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Abstract
We revisit the generdR L vs. L question, obtaining the following results.

1. Generalizing Reingold’s techniques to directed graplespresent a deterministic, log-space algo-
rithm that given aegular (or, more generallyEulerian) directed graplZ and two vertices and
t, finds a path betweenandt if one exists.

2. If we restrict ourselves to directed graphs that are egahdconsistently labelledthen we are
able to producepseudorandom walkfor such graphs in logarithmic space (this result already
found an independent application).

3. We prove that if (2) could be generalized to all regulaedied graphs (including ones that are not
consistently labelled) theh = RL. We do so by exhibiting a new complete promise problem
for RL, and showing that such a problem can be solved in determcitogarithmic space given a
log-space pseudorandom walk generator for regular dulegrigphs.

We interpret (1) as indicating that it is n@versibilityper se which Reingold’s techniques rely upon, but
rather the fact that, in the undirected S-T connectivitygbem, the graph may be assumed tadgular
without loss of generality. On the other hand, as far as dkmanizing RL via pseudorandom walks
goes, we obtain by (3) that one can assume regularity witlosst of generality. In other words, for
this purpose, it is not necessary to develop a theory of pgandomness for arbitrary directed graphs
with unknown stationary distributions. The combination(®f and (3) indicates that the only obstacle
towards a full derandomization &L is in handling arbitrary edge labels. It remains to be seem ho
difficult this challenge is to overcome.
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1 Introduction

The research on derandomization of space-bounded corgmstateals with the tradeoff between two basic
resources of computations: memory (or space) and rand@n@ randomness save space in computa-
tions? Alternatively, can every randomized algorithm beaddomized with only a small increase in space?
These questions received the most attention in the contéog-space computations, and with respect to the
following complexity classedL (the class of problems solvable in deterministic log-spaRd., andBPL

(the classes of problems solvable by randomized log-sdgogitams making one-sided and two-sided er-
rors respectively). It is widely believed thit= RL = BPL and proving this conjecture is the ultimate
goal of this body of research.

It turns out that the derandomization RfLL is related to determining the space complexity of one of
the most basic graph problemsNDIRECTED S-T CONNECTIVITY: Given an undirected graph and two
vertices, is there a path between the vertices? (The camdspy search problem is to find such a path).
The space complexity of this problem and the derandomizaifespace-bounded computations have been
the focus of a vast body of work, and brought about some of th& tmeautiful results in complexity theory.
The connection between the two was made by Aleliunas etAHIL ['], who gave arRL algorithm for
UNDIRECTED S-T CONNECTIVITY. The algorithm simply runs a random walk from the first vertex
for a polynomial number of steps, and accepts if and only éf walk visits the second vertex This
beautifully simple algorithm is undoubtedly one of the mios¢restingRL algorithms. It casts the space
complexity of UNDIRECTED S-T CONNECTIVITY as a specific example and an interesting test case for
the derandomization of space-bounded computations. (icpkar, if RL = L, then INDIRECTED S-

T CONNECTIVITY can be solved in deterministic log-space.) Since then pssgon the general and the
specific problems alternated with a fluid exchange of ideasdé@monstrated by [Sav, AKS, BNS, Nis2,
Nisl, NSW, Sz, ATSWZ], to mention just a few highlights ofghiesearch). See the surveys of Saks [Sak]
and Wigderson [Wig] for more on these vibrant research areas

The starting point of our research is a recent result of ReéthfRei] that showed that NDIRECTED
S-T CONNECTIVITY has a deterministic log-space algorithm. On the other hdrepest deterministic
space bound oRL in general remainr:f)(log?’/2 n), established by Saks and Zhou [SZ].

1.1 Our Results

In this paper, we revisit the genefaIL vs. L question in light of Reingold’s results, and obtain thedaling
results:

1. Generalizing Reingold’s techniques to directed graptks.digraphg, we present a deterministic,
log-space algorithm that given a Eulerian digraplii.e. a graph such that each vertex has an outde-
gree equal to its indegree) and two verticeandt, finds a path betweenandt if one exists. This
involves a new analysis of the zig-zag graph product of [RMidt generalizes to regular digraphs
and the directed analogue of the spectral gap, which may inelependent interest.

2. For the special case of “consistently labelled” reguigraphs we provide a “pseudorandom walk
generator.” A digraph isegular of degreeD, or D-regular, if all vertices have indegre® and
outdegreeD; a D-regular digraph iconsistently labelledf the D edges leaving each vertex are
numbered froml to D in such a way that at each vertex, the labels of the incoming®dre all
distinct. Roughly speaking, given a random seed of logaiithength, our generator constructs, in
log-space, a “short” pseudorandom walk that ends at an &lomiformly distributed vertex when
taken in any consistently-labelled regular digraph.



Pseudorandom generators that fool space-bounded coiopgtedre very interesting tools even be-
yond theRL vs.L problem (see [Ind, Siv, HVV, HHR] for just a few of their apgditions). In partic-
ular, even the pseudorandom walks given in this paper girachd an application in the construction
of almostk-wise independent permutations [KNR]. Unfortunately, Itgbus” derandomizations are
more difficult, due to the inability to look at the input. Fotaenple, while it is true that every regular
digraph has a consistent labelling, it is not clear how todfarm a pseudorandom generator that
works for consistently-labelled regular digraphs such ihaould also work for arbitrarily-labelled
regular digraphs.

3. We prove that if our pseudorandom generator from Item Rldoei generalized to all regular digraphs
(instead of just consistently labelled ones), tiikeh = L.

We do so by exhibiting a new complete problem RE: S-T CONNECTIVITY restricted to digraphs
for which the random walk is promised to have polynomial “mgktime,” as measured by a directed
analogue of the spectral gap introduced by Mihail [Mih]. Wert show that a pseudorandom walk
generator for regular digraphs can be used to solve our aieploblem deterministically in loga-
rithmic space.

1.2 Perspective

We now discuss possible interpretations of the aforemeatioesults for the derandomizationRL..

First, let us consider Reingold’s algorithm for undirectg€@-connectivity. What are the properties of
undirected graphs that are intrinsic to this algorithm? @roperty of undirected graphs is reversibility -
a walk on the graph can immediately undo any of its steps bingathe last edge again (in the reverse
direction). A second property is that the stationary disttion of the walk on an undirected graph is well
behaved (the probability of a vertex is proportional to i#gke), and such graphs can easily be reduced to
regular graphs where the stationary distribution is unifo©ur result (1), where we extend the algorithm to
Eulerian digraphs indicates that the latter property ofiregated graphs is much more important here than
the former. After all, Eulerian digraphs are non-revessiblt their stationary distribution is well behaved
and they can easily be reduced to regular digraphs wherdatierary distribution is again uniform (the
reduction is described in Section 5).

A “pseudorandom walk generator” that works for every cdmsiy labelled regulaundirectedgraph
is implicit in [Rei]. (Actually, the generator requires a meaestrictive form of labelling). Our result (2)
formalizes this generator and shows a generalization talaegonsistently-labelled digraphs. In order to
get a general pseudo-random generator for space-boundedagies (which as mentioned above is a goal
of independent interest) there are two restrictions toame: regularity and consistency of the labelling.

It is well known that every regular digraph has a consistabelling . Furthermore, regularity already
proved crucial in our result(1). It may therefore seem thatinost stringent of the requirements in our
construction is regularity rather than consistent labglliOur final result (3) shows that in this context (of
derandomization with pseudorandom walks) regularity gep8ally irrelevant. Consistent labelling is in
fact the only obstacle towards a full derandomizatiorRdg. It remains to be seen how difficult this is to
overcome.

Why is consistent labelling so important? First, as we nakdve,in the context of pseudorandom
walksit is not clear how useful is the mere fact that consistentllaiy exists A pseudorandom walk is
an operation that is oblivious to the particular input graplt on the other hand, consistently labelling a
graph may not be oblivious (and in fact seems rather “glgbdarherefore, it is not clear how to transform
a pseudorandom walk for regular consistently-labelledagibs into one that is pseudorandom for general



regular digraphs. An intuitive reason for the importancehaf labelling is that for any fixed sequence of
edge labels, the corresponding walk on a graph with comsitbels cannot lose entropy (the distribution
of the final vertex has as much entropy as the distributiorhefdgtart vertex). On the other hand, with-
out the assumption on the labelling, entropy losses mayroctherefore progress made in one part of a
pseudorandom walk (i.e. an increase in entropy) may bedtst in the same walk.

1.3 Techniques

The main technical step in the proof of our results (1) ands(@8h analysis of a zig-zag graph product [RVW]
applied to regular digraphs. More specifically, we boundspectral gap(as defined by Mihail [Mih] and
Fill [Fil] in the context of nonreversible Markov chains) thfe graph obtained by the zig-zag product of two
regular digraphs. An analogous bound was proven in [RVW]lifatirected regular graphs, but their proof
is not immediately applicable to our setting because it pseperties of symmetric matrices. It turns out
that our new analysis is actually simpler than the one in [RV&/en though it applies to a more general
setting. The proof we present here is even simpler than thdhat appeared in the preliminary version of
this paper [RTV]. The new proof is based on an approach of Roaa and Vadhan [RV], who used it to
analyze a new ‘derandomized squaring’ operation.

Another contribution, that may be of independent intereshe new complete promise problem we
present forRL. Very loosely, this problem is st-connectivity in rapidlyiximg Markov chains (where in
the ‘Yes’ case, both nodesandt have noticeable probability mass under the stationaryiligion of
walks starting at). A complete problem foRL based on Markov chains was previously known (see the
survey of Saks [Sak]). However, in that problem one examihedehavior of a walk at a particular time
stept. On the other hand, in the new complete problem we discusbehavior of the walkin its limit
(i.e., we are interested in the stationary distributionlictfa problem seems much more amenable to the
techniques of [Rei]. In particular, even in the undirectade; we do not know how to space-efficiently and
deterministically simulate the distribution reached byaadom walk after a fixed number of steps (unless
this walk was long enough to approach the stationary digidh).

In the proof of our result (3), we define (as a mental expertireenegular digraph which can be thought
of as a “blow-up” of the input graph in the new complete prammsoblem forRL. More specifically,
every vertex in the input graph corresponds to a block oficestin the blow-up graphs, with multiplicity
that is linearly related to the weight of the original vertmder the stationary distribution. Intuitively, as
heavy vertices are split into many more vertices in the blpagraph, we indeed obtain a graph where
the stationary distribution is uniform (and is thereforguiar). We are not able to construct this blow-up
graph efficiently but we can show (again as a mental expetntleat for some (inconsistent) labelling of
the edges in the blow up graph a walk on the blow-up graph altuiprojects” onto the original graph.
Furthermore, the projected walk can be easily and effigiesithulated by only referring to the original
input graph. By assumption, we know how to generate psendora walks for the blow-up graph and as
we show, simulating the projection of such walks on the aagigraph is sufficient to solve the promise
problem.

It is natural to attempt the general framework of derandation studied here with a different measure
of expansion (rather than analogues of eigenvalue gap). |I8ecansider here the combinatorial measure
of edge expansionWe show that edge expansion is preserved and degree istbductaking aeplace-
ment productvith an expander graph. We show, however, that edge exparssitt necessarily improved
by powering in digraphs, and it is not clear that there is atieio“local” operation that increases edge
expansion. See Appendix A.9 for detalils.



1.4 Organization

We begin by defining notions of expansion for digraphs anthgiether technical preliminaries in Section 2.
We present in Section 3 our néR/L-complete promise problem. The operations of poweringacgment
product and zig-zag graph product are defined for digrapB&ation 4, and the effect of powering and zig-
zag product on regular digraphs is analyzed in Section 8irlgao our algorithm for finding paths in regular
digraphs. Our construction of universal transversal secggfor regular consistently-labelled digraphs, and
our pseudorandom walk generator for regular consistdéaliged digraphs are presented in Section 6. In
Section 7 we prove that a pseudorandom walk generator fargeregular digraphs would impl = RL.

We give a discussion of other measures of expansion in Appén€.

2 Preliminaries

2.1 Graphs and Markov Chains

In this paper, we consideatirected graphs (digraphs for short), and allow them to have multiple edges,
and have self-loops. A graph @ut-regular (resp.,in-regular) if every vertex has the same numberof
edges leaving itD is called theout-degree(resp.,in-degred. A graph isregular if it is both out-regular
and in-regular.

Given a graphG on N vertices, we consider the random walk @described by the transition matrix
Mg whose(v, u)'th entry equals the number of edges franto v, divided by the outdegree of!

More generally, ifM N> is a matrix with non-negative entries such that for everg [N] we have
>, M(v,u) = 1, then we say thad/ is aMarkov chain on state spacgV]. For a Markov chainm/™ >,
we define theunderlying graph of M as the grapiG = ([N], E) such that(u,v) € E if and only if
M(v,u) > 0. A distribution7 € R¥ is stationary for a Markov chainM if M7 = =. Note that if

7 is stationary forM, thensupp(r) e {v : w(v) > 0} is a closed subset d¥/ in the sense that there
are no transitions fromaupp() to its complement; thus/ is well-defined as a Markov chain restricted to
supp(m). A Markov chain}M is time reversible with respect to a stationary distributianif for every two
verticesu,v € [N] we haver(u)M (v,u) = w(v)M(u,v). If G is an undirected graph, the¥i is time
reversible with respect to the stationary distributicn) = d(u)/2m, whered(u) is the degree of andm
is the number of edges. A random walk on a directed graph, V@Ewis typically not time reversible.

We are interested in the rate at which a Markov ch&inconverge to a stationary distribution For
a time-reversible Markov chain/, it is well-known that the rate of convergence is charazestiby the
second largest (in absolute value) eigenvalgéM) of the matrix M. If M is not time-reversible (for
example, ifM is the random walk on a directed graph), thehneed not have real eigenvalues, and the
stationary distribution need not have the largest eigerval absolute value, so the time-reversible theory
is not immediately applicable.

Following Mihail [Mih] and Fill [Fil], we introduce a paramer A\(M) which is equal to\s (M) if M is
time-reversible, but that remains well-defined even for-oe-reversible Markov chain. For a probability
distributionm € RY on vertices, we define a normalized inner producRénby:

EES z(v) - y(v)

<.Z', y>7r = ’
vesupp(m) 7T(’U)

0ften the transition matrix is defined to be the transposeiptiefinition. Our choice means taking a random walk corredpo
to left-multiplication by M.



and a norm|z||x of V/{x,z),. Note that this normalization makesitself a unit vector (i.e||7|. = 1),
and also implies that is orthogonal tar iff > x(v) = 0. (Technically,(-, -, ) is only an inner product on
the subspacéz € RY : supp(x) C supp(n)}, since there are nonzero vectarsutside this subspace such
that||z||, = 0. However, it will be convenient to use this notation for &y vectors irR™.)

Definition 2.1 Let M be a Markov chain and be a stationary distribution fod/. We define thepectral
expansionof M with respect tar to be

(M) 4 [ Mz
4 z€RN (z,m) =0 ”xHW ’

For a digraphG and a stationary distribution af/, we often write\ (G) instead of\; (M¢).

As noted above, when/ is time-reversible, then (M) equals the second largest eigenvalue (in ab-
solute value) of\/ (more precisely, the submatrix 8f consisting of the rows and columnssapp(r)). In
general \; (M) equals the square root of the second largest (in absolute)vaf M M, WhereJ\Zl(u, v) =
m(u)M (v, u)/m(v) (again, restricting to submatrices so that € supp(w)).

The following lemma shows that X, (A1) is small, then the Markov chain converges quicklyrto

Lemma 2.2 Letw be a stationary distribution of Markov chai¥ on [N], and leta be any distribution on
[N] such thatsupp(«) C supp(w). Then

Mo —7]lx < Ar(M)" - [la = 7l

In particular, if we start at a vertex € supp(7) and run)/ for ¢ steps, then we end at vertexc supp(m)

with probability at leastr(w) — Az (M) - \/7(w)/7(v).

The above lemma refers to convergence in (normaliZedjistance. The following lemma shows that
this implies convergence in standard variation distance.

Lemma 2.3 For any distributiona, the variation distance betweenand is at most|a — 7|| .

It is well-known that (connected, nonbipartite) undirecigraphsG always satisfy\.(G) < 1 —
1/poly(N, D), where N is the number of vertices ant the degree [Lov]. That is, undirected graphs
have at most polynomial mixing time. However, in generaédied graphs),(G) can be exponentially
close to 1, and thus the mixing time exponentially large.

Just as in the undirected case, the spectral expansion dasubded in terms of the sizes of cuts in the
underlying graph.

Definition 2.4 Let M be a Markov chain withV vertices andr a stationary distribution. Theonductance
of M with respect tar is defined to be

def . ZueA,ng 7T(’LL)M(’U, u)
= min
A:0<m(A)<1/2 m(A)

Lemma 2.5 ([SJ, Mih, Fil]) Let M be a Markov chain oV vertices such thad/ (u, u) > 1/2 for everyu
(i.e. M is “strongly aperiodic”), and letr be a stationary distribution af/. Then\, (M) < 1—h,(M)?/2.



When the stationary distribution is uniform on the vertices afr, then the conductance defined above
coincides exactly with the “edge expansion”@f defined belovy.

Definition 2.6 LetG = (V, E) be a directed graph in which every vertex has outdedved hen theedge
expansionof G is defined to be
. E(A,A)
G) = _
) = D AL AT
where the minimum is taken over sets of vertideend E(A, A) is the set of edge:, v) whereu € A and
v ¢ A

2.2 Complexity Classes

We letLL, RL, NL, BPL denote the standard logspace complexity classes. We deflneprRL and
prBPL as the respective classespbmise problemsindsearchL, searchRL andsearchNL as the
respective classes akarch problems See Appendix A.2 for detailed definitions and for definitioof
reductions between search problems. We note the follovaaglt:

Proposition 2.7 If prBPL = prL, thensearchRL = searchL.

3 A New Complete Problem forRL

S-T CONNECTIVITY and its search version, D PATH, both defined below, are two of the most basic
problems in computer science.
S-T CONNECTIVITY:

e Input: (G, s,t), whereG = (V, E) is a directed graphs,t € V

e YES instances:There is a path from to ¢ in G.

¢ NO instances:There is no path fromto¢in G.

FIND PATH:
e Input: (G, s,t), whereG = (V, E) is a directed graphs, ¢ € V, andk € N
e Promise: There is a path fromto ¢ in G.
e Output: A path fromstotinG.

Itis well-known that S-T ©NNECTIVITY is complete foilNL, and the same argument shows thatd-
PaTH is complete fosearchINL. Here we are interested in the complexity of restrictionthese problems.
The recent result of Reingold [Rei] shows that their restics toundirectedgraphs, UWWDIRECTED S-T
CONNECTIVITY and UINDIRECTED FIND PATH, are inL andsearchL, respectively.

It was known (see [Sak]) that a certain restriction of S-ONBIECTIVITY was complete foprRL,
specifically one where we look at the probability that a randealk of a particular length goes frosto ¢:

To see that(G) = h.(G) whenr is the uniform distribution, note that the fact that the istzdry distribution is uniform
implies thatG is biregular, which in turn implies thaf (A, A) = E(A, A).

6



SHORT-WALK S-T CONNECTIVITY:
e Input: (G, s,t,1%), whereG = (V, E) is a directed graphs, t € V
e YES instances:A random walk of lengttk started froms ends at with probability at least /2.
e NO instances:There is no path fromto¢in G.

However, this problem does not seem to capture the propartieINDIRECTED S-T CONNECTIVITY
used in Reingold's algorithm [Rei]. His algorithm useseslon a measure of expansion, specifically the
spectral gap, which refers to theng-termbehavior of random walks i@ (as opposed to walks of a partic-
ular lengthk). We give a complete problem that seems much closer, smbiftry restricting to graphs of
polynomial mixing time (as measured Ry (G)).

POLY-MIXING S-T CONNECTIVITY:
e Input: (G,s,t,1%), whereG = (V, E) is a out-regular directed graph,t € V, andk € N

e YES instances:The random walk oriz has a stationary distributiom such that\,(G) < 1 —1/k,
andr(s),m(t) > 1/k.

e NO instances:There is no path fromto¢in G.

POLY-MIXING FIND PATH:
e Input: (G,s,t,1%), whereG = (V, E) is a out-regular directed graph,t € V, andk € N
e Promise: \;(G) <1 —1/k, andrs(s), ms(t) > 1/k.
e Output: A path fromstotinG.
The completeness of these two problems is given by the foliptheorem.

Theorem 3.1 POLY-MIXING S-T CONNECTIVITY is complete foprRL. POLY-MIXING FIND PATH is
complete fosearchRL.

Proof: See Appendix A.3. |

4 Operations on Directed Graphs

Given theRL-complete problem from the previous section, it is natunahsk whether Reingold’s algo-
rithm [Rei] for UNDIRECTED S-T CONNECTIVITY can be generalized to work for the complete prob-
lem. Recall that the algorithm works by taking any undirdoggaphG and applying a sequence of op-
erations to improve its expansion, as measured by spe@pal §pecifically, it relies on a pair of opera-
tions that doubles the spectral gap while keeping the degpastant (and increasing the number of ver-

tices by a constant factor). Since the initial (non-bigartconnected) undirected graphhas spectral gap

v(G) oy AG) > 1/poly(N), afterO(log N) operations, we have a gragh with v(G’) > 1/2. That

is, G’ is a (constant-degree) expander graph and in particuladiaaseterO(log N) (in each connected



component). Then s-t connectivity can be decided in logspgoenumerating all paths 6i(log V) from
S.

Attempting to generalize this approach to fRd.-complete problem &LY-MIXING S-T CONNEC-
TIVITY, we observe that the initial condition(G) > 1/poly(V) holds by the promise (taking/ to be
the length of the input). In addition, if we manage to conv@rinto a constant-degree graghl with
v(G") > 1/2 while maintaining the fact that and¢ have stationary probability at leastpoly(N), then
Lemma 2.2 implies that there is a path of len@tfiog V) from s to t and we can solve s-t connectivity by
enumerating all such paths.

Thus, the “only” missing part of the algorithm is generaigithe operations used by Reingold to im-
prove expansion (without increasing the degree) to didegtaphs. Below we suggest some possibilities.

Labellings. Let G be a digraph withV vertices such that every vertex has outdegree at ggt and
indegree at mosD;,. (Recall that we allow multiple edges and self-loops.)two-way labellingof G
provides a numbering of the edges leaving each verteX aking some subset of the numbers frorto
Doy, as well as a numbering of edges entering each vertéx uding some subset of the numbers from
to D;,. (No two edges leaving a vertex can have the same number,catvadbredges entering a vertex can
have the same number.) Such a graph together with its twolatmlling can be specified byratation
map Rotq : [N] X [Dous] — ([N] X [Din]) U{L}, whereRotq(v,7) = (u, j) if there is an edge numbered
i leavingv and it equals the edge numbergenteringu, andRotg (v, ) = L if there is no edge numbered
leavingv. The operations below will be defined in terms of 2-way labgh, as specified by rotation maps.
See the Appendix A.4 for definitions of powering, replacetram zig-zag product for digraphs.

5 Regular (and Eulerian) Graphs

We define RGULAR DIGRAPH S-T CONNECTIVITY and REGULAR DIGRAPH FIND PATH to be the
problems obtained by restricting S-TOANECTIVITY and AND PATH to regular digraphs, and similarly
EULERIAN S-T CONNECTIVITY and EULERIAN FIND PATH to be the restrictions to Eulerian digraphs —
directed graphs where every vertex has the same in-degreet-alegree. There is no additional promise
in these problems. It is not difficult to see that EERIAN S-T CONNECTIVITY reduces to IDIRECTED
S-T CoNNECTIVITY, simply by making all edges undirected. Whether or fi@indt are connected is
maintained because, in an Eulerian graph, every cut hasathe sumber of edges crossing in both di-
rections. Note, however, that thisn®t a reduction from ELERIAN FIND PATH to UNDIRECTED FIND
PaTH. Nevertheless, here we give a logspace algorithm fareRIAN FIND PATH by generalizing the ideas
underlying Reingold’s algorithm [Rei] to the directed caSehe proof is in Appendix A.5.)

Theorem 5.1 EULERIAN FIND PATH is in searchL.

6 Oblivious Algorithms for Consistently Labelled Graphs

The algorithm given for RGULAR DIGRAPH FIND PATH in the previous section is in the standard com-
putational model, where the input graph is given explictythe logspace algorithm. However, for s-t
connectivity problems, it is also interesting to seek “alolus” algorithms that do not explicitly get the in-
put graph, but are only able to walk on the graph by specifgisgquence of outgoing edge labels. That is,
the algorithm is given the parameters of the input grépfnamely, number of vertice® and degreeD),



and then tries to produce a walk € [D]* such that the walk id7 obtained starting at and following the
edge labels inv visits t at some point.

Notice that the behavior of such an oblivious algorithm iss#g/e to the labelling of outgoing edges
in G, but incoming edge labels are irrelevant. Thus, now we tloihkur D-regular digraphG as being
specified with aone-way labellingthat is, the outgoing edges from each vertex are numbeoed frto D.

(In contrast, the algorithm presented in the previous geaéan be thought of as being givenamabelled
graph, then it constructs its own two-way labelling to fé@ik the applications of the zig-zag product.)

Here we present two types of oblivious algorithms for regudiraphs, one being a deterministic,
logspace construction of “universal traversal sequenaedthe other being a logspace-computable “pseudo-
random generator” for random walks on the graph.

These algorithms will only work on regular digraphs that emesistently labelled which means that
all the edges coming into any vertex of the graph have diskaels, i.e. no vertex can be bothu’s ith.
neighbor andv’s z’th-neighbor (for any distinct verticasandw). In other words, if we use the same labels
to number the edges incoming at each verteX«ifv) is thei'th edge leavingu, we consider it to be the
i'th edge entering), we obtain a legatwo-waylabelling of the graph (in that each label [ip] will get
used exactly once as an incoming label each vertex). Evguyaedigraph has a consistent labelling; this is
equivalent to the fact that every-regular bipartite graph is the union &f perfect matchings. . However,
finding a consistent labelling may not be feasible in logegpand in any case an oblivious algorithm does
not have the freedom to relabel the graph.

We remark that oblivious algorithms like the ones we desaoitten have applications that non-oblivious
algorithms may not. For example, pseudorandom generatoid@ logspace algorithms, such as [Nis2,
NZ], have a variety of applications that do not seem to follitrary deterministic simulations &L,
e.g. [Ind, Siv, HVV, HHR]. Even our pseudorandom generatoséction 6.2 below has already found an
application in the construction of almastwise independent permutations [KNR].

6.1 Universal Traversal Sequences

Definition 6.1 (JAKL ™]) Let D and N be two integers and lef be a subset of the labelleB®-regular
connected digraphs ol vertices. We say that a sequence of valué®ins auniversal traversal sequence
for G, if for every graphGG € G, and every vertex € [N], the walk that starts is and follows the edges of
G according to the sequence of labels visits all the vertidee@graph.

We will show how the RGULAR DIGRAPH FIND PATH algorithm described in the previous section
also implies a log-space constructible universal traveeguence foconsistently labelledegular digraphs.
(The proof is in Appendix A.6)

Theorem 6.2 There exists a log-space algorithm that on inpdt, 1 produces a universal traversal se-
guence for all connected, consistently labelledegular digraphsG on N-vertices.

6.2 A Pseudorandom Generator

In this section we show that the path finding algorithm alsplies a generator with logarithmic seed length
that produces in log-space a “pseudorandom walk” for ctersily labelled regular digraphs. This means
that from any start vertex, following the pseudorandom wiegkls to an almost uniformly distributed vertex.
In other words, just as the random walk, the pseudorandork @alverges to the stationary distribution.
This seems to be a result of independent interest.  In p&atjcwe show in Section 7 that a similar



pseudorandom generator (or even weaker), that works falaegligraphs witharbitrary labels would
prove thatRL = L.

The intuition for the generator is as follows. In the pattdiing algorithm, an expander gragkexp is
constructed. In this graph a short random walk convergekdaahiform distribution. As in the proof for
the universal traversal sequences, the sequence of |dlibks @andom) walk orzexp can be translated to
a (pseudorandom) sequence of labels for a walkzorurthermore, this sequence of labels is independent
of G (and can be computed in log-space without accesS)toNote that all nodes of the original graph
G are expanded to “clouds” of equal size. Therefore, the psamdom walk converges to the uniform
distribution on the vertices @ (which is the projection oK+ of the uniform distribution on the vertices of
Gexp). Formalizing the above arguments will indeed imply a getarthat produces a pseudorandom walk
of length polynomial in the size of the graph. However, aytmaindom walk will converge faster & has a
larger eigenvalue gap. Theorem 6.3 below takes this intowatand implies, in this case, a pseudorandom
walk that is shorter as well. The proof is in Appendix A.7.

Theorem 6.3 For everyN, D € N, §,v > 0, there is a generatoPRG = PRGy p s~ : {0,1}" — [D]¢
with seed lengthr = O(log(ND/é~)), and walk lengtl? = poly(1/v) - log(ND/§), computable in space
O(log(ND/é7)) such that for evergonsistently labelledN, D, 1 —~) regular digraphG and every vertex
s in G, talking walkPRG(U,.) from s ends at a vertex that is distributedclose to uniform (in variation
distance).

7 Reducing all of RL to the Regular Case

In this section, we prove that if there exists a pseudorangenerators for walks on regular digraplisose
edges are arbitrarily labelledthenRL = L and alsosearchRL = searchL. Theorem 6.3 implies
a generator for walks on regular digraphs with the additioestriction that the labelling of the edges is
consistent. Lifting this restriction would imply th&®L = L. In fact, such a generator would also imply
BPL = L. However, we concentrate in this preliminary version ondhge ofRL.

Theorem 7.1 There is a universal constant > 0 such that the following holds for every constant N.
Suppose that for everyy, D € N, 6,y > 0, there is a generatoPRG = PRGn ps~ : {0,1}" — (D¢
with seed lengthr = alog(ND/év), and walk length? = (1/(v9))® - (IND)®, computable in space
alog(ND/dv) such that for every N, D,1 — ) regular digraphG = (V, E) and every vertex € V
and every subsél' C V of density at least, the walk froms following the labelPRG(U,) visits T' with
probability at least(6)*/(ND)*. ThenRL = L andsearchRL = searchL.

Note that the above theorem requires that the ledgth the pseudorandom walks have limited de-
pendence onV and D, being bounded byN D) rather than being polynomial or even linear MD.
Still, this is a much milder requirement than what is achikty our generator for consistently labelled
graphs (Thm. 6.3), which achieves logarithmic dependehi¢e.also note that a pseudorandom generator
for logspace algorithms with logarithmic seed length wauoigly the above theorem, because a truly ran-
dom walk of lengthO(1/v) - O(log(ND/é)) would end afl” with probability at least /2, and such a walk
can be implemented in spacglog(ND/d7)).

Roughly speaking, we will prove Theorem 7.1 by showing tloatefivery poly-mixing grapitz, there
exists a regular digrapt,., such that the correctness of the generatozon implies the correctness of
(a modification of) the generator @r. Thus, if we have a generator that works well on regular gigsa
we obtain a generator that works well on instances@fY*MIXING S-T CONNECTIVITY, which we have

10



shown to beRL-complete (Theorem 3.1). We stress that this construci@amly done in thenalysis and
thus need not be computable in log-space. See the AppenditoAdetails.
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A Appendix

A.1 Proofs Omitted from Section 2
A.1.1 Proof of Lemma 2.2

Proof: [Of Lemma 2.2] We note thai — 7 is orthogonal tor and thatM preserves orthogonality to.
Thus,
|

For the “in particular,” we takex to be the distribution concentratedwaénd note that

M'a =z = [M'(a =)z < Ae(M)" - [l = 7l

o _ (L—7(v))? m(w)? _ 1
_ — <
o=l = 2y S
and that
(M*a)(w) = m(w)? < m(w) - |7 — M'al?.
[ |
A.1.2 Proof of Lemma 2.3
Proof: [Of Lemma 2.3] The variation distance betweeandr equals
Y orw-a) < Y % ()
v (v)>a(v) vesupp(m) v
, 1/2 1/2
a\v) — v
S ( ol ()m)()) ( 5 m)
vEsupp(m) vEsupp(m)
= |la—7|x-1
[ |

A.1.3 Proof of Lemma 2.5
Proof:. [Of Lemma 2.5] Mihail [Mih] proves the bound

A (M) < VT n (M < 1 S2(M)

Here we give a simpler proof, using techniques of Fill [Fil].

First of all, we may assume without loss of generality that) > 0 for everyu € [N]. Otherwise, we
can consider the restriction a8f to the sub-matrix whose rows and columns are indexed bycesrtisuch
that7(u) > 0. Such sub-matrix has the same stationary distribution;tegdegap and conductance &f
and satisfies our assumption.

Define thetime reverseof M as the Markov chairl/ such thatM (u,v) = 7 (u)M (v,u)/7(v). The
following claims are easy to check:
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e M is a Markov chain, that is, for evenry, S M (u,v) = 1.

(Note that we havé™, M (u,v) = 3, w(u)M(v,u)/n(v) by definition, andy>, 7 (u)M (v,u) =
7(v) by stationarity.)

u

e T is stationary forM.

e M is strongly aperiodic.

Define P % A7M. ThenP is also a Markov chaing is also a stationary distribution fd? and, in
addition, we have thaP is time reversiblethat is,(v) P(u,v) = 7(u)P(v,u). The eigenvalues of a time
reversible Markov chai® with stationary distributionr all real, are all at most 1, and we denote the second
largest eigenvalue in absolute value Xy R).

In the particular case @, it is not hard to see that

Ao (P) = (Ax(M))? (1)
and so we are left with the task of proving thatP) < 1 — hZ(M). )
SinceM and M are strongly aperiodic, we can write themes= 7 + 3L andM = % +

L, L are Markov chains with stationary distributian Using this notation, we can write
~ 1 1 1 1 1 1- 1 1=
P=MM = <§+§L> <§+§L> _ZI+ZL+ZL+ZLL
The next observation is thétL + %E is a time-reversible Markov chain with stationary probipitr,
and so ard. L and/, and that\, is a norm for such matrices, so we have

1 1 1 1- 1 -
< Z Z Z Z Z
)\Q(P) < 4)\2([) + 2)\2 <2L+ 2L> + 4)\2(LL)

1 1, (1. 1.
<-+-MN(=L+=L
=515 2<2 ) >

At this point we are ready to use a result of Jerrum and Sm{&l], who prove that for every time-
reversible Markov chair? and stationary distributiom we havels(R) < 1 — h2(R)/2. Applying this

result to L + 3L we get
1 1- 1 1 1=
_L4+-L)<1—-=h2(=L+=L
A2(2 3 >— 2 ”<2 T3 >
It remains to study the conductanceidf + 1 L. We first note that

1 1- 1 1~
he | =L+ =L)| =2hs { =M+ -M
(g8 +38) =2e (g0 + )

because every edge that is not a self-loop has twice as mughtire L (respectivelyL) than inM (respec-

tively M). Finally, we have

1 1~
he | =M+ =M | = h(M
<2 +2 > (M)

This identity comes from the fact that, for every cUfN] — S of the set of vertices we have
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Z m(u)M(v,u) = Z m(v)M (u,v) = Z m(uw)M (v, u)

ueS,vES ueS,vES ueS,vEgS

Collecting all our inequalities together we have

A.2 Definitions of Complexity Classes

We letL, RL, NL, BPL denote the standard logspace complexity classes. Thét is,the class of
decision problems solvable lofeterministidogarithmic space Turing machindR L is the class of decision
problems solvable bgrobabilistidogarithmic space Turing machines with bounded one-sidext,BPL
is the class of decision problems solvabledogbabilistidogarithmic space Turing machines with bounded
two-sided error, andNL is the class of decision problems solvablenmn-deterministiogarithmic space
Turing machines. We require our machines to always termif@atevery input and for every sequence of
random coins or non-deterministic choices. In particullais implies that every computation terminates
within polynomial time.

We also define thpromise versiorf log-space complexity classes.pfomiseproblem is a paifY, N)
of disjoint sets of instances. A promise probl¢i V) is in the clas®rL if there is a deterministic log-
space Turing machine that accepts all the input¥ iand rejects all the inputs iv. A promise problem
(Y, N)isinprRL if there is a probabilistic logarithmic space Turing maehihat accepts inputs i with
probability at least /2 and accepts inputs iV with probability 0. A promise problen(y, N) is in prBPL
if there is a probabilistic logarithmic space Turing maehihat accepts inputs il with probability at least
3/4 and accepts inputs iV with probability at most /4. When dealing with promise problems, we require
probabilistic machines to halt for every input¥hu N and for every sequence of random coins. (We allow
infinite loops for inputs not ir” U NV.)

Finally, we define complexity classes s$arch problemsA search problemis simply a relationk? C

¥* x ¥*. For a relationR and a stringr we defineR(z) = {y : R(z,y)}. The computational problem
associated with a search problétris the following: givenz such thatR(z) # (), output a stringy in R(x).

A relation (or search problem® is log-spaceif there is a polynomiap such thaty € R(x) implies
lyl| < p(|z|) and if the predicaté¢x,y) € R can be decided by a log-space deterministic Turing machine
that has two-way access tcand one-way access {0

A logspace search proble is in searchL if there is a logarithmic space transducérsuch that
A(x) € R(x) for everyx such thatR(z) # 0. (A transducer is a Turing machine with a read-only input
tape, a work tape, and a write-only output tape. The writiegchon the output tape is constrained to always
move right after writing a symbol, but the machine has twg~aecess to the input tape.)

A logspace search probleRiis in searchRL if there is a logarithmic space probabilistic transduder
and a polynomiap such thatPr [A(z) € R(z)] > Iﬁ for everyz such thatR(z) # 0. (We require the
transducer to halt for every sequence of random coins anelyx such thatR(x) # 0.)

All reductionsin this paper are deterministic logspace reductions. Tfieitien of reduction is stan-
dard for decision problems and promise problems.
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For two search problemB; and Ry, we say thatR; reduces taR; if there are two functiong(-) and
g(-,-) such that

1. If Ri(z) is non-empty themRy(f(x)) is non-empty;

2. If z € Ro(f(x)), theng(z, z) outputs a sequenag, . ..,y such that at least one elemeptof the
sequence is iR (z);

3. f() is computable by a deterministic log-space transducer

4. g(x,y) is computable by a deterministic log-space transducer twithway access te and one-way
access ta.

It can be verified that if] € searchINL reduces tdl’, thenIl’ € searchL = II € searchL.

A.3 Proof of Theorem 3.1

Proof: [Of Theorem 3.1] First, we show that these problems angriRL andsearchRL, respectively,
by giving randomized logspace algorithms for them. Giveinatance(G, s, t, 1%), we take a random walk
of lengthm = 2k - In k from s, wherelV is the number of vertices i&. ThesearchRL algorithm simply
outputs this walk, and thprRL algorithm accepts if this walk endsatlf (G, s, ¢, 1¥) is a YES instance,
then by Lemma 2.2, the random walk will endtavith probability at least

7(t) = A (M)™ /7 ()7 (s) > %‘(1—%) VE
1

> Lt 1
kK32 T2k

Now we show that every problem jprRL andsearchRL, respectively, reduce to®RY-MIXING S-T
CONNECTIVITY and RPoLY-MIXING FIND PATH. Let M be a randomized logspace machine, running in
time at mosip(n) < poly(n). Given an input: of lengthn for M, we construct a grapy’ whose vertices
are of the form(i, 7), wherei € {1,...,p(n)} is a “layer”, andr € {0,1}°(°e") describes a possible
configuration ofM (i.e. the state, the contents of the work tape, and the paditi the input head). We let
s = (1, «) wherea is the unique start configuration 8f, andt = (p(n), 3) where( is the (wlog unique)
accepting configuration of/. (In the case of aearchRL algorithm, we havell accept if any of the
strings it outputs satisfy the relatidd.) We create four outgoing edges from each veftex). Two edges
are always self-loops. if= p(n), then the other two edges go4olf i < p(n), then the they go to vertices
of the form(i + 1,7’) and (i + 1,~"), for v/,~" as follows. Ifv is a configuration wher@/ reads a new
random bit, then we take’ and~” to be the two configurations that’ would enter depending on the two
possible values of the random bit.~lfis a configuration wher@/ does not read a new random bit, then we
sety’ = ~” to be the unique next configuration id’s computation one. If v is a halting configuration of
M, then we set/ = +" = ~.

Let us analyze the stationary distribution and mixing tini@ eandom walk on. It can be verified
that the following distributionr is on verticeq, 7) is stationary foiG: choosei uniformly at random from
{1,...,p(n)}, run M for i steps on inputz, and letr be M’s configuration. We see that if € L, then
7(t) > 1/2p(n), and ifz ¢ L, thenn(t) = 0. In both cases(s) = 1/p(n).

To bound the mixing time, we observe that a random walk oftlefig(n) started atiny vertex visitss
with probability 1 — 2=%®() > 1/2. Lemma A.1 below says that has a stationary distribution’ such
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that \/(G) < 1—1/(8 - (3p(n))?) andn’(s) > 0. It follows that=' is the unique stationary distribution
on G, since a random walk started at any vertex eventually pabsasghs and thus converges td (by
Lemma 2.2). Sar’ = .

To conclude, in our reduction, we outpid, s, t, 1%), wherek = 72p(n)2. From the analysis above, this
gives a logspace reduction from any problenp#RL to POLY-MIXING S-T CONNECTIVITY. Similarly,
it gives a reduction from any problem #earchRL to FIND PATH, because with one-way access to any
path froms to ¢ in GG, in logspace we can construct polynomially many computagbiaths ofM/, at least one
of which is accepting, and this in turn, can be used to obtgialgnomially many stringg., . . ., y, at least
of which is inR(x). |

The above proof required the following lemma, which say$ thahow that a Markov chain has poly-
nomial mixing time, it suffices to prove that there is a verdesuch that a random walk of polynomial length
started at any vertex will visi¢ with high probability.

Lemma A.1 Let M be a Markov chain that is strongly aperiodic (i.e. self-lgmmbability at least 1/2 at
each vertex). Suppose there is a vegexd a numbe¥ € N such that from every vertexreachable fromns,
arandom walk of lengtli from v visits s with probability at leastl /2. Then)M has a stationary distribution
7 such that\,(G) < 1 —1/8¢? andx(s) > 1/2¢.

Proof: Let M’ be the restriction of\/ to the set of all vertices reachable from Let 7= be a stationary
distribution of the random walk on of/’. Because of the self-loops and the fact th&t) > 0 (since
every vertex inM’ has a path te), we can bound\, (M) by computing the conductande, (M) and
applying Lemma 2.5. To lower-bound the conductance, we medower boundPr [ X' ¢ A|X € A] =
Pr(X € AN X" ¢ A] /x(A), whereX is chosen according to, X’ is a random step fronX', andA is any
set such thah < 7(A) < 1/2. To bound this, we consider a random walk, . .., X, of length/ started in
the stationary distributiomr, and separate into two cases depending on whatkeA.
If s ¢ A, then the following holds:

(-Pr[XeAnX' ¢ A] Pr(3iX; € AN X;1 ¢ A]
PI"[Xl GA,SG{XQ,...,X[}]

m(A) - (1/2),
where the last inequality holds because a random walk othefg¢from any vertex inG’) visits s with

probability at least /2 by hypothesis.
If s € A, then the following holds:

AVARAVARLVS

(-PriXeANX'¢A] = (-Pr[X¢ANX €A
Pr(3iX; ¢ AA Xip € Al
PriX; ¢ A se{Xs, ..., Xs}]
m(A)/2

m(A)/2

AVAR AVAR AVARV]

Thus, we conclude thadtr [X' ¢ A|X € A] > 1/(2¢) for every A such thatd < 7n(A) < 1/2, and
henceh.(G) > 1/(2¢). By Lemma 2.5\, <1 —1/(2-(20)?).

To lower boundr(s), we note that the expected number of timésvisited inX1, ..., X, equalsr(s)-¢
on one hand, and is at least2 on the other. Thus(s) - ¢ > 1/2. |
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In fact, the converse is also true — if a Markov chain has paiyial mixing time then there is a vertex
s such that a random walk of polynomial length started at amyexewill visit s with high probability.
Indeed, if\;(M) < 1 — ~ and we takes to be any vertex such that(s) > 1/N (whereN is the number
of states), then Lemma 2.2 says that a random walk of lebgthO((1/7) - log(N/pmin)) Will end at s
with probability at least /2N, wherep,,;, is the minimum (nonzero) probability mass underRepeating
O(N) times, we visits with high probability. In cases we are interested in (e.gdoan walks on graphs),
Pmin 1S ONly exponentially small, so the walk length IV is polynomial.

We note that the proof of Theorem 3.1 can be maodified to givengptete problem foprBPL, specif-
ically where the NO instances are replaced with instancel that\,(G) < 1 — 1/k, n(s) > 1/k and
7(t) < 1/2k. We also note that, following [AKL], the randomized algorithm for R y-MIxING S-T
CONNECTIVITY also gives a honconstructive existence proof of polynoteiadith universal traversal se-
guences for the corresponding class of graphs:

Proposition A.2 There is a polynomiap such that for everyN, D, k, there exists a sequeneg <
[D]P(N.D:k) such that for everyV-vertex labelled directed grapf of outdegreeD and vertexs in G such
that \s(G) < 1 — 1/k, following the walky from s visits all verticesv of G for whichms(v) > 1/k.

A.4 Operations on Directed Graphs

The first operation used by Reingold [Rei] to improve expamss powering, simply replaces the edge set
with all walks of lengtht in the graph.

Definition A.3 (powering) LetG be a two-way labelled graph given by rotation maptq : [N] x [D] —
[N] x [B]. Thet'th power of G is the graphG® with rotation map is given bRotg: : [N] x [D]} —
[N]x[B]* defined byRot, (vo, (k1, k2, .-, ki) = (vi, (be, bi—1, - .., £1)), where these values are computed
via the rule(v;, ¢;) = Rotg(vi—1, ki) (and if any of these evaluations yield then the final output is also
1).

In directed graphs, powering improves expansion (i.e. geslumixing time) as well as it does in undi-
rected graphs:

Lemma A.4 For any stationary distributionr of G, A\, (G?) < A\ (G)!.3

Powering alone does not suffice, because it increases theedefthe graph. Thus, Reingold [Rei]
requires an additional operation to reduce the degree widlataining the expansion. For this, there are two
possibilities — the replacement product and zig-zag prodlicese operations were defined and analyzed
in [RVW] for undirected regular graphs, and it is not clearawis the ‘right’ generalization to irregular
directed graphs (particularly non-Eulerian graphs, whieeendegree and outdegree of an individual vertex
may be unequal). Here we suggest one possibility. For siifyliwe restrict to rotation maps where the
outdegree bound is the same as the indegree bousd

In the replacement product, we combine a gréhhwith N; vertices and a rotation map of degrBeg
with a graphGs that hasD,, vertices and a rotation map of degr@e. The product graph has; V; vertices,
that we think of as being grouped inf¢, “clouds” of size D, one cloud for each vertex ¢f;. Each cloud
is a copy of the graplirs. In addition, if thei-th outgoing edge from vertexin G; was thej-th incoming
edge inw (that is, if Rotg, (v,i) = (w, j), then, in the product graph, there is an edge fromiitievertex
in the cloud ofv to the j-th vertex in the cloud ofv. The formal definition follows.

3In undirected graphs this is actually an equality, but irralips it need not be.
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Definition A.5 (replacement product) If GG; is a two-way labelled graph ofy; vertices with rotation map
Rotg, : [N1] x [D1] — [N1] x [D1] and Gy is a two-way labelled graph ob; vertices with rotation map
Rotg, : [D1] X [D2] — [D1] x [D2], then theireplacement productG; (DG is defined to be the graph on
[IN1] x [D4] vertices whose rotation mapot @, : ([V1] X [D1]) x [Da +1] — ([N1] x [D1]) x [Dy +1]

is as follows:

ROtG1®G2((va k)72)
1. Ifi < Dy, let(m, j) = Rotg, (k, i) and output((v, m), 7).

2. Ifi = Dy + 1, output(Rotq, (v, k), ).
3. If the computation dRot¢, or Rotg, yields_L, then the output is_.

A variant, called thebalanced replacement productG; ® G5 in [RVW], gives equal weight to the
edges coming frond/; and fromG,, by duplicating edges that go between clouds (ie edges di/fiee2)
D, times, for a total degree @fD-.

The zig-zag product, introduced in [RVW], combines, as b&fa graphG; with N; vertices and a
rotation map of degre®; with a graphG, that hasD; vertices and degre®,. The product graph has
N1 D, vertices as in the replacement product, but now there is ga bdtween two vertices if there is a
length-three path in the replacement product graph bettesn, and the middle edge in the path crosses
between two clouds. In particular, the degree of the ziggragluct graph iD?, instead ofD, + 1. The
formal definition is below.

Definition A.6 (zig-zag product [RVW]) If G is a labelled graph onV; vertices with rotation maRotg, :
[N1] x [D1] — [N1] x [D1] and Gy is a labelled graph onD; vertices with rotation mafRotq, :
[D1] x [D2] — [D1] x [Ds], then theirzig-zagproductG; @ G-, is defined to be the graph divy] x [Dy]
vertices whose rotation mapot, @, : ([N1] x [D1]) x [D3] — ([N1] x [D1]) x [D3] is as follows:

ROtG1®G2 ((’U, k)7 (17]))
1. Let(K',i') = Rotg, (k, ).

2. Let(w,?") = Rotg, (v, k).
3. Let(4, /') = Rote, (¢, j).
4. output((w, 1), (7, ).

In typical applications of the zig-zag or replacement padue.g. [RVW, Rei],G, is taken to a
constant-degree expander graph (yéG2) = Q(1)). Then, for the case of undirected graphs, it is known
that the zig-zag product and the balanced replacement grrbduie spectral gap that is at most a constant
factor smaller than the spectral gap @f [RVW, MR2].# Thus they roughly maintain expansion while
reducing the degree to a constant, and this suffices for Rieisgalgorithm [Rei].

Unfortunately, we do not know how to analyze the effect ofalyezag and/or replacement products (or
variants) on spectral gap for directed graphs in generdedd, even the stationary distribution is not well-
behaved under these products; we can construct examples thieestationary probability of a vertexgoes

4Actually, the undirected definitions of these products amgricted to two-way labellings that anedirectedin the sense that
every edg€/u, v} has the same label as an edge leaviras it does entering. That is,Rot o Rot is the identity.
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from being noticeable (e.gl/N?) to exponentially small. In Section A.9, we show that thelaepment
product can actually be analyzed with respecetige expansiqgnbut then it turns out that powering no
longer behaves well.

We can analyze these products (and thus extend Reingodpisithin) for the case afegular digraphs,
and these results are presented in the next section.

A.5 Proof of Theorem 5.1

To prove Theorem 5.1, it suffices to provide a logspace alyorifor REGULAR DIGRAPH FIND PATH,
because Eulerian digraphs can be reduced to the case ofil2ireggraphs by replacing each vertexvith

a directed cycle”, of deg(v) vertices, where we connect one outgoing edge afid one incoming edge of
v to each of the vertices i@',. Thus in the rest of this section we focus on regular digraphs

A.5.1 Basic Facts

In a regular digraph of degre®, the rotation mafRotq : [N] x [D] — [N] x [D] is a permutation. Note
that the uniform distribution is a stationary distributiohthe random walk on a regular digraph. Thus,
when working with regular digraphs, the inner prod(ct) . and the spectral expansion (G) will always
be with respect tar being the uniform distribution, and we will usually omitfrom the notation.

First, we note that regular digraphs have nonnegligiblectsgegap, just like in the undirected case,
provided every vertex has a self-lodp.

Lemma A.7 LetG be a connected)-regular digraph onNV vertices in which every vertex has at leadd
self-loops. Then(G) < 1 — Q(a/DN?).

Proof: We reduce to the undirected case using a technique of FiJl [Eet M = M. The spectral
expansion\(1/) equals the square root a(M 7T M), i.e. the second largest eigenvalue (considering sign)
of the symmetric matrix\/” M. Because of the self-loops @&, we can writeM] = oI + (1—a)L, whereL

is the transition matrix for the random walk éhwith the a.D self-loops removed from each vertex. Then

MTM =T+ 2a-(1-a)- (L+L")/2+ (1 —a)’LTL.

Now, (L + LT)/2 is the transition matrix for the connected, undirectdd-regular graph obtained by
taking the edges aff together with their reversals. Thus, by the known bound erstttond eigenvalue of
undirected graphs [Lov], we have((L + LT)/2) <1 - Q(1/DN?). Thus,

AM)? = Np(MTM)
A2+ (1-a)?+2a-(1—a) - N(L+L")/2)
1 —Q(a/DN?),

as desired. [ |

%In the preliminary version of this paper [RTV], we erronelgussed the standard notion of aperiodicity (i.e. gcd of gtlle
lengths is 1) instead of requiring self-loops. However,ldmema is false in this case; see [RV].
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A.5.2 Zig-zag Product

In this section, we generalize the Zig-Zag Theorem of [RV@iegular digraphs.
Theorem A8 If A\(G1) < 1 — v andA\(G2) < 1 — 7o, then\(G1 @D Gy) <1 — 1 -73.

Our algorithm, like [Rei], we will only use the following cerquence of the second bound above: if
G+ is a good expander in the sense théatrs) is bounded by a constant less than 1 agd';) < 1 — vy,
then\(G1 @G2) < 1 —Q(71). In the preliminary version of this paper [RTV], we presehéeproof of this
1 — Q(e;1) that was conceptually simpler than the previous proofs isfltbund in the undirected case, for
either the zig-zag or replacement produttdere we present an even simpler proof, based on an approach
of Rozenman and Vadhan [RV], who used it to analyze a new rakmanized squaring’ operation (that gives
an alternative to Reingold’s algorithm as well our geneedion to Eulerian digraphs). The key to this
approach is the following lemma:

Lemma A.9 ([RV]) LetM be a Markov chain with stationary distribution and suppose that, (M) < \.
ThenM = (1 — \)Jr + X\ - E, whereJ. is the matrix such that every column equaland E' has norm at
most 1 with respect th - || . (Thatis,||Ex|r < ||z||. for all z.

Intuitively, this lemma says that we can view a random step bdfarkov chain with spectral expansion
A as jumping to a random vertex underwith probability A and “not getting any further fromr” with
probability 1 — A. This intuition would be precise i/ were stochastic, but it is not guaranteed to be so.
Nevertheless, the intuition will work in the proof below.

Proof: (of Theorem A.8) LetM be the transition matrix of the random walk 6 @ G5. Following
[RVW], we relate M to the transition matrices @, andG,, which we denote byl and B, respectively.
First, we decompos#/ into the product of three matrices, corresponding to theetlsteps in the definition
of G1 @Gy’s edges. LeiB be the transition matrix for taking a randof-step on the second component
of [N1] x [Dy], i.e. B = Iy, ® B, wherely, is the Ny x N; identity matrix. LetA be the permutation
matrix corresponding t®ot, . By the definition ofG; @G5, we haveM = BAB.

By LemmaA.9,B = v,J + (1 — v2) E, where every entry of equalsl/D; andE has norm at most 1.
ThenB = yoJ + (1 — 72)E, whereJ = Iy, ® J andE = Iy, ® F has norm at most 1.

This gives

M= (72J+ (1- ’Y2)tz‘ldeE> A (72J+ (1- 72)E> =3 JAJ+ (1-3)F,

whereF' has norm at most 1.
Now, the key observation is that
JAT=A®J.
The left-hand side is the stochastic matrix correspondinipé Markov chain that does the following from
state(v, ): choosei’ uniformly in [D4], let (w, j') = Rotg, (v,i’), choosej uniformly in [D] and go to
state(w, j). The right-hand side corresponds to: debe a random neighbor efin G, choosej uniformly
in [D1] and outputw, j). These two processes are identical by the definition of aiootanap.

®The basic analysis of the undirected zig-zag product in [RéWy gives a bound of —Q(e%). Only a much more complicated
and less intuitive analysis, that uses the undirectednf€s; dn additional ways, gives thé — Q(e1) bound. The Martin—
Randall [MR2] decomposition theorem for Markov chains afsplies al — Q2(e1) bound for the undirected replacement products,
but its full proof (relying on [CPS]) is also fairly involved
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Combining the above, we have

Mz’y%A@J—i—(l—’y%)F,

and thus
AM) < % -MA®J)+(1—93)
< Bl-m)+1-4)
= 1- 717227
as desired. [ |

A.5.3 The Path-Finding Algorithm

We have seen that powering and the zig-zag graph productkasta@lly the same affect on regular digraphs
as on undirected graphs. Therefore, both the decision ardlsgersions of the st-connectivity algorithm

of [Rei] can be extended (without any substantial changeggalar digraphs. This implies Theorem 5.1,
which states that RGULAR DIGRAPH FIND PATH is in searchL. As the algorithm here is essentially the

same as in [Rei], we only provide a sketch of the proof.

Proof Sketch: [of Theorem 5.1] We describe a log-space algoritdnthat gets as input &-regular (i.e.
both the indegree and the outdegree of each vertéX) igraphG on N-vertices and two vertices andt
and outputs a path fromto ¢ if such a path exists (otherwise, it will output ‘not conrest).

The algorithm will rely on a constant size (undirected) exqexr graphH, given by its rotation map
Rot g, with rather weak parameters. More specificaliywill be De-regular, for some constame, it will
have(De)® vertices (no attempt was made to optimize the constantd)\@H) < 1/2. The expandef]
can be obtained via exhaustive search or any one of variquigigxonstructions.

The first step of the algorithm, will be to reduce the ingiits, ¢ into a new iNputG,.g, s’,t" where
Ghreg IS (De)® -regular onN - D vertices, every connected component®f, is aperiodic, and andt are
connected irG if and only if s’ andt’ are connected i,.,. Furthermore, a path fronf to ¢’ in Gz can
be translated in log-space into a path frerto ¢ in G. The reduction itself is quite standard: Each vertex
of GG is replaced with a cycle witl vertices. In addition, theh vertex(v, ) in the cycle that corresponds
to v is connected tdw, j) = Rotg(v, ) in the cycle that corresponds ta Up to now, both the indegree
and the outdegree of each vertex is three. Therefore, weoeglach vertexDe)® — 3 self loops (this also
guarantees that each connected compone@tQfis aperiodic). The vertices andt’ are arbitrary vertices
from the cycles that correspond #aandt. A path froms’ to ¢’ in G, can easily be projected down to a
path fromstotin G.

The next step is a reduction 6f.g, s',t' to a new inputGexp, s”,t"” of REGULAR DIGRAPH FIND
PATH, such that each connected componentekp is an expander (and in particular has a logarithmic
diameter), and’ andt’ are connected i, if and only if s” andt” are connected i‘exp. Furthermore,
this is a log-space reduction and a path frghto t” in Gexp can be translated in log-space into a path from
s'tot’ in Gyeg. This step is the heart of the algorithm, and it essentiaiypletes the algorithm. All that is
left to do is enumerate all logarithmically-long paths frefhin Gexp and output one of them if it reaches
t" (after translating it in two steps to a path freno ¢ in G).

The transformation frondr,, to Gexpis defined recursively. Sét, to equalG,g, and fori > 0 define
G, recursively by the rule:

Gi = (Gi_1@H)™.
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Finally, defineGexp = G, for £ = O(log(N - D)) (that will be determined by the analysis). It follows
inductively that eacld’; is a (De)®0-regular digraph ovefN] x [D] x [(De)®°]i. In particular, the zig-zag
product ofG; and H is well defined. In addition, sinc®e is a constant, andis logarithmic thenz, has
poly(N - D) vertices.

Assume that,, is connected, then by Lemma AX(Ges) < 1 — 1/poly(N - D). By Lemma A.4
and Theorem A.8 (properties of powering and the zig-zagymbfbr regular digraphs), we have that unless
A(G;) is already smaller than some fixed constant thé@;) < (A(G;_1))2. This means that for some
¢ = O(log(N - D)), we have that\(G/) is guaranteed to be smaller than some fixed constant. In other
words,Gexpis an expander. What &, has several connected components? Since both poweringand t
zig-zag product operate separately on each connected campave have that for every C [N] x [D],
if S contains the vertices of a connected componer@,f thenS x [(De)*]¢ contains the vertices of a
connected component Gfexp, and the subgraph @fexpinduced by these vertices is an expander. By this
argument, it is natural to selest to be any vertex s’} x [(De)®°]* and similarly regarding”. This
choice indeed satisfies the requirements of the reduction.

It remains to argue that the transformationtaf, to Gexpis log-space and that a path Gfexp trans-
lates in log-space into a path 6f... The intuition is that taking a step @ translates to a constant number
of operations, some of which are taking a step(fjn; and the rest require constant space. As the space
used for each one of these operations can be reused for theqgidnt operations, the space needed to walk
on G, is only larger by a constant than the space needed to walk;on Furthermore, this evaluation in
particular translates a step 6#) to a path of constant length between the correspondingcesrdfG;_ .

The space-efficiency requirements follow by induction. O

A.6 Proof of Theorem 6.2

Consistent labelling is the weakest restriction for whidficeently constructible universal traversal se-
guences are knowaven for undirected expander grapfidW]. For general undirected graphs, the st-
connectivity algorithm of [Rei] gives efficiently constiille universal traversal sequences, but these require
an even stronger restriction on the labelling. So in fa@,glneralization to regular digraphs is useful even
from the point of view of undirected graphs.

Our first step is to argue that the universal traversal sempssior expanders given by Hoory and Wigder-
son [HW] can be extended to the casaléctedexpanders.

Lemma A.10 For every two constant® and \ whereD is a positive integer and < 1, there exists a log-
space algorithm that on input” produces a universal traversal sequence for all conneatedsistently
labelled D-regular digraphsG on N-vertices with\(G) < A.

Proof Sketch: The universal traversal sequence of Hoory and Wigderson][vks just as well in the
regular case. The only properties used in their analysithatg1) A walk that starts at two distinct vertices
and follows the same set of labels ends in two distinct vest{this is where the consistent labelling is used).
(2) For two sets of verticed and B one of sizeK and the other of siz& — K, either the intersectiod N B

or the number of edges from to B areQ(min{ K, N — K}) (this is where the expansion is used). Both of
these properties also hold in the regular case. O

Now we proceed to construct our universal traversal segsenc

Proof Sketch: (of Theorem 6.2) Consider some connected, consistentglié&ahD-regular digraphgs on
N-vertices. We will show a log-space algorithshthat produces a universal traversal sequence @y.
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We will then argue that the algorithm does not need acceSswhich will imply the theorem (as the output
of A will be good for any such grapfy).

The crucial observation is that, as noted above, given aistensly labelled graplix, we can assume
without loss of generality that every edge, v) has the same label as an out going edge froamd as an
incoming edge t@. Observe that, for the purpose of universal traversal semjehe only labels that matter
are the outgoing labels from each vertex (the incoming fahehich define the rotation map of the graph,
are ignored during the walk - therefore any legal labellirity &o). In other words, we can assume without
loss of generality that whenevét, j) = Rotg (v, i) we have that = j. From now on, our proof follows
the same lines as the construction of universal traversplesee in [Rei], and is therefore only sketched
here.

Consider the two graphs,.; andGexpthat are obtained fror& (anddo dependn Rot) in the proof
of Theorem 5.1. By the analysis in that prodlexp is an expander. Furthermore, as powering and the
zig-zag product preserve the property of consistent lageie have that'expis also consistently labelled.
Lemma A.10 now implies that there exists a universal tralesequence for {Gexp} and its log-space
construction is independent 6f. Now consider the walk otWexp, following @ from some vertexs, 1,
wheres € [N]. This walk covers all of the vertices Giexp- By the construction ofexp, the sequence of

labelsa can be translated in log-space (again, without acce&§ toto a sequencé of labels, such that the
walk from (s, 1) (for any s € [N]) which follows these labels, visits all the vertices@f,.

The next step is to translabénto a universal traversal sequence {6¥}. Consider the walk frongs, 1)
on Gre,. We want to simulate this walk without knowingand without access t&. On the other hand,
at each step all we want to know is a value [D] such that we are now at some veri{exc). To begin
with ¢ is set to one. It is easy updat€one up or one down) when taking a step on one of the cyclesin th
definition of G.... Labels that correspond to self loops can be ignored. Weefirvith edges that cross
between two different cycles (that correspond to two vestiof G). By our assumption above, in such a
casec remains unchanged. Furthermore, the valueswlien an edge between cycles is taken, are exactly
the labels of edges itr that are traversed by the projection 6hof the walk defined bjf. To conclude,
the sequencéis simply the sequence of valuesaih the simulation described above, when edges between
cycles are traversed. O

A.7 Proof of Theorem 6.3

Proof Sketch: Let G be aconsistently labelledN, D, 1 — ) regular graph and any vertex ofG. We will
construct a distribution on a sequence of labels such tkiaig@ walk froms on GG according to these labels,
ends at a vertex that is distributéetlose to uniform (in variation distance). Since the dgition of labels
will be independent o7 and s (and will only depend onV, D, 4, and~y) this will imply a pseudorandom
generator.

As in the proof of Theorem 5.1, we consider in our analysisaaditional graphs-.., andGexp. Their
definition will be slightly modified here. FirsG.., will be obtained by a zig-zag product (or a replacement
product) with a constant degree expander[dwertices. Adding self loops we get &V D, (De)®°, 1 —
Q(~)) regular graph. The advantage of doing that (instead of acepient product with a cycle as in the
proof of Theorem 5.1), is that the eigenvalue gaji-@f, is only smaller by a constant than the eigenvalue
gap of G. We now defineiexp similarly to the proof of Theorem 5.1, by recursively applyithe zig-zag
product and powering. However, since we start with a stroggerantee on the eigenvalue gapf,
we only need = O(log(1/v)) levels of recursion to bring spectral gap to a constant. Tdedf the final
expandeGexpis thusNg, = N - D - 2990 = ND - poly(1/7).
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Consider now a random walk of lengthg, = O(log(Ngy/6)) = O(log(ND/év)) in Gexp. Such a
walk starting from any vertex in the vertices @exp which correspond te will converge to the uniform
distribution on the vertices dafrexp, up to variation distance. As in the proof of Theorem 6.2, this walk
projects to a walk orz. Since the uniform distribution on vertices Glexp projects to the the uniform
distribution on vertices of7, we get that the walk itz also converges to the uniform distribution on the
vertices ofGexp, up to variation distancé. As in the proof of Theorem 6.2, we note that we can assume
without loss of generality that in the rotation map@fthe label of an edgéu, v) is identical both as an
outgoing edge from: and as an incoming edge to This implies (as in that proof), that the edge labels
taken by the walk orG are actually independent &f and s and can be computed in the required small
space, just knowingv, D, ~, andd.

We make the following observations:

e The randomness requiredris= O(mgy,) = O(log(ND/d7)).
e The walk length i¥ = myg, - 2°) = log(ND/év) - poly(1/v) = log(ND/§) - poly(1/7).

A.8 Proof of Theorem 7.1

We will prove Theorem 7.1 by showing that for every poly-mixigraphG, there exists a regular digraph
Greg Such that the correctness of the generatoiGon implies the correctness of (a modification of) the
generator orfz. Thus, if we have a generator that works well on regular gilgsawe obtain a generator that
works well on instances of (LY-MIXING S-T CONNECTIVITY, which we have shown to BRL-complete
(Theorem 3.1). The construction 6f.., from G is given by the following lemma. We stress that this
construction is only done in thenalysis and thus need not be computable in log-space.

Lemma A.11 There is a universal constamtsuch that the following holds. L&t = (V| E) be anyd-
outregular graph om vertices with vertices, ¢ € V and stationary distributionr such thatr(s) > 1/k,
7(t) > 1/k, and\;(G) < 1 —1/k. Then for every > 0, if we setN,o; = (ndk/c), Dieg = ¢ - Nyeg /e,

v = 1/(ndk)¢, there is a(Nyeg, d - Dyeg, 1 — 7y)-regular digraphG,e, such that the following holds. The
vertex set ofx.., can be decomposed into “cloudd’c; = (J, e Co With |C|, |Cy| > [Vieg|/2F. There
is a bad set of edge labelB C [d] x [D,s] of densitye such that for every, € V, vertexa € C, and
edge label(s, j) € ([d] x [Dreg]) \ B, the(z, j)'th neighbor ofa in G, is in cloudC,, wherew is thei'th
neighbor ofu in G-

Before proving this lemma, let's see how it implies Theoret 7

Proof of Theorem 7.1: Let (G, s, t,1%) be any instance of ®Y-MIXING FIND PATH, whereG is d-
outregular, has vertices, and has (promised) stationary distributiomith 7(s), 7(¢) > 1/k andA\(G) <

1 —1/k. Set§ = 1/2k, ande = 1/(ndk)® for a large constant to be specified later, and 18, =
(ndk/e)¢, Dreg = ¢ - Nreg/e, v = 1/(ndk)® be the parameters of the regular digraph guaranteed by
Lemma A.11. LePRG = PRG,., d-Dyeg.0. © 10,1} — ([d] x [Dyeg])* be the generator hypothesized in
Theorem 7.1, with seed length= a log(Nyeg Dreg/677) = O(abclog(ndk)). and walk length

0= (1/76)" - (Nrog - dDyog)® = (ndk)°) - (ndk/e)0(@®) = (ndk)C(@®) /00)

Without loss of generality we may assume that each companePRG (U,.) is uniformly distributed in
[d] % [Dreg]. (Shift each component of the output by adding a random etese- [d] x [Dxg]. This only
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increases the seed length by a constant factor and preskevpseudorandomness of the output because it
is equivalent to shifting all labels in the regular digraph-bs.)

The algorithm for BLY-MIXING FIND PATH works as follows. We enumerate tBe = (nkd)© (<)
seeds oPRG, for each obtaining a walky € ([d] x [Dyeg])’ of length? = (nkd)©(e%¢). Taking the first
components of each stepii we obtain an induced walk < [d]’, which we perform orG, starting ats.

If any of these walks end &f we output that walk.

To analyze this algorithm, we consider a walk— PRG(U,) taken inG,.g, starting at any vertex of
Cs. SinceX(Greg) < 1 — 7, Cy has density at leadt/2k, andé = 1/2k, such a walk will end inC; with
probability at least

(1/87)% - (Nrog - dDyeg)® = £9(@9) / (ndk)©@®).

We now argue that the induced walkin G will end att with nearly the same probability. By the properties
of G,g, this will be the case provided the walkdoes not use any edge label frdg Since B has density
at mostz and each edge label i is uniformly distributed, the probability any label frof is used is at
most

(e = (ndk)©@e) . g1=0lac),

Thus the walkw in G ends at with probability at least

Y (ac)

W - (ndk)O(ac) . El—O(ac) > 07

provideda < ¢/k ande < (1/ndk)? for ab > rac, wherer is a sufficiently large universal constant. In
particular, there exists a seedl®RG that will produce a walk frons to ¢. |

Defining the regular digraph G'eg

Proof of Lemma A.11: Letn be the number of vertices i@, d the out-degree ofr, andw = =, be
the stationary distribution off (actually the induced subgraph on vertices reachable &pnBy adding
self-loops and applying Lemma 2.2, we may assumed@hiaas the following properties:

1. 7w(s) > 1/k,n(t) > 1/k.
2. At least half of the edges leaving each vertex are seffdoo

3. For any vertex reachable frons, a random walk of lengtli = O(n - k2 - log d) from v visits s with
probability at least /2.

(For ltem 3, we note that(v) > d~", so Lemma 2.2 says that a walk of leng#i(1/(1 — \:(G))) -
log(2/+/m(v)m(s))) = O(k - (nlogd + k)) ends ats with probability at leastr(s)/2 > 1/2k. Repeating
O(k) times increases the probability to 1/2.)

The desired regular digraphi,, will essentially be a blow-up ofr, with each vertex ofy repeated a
number of times proportional to its stationary probahilitjth small “corrections” to remove low-probability
vertices and to fix slight irregularities (due to round-affags).

We constructi,, in several phases.
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Step 1: Make all state probabilities nonnegligible. Let ¢ be the given error parameter. Without loss
of generality, we will assume that < 1/poly(n, k, d, ¢) for a polynomial to be specified later. Then let
D’ = poly(n, ¢,1/¢) for a polynomial to be specified later. Define a gréph= (V, E’) on the same vertex
set ag7, but with degreel - D’. For every vertex and edge labeli, i) € [d] x [D'], we set the(i, i’)’'th
neighbor ofv in G’ to be thei'th neighbor ofv in G, except that we modify up ta of the edges leaving

in order to ensure that every vertex reachable frohas at least one incoming edge directly frem(The
edges to modify should be chosen so as to maintain the pyotbet at least half of the edges frasrare
self-loops.) Thus a random step 6 is identical to a random step d@r, except with probability at most
n/D’ when at vertex.

Observe that Property 3 ¢f also holds inG’, because any walk from a vertexn G that visitss also
visits s in G’. Thus, by Lemma A.1, we havk. (G’') < 1 — 1/8¢? for some stationary distribution’.
Moreover, if we take”’ = O(¢%log(¢/<)), then by Lemmas 2.2 and 2.3, a random walk of lergfirom s
in G (resp.,G’) ends at a vertex distributedclose tor (resp.,n’). Thus,

7' (t) Pr[r.w. in G’ of length?’ from s ends at] — ¢

Pr[r.w. in G of length/’ from s ends at] — ¢’ - (n/D’) — ¢
w(t)—e—e—¢
1/2k,

AVARAVARAVAR V]

provided we take < 1/6k andD’ > ¢'n/e. Similarly, we haver’(s) > 1/2k. And for every vertexu
reachable frons, we haver’(v) > (1/2k) - (1/D') since there is at least one edge freno v.
To summarize, we have established the following propedi€s’ = (V, E’):

1. For any vertex reachable frons, a random walk of lengtii = O(n - k3 - log d) from v visits s with
probability at least /2.

A (G <1 —1/8¢%
L wl(s) > 1/2k, 7' (t) > 1/2k.
. At least half of the edges leaving each vertex are seffdoo

. For every vertex reachable frons, /(v) > 1/(2kD’)

o o B~ W DN

. For every vertex and every edge labgt, ') € [d] x [D’], the (4, ¢')’th neighbor ofv in G’ equals
thei'th neighbor ofv in G, unlessv = s and(i,i') € B’ whereB’ C [d] x [D’] is a set of labels of
density at most/ D’ < e.

Step 2: Blow up G’ to a nearly regular digraph G” We blow up each vertex of G’ to a “cloud”
C, consisting of N, = [#'(v)N] vertices, for a sufficiently larg&vn = O(kD’/e). By Property 5 of
G', we haveN, € [7'(v) - N,(1+¢)-n'(v) - N]. The vertex set o5 is V" = |J, C, for a total of
N"=73%" N, €[N, (1+¢)- N]vertices. Every vertex i’ has degred - D' - D", for a sufficiently large
D" = O(N/e). For(i,4,i") € [d] x [D'] x [D"], the(i,4',i")'th edge leaving any vertex ifi;, goes to the
(¢" mod N,)’th vertex of C,,, wherev is the (7, i')’'th neighbor ofu in G’.

We now argue tha&” is nearly biregular, in the sense that all of the indegreeslarse tal - D’ - D”.
Consider any vertex in cloudC,. Each edgéu, v) in G’ induces eithetv,, - | D”/N, | or N, - [D"/N,]
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edges inta. Note thatD” /N,, > D" /((1 +¢)N) > 1/, if we chooseD” > (1 4 ¢)N/e. So the indegree
of ¢ is at most

ZN(D—”+1>§ ZN 1+a]l\)[—:

(u,v)ER’ (u,w)EE’
, D//
< . .
< X 0+ aR@N] are)
(u,v)EBE!
1 2D/l
- IT Y
(u,w)ER!
2
— M.(d.phﬂ/@))

' (v)

= (1+¢)?*.d-D-D"=(1+0())-d-D-D"

By Property 3 of’, we observe thaCs| > 7'(s)N > (1 +¢) - N”/2k and similarly|Cy| > (1 +¢) -
N" /2k.
We now enumerate the properties@f established above.

1. Every vertex inG” has out-degreé - D' - D" and in-degree at mo§t + O(¢)) -d- D" - D”.

2. For every vertex: in cloudC,, and every(i,i’,i") € [d] x x[D'] x [D"], the(i,#',4")'th edge leaving
@ leads to a vertex in cloud C,, wherev is the (4, ¢")'th neighbor ofu in G’. By Property 6 ofG’,
v also equals théth neighbor ofu in the original graph& unlessu = s and(i,4’,:") € B”, where

B" = B x [D"] is a set of labels of density at mast

3. The number of edges between any two such verticard v equals eithee,,, - [ D”/N, ] or ey, -
[D"/N,], wheree,, is the number of edges betweemndv in G'.

4. Cs andC} are both of density at leasy2k.

Step 3: Add edges td>” to make a regular digraph G,.,. Property 1 ofG” implies that we can make the
graph biregular by addin@(¢-d-D’-D") edges leaving each vertex. Specifically, we obtain a regigaaph
Gheg ON the same vertex set@&¢, in which every vertex has outdegrée, ., for D, = (1+0(e))-D'-D".
Each edge leaving a vertex has a lapej) € [d] x [D..g], and the edges with < D’ - D" are identical to
the edges ofs”. We letB,c, = [d] X ([Dyeg] \ [D’ - D"]) be the set of remaining edge labels.

Let .., denote the uniform distribution on the set of vertices raltdhfromC;. SinceG, ., is biregular,
this is a stationary distribution fa¥..,. We now enumerate the properties(df.

1. The vertex set ofi;c; is Vieg = U,cy Cv, and the outgoing edges are labelled by elements of
[d] X [Dreg]

2. Greg andG” differ in at mostO(ed D,,) edges leaving and entering each vertex.
3. Cs andC; are both of density at leasy2k.

4. There is a seB C [d] x [D,¢g] of densityO(e) such that for every vertex € C, and every edge
label (7, j) € ([d] x [Dreg]) \ B, the(i, j)'th neighbor ofi in G, is in cloudC,, wherev is thei'th
neighbor ofv in G. (Namely, takeB = Bz U B”.)
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5. For everys € C,, we have\,,, (Greg) < 1 — 1/1602.

All of these items follow from the previous discussion, gxderoperty 5 bounding the expansion, which
we proceed to do below.

Step 4. Analyze expansion of regular digraph. For this, it is useful to introduce a third Markov chain
G" on vertex seV"”" = V" = V,,, which is more closely related to random walks@h From any vertex
4 € Cy, the Markov chainG"”’ chooses a random neighbeof » in G’, and goes to a uniformly selected
vertext € C,. It can be verified that the distributiar” that assigns each vertéxe C, probability mass
7" (0) = w(v)/N, is stationary foiG"”’. Moreover,

1

1" !
" = / < _
A (G) = A (@) £1= .

foranys e C..

We use this fact, and the fact thaif” is “close” to G,cs to bound\(G.eg). Specifically, lethM,cq, M”,
and M" denote the transition matrices f6f..,, G”, andG", respectively. Lep = D, /(D' - D") =
1 + O(e) be the ratio between the degreesaf, andG”. We consider the two “error” matrice® =
pMyeg — M", and&y = M"” — M"™. To boundAr,., (G ), letz be any vector whose support is reachable
from C; such that(z, Treg)r,., = 0, i.€. >, 2; = 0. We need to show thdtM ee || r,0y < Areg * (|17 ]|mre s
where )., = 1 — 1/16(. Note that sincer, is uniform, || - | .., is simply a scaling of the standard
Euclidean norm. We bounfl/, ;|| .., as follows.

reg Treg — reg Treg — " Treg 1 Treg 2 Treg *
[Mreg®|mey < [0Mreg@limes < M7 |miey + [|E12 ey + [|E22]

We bound each term separately. To bound the first, we firsiredseat the normg - || .., and|| - ||~
differ by a factor of at most1 + ¢), becauser,., andz”’ almost identical. Specifically, for every vertex
v € Cy, we haver” (v) = 7' (v) /Ny, Treg(v) = 1/Nreg. These two quantities can be related as follows.

7' (v) 1 1
> >
N, “ (N~ 11Ny

and

Thus, Mg (0) < (1 +¢) - 7'(0) andn’(0) < (1 4 ¢€) - meg(?). This implies that the corresponding norms
differ by a factor of at mostl + ¢). Therefore,

1M e < (L&) - (1M ]

1
< (+9) (1= 5z ) el
9 1
(1 + E) : 1 - @ : ”xHWreg'

For the second term, involving;, we note that; equalsl/(dD’D") times the adjacency matriA of
Greg \ G”. Every vertex in this graph has outdegi&®,., — dD'D" = ©(edD’D"), and indegree at most
O(edD'D") (by Property 2). This implies thdtAz||,., < O(edD'D") - ||z||x..,. (One way to see this is
to consider the the vectgrassigning eackdge(u, v) in Gy \ G”, the valuez,,. The squared length of

IN
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equals the squared length:ofimes the outdegre®(cd D’ D"). Then we obtaimx by summing the entries
of y incoming at each vertex. By Cauchy-Schwartz, this increag@ared length by at most the maximum
indegreeO(sdD’D").) Therefore, we have

' HA‘T”TGeg = O(E) ' Hw”ﬂreg'

1
112l 7o =< —7m7

Finally, we consider the third term, involving,. We argue that each entry 6§ = M — M"" is small.
For verticesi. € C,, v € C,, the (4,0)'th entry of M" equals(e,,/(dD")) - (1/N,), by definition of
G", wheree,, is the number of edges betweerandv in G’. On the other hand, by Property 3 @Y/,
the (4, 0)'th entry of A" is in the intervalle,, - | D" /N,]|/(dD'D"), ey, - [D"/N,]/(dD’'D")], which is
contained in the intervdt,,,, /(dD'N,) —1/D", ey, /(dD'N,) +1/D"], sincee,,, < dD’. Thus, each entry
of & has absolute value at mastD”. This implies that

VNP

||g2x‘|7rrcg é 7 ! H':L'Hﬂ'rcg é € H':L'Hﬂ'rcg?

where the last inequality comes by recalling thét < (1 +¢) - N andD” > N/e.
Putting all of the above together, we have

”Mrengmeg <

||xH7rrcg

1 1
2. _ <1 - —
(1+4¢) (1 8€2>+O(6)+6_1 62
provideds > ¢ - ¢? for a sufficiently large constart |

A.9 Combinatorial Measures

Other ways in which we can measure progress rather tharrapgaps are combinatorial measures such as
edge expansion or vertex expansion.

Edge expansion is roughly preserved in the replacementiptoldut can deteriorate quite a bit when the
graph is powered.

Theorem A.12 LetG = (V, E) be a directed graph with edges, such that every vertex has outddreg:
and every indegree is at mobt Lete be the edge expansion@f Let H be a biregular directed graph with
D vertices, degred, and edge expansioh ThenG’ := GO H has edge expansion at least

1 Doy . 1 od
1D MM drrdr

Concretely, we would use the replacement product using a@rigraphH of constant degree and
constant expansion, ara,,; would be close td in the outer graph, so that the expansiorgf) H would
beQ(e).

Proof: [Of Theorem A.12] Recall that, for a vertexof G, thecloud ofv is a setC,, of D vertices ofG’
that “correspond to” ta in the replacement product.
Let A be a set of less thamD /2 vertices ofG’. We want to prove that there are at least

1 Dot . 1
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edges fromA to A.

The intuition for the analysis is similar to the intuition ihe analysis of the zig-zag graph product in
[RVW]: if A is a disjoint union of clouds, then the expansion followshirthe expansion of, and if each
cloud contains only a few elements_dfthen the expansion follows from the expansiorfFor a general
setA, our analysis will use the expansion@fif most elements ofd are concentrated in “half full” clouds;
our analysis will use the expansion @fif most elements oA belong to “half empty” clouds.

Let B C A be the subset of vertices df that belong to “half-empty” clouds. That is, a vertexc A
is in B if it belongs to a cloud”, such that at mosb /2 elements of”, are in A. For an half-empty cloud
Cy, definea, = [ANCy|.

We consider the following two cases.

1. If B > |AleDoyt /4D, then each cloud’,, v € S, contributes at least, - ¢ - d to the cut betweert
andA. (Here we are using the expansionféf) Overall, the number of edges in the cut is at least

> " ay6d > |B|6d > |AlesdDous /4D
veES

2. If |B] < |Al|eDoywt /4D, then letT be the set of vertices of G such that the cloud’, contains at least
D/2 elements ofA. (These are the “half-full” clouds.) Note thgt| > (|A| — |B|)/D > |A|/2D.

Now we have to consider two sub-cases:

(@) If|T| < 3n/4, then we claim that are at legst|e D, /2D edges inG from T to T'. We prove
the claim using the expansion 6f If |T'| < n/2, then the number of edges fromto T is at
least|T'|eDouy > |AleDout/2D. If n/2 < |T| < 3n/4, then the number of edges frafto T'
is atleastT|e Doyt > neDout /4 > |AleDoys /2D.

Those edges correspond to edges:irthat go from a vertex in a half-full cloud to a vertex in
a half-empty cloud. We will argue that a reasonable fractbsuch edges actually go from
vertices inA to vertices inA.

We first note that there are at mg#t| < |A|eD, /4D edges inG’ going to vertices inA that
belong to half-empty clouds. Therefore, there are at le&lstD,,; /4D edges inG’ that have
their first endpoint in a half-full cloud and their second paitt in A.

Let us now look at a half-full cloud, in G’ from which there are, say,, outgoing edges whose
second endpoint is a vertex i in another cloud, and cal, = |C, — A|. We note that the
cloud contributes at least, — ¢,) + ddc, > k, min{1, dd} edges to the cut betweehand A.
This is because, of thig, edges leaving’,, and going to a vertex irl, at least:, — ¢, originate
from a vertex in4, and because the humber of edges ftam C, to C,, — A in C, is at least
¢,0d because of the expansion Bf.

Summing over all the clouds, we get a contribution that ieast
> kymin{1,dd} > |Alemin{1, 6d} Doyt /4D
(b) If |T| > 3n/4, then we haveén/4 or more half-full clouds, each one containing betwégf
and D elements of4, even thoughA| < nD/2. This means that of thE’| half-full clouds,

at leastn /2 must contain at mostD /4 elements ofd. (If we let ¢ be the number of half-full
clouds with at mos8D /4 elements of4, we getnD/2 > |A| > ¢-D/2 + (|T| — ¢) - 3D /4,
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which, together withT'| > 3n/4, simplifies toc > n/2.) In each such cloud, the number of
edges betweer and A is at leastDdd /4, so that the total number of edges betweeand A is
at leastDdd /8, which is at leastA|dd /4.

[ |

For directed graphs, as can be seen by the following exartiyf@eedge expansion does not necessarily
improve by powering.

Proposition A.13 There is a directed grapti’ such that for every constant> 1, the edge expansion 6f
is no better than that of:
e(GY < e(@)

Proof: We describe an unlabeled graphbecause the labels are irrelevant in our case. (L dte the
directed path on verticeld, . . ., 2n} together with an additional edge from every vertext té-ormally, the
edges of7 are(i,i+ 1) for all i < 2n and alsq(z, 1) for all . To make the outdegreeeverywhere duplicate
the edge(2n, 1). The edge expansion of this graph is obtained on theiset{1,...,n}. There is exactly

one edge leaving this set @, and since? is strongly connected the edge expansio%%;'i) =1/2n.

The number edges leaving in G* is the number of length-paths leaving4 in G. Fort < n, this
number is equal to. Since the out-degree 6f' is 2, the edge expansion 6f (being the minimum over all
choices ofd) is bounded byZs) = 5t < 1/2n. _ | -

Note thatG can easily be made to have bounded in-degree, by ‘spreatiiaggdges pointing td to
point somewhere among the first say2 vertices. |
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