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Abstract

We present a Monte Carlo algorithm for testing multivariate
polynomial identities over any field using fewer random bits
than other methods. To test if a polynomial P �x�� � � � � xn�
is zero, our method uses

Pn

i��dlog�di � ��e random bits ,
where di is the degree of xi in P , to obtain any inverse poly-
nomial error in polynomial time. The algorithm applies to
polynomials given as a black box or in some implicit repre-
sentation such as a straight-line program. Our method works
by evaluating P at truncated formal power series represent-
ing square roots of irreducible polynomials over the field.
This approach is similar to that of Chen and Kao [CK97],
but with the advantage that the techniques are purely alge-
braic and apply to any field. We also prove a lower bound
showing that the number of random bits used by our algo-
rithm is essentially optimal in the black-box model.

1 Introduction

Checking multivariate polynomial identities of the form
P��x�� � � � � xn� � P��x�� � � � � xn� is a problem central to
both algorithm design and complexity theory. Algorithms
such as the RNC algorithm for perfect matching [Lov79,
MVV87, CRS95], the BPP algorithm for testing equivalence
of read-once branching programs [BCW80], and one of the
randomized algorithms for testing multiset equality [BK95]
rely on efficiently checking if a multivariate polynomial is
identically zero. Results in complexity theory such as IP �
PSPACE [LFKN90, Sha90], MIP � NEXPTIME [BFL90],
and NP � PCP�logn� �� [AS92, ALM�92] all fundamen-
tally rely on viewing a boolean assignment not as a group of
bits, but as the values of a multivariate polynomial. Test-
ing if such a polynomial is identically zero is a proce-
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dure used frequently in this context. In addition, many
results in learning theory, and sparse multivariate polyno-
mial interpolation also rely on checking polynomial identi-
ties [Zip79, GKS90, CDGK91, RB91].

Clearly, the problem is easy if the input polynomials
are given as lists of coefficients (known as standard reduced
form). However, in many cases the polynomials are given
in some implicit representation such as a symbolic determi-
nant or as a product of multiple polynomials. Reducing a
polynomial in such a succinct representation to its standard
form can take exponential time in the length of the descrip-
tion since there could be an exponential number of non-zero
coefficients that need to be determined. A property of many
succinct representations is that despite the fact that the re-
duced standard form of the polynomial may have exponential
size, it is possible to evaluate the polynomial at a given point
in only polynomial time. For example, the determinant can
be evaluated in polynomial time, as can a polynomial-sized
product of polynomials.

Many randomized methods for checking polynomial
identities have been discovered based on the assumption
that the polynomials can be evaluated efficiently. The ba-
sic scheme is to use randomization to select a number of
sample points on which the identity is checked by evalua-
tion. The test accepts if the identity is found to hold at all the
sample points and rejects otherwise. Schwartz and Zippel
discovered in [Sch80] and [Zip79] that the probability that a
non-zero multivariate polynomial evaluates to zero is small
as long as the point is selected at random from a large enough
domain. In a recent development, Chen and Kao [CK97]
showed how to check if a polynomial with integer coeffi-
cients is zero using fewer random bits than the Schwartz-
Zippel method. Their method is to evaluate the polynomial
at approximations of easily computable irrational points. An
innovative feature of Chen and Kao’s algorithm is that the
error probability of the test can be decreased by doing more
computation instead of increasing the number of random bits
used. The main drawback of Chen and Kao’s algorithm is
that it only applies to polynomials with integer coefficients.

In this paper we extend Chen and Kao’s work by showing
how to achieve the same result in any field. Our result is
obtained by uncovering the essential ingredients of Chen and
Kao’s algorithm and abstracting them. We obtain a purely



algebraic formulation of the algorithm while Chen and Kao’s
description relies on the structure of the real numbers. We
view uncovering this algebraic structure as a step towards
the derandomization of polynomial identity checking.

Using the Schwartz-Zippel lemma and a simple counting
argument, one can show that there exists a set S of poly�s� d�
points, so that any nonzero multivariate polynomial of ‘de-
scription size’ at most s and degree at most d evaluates to
non-zero on at least one of the points of S. Finding such
a set of points deterministically would be a major break-
through, as it would imply the derandomization of all poly-
nomial identity testing, a long standing open problem. Even
when P is restricted to symbolic determinants with entries
that are linear forms in the input variables, it is not known
how to construct such a set explicitly.

We view our work (as well as that of [CK97]) as restrict-
ing the domain in which one has to search for a set of “good
points.” Our purely algebraic approach, in contrast to that
of [CK97], results in a highly structured domain, whose al-
gebraic properties might give insight into the search for good
evaluation points.

Any derandomization of polynomial identity testing
must take advantage of the polynomials’ succinct represen-
tation. Indeed, we show in Section 7 that the number of ran-
dom bits used by our algorithm is essentially optimal in the
black-box model, where description size is not used.

1.1 Formal Setting

Let F be a field. For most of the paper, we assume that a
multivariate polynomial P �x�� � � � � xn� with coefficients in
F is described by an efficient procedure for evaluating P
given values for x�� � � � � xn. Such a procedure can, for ex-
ample, be described by a straight-line program doing com-
putations in F . For example, P could be a symbolic de-
terminant over F , and the procedure would be any efficient
method for computing the determinant. We also consider the
black-box model, in which P is represented by a “black box”
which, given a point �x�� � � � � xn� � Fn, evaluates P at that
point. In Appendix A, we define and discuss both straight-
line programs and the black-box model,

We concentrate on algorithms for checking if the poly-
nomial P �x�� � � � � xn� is zero since any polynomial identity
can be transformed into this form.

1.2 Previous Algorithms

1.2.1 Schwartz-Zippel

The first randomized test was discovered by both Schwartz
and Zippel. The method is based on the following famous
lemma.

Lemma 1.1 ([Sch80, Zip79]) Let d be the (total) degree of
P �x�� � � � � xn�. Let S be a set of size at least Cd. If P is not
identically zero, then P �s�� � � � � sn� � � with probability
at most �

C
, where s�� � � � � sn are chosen uniformly and at

random from S.

This lemma immediately implies the following test:

1. Choose a random point �s�� � � � � sn� from Sn, where
S � F , and jSj � �d.

2. Evaluate P �s�� � � � � sn� using the procedure supplied
for P .

3. Output ‘nonzero’if P �s�� � � � � sn� �� �, else output
‘probably zero’.

One technicality is that if the field F has fewer than �d
elements in it, then there is no set S large enough to be used
in the algorithm. In this case, S can be selected from an
extension field of F and P is evaluated over the extension
field.

Clearly if P is the zero polynomial, the test always out-
puts ‘probably zero’which is the correct answer. On
the other hand, Lemma 1.1 implies that if P �� �, then the
test is wrong with probability no more than �

� . That is, the
error probability is at most �

� . The algorithm clearly uses
n log �d random bits.

As discussed in [CK97], there are three basic meth-
ods to reduce the error probability of the Schwartz-Zippel
algorithm to ��t for an arbitrary t. The first is to per-
form log t independent repetitions of the above test, using
�log t��n log �d� random bits. The second is to enlarge the
size of S to be td (possibly moving to an extension field of
F ) thus using n log td random bits. The third, which works
for t � �n log �d is to perform t pairwise independent repeti-
tions of the algorithm, thus using �n log �d random bits.

1.2.2 Chen-Kao

Recently, Chen and Kao [CK97] discovered a new algorithm
for testing if a multivariate polynomial is identically zero.
Their algorithm uses fewer random bits than the algorithm of
Schwartz-Zippel in order to obtain a given error probability.
Chen and Kao’s algorithm only works for polynomials with
integer coefficients.

Chen and Kao’s basic strategy is to evaluate the polyno-
mial P �x�� � � � � xn� at a set of irrational points ��� � � � �n �
R. In their algorithm, each �i is a sum of a small number
of square roots of primes: �i �

P
j

p
pij . They show that

P ���� � � � � �n� � � if and only if P is identically zero. That
is, if you can evaluate the polynomial P at this single point,
then you can check if P is identically zero!

Unfortunately, this does not immediately imply a test-
ing algorithm since P needs to be evaluated at infinite pre-
cision irrational numbers. To get around this problem, Chen
and Kao approximate each

p
pij by rij which is obtained

by truncating the binary expansion of
p
pij at the �’th po-

sition. They then show that if P is evaluated at the points
�i �

P
j �ijrij where �ij is randomly chosen to be �� or

��, then the error probability drops proportionally to ���.
This implies the surprising result that any inverse polyno-
mial error can be achieved in polynomial time while using
the same number of random bits!

For reference, we roughly describe the Chen-Kao algo-
rithm below:

Let di be the degree of xi in P .



1. Find Primes: Find the first
P

i log�di � �� primes pij ,
� � i � n, � � j � log�di � ��.

2. Approximate Square Roots: Compute the rij ’s by
computing the first � bits of

p
pij .

3. Add Randomization: Set �i �
P

j �ijrij where �ij
is randomly chosen to be �� or ��.

4. Evaluate Polynomial: Output ‘nonzero’if
P ���� � � � � �n� �� �, else output ‘probably
zero’.

From this description, we see that the Chen-Kao algo-
rithm uses

P
i log��di � �� random bits to achieve any in-

verse polynomial error probability in polynomial time. This
can be substantially lower than the number of random bits
used by Schwartz-Zippel, which is at least n log���d� to
achieve an error probability of ���. In the simple case that
P is a multilinear polynomial of degree n, Chen-Kao use n
random bits to achieve any inverse polynomial error while
Schwartz-Zippel use n logn random bits to achieve error
���.

1.3 Our Contribution

At first glance, it seems that the techniques of Chen and Kao
cannot be extended to finite fields, since there are no clear
notions of primes or approximations in finite fields. This
seems to imply that testing polynomial identities over the
integers is somehow easier than over an arbitrary field.

In this paper we show that this is not the case. We ob-
tain results comparable to those of Chen and Kao that hold
for polynomials with coefficients from any field F . More
specifically, we show that over any field F it is possible to
test if a multivariate polynomial P �x�� � � � � xn� is zero with
any inverse polynomial error probability in polynomial time,
using only

P
log��di � �� random bits (di is the degree of

xi in P ).
The first obstacle in extending Chen and Kao’s approach

is the lack of “primes” in arbitrary fields (or even in finite
fields). We overcome this by extending our view from the
field F to the ring of polynomials F �x�. Now, it seems natu-
ral that irreducible polynomials over F take the place of the
primes in Chen and Kao’s algorithm. But what is a square
root of an irreducible polynomial? Clearly, irreducible poly-
nomials do not have square roots that are polynomials, but it
turns out that they may have roots which are infinite power
series!1

For example, consider the polynomialx�� over the field
with three elements. The square root of this polynomial as
an infinite power series is:

� � �x� x� � x� � �x� � � � �

This notion of a root implies a natural extension of the
notion of approximation. Namely, approximations are ob-
tained by truncating infinite power series at some power x �

(which can be viewed as taking the series modulo x�). For

1This is assuming that the field is not of characteristic �. This case is
treated in Section 6.

example, the approximation of the square root of x�� mod-
ulo x� in the field of three elements is the polynomial ���x.

Thus, the intuition behind our algorithm can be summed
up in the following table:

Primes � Irreducible Polynomials in F �x�
Square Roots � Infinite Power Series over F
Approximation � Square Roots mod x�

Using this analogy, a rough description of our algorithm
reads much the same as Chen and Kao’s algorithm:

1. Find Irreducible Polynomials: Find
P

i log�di � ��
distinct irreducible polynomials pij ( � � i � n, � �
j � log�di ��) that have square roots as infinite power
series.

2. Approximate Square Roots: Compute approxima-
tions rij to the square roots

p
pij modulo x�. Note that

rij is a polynomial of degree �� �.

3. Add Randomization: Set �i �
P

j �ijrij where �ij is
randomly chosen to be �� or ��. Note that the � i are
univariate polynomials!

4. Evaluate Polynomial: Output ‘nonzero’if
P ���� � � � � �n� �� � �mod x��. Note that we evaluate
P after a univariate polynomial has been substituted in
place of each of its variables.

We show that the error probability of this test can be re-
duced, in polynomial time, to any inverse polynomial quan-
tity by using approximations modulo larger powers of x.

1.4 Layout of the Paper

Section 3 describes some standard algebraic tools which our
algorithm uses. Section 4 gives a more detailed descrip-
tion of our algorithm, along with an example. In Section 5,
we prove the correctness of our algorithm. The analysis of
the algorithm makes use of techniques that may be useful in
other applications involving multivariate polynomials.

Section 6 describes the extension of our algorithm to
fields of characteristic 2. In Section 7, we show that in the
black-box model our algorithm uses an essentially optimal
number of random bits. Section 8 shows how the ideas in
this paper can be used to obtain a purely algebraic alterna-
tive to Chen and Kao’s algorithm.

2 Definitions

Let F be a field of characteristic �� �. We denote by F �x� the
ring of polynomials over the field F , and by F �x� the field of
fractions of F �x�; in other words, F �x� is the field of rational
functions over F . The ring of formal power series over F is
denoted F ��x��. We denote by F ��� the field extension of F
obtained by adjoining to F an algebraic element �. For most
of the paper, we assume that the field we are working over is
not of characteristic �. The case of characteristic � is dealt
with in Section 6.

Throughout the paper, we count arithmetic operations
in F as single steps. In places, we also need to efficiently



enumerate some number m of distinct elements of F , and
we count this as taking m steps. In applications using fi-
nite fields, for example, these conventions are reasonable for
standard representations, as these procedures can be imple-
mented with only a poly�n� factor slowdown, where n is the
number of bits needed to represent elements of the field.

3 Algebraic Tools

As stated in the Introduction, our algorithm requires finding
power series approximations to square roots of irreducible
polynomials. Thus we must:

1. Characterize which irreducible polynomials have
square roots.

2. Describe how to find such polynomials.

3. Explain how to find approximations to their square
roots.

In this section, we handle Items 1 and 2. Item 3 is a
standard technique, so it is deferred to Appendix B. Our goal
is to exhibit efficient algorithms for Items 2 and 3. However,
in the interest of clarity, we do not always describe the most
efficient algorithms that are known.

3.1 Which Irreducible Polynomials Have Square
Roots

Not every irreducible polynomial has a square root as a for-
mal power series. For example, over the rationals, the poly-
nomial x � 	 is irreducible, but does not have a square root
as a formal power series since the constant term of the se-
ries would have to be

p
	, which is irrational. This example

shows that for an irreducible polynomial to have a square
root, its constant term must be a quadratic residue. Surpris-
ingly, in fields of characteristic �� �, this condition is also
sufficient! This is a special case of a very useful construc-
tion called Hensel Lifting. Hensel lifting has been used for
other algorithmic purposes, such as factoring sparse multi-
variate polynomials [Zip79, Zip81, Kal82, vzGK85].

Hensel Lifting is described in two parts. First we state
Hensel’s Lemma which characterizes when a polynomial
equation with coefficients in F �x� has a root in F ��x��. For
example, finding a square root of a polynomial f�x� � F �x�
can be viewed as finding a root in F ��x�� of Z � � f � �.
In Appendix B, we describe a standard technique for finding
approximations to these roots, given that they exist.

Lemma 3.1 (Hensel’s Lemma [Eis95, Cor. 7.4]) Let S�Z�
be a polynomial with coefficients in F �x�. S can be viewed
as a bivariate polynomialS�Z� x� over F . If there is a g � F
such that:

1. S�g� �� � �.

2. SZ�g� �� �� � where SZ�Z� x� �
�S�Z�x�

�Z
.

Then, there exists a 
g�x� � F ��x�� such that S�
g�x�� x� � �.

Say we have an irreducible polynomial f�x� � F �x�. We
can use Lemma 3.1 to find the conditions under which f�x�
has a square root in F ��x��. Let S�Z� x� be the polynomial
S�Z� x� � Z� � f�x�. The two conditions of Lemma 3.1
are:

1. S�g� �� � g� � f� � � where f� is the constant term of
f . So, g is a square root of f� in F .

2. SZ�g� �� � �g �� �. This is true as long as f� �� �, and
F is not of characteristic �.

So, from Lemma 3.1 and our previous discussion it fol-
lows that f�x� has a square root as a formal power series if
and only if f� is a quadratic residue over F .

3.2 Finding Irreducible Polynomials With Square
Roots

Lemma 3.1 tells us that any irreducible polynomial with a
constant term that is a quadratic residue in F , has a square
root in F ��x�� (assuming that F is not of characteristic �). As
a subroutine of our algorithm we need to be able to find k
such polynomials in F �x�. Clearly, if we can find k distinct,
monic, irreducible polynomials in F �x�, then by multiplying
each by its constant term we obtain a set of k irreducible
polynomials that have square roots in F ��x��.

Luckily, finding k monic, irreducible polynomials in F
is not hard. In fact, if we don’t care about being as efficient
as possible we can just hunt for them by brute force. That
is, go through the monic elements of F �x� one by one in
order of degree, and check if any of the irreducible polyno-
mials found so far divides them. If none do, we have another
irreducible polynomial, otherwise we move on to the next
element of F �x�. The following lemma says that if we want
to find k polynomials this way, we don’t have to search very
far.

Lemma 3.2 2 Let F be a finite field, and F �x� the ring of
polynomials over F . Then, the number of irreducible poly-
nomials of degree at most n in F �x� is at least �jF jn� ���n.

The proof of Lemma 3.2 can be found in the full version
of the paper [LV98].

If the number k of irreducible polynomials we are look-
ing for is less than jF j, we only need to use degree � polyno-
mials: x�e�� x�e�� � � � � x�ek where ei � F . However, if
k � jF j then Lemma 3.2 says that we do not have to go over
more than polynomial in k elements of F �x� until we find k
monic, irreducible polynomials.

We have seen how to find a set of irreducible polynomials
that have square roots as power series, but how can we find
approximations to the square roots efficiently? Luckily, there
is a well known method for finding square roots modulo x �

using poly��� algebraic operations in F . This procedure is
described in Appendix B.

2Actually, in analogy to the famous Prime Number Theorem over Z, it
is known that the number of irreducible polynomials of degree n over F is
asymptotic to jF jn�n.



4 The Algorithm

In this section, we give a formal description of our algorithm
for testing if a multivariate polynomial is zero. The algo-
rithm is described and then a simple example of how the al-
gorithm runs is presented. The proof of correctness of the
algorithm is in Section 5.

Inputs to the algorithm:

1. A multivariate polynomial P �x�� � � � � xn� �
F �x�� � � � � xn� described by a straight-line program or
given as a black box.

2. Upper bounds di, � � i � n on the maximum degree
of xi in the polynomial P , and an upper bound d on the
total degree of P .

3. The desired probability of error, �, � 	 � � �.

Both straight-line programs and the black-box model are
defined and discussed in Appendix A. In most applications,
the structure of P can be used to obtain the degree bounds.
For example, if P is a symbolic determinant, then the degree
of any variable is not more that the number if times it appears
in the matrix (with multiplicity).

The algorithm: On input: P , d, di, � � i � n, and �:

Find Irreducible Polynomials: Find
P

idlog�di � ��e ir-
reducible polynomials pij ( � � i � n, � � j �
dlog�di � ��e) that have square roots as infinite power
series. Do this by computing by brute force the firstP

idlog�di � ��e monic, irreducible polynomials and
multiplying them by their constant term.

Approximate Square Roots: Set � � �
�

�
dmax�deg�pij ��

�

�
.

Compute approximations rij to the square roots of the
pij’s modulo x�, using the Hensel Lifting algorithm de-
scribed in Appendix B. That is, compute rij �

p
pij

modulo x�.

Add Randomization: Set �i �
P

j �ijrij where �ij is
randomly chosen to be �� or ��.

Evaluate Polynomial: Output ‘nonzero’if
P ���� � � � � �n� �� � �mod x��, else output ‘prob-
ably zero’. Note that we evaluate P after a
univariate polynomial has been substituted in place
of each of its variables. Appendix A explains how to
accomplish this in both the straight-line model and the
black-box model.

Our main theorem follows:

Theorem 4.1 Given a straight-line program for a polyno-
mial P �x�� � � � � xn� over a field F of characteristic �� �, the
above algorithm has the following properties:

1. If P �x�� � � � � xn� is the zero polynomial, then the algo-
rithm always outputs ‘probably zero’.

2. If P �x�� � � � � xn� is not zero, then the probability that
the algorithm outputs ‘probably zero’is no more
than �.

3. The number of random bits used is
P

idlog�di � ��e.
4. The running time is polynomial in d, n, ���, and the

length of the straight-line program, counting arithmetic
operations in F as one step.

When P is given as a black-box and jF j � �d, the same
properties hold, counting evaluations of P as a single step
in the running time.

It is clear that the number of random bits used is as stated.
Running time is also straightforward to verify; more detail is
given in the full version of the paper [LV98]. The main task
is to prove the correctness of the algorithm; this is done in
Section 5.

Note that as in Chen and Kao’s algorithm, we can de-
crease the error probability without using a single additional
random bit!

4.1 An Example

Say you are given a straight-line program over the field with
three elements for the polynomial:

x�x� � �x� � �x� � �

The checking procedure uses two random bits. The poly-
nomial is multilinear, so only two irreducible polynomials
are needed. Searching by brute force gives: x�� and x ���.
The power series roots of these polynomials are:

p
x� � � � � �x� x� � x� � �x� � � � �p

x� � � � � � �x� � x� � x	 � �x
 � � � �
Now, set �� � ��

p
x� � �mod x��, and �� �

��
p
x� � � �mod x�� for �i � ��. The algorithm outputs

‘nonzero’if ���� � ��� � ��� � � �mod x�� �� �. To
see how the algorithm works, we try this for � � �� �� 	� �,
and get the following table:

�� �� mod x mod x� mod x� mod x�

� � � � � � � � �� �
� �� � � �� � �� � �� �
�� � � � � � �� � �� �
�� �� � � �� � �� � �� �

Note that as we use better approximations of the square
roots and compute modulo larger powers of x, the probabil-
ity of error (taken over the choice of ��, and ��), goes down.
The number of random bits stays the same!

5 Analysis

In this section, we prove the correctness of the algorithm pre-
sented in the previous section. That is, we show that if the
input polynomial is the zero polynomial, then the algorithm
always outputs ‘probably zero’. On the other hand, if



the polynomial is not identically zero, then we show that the
algorithm makes a mistake with probability less than �.

If P is the zero polynomial in F �x�� � � � � xn�, then sub-
stituting the �i’s in place of the xi’s produces the zero poly-
nomial in F �x�, which is zero modulo x�. Therefore, no mat-
ter what � and the �i are, the algorithm outputs ‘probably
zero’. Showing that the algorithm has error probability �
when P �� � is more involved.

The first basic idea is that we extend our view from the
field F to F �x�, and then to the field of fractions F �x� (el-
ements of F �x� can be viewed as rational functions in x).
Now, the polynomials Z� � pij are irreducible in the ring
F �x��Z�, because the pij are irreducible in F �x�. Hence,
we can look at the field extension of F �x� obtained by ad-
joining to F �x� all the elements

p
pij which are the roots

of the polynomials Z� � pij . This extension is denoted
K � F �x��

p
pij �.

The proof relies on the following lemma. Roughly, the
lemma states that if we evaluate the polynomial P over in-
finite power series, instead of truncated ones, then the algo-
rithm always correctly identifies polynomials that are non-
zero.

Throughout the proof, we write e i for dlog�di � ��e and
denote by M the value

Pn

i�� ei.

Lemma 5.1 Let �ij be �� or ��, for � � i � n, � � j �
ei. For � � i � n, let �i �

Pei
j�� �ij

p
pij .

Then, if P �x�� � � � � xn� is a non zero polynomial in
F �x�� � � � � xn�, then P ���� � � � � �n� �� � in K.

For example, the polynomial x�x���x���x��� over
the field with three elements (reusing the example of Sec-
tion 4.1) is not zero in F �x�� x��. Lemma 5.1 states that if
we evaluate

p
x� �

p
x� � � � �

p
x� � � �

p
x� � � � �

in the field extension F �x��
p
x� ��

p
x� � ��, then we get a

non-zero value.
Proof: We prove Lemma 5.1 by induction on n (the number
of variables in the polynomial). For n � �, the result is
trivial, so we consider n � �. Given P �x�� � � � � xn�, we
rewrite the polynomial as:

P �x�� � � � � xn� �

dnX
i��

xinPi�x�� � � � � xn���

Now, since we assume that P is not the zero polynomial,
at least one of the Pi�x�� � � � � xn��� must be a non-zero
polynomial. Hence, by the induction hypothesis we have
that:

P ���� � � � � �n��� xn� �

dnX
i��

xinPi���� � � � � �n���

is a non-zero univariate polynomial in xn of degree no more
than dn (with coefficients in F �x����� � � � � �n���). The fol-
lowing claim, whose proof is in Appendix C, demonstrates
that �n cannot be a root of this polynomial.

Claim 5.2 �n is of degree � dn � � over
F �x����� � � � � �n���.

This concludes the proof of lemma 5.1.

For each possible selection of the signs �ij , we call
P ���� ��� � � � � �n� a conjugate of P . Using this terminol-
ogy, choosing random �ij ’s can be viewed as choosing a
random conjugate from the �M possible conjugates.

Lemma 5.1 says that if we could compute efficiently with
infinite power series, then, no matter which conjugate we
choose (by choosing the �ij ), P ���� � � � � �n� is non-zero as
long as P is non-zero. However, since we cannot compute
using infinite power series we truncate the �i by doing all
operations modulo x�. Thus, the algorithm can viewed as
evaluating a random conjugate modulo x �.

So, our goal is to show that not more than ��M conju-
gates vanish modulo x�. One way to prove this is to show
that the product of all the conjugates does not vanish mod-
ulo some larger power of x. Luckily, the product of the �M

conjugates is a well studied object, and is called the norm of
these conjugates.3

norm �
Y

��f��gM

P ���� � � � � �n�

�
Y

��f��gM

P

�
� e�X

j��

��j
p
p�j � � � � �

enX
j��

�nj
p
pnj

�
A

For example, say that our polynomial is P �x�� x�� �
x� � x� over the field of three elements, and the irreducible
polynomials are x� � and x� � �. Then norm is:

Y
������f��g

���
p
x� � � ��

p
x� � �� � x� � x� � x�

Note that the norm is a polynomial over F ; all of the
square roots cancel out. This is in fact a general phenomenon
captured by the following claim which is proved in Ap-
pendix C:

Claim 5.3 norm � F �x�

Lemma 5.1 shows that norm �� � since each element of the
product is non-zero. Recall, that our goal is to show that the
norm does not vanish modulo some power of x, and since the
claim states that the norm of P is in fact a nonzero polyno-
mial over F , all we need to do is to upper bound its degree!
We would like to show that the degree of the polynomial
can’t build up very much over the product of the �M conju-
gates. The problem is that the elements inside the product
are not polynomials, and it is unclear what their “degree” is.

We solve this problem by defining a degree function
deg � F �x�

p
p���

p
p��� � � � �

p
pnen � � N with the follow-

ing three properties:

1. deg�fg� � deg�f� � deg�g�

2. deg�f � g� � max�deg�f�� deg�g��

3This norm is the usual Galois Theory norm over the field extension
F �x��

p
p���

p
p��� � � � �

p
pnen �. Note that we are making implicit use of

the fact that the Galois group is �Z��Z�M , which follows from Kummer
Theory. See Appendix C.



3. If f � F �x� then deg�f� is equal to the degree of f as a
polynomial in x.

In order to define the degree function, we need the fol-
lowing claim, whose proof can be found in the full version
of the paper [LV98].

Claim 5.4 Every f � F �x�
p
p���

p
p��� � � � �

p
pnen � can be

uniquely represented in the form:

f �
X
�

f��x�
Y
i�j

p
pij

�ij

where we sum over all vectors � � f�� �gM assigning � or �
to each pair �i� j� with � � i � n, � � j � en, and where
f��x� is an element of F �x�.

The degree function for f is defined using this unique
representation:

deg�f� � max
�

�
�DEG�f�� � X

i�j � �ij��

DEG�pij�

�

�
A �

where the max is taken over all non-zero summands in the
unique representation of f , and DEG is the regular degree
function on F �x�.

It is a simple matter to verify that this function has the
three properties we want from the degree function. We re-
mark that this definition of degree is actually determined by
the three properties above, because they imply that the de-
gree of

p
pij must be half the degree of pij .

Since norm � F �x�, we know, by the last property of the
degree function, that deg�norm� is the degree of the norm as
a polynomial in F �x�. Now, using the other properties of the
degree function we have:

deg�norm�

� deg

�
� Y
��f��gM

P

�
� e�X

j��

��j
p
p�j � � � � �

enX
j��

�nj
p
pnj

�
A
�
A

�
X

��f��gM

deg

�
�P

�
� e�X

j��

��j
p
p�j � � � � �

enX
j��

�nj
p
pnj

�
A
�
A

� �Md

�
max�deg�pij��

�

�
�

where d is the total degree of P and the max is taken over
all pij’s.

Now, suppose that T conjugates vanish modulo x�. This
means that norm must vanish modulo x�T , so it must be true
that:

�T � deg�norm� � �Md

�
max�deg�pij��

�

�

Therefore we have:

T

�M
� dmax�deg�pij��

��

The left hand side of the above inequality is just the prob-
ability of choosing a “bad” conjugate; that is, one that van-

ishes modulo x�. Setting � � �
�

�
dmax�deg�pij��

�

�
bounds

the probability of error by �. This concludes the proof of
Theorem 4.1.

6 Characteristic 2

In this section, we sketch an extension of our algorithm to
fields of characteristic 2. The essential problem when F is
of characteristic 2 is that no irreducible polynomials have
square roots in F ��x��. Instead, we have to work with cube
roots. By Hensel’s Lemma (Lemma 3.1), a polynomial in
F �x� has a cube root in F ��x�� iff its constant term is a cube
in F . Also, to choose a random conjugate of a cube root, one
needs to multiply by a random cube root of unity, rather than
��. Thus, for now, we suppose that F contains a primitive
cube root of unity 
. (For finite F of characteristic 2, this is
the case iff F is of order �k for k even.) Then the algorithm
proceeds as follows:

1. Find Irreducible Polynomials: Find
P

i log��di � ��
irreducible polynomials pij ( � � i � n, � � j �
log��di � ��) whose constant terms are cubes in F .

2. Approximate Cube Roots: Compute approximations
rij to the cube roots �

p
pij modulo x�. This can be done

using a method similar to the one for finding approxi-
mations to square roots.

3. Add Randomization: Set �i �
P

ij �ijrij where �ij
is randomly chosen in f�� 
� 
 �g.

4. Evaluate Polynomial: Output ‘nonzero’if
P ���� � � � � �n� �� � �mod x��.

The analysis of this algorithm proceeds much as in the
characteristic �� � case, and shows that � � ���poly�n� d�
is sufficient to obtain error probability �. The num-
ber of random bits used by this algorithm is essentially
�log� 	�

P
log��di � �� �

P
log��di � ��, as before.

The only question that remains is what to do when F
does not have a cube root of unity. In the straight-line model,
this is easily dealt with: treat 
 as a formally adjoined cube
root of 1, reducing 
 �’s to �
 � � when they arise in the
computation.

In the black-box model, we treat P ���� � � � � �n� as a bi-
variate polynomial g�x� 
� of degree less than �d in x and at
most �d in 
. Analogous to the argument in Appendix A.2,
it suffices to substitute ��d� � ��d��� values for �x� 
� to dis-
tinguish between the cases that P is the zero-polynomial and
the case that the real value for P ���� � � � � �n� does not mod-
ulo x�. This requires the field to be of size at least d���d���.

7 A Lower Bound

In this section we show that in the black box model our al-
gorithm uses essentially an optimal number of random bits.
The lower bound implies that description size must be taken
into account in order to fully derandomize polynomial iden-
tity checking. In particular, the lower bound implies that the



degrees of the variables, di, are not a good description of size
for use in derandomization.

Theorem 7.1 Let P be a polynomial over a field F that has
n variables and let di be the degree of the variable xi. Let A
be any randomized algorithm that has only black-box access
to P and has the following properties:

	 Makes T �n� d�� � � � � dn� queries to the black box.

	 Outputs ‘probably zero’with prob. � if P � �.

	 Outputs ‘nonzero’with positive prob. if P �� �.

Then A must use at least
Pn

i�� log��di � �� �
log��T �n� d�� � � � � dn�� random bits. In particular, if
T �n� d�� � � � � dn� � poly�n�, then A must use

��� o����

nX
i��

log��di � ��

random bits.

Proof: There are
Qn

i���di � �� possible monomials in the
polynomial P (choosing the degree of each variable which
can be between � and di). The job of the algorithm can be
viewed as checking if all the coefficients of these monomi-
als are zero or not. Each query to the black box at a given
point of F n gives a linear equation on the coefficients of the
polynomial.

We first show that any deterministic algorithm that al-
ways gives the right answer (i.e. outputs ‘probably
zero’if and only if P � �), must make at least

Qn

i���di �
�� queries to the black box. Consider the situation after
the algorithm makes k queries to the black box. If the an-
swers on all these k queries is zero, then we have a system
of k linear, homogeneous equations on the coefficients C i.
If k 	

Qn

i���di � ��, then there is a non-zero solution to
the system — which represents a non-zero polynomial that
is indistinguishable from the zero polynomial to the algo-
rithm. Thus, any deterministic algorithm must make at leastQn

i���di � �� queries to the black box before it is able to
output a correct answer.

Now consider a randomized algorithm that uses r ran-
dom bits and has the properties in the statement of the theo-
rem. We “derandomize” the algorithm and get a determinis-
tic algorithm for the problem by trying all of the � r possible
random coin tosses. Now, by the above argument, this deter-
ministic algorithm must make at least

Qn

i���di � �� queries
to the black box. Thus:

�rT �n� d�� � � � � dn� �
nY
i��

�di � ��

and therefore:

r �
nX
i��

log��di � ��� log��T �n� d�� � � � � dn��

8 Another Algorithm over the Integers

In this section, we mention how the ideas in this paper yield
a purely algebraic alternative to Chen and Kao’s algorithm
over the integers. The main observation, following from a
more general form of Hensel’s Lemma, is that any prime p
that is congruent to 1 modulo 8 has a square root in the 2-
adic integers [Eis95, Sec. 7.2]. Moreover, there is a natural
notion of approximate solutions in the 2-adics, namely solu-
tions modulo ��. Thus our algorithm over Z and its analysis
proceed much as in the finite field case, using the following
analogy:

Irreducible polynomials � Prime numbers
F[[x]] � 2-adics

Square roots mod x� � Square roots mod ��

The use of the �-adics is inessential and can be replaced with
the q-adics for any fixed prime q.
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A Two Models for Implicitly Given Polynomials

A.1 Straight-Line Programs

Informally, a straight-line program [Str72, Kal88] describes
a polynomial by a sequence of algebraic operations. More
precisely, let D be a ring, S 
 D be a finite set of constants,
and x�� � � � � xn be a set of input variables. Then a straight-
line program P is a sequence ofm statements, where the i’th
statement has one of the following forms:

yi � xj for � � j � n

yi � s for some s � S

yi �

��	
�


yj � yk
yj � yk
yj � yk
yj 
 yk

for some j� k 	 i

The output of P is defined to be ym. It is clear that every
such program defines an easily-computable rational function
P �x�� � � � � xn� on Dn, assuming arithmetic in D is feasible.
We say that a straight-line program defines a polynomial, if
the formal expression in the input variables resulting from
following the steps of the straight-line program is in fact a
polynomial in x�� � � � � xn and if, for every � � Dn all divi-
sions occurring in the steps of P on input � are actually di-
visions by invertible elements of D. Many polynomial func-
tions of interest, such as the determinant, can be expressed
as straight-line programs.

Recall that our algorithm requires evaluating a multivari-
ate polynomialP �x�� � � � � xn� defined by a straight-line pro-
gram at univariate polynomials ���x�� � � � � �n�x� modulo
x�. We can do this by simply interpreting the straight-line
program for P (over a field F ) as a straight-line program
over the larger ring R � F �x���x��. We need to check two
things: evaluating P at points of Rn only results in results in
divisions by invertible elements ofR, and that these divisions
can be done efficiently. To see this, consider the evaluation
of P on �h��x�� � � � � hn�x�� � Rn. Taking every step of this
evaluation modulo x, it is easy to see that we obtain the eval-
uation of P on �a�� � � � � an� � Fn, where a�� � � � � an are the
constant terms of h�� � � � � hn. We know that evaluatingP on
elements of F n never results in division by 0, so whenever
P attempts to invert an element of R, it must be an element
with nonzero constant term. The technique in Appendix B
for inverting g��x� during Hensel lifting shows that every el-
ement of R with nonzero constant term is invertible and that
this inverse can be computed with poly��� operations in F .

Remark. When discussing straight-line programs over
finite fields, there is some ambiguity in the statement
P �x�� � � � � xn� � �. It could mean that the polynomial
obtained by applying the steps of P to the indeterminates
x�� � � � � xn is the zero element of the ring F �x�� � � � � xn�. Or
it could mean that P defines the zero function on F n; that
is, P �a�� � � � � an� � � for all a�� � � � � an � F . Although
these two conditions are equivalent over infinite fields, they
are not in finite fields. For example, the polynomial xq � x
vanishes at all points of GF�q� but is not the zero element of
GF�q��x�. The two notions are equivalent, however, when-



ever jF j is greater than the degree di of P in each vari-
able xi. When this condition does not hold, our algorithms
test whether P �x�� � � � � xn� is the zero element of the ring
F �x�� � � � � xn�. We note that the Schwartz-Zippel approach
requires that the the field is larger than the total degree to
work at all, whereas our algorithm is meaningful even when
the field is GF���.

A.2 The Black-Box Model

The definition of this model is as one would expect —
instead being given a description of P , our algorithm is
given oracle access to a “black-box” that will evaluate P
at any point of F n. In this case, we cannot directly eval-
uate P at univariate polynomials ���x�� � � � � �n�x�. In-
stead, we observe that the univariate polynomial g�x� �
P ����x�� � � � � �n�x�� has degree less than �d, where d is
the total degree of P , because each � i�x� has degree less
than �. Moreover, we can evaluate g at any point of F us-
ing the black-box for P . Suppose we evaluate g at �d dis-
tinct points of F . If all the values obtained are zero, then g
must be the zero polynomial so it certainly vanishes modulo
x� and our algorithm should output ‘probably zero’.
However, if at least one of the values is nonzero, then P
must be a nonzero polynomial and our algorithm should out-
put ‘nonzero’. Note that this approach works whenever
jF j � �d. This type of restriction on degree is typical
of identity-testing algorithms in the black-box model (cf.,
[CDGK91])

B Finding Approximations to Square Roots

In this section, we describe how to find approximations to
square roots of a polynomial. The method we describe con-
structs an approximation modulox�� given an approximation
modulo x�. This is similar to what can be done for Newton
approximation.

Say we are trying to approximate the square root of
the irreducible polynomial f�x� � F �x�. Let g��x�, � �

�� �� 	� � � � be successive approximations of
p
f�x�. That is,

g��x�
� � f�x� �mod x��

The first approximation, g��x�, is simply the square root
of f� in F : g��x� �

p
f�. (Notice that, in our algorithm,

we always construct the polynomial f so that we know the
square root of the constant term .)

Now, assume that we have found the �’th approximation,
g��x�, such that g��x�� � f�x� �mod x��. The ��’th ap-
proximation has the form:

g���x� � x�p�x� � g��x��

where p�x� is a polynomial of degree �� �. We want to find
a p�x� so that g���x�� � f�x� �mod x���. Substituting for
g��, this is equivalent to

�x�p�x�g��x� � g��x�
� � f�x� �mod x���

Since g��x�� � f�x� �mod x��, we know that f�x� �
g��x�

� is divisible by x� and we obtain:

f�x�� g��x�
�

�x�
� p�x�g��x� �mod x��

The polynomial g��x� has an inverse in F ��x�� which can
be found by the following trick. Write g��x� � g��xg�� �x�,
and then note that:

�

g��x�
�

�

g�

�
� �

xg�
�
�x�

g�

�

�
�

g�

�
�� xg�� �x�

g�
�
x�g�� �x�

�

g��
� x�g�� �x�

�

g��
� � � �

�

Since p�x� has degree �� �, we have:

p�x� �

�
f�x�� g��x�

�

�x�

��
�

g��x�

�
�mod x��

So, we can find p�x� by computing �
g��x�

�mod x�� us-
ing the trick, and plugging into the above equation.

C Algebraic Lemmas

We lead up to the proofs of Claims 5.2 and 5.3 with a
few intermediate facts. For notational convenience, let
fr�� � � � � rMg � fpij � � � i � n� � � j � eig. Recall
that r�� � � � � rm � F �x� are irreducible polynomials, and we
were studying the field extensionK � F �x��

p
r�� � � � �

p
rn�

over F �x�. First we obtain the degree and Galois group of
this extension using Kummer theory [Lan93, VI, Thm. 8.1].
The full derivation of the Galois group can be found in the
full version of this paper [LV98]. The result is:

Lemma C.1 The Galois group of K�F �x� consists exactly
of automorphisms � of the form ��

p
ri� � �i

p
ri for any

���� � � � � �M � � f��gM .

We now proceed to the proofs of Claims 5.2 and 5.3.

Proof (of Claim 5.2): Clearly, it suffices to show that for
i � j � M , � �

p
ri�� � � � � � p

rj � K has degree at
least �j�i over L, where L � F �x��

p
r�� � � � �

p
ri�� Let

f � L�x� be the irreducible polynomial for � over L. For
any �i��� � � � � �j � f��g, there is an automorphism � of
K fixing L and taking

p
rk to �k

p
rk for i 	 k � j. (By

our description of the Galois group of K�F �x�.) Notice that
� has �j�i distinct images under such automorphisms. For
any such �, we have f������ � ��f���� � �, since � is an
automorphism fixing L. Thus, f has at least �j�i roots, and
� is of degree at least �j�i over L.

Proof (of Claim 5.3): First observe that by the characteri-
zation of the Galois group of K�F �x� above, norm is in fact
the usual Galois-theoretic norm of P ���� � � � � �n� from K
to F �x�. And, since norms always lie in the base field (see
[Lan93, VI,Thm 5.1]), norm � F �x�. But we need to prove
that norm is in F �x�, not F �x�. This follows from the fact
that norm is “integral” over F �x� using standard theorems,
namely [Lan93, VII, Cor. 1.6] and [Lan93, VII, Prop. 1.7].
The complete proof can be found in the full version of this
paper [LV98].


