first 3~ flog(d; + 1)] monic, irreducible polynomials and multiplying them by their constant term.

Approximate Square Roots: Set ¢ = 1 (Md;g(mm) . Compute approximations r;; to the square roots
of the p;;’s modulo 2%, using the Hensel Lifting algorithm described in Section 2. That is, compute
rij = ./Pi; modulo z.

Add Randomization: SetT; = ), 0y;ri; where o;; is randomly chosen to be +1 or —1.

Evaluate Polynomial: Qutput ‘nonzero’if P(%y,...,%,) # 0 (mod z%), else output *probably
zero’. Note that we evaluate P after a univariate polynomial has been substituted in place of each of
its variables. Appendix A.1 discusses how to modify the straight-line program for I’ to do this evalu-
ation efficiently.




It is easy to show that the running time of the algorithm is polynomial in d, n, 1/¢, and the description
size of P. This is discussed in more detail in Appendix B.

The algorithm uses ), [log(d; - 1)] random bits and in Section 4, we show that the error probability
of the algorithm is no more than ¢. Note that as in Chen and Kao’s algorithm, we can decrease the error
probability without using a single additional random bit!

3.1 An Example

The following example is meant to clarify how the algorithm works.

Suppose that you are walking down the street, minding your own business, when suddenly you hear a
wispy, “Psssst! Wanna buy a multivariate polynomial identity?” You turn and see a shady character emerge
from a dark alleyway. He opens a side of his jacket and hanging inside, next to the cheap watches, is a straight
line program for the polynomial:

2129 + 227 + 222+ 1

The man claims that this polynomial is zero over the field of three elements, and offers to sell it to you for
an extravagant price. Of course, you want to take the identity for a test drive before you make the purchase.
You reach into your left pocket, and are dismayed to find that you forgot all but two of your random bits
at home! Luckily, you have just finished implementing the algorithm described in this paper on your Palm
Pilot. After punching in the polynomial and feeding in the random bits, this is what happens...

The polynomial is multilinear, so only two irreducible polynomials are needed. Searching by brute force
gives: z + 1 and 22 + 1. The power series roots of these polynomials are:

Vetl=14+2z+z2+23+224+---
Vet +1=142 42 + 254+ 2.5+ -
Now, set 11 = 014/ +1  (mod z¢), and 7 = 09v/z2 + 1 (mod z*) for o; = +1. The algorithm

ontputs ‘nonzero’if T1my + 2m + 27 + 1 (mod z%) £ 0. To see how the algorithm works, we try
this for £ = 1,2, 3, 4, and get the following table:

o1 | o2 (mod z) (mod %) (mod z°) (mod z*)
1] 1 =0 —0 —0 £0
T -1] =0 Z0 Z0 Z0
-1]1 =0 =0 #0 # 0
B =0 0 £0 Z0

Note that as we nse better approximations of the square roots and compute modulo larger powers of
z, the probability of error (taken over the choice of ¢4, and o3}, goes down. The number of random bits
stays the same!

4 Analysis

In this section, we prove that the algorithm presented in the previous section works. That is, we show that if
the input polynomial is the zero polynomial, then the algorithm always outputs *probably zexo’. On
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the other hand, if the polynomial is not identically zero, then we show that the algorithm makes a mistake
with probability less than €. Formally, we have

Theorem 4.1

1. If P(z1,...,24) is the zero polynomial, then the algorithm always outputs *probably zero’.

2. If P(z1,...,%,) is not zero, the probability thar the algorithm outputs *probably zero'is no
more than c.

The proof of Theorem 4.1 contains most of the technical contributions of this paper.

Proof: If P is the zero polynomial in Fz1, . . ., z,], then substituting the #;’s in place of the ;s produces the
zero polynomial in F[z], which is zero modulo z¢. Therefore, no matter what £ and the o; are, the algorithm
outputs ‘probably zero’.

The first basic concept is that we extend our view from the field F' to F'{z], and then to the field of frac-
tions F'(z ) (elements of F(z) can be viewed as rational functions in z). Now, the polynomials Z? — p;; are
irreducible in the ring F{z)[Z], because the p;; are irreducible in Fz]. Hence, we can look at the field ex-
tension of () obtained by adjoining to (), all the elements , /p;; which are the roots of the polynomlals
Z* — p;;. This extension is denoted K = F(z)[,/F75)-

- The proof of Theorem 4.1 relies on the following lemma. Roughly, the lemmaz states that if we evaluate
the polynomial P over infinite power series, instead of truncated ones, then the algorithm always correctly
identifies polynomials that are non-zero.

Throughout the proof, we write e; for [log(d; + 1)] and denote by M the value } 7. e;.

Lemmad.2 Letojjbe+lor~1, for 1 <i<n 1< j<e. For1<i<m letg =3 %L, 05 /Pij-
Then, if P(z1,...,2y) is a non zero polynomial in Fiz1,...,2y,), then P(q1,...,q,) # 0in K.

For example, the polynomial #1x94221 + 222+ 1 over the field with three elements (reusing the example
of Section 3.1) is not zero in F{zy, z2]. Lemma 4.2 states that if we evaluate /z + 1vVz?2 + 1+2vz + 1 +
2vz? + 1 + 1 in the field extension F{z)[v/z + 1,+/2? + 1], then we get a non-zero value.

Proof:
We prove Lemma 4.2 by induction on 7 (the number of variables in the pelynomial}). Forn =

0, the result is trivial, so we consider » > 1. Given P(z1,...,%,), we rewrite the polynomiat
as:

dr.
P(z1,...,2n) = Z.A":;Pi(xh. ey Bp—1)
=1

Now, since we assume that P is not zero, at least one of the P;(z4, ..., 2,1 ) must be non-
zero. Hence, by the induction hypothesis we have that:

dn
P(Ql?' . '7Qn—1,xn) = ZQSLR(Qh . '7q71—1)
i=1
is a non-zero univariate polynomial in z, of degree no more than d,, (with coefficients in

F(z)[q1,---,q.-1)) The following claim demonstrates that g, cannot be a root of this poly-
normial: '




Claim 4.3 g, is of degree > d,, + 1 over F(z)[q1,. .., qn-1]-
The proof of Claim 4.3 is in Appendix E.

For each possible selection of the signs o;;, we call P(g1, 92, ...,4,) a conjugate of P. Using this ter-
minology, choosing random i;’s can be viewed as choosing a random conjugate from the 2™ possible con-
jugates. .

Lemma 4.2 says that if we could compute efficiently with infinite power series, then, no matter which
conjugate we choose (by choosing the o;;}, P(gs,...,¢) is non-zero as long as P is non-zero. However,
since we cannot compute using infinite power series we truncate the g; by doing all operations modulo z*.
Thus, the algorithm can viewed as evaluating a random conjugate modulo ¢, :

The statement of Theorem 4.1 can therefore be restated as: If P is a non-zero polynomial, then not more
than an ¢ fraction of the conjugates vanish modulo z¢.

So, our goal is to show that not more than €2 conjugates vanish modulo z°. One way to do this is to
show that the producr of all the conjugates does not vanish modulo some larger power of x. Luckily, the
product of the 2™ conjugates is a well studied object, and is called the norm of P.2

norm( P)

H P(Qla-“?%%)

ge{+1}M

€y Cn
H P Z O154/P1gs - s Z Unjv/Pnj
i=1 =1

ge{£1}M

For example, say that our polynomial is (2, z2) = 21 + 22 over the field of three elements, and the
irreducible polynomials are = + 1 and z% + 1. The norm of P is:

(Ve+1+vz:+ D(vz+1~-+vV2? 1)
(VETT+ VT D—VEFT-VaTF D) = 2(o+1)- 2>+ 1)

Note that the norm is a polynomial over F; all of the square roots cancel out. This is in fact a general
phenomenon captured by the following claim which is proved in Appendix E:

Claim 4.4 norm(F) € Flz]

Lemma 4.2 shows that norm(P) # 0 since each element of the product is non-zero. Recall, that our goal
is to show that the norm does not vanish modulo some power of z, and since the claim states that the norm
of P is in fact a nonzero polynomial over F', all we need to do is to upper bound its degree! We would like to
show that the degree of the polynomial can’t build up very much over the product of the 2% conjugates. The
problem is that the elements inside the product are not polynomials, and it is unclear what their “degree” is.

We solve this problem by defining a degree function deg : Flz, \/P11,+/P125 - - -»+/Pal — N with the
following three properties:

L. deg(fg) = deg(f) + deg(g)
2. deg(f + g) = max(deg(f), deg(g))

*This rorm is the usual Galois Theory norm over the field extension F ()[/pi7, +/Pi2: - - - » ~/Prics]. Note that we are making
implicit use of the fact that the Galois group is (Z/2Z)™ , which follows from Kummer Theory. See Appendix E.
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3. If f € F[x] then deg( f) is equal to the degree of f as a polynomial in z.

In order to define the degree function, we need the following claim which again, is proved in Appendix E:

Claim 4.5 Every element f in F[z, /P11, +/P12s - - -11/Pnen ) can be uniquely represented in the form:
f= Z fa(z/Pis"

where we sum over all o assigning 0 or 1 to each pair (i,7), f«(2} € Flz], and \/pi;* is an abbreviation
Jor I1; ; /P>

The degree function for f is defined using this unique representation:

DEG(p:;)

deg(f):moz?.x DEG(fa) + Z 5

a5 =1

Where the max is taken over all non zero summands in the unique representation of f, and DEG is the
regular degree function on Flz}.

It is a simple matter to verify that this function has the three properties we want from the degree function.
We remark that this definition of degree is actually determined by the three properties above, because they
imply that the degree of , /p;; must be half the degree of p;;.

Since norm( P) € F[z], we know, by the last property of the degree function, that deg(norm(P)) is the
degree of the norm as a polynomial in F{z]. Now, using the other properties of the degree function we have:

' e1 En
deg(norm(P)) = deg H P (Z o'ljw/plja'“az Tnjr/Pnj
i=t

ae{+1}M 1=1

[}

€1 En
Z deg | P Zaljvplj:'--'azanj\/pnj
oc{+1}M i=1 =1

o g (mesito)

- 2

Where d is the total degree of P and the max is taken over all p;;’s.
Now, suppose that T conjugates vanish modulo ¢, This means that norm( P) must vanish modulo z*7,
s0 it must be true that:

&

IA

deg(norm(P))

SR

IA

Therefore we have:

T  dmax(deg(pi;))
<
oM = 24
The left hand side of the above inequality is just the probability of choosing a “bad” conjugate; that is,
one that vanishes modulo z¢. Seiting £ = 1 (@mtﬁ:—M) bounds the probability of error by «.

This concludes the proof of Theorem 4.1. (W
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5 Characteristic 2

In this section, we sketch an extension of our algorithm to fields of characteristic 2. The essential problem
when [ is of characteristic 2 is that no irreducible polynomials have square roots in F{[z]]. Instead, we have
to work with cube roots. By Lemma 2.1, a polynomial in F[z] has a cube root in F{{z]] iff its constant term
is a cube in F. Also, to choose a random conjugate of a cube root, one needs to multiply by a random cube
root of unity, rather than +1. Thus, for now, we suppose that F' contains a primitive cube root of unity ¢.
(For finite F of characteristic 2, this is the case iff F' is of order 2* for k even.) Then the algorithm proceeds
as follows:

1. Find Irreducible Polynomials: Find > ; log(d; + 1) irreducible polynomials p;; (1 <7 < n,1 <
j < logs(d; + 1) whose constant terms are cubes in F'.

2. Approximate Square Roots: Compute approximations r;; to the cube roots &/p;; modulo z¢. This
can be done using a method similar to the one for finding approximations to square roots.

3. Add Randomization: Set 7; = Zij o;;7i; where o;; is randomly chosen in {1, {, (?}.
4. Evaluate Polynomial: Qutput ‘nonzero’if P(%y,...,%,) #0 (mod z¥).

The analysis of this algorithm proceeds much as in the other case, and shows that { =
e lpoly(dy,...,d,) is sufficient to obtain error probability ¢. The number of random bits used by
this algorithm is essentially (log, 3) > logs{d; + 1) = >~ log,(d; + 1), as before.

The only question that remains is what to do when F' does not have a cube root of unity. In the straight-
line model, this is easily dealt with: treat ¢ as a formally adjoined cube root of 1, reducing (*’sto —( — 1
when they arise in the computation.

In the black-box model, we treat P(71, . . ., T, ) as a bivariate polynomial g(z, {) of degree less than £d
in ¢ and at most £ in . As argued in Appendix A.2, it suffices to substitute (£d) - (£ + 1) values for (z, () to
distinguish between the cases that P the zero-polynomial and the case that the real value for P(71,...,7n)
vanishes modulo z£. This requires the field to be of size at least d2(£ + 1).
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A Two Models for Implicitly Given Polynomials

In this section, we consider two models for considering an implicitly given polynomial and discuss how our
algorithm works in each of these settings.

A.1 Straight-Line Programs

Informally, a straight-line program [Str72, Kal88] describes a polynomial by a sequence of algebraic oper-
ations. More precisely, let I be a ring, § C D be a finite set of constants, and #1, ..., 2, be a set of input

variables. Then a straight-line program P is a sequence of m statements, where the ¢’th statement has one
of the following forms:

Y+ uk
. Yi — Uk , ,
yi—x; forl <7 <my y; — s forsomese 5; or Y — Y Uk for some 7,k < ¢
i

il Ye

The output of P is defined to be y,,. It is clear that every such program defines an easily-computable
rational function P(zq, ..., &,) on D". (Assuming arithmetic in D is feasible.) We say that a straight-line
program defines a polynomial, if the formal expression in the input variables resulting from following the
steps of the straight-line program is in fact a polynomial in #4, .. ., z,, and if, for every & € D™ all divisions
occurring in the steps of P on input « are actually divisions by invertible elements of .

Many polynomial functions of interest, such as the determinant, can be expressed as straight-line pro-
grams.

Recall that our algorithm requires evaluating a multivariate polynomial P(z1,...,%,) defined by a
straight-line program at univariate polynomials 71(z),. .., T, (z) modulo 2°. We can do this by simply
interpreting the straight-line program for P (over a field F) as a straight-line program over the larger ring
R = Flz]/(2*). We need to check two things: evaluating P at points of R™ only results in results in divi-
sions by invertible elements of £, and these divisions can be efficiently. To see this, consider the evaluation
of P on (hy(z),..., he{x)) € R™. Taking every step of this evaluation modulo z, it is easy to see that we
obtain the evaluation of P on (a,...,a,) € F", where ay,. . ., a4y, are the constant terms of hy, ..., h,. We
know that evaluating P on elements of F™ never results in division by 0, so whenever P attempts to invert
an element of R, it must be an element with nonzero constant term. The technigue in Section 2 for inverting
g¢(z) during Hensel lifting shows that every element of B with nonzero constant term is invertible and that
this inverse can be computed with poly(£) operations in F.

Remark. When discussing straight-line programs over finite fields, there is some ambiguity in the state-
ment P(z1,...,2,) = 0. It could mean that the polynomial obtained by applying the steps of P to the
indeterminates zy, . . ., Z, is the zero element of the ring Fzy,. .., z,]. Or it could mean that P defines the
zero functionon F™; that is, P(ay,...,a,) = 0 forall ¢y,...,a, € F. Although these iwo conditions are
equivalent over infinite fields, they are not in finite fields. For example, the polynomial £? — = vanishes at all
points of GF{g) butis not the zero element of GF(¢){z]. The two notions are equivalent, however, whenever
| F'| is greater than the degree d; of P in each variable z;. When this condition does not hold, our algorithms
test whether P(x1q, ..., %, ) is the zero element of the ring F[zy, . .., z,]. We note that the Schwartz-Zippel
approach requires that the the field is larger than the toral degree to work at all, whereas our algorithm is
meaningful even when the field is GF(2).
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A.2 The Black-Box Model

The definition of this model is as one would expect — instead being given a description of P, our algorithm is
given oracle access to a “black-box” that will evaluate P at any point of F™. In this case, we cannot directly
evaluate P at univariate polynomials 71 (), . . ., T»(z). Instead, we observe that the univariate polynomial
g(z) = P(T1(x),...,Tn(2z)) has degree less than {d, where d is the total degree of P, because each T;(z)
has degree less than £. Moreover, we can evaluate g at any point of /" using the black-box for P. Suppose we
evaluate ¢ at £d distinct points of F. If all the values obtained are zero, then g must be the zero polynomial
so it certainly vanishes modulo z* and our algorithm should output *probably zero’. However, if at
least one of the values is nonzero, then P must be a nonzero polynomial and our algorithm should output
‘nonzero’. Note that this approach works whenever |F| > {d. This restriction on degree is typical of
identity-testing algorithms in the black-box model (cf., [CDGK91])

A3 Other Models

Some other models for representing polynomials considered in the literature are the dense representation,
which requires that all coefficients are written down; the sparse representation, which requires that all
nonzero coefficients be written down; and the formulas. In the dense and sparse representations, testing
whether a polynomial is zero is trivial, and formulas are a special case of a straight-line program.

B Running Time

We analyze the ranning time of each of the stages of the algorithm. Finding M = }_;[log(d; + 1)] irre-
ducible polynomials takes time polynomial in M by Lemma 2.2. Extracting square roots by Hensel Lifting
modulo z takes log £ iterations of the algorithm, and each iteration involves poly(£) multiplications and ad-
ditions of polynomials, where all the operations are done modulo zf, All this takes time polynomial in £.
In Appendix A.1, it was shown how to modify the straight line program to compute the polynomial P, with
univariate polynomials substituted in place of its variables, modulo z* using time polynomial in both £ and
the length of the program.

Since £ = poly(1/e,d, M )and M = poly(d, n), the whole running time is polynomialin 1/¢, d, n, and
{ength of the straight line program.

C Another Algorithm over the Integers

In this section, we mention how the ideas in this paper yield a purely algebraic alternative to Chen and Kao’s
algorithm over the integers. The main observation, following from a more general form of Hensel’s Lemma,
is that any prime p that is congruent to 1 modulo 8 has a square root in the 2-adic integers [Eis95, Sec. 7.2].
Moreover, there is a natural notion of approximate solations in the 2-adics, namely solutions modulo 2. Thus
our algorithm over Z and its analysis proceed much as in the finite field case, using the following analogy:

Irreducible polynomials — Prime numbers
F[[x]] — 2-adics
Square roots mod #* —  Square roots mod 2

The use of the 2-adics is inessential and can be replaced with the g-adics for any fixed prime ¢.
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D Finding Approximations to Square Roots

In this section, we describe how to find approximations to square roots of a polynomial modulo z°. The
method we describe constructs an an approximation modulo z%¢ given an approximation modulo z£. This is
similar to what can be done for Newton approximation.

Say we are trying to approximate the square root of the irreducible polynomial f{z) € F[z]. Let go(z),
£ =1,2,3,...be successive approximations of v/ f(z). That is, :

ge(2)* = f(z) (mod 2%
The first approximation, g1 (), is simply the square root of fp in F: g4(z) = +/fp. (Notice that, in our
algorithm, we always construct the polynomial f so that we know the square root of the constant term .)
Now, assume that we have found the £’th approximation, g,(z), such that g¢(z)? = f(z) (mod z%).
The 2£°th approximation has the form:
g2e(z) = 2°p(e) + go(2),

where p(z) is a polynomial of degree £ — 1. We want to find a p(z) so that g2¢(z)* = f(z) (mod z%).
Substituting for gq¢, this is equivalent to

22*p(2)ge(2) + ge(2)? = f(z) (mod z%)
Since ge(2)? = f(z) (mod zf), we know that f(«) — gz(z)? is divisible by z¢ and we obtain:

&) —942) _ pa)a(a) (mod

The polynomial g,(z) has an inverse in F[[z]] which can be found by the following trick. Let ge(z) =
go + zg; (), and then note that:

1 1
-3 PHE)
gf(m) E (1 + ‘—;B“*)
E 2 % 2 3 % 3
N A I S
g0 9p 95

Since p(z) has degree £ — 1, we have:
f(z) — ge(z)? 1 ¢
= d
p(z) ( 2ot 72(@) {mod z*)
So, we can find p(z) by computing ﬁ (mod z*) using the trick, and plugging into the above equa-
tion.

For example, say that we would like to compute the square root of f(z) = 2 + 1 modulo z* in the field
of three elements. We obtain the successive approximations g1(z) = 1, and ga(z) = 2z + 1. Now, to obtain
ga(z) we write: g4(z) = p(x)a? + go{x) where p(z) has degree 1 and is given by:

pa) = (f(:ﬂ)z—mgz(:t)z)( i ) (mod o)

92(z)

— 2_ —_—
- Ftl-z -z 1(1+m+m2+...) (mod 2?)

2z2
= 1+4+=z

So, ga(z) = (1 + z)2® + 2z + 1 = 1 + 2z + 2% + 2® and it is simple to verify that g4(z)* = f(z)
{mod z*).
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E Algebraic Lemmas

Proof (of Lemma 2.2): Let L be the (unique) extension of F' of degree n. Every nonzero element of L satis-
fies an irreducible polynomial over F’ of degree < n. Each irreducible polynomial of degree < n has at most
n roots in L. Thus, the number of imeducible polynomials must be at least | L — {0}|/n = (JF|*—1)/|F|. O

We now lead up to the proofs of Claims 4.3, 4.4, 4.5. with a few-intermediate facts. For notational con-
venience, let {ry,...,rar} = {ps;:1 <1 < n,1 <7 < ¢}. Recall that ry, ..., 7, € F[z] are irreducible
polynomials, and we were studying the field extension K = F(x)[\/71,...,/Tn] over F(z). First we ob-
tain the degree and Galois group of this extension using Kummer theory. The following is a special case of
[Lan93, VI,Thm. 8.1].

Theorem E.1 Let B be a subgroup of F(z)* containing (F(x)*)? (i.e., the squares in F(z)). Let Kg =
F(z)(VB) (i.e., adjoin square roots of everything in B.) Then K is a Galois extension of F(z) of degree
equal to the size of quotient group B [(F(z)*)2.

To apply this theorem, let B be the subgroup of F'(z)* generated by 7y, . . ., rar, along with all the squares
in F(z)*. (i.e.,(F(z)*)*) Then Kg = K. Itis easy to see that every element of B can be written uniquely
in the form

LR SERRRL V-0
where s € (F(z)j)? and v, ..., 7y € {0,1}. Thus, B/(F(x)*)? is simply (Z /2Z)™. So, by Theorem E. 1
K is a Galois extension of degree 2 over F(x). This implies that for each ¢ < M, /7 is of degree exactly

2 over F'(z)[\/r1,...,+/Tic1)- (if, not K would be of degree strictly less than 2¥ over F(z).) We now see
that the Galois group of K/ F consists exactly of automorphisms ¢ of the form

a(/1i) = oir;

forany (oq,...,0n) € {£1}M.
We now proceed to the proofs of Claims 4.3 and 4.4.

Proof (of Claim 4.3): Clearly, it suffices to show thatfori < j < M, = \/rig1 + -+ + /75 € K has
degree at least 2/° over L, where L = F(z)[y/71,...,/m. Let f € L[z] be the 1rreducible polynomial
for @ over L. For any 0i41,...,0; € {1}, there is an automorphism ¢ of K fixing L and taking
ViR op/refort < k < j (By our description of the Galois group of K/F(z).) Notice that o
has 27— distinct images under such automorphisms. For any such o, we have f(o(a)) = o(f(a)) = 0,
since ¢ is an automorphism fixing £.. Thus, f has at least 2/~ roots, and a is of degree at least 27~ over L. [

Proof {(of Claim 4.4): First observe that by the characterization of the Galois group of K/F(x) above,
norm(P) is in fact the usval Galois-theoretic norm of P(gy,...,q,) from K to F(z). And, since norms
always lie in the base field (see [L.an93, VL, Thm 5.1]), norm( P) € F(z). But we need to prove that norm( P)
is Flz], not F(z).

We need to introduce some terminology. An element of K is called integral over F|z] if itis arootof a
monic polynomial with coefficients in F[z] (not F(z)!). Thus, /71, ..., /Fas are all integral over Fiz], as
they are roots of the polynomials Z? — r;. A standard theorem on ring extensions says that the set of integral
elements over a ring form a ring themselves. Thus, g1, . . ., ¢, are all integral over F'[z], and P(g;,...,q,)
is integral over F[z]. Another standard theorem [Lan93, VIIL, Cor. 1.6] says that if 8 € F is integral over
aring R then the norm of 3 from £ to the fraction field of R is integral over E. So we see that norm( P)
is actually integral over F[z]. Finally, another standard theorem [Lan93, VIL, Prop. 1.7] tells us that for
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unique factorization domains R, the set of elements of the fraction field of R that are integral over R is R
itself. Thus, since norm( P) is an integral element of F(z), which is the fraction field of F[z], norm(P)
must lie in Fz]. - 0
Proof (of Claim 4.5): Clearly, every element of F[z, /71, ..., /7] can be written in the form

3 fale) WD) (V)

where the sum is over all & € {0,1}™ and each f,(z) € F[z]. Since F(2)[\/T1, - - .,+/Fa1] is of degree 2M
over F'(z), it must be the case that

{(Vr)er - (/)™ o € {0, 1}M)

is a linearly independent set over #'(2). The uniqueness of the representation above follows. g
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