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Abstract

We revisit the generalRL vs. L question, obtaining the following results.

1. Generalizing Reingold’s techniques to directed graphs,we present a deterministic, log-space algo-
rithm that given aregular (or, more generally,Eulerian) directed graphG and two verticess and
t, finds a path betweens andt if one exists.

2. If we restrict ourselves to directed graphs that are regular andconsistently labelled, then we are
able to producepseudorandom walksfor such graphs in logarithmic space (this result already
found an independent application).

3. We prove that if (2) could be generalized to all regular directed graphs (including ones that are not
consistently labelled) thenL = RL. We do so by exhibiting a new complete promise problem
for RL, and showing that such a problem can be solved in deterministic logarithmic space given a
log-space pseudorandom walk generator for regular directed graphs.

We interpret (1) as indicating that it is notreversibilityper se which Reingold’s techniques rely upon, but
rather the fact that, in the undirected S-T connectivity problem, the graph may be assumed to beregular
without loss of generality. On the other hand, as far as derandomizingRL via pseudorandom walks
goes, we obtain by (3) that one can assume regularity withoutloss of generality. In other words, for
this purpose, it is not necessary to develop a theory of pseudorandomness for arbitrary directed graphs
with unknown stationary distributions. The combination of(2) and (3) indicates that the only obstacle
towards a full derandomization ofRL is in handling arbitrary edge labels. It remains to be seen how
difficult this challenge is to overcome.
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1 Introduction

The research on derandomization of space-bounded computations deals with the tradeoff between two basic
resources of computations: memory (or space) and randomness. Can randomness save space in computa-
tions? Alternatively, can every randomized algorithm be derandomized with only a small increase in space?
These questions received the most attention in the context of log-space computations, and with respect to the
following complexity classes:L (the class of problems solvable in deterministic log-space), RL, andBPL

(the classes of problems solvable by randomized log-space algorithms making one-sided and two-sided er-
rors respectively). It is widely believed thatL = RL = BPL and proving this conjecture is the ultimate
goal of this body of research.

It turns out that the derandomization ofRL is related to determining the space complexity of one of
the most basic graph problems, UNDIRECTED S-T CONNECTIVITY: Given an undirected graph and two
vertices, is there a path between the vertices? (The corresponding search problem is to find such a path).
The space complexity of this problem and the derandomization of space-bounded computations have been
the focus of a vast body of work, and brought about some of the most beautiful results in complexity theory.
The connection between the two was made by Aleliunas et. al. [AKL +], who gave anRL algorithm for
UNDIRECTED S-T CONNECTIVITY. The algorithm simply runs a random walk from the first vertexs
for a polynomial number of steps, and accepts if and only if the walk visits the second vertext. This
beautifully simple algorithm is undoubtedly one of the mostinterestingRL algorithms. It casts the space
complexity of UNDIRECTED S-T CONNECTIVITY as a specific example and an interesting test case for
the derandomization of space-bounded computations. (In particular, if RL = L, then UNDIRECTED S-
T CONNECTIVITY can be solved in deterministic log-space.) Since then progress on the general and the
specific problems alternated with a fluid exchange of ideas (as demonstrated by [Sav, AKS, BNS, Nis2,
Nis1, NSW, SZ, ATSWZ], to mention just a few highlights of this research). See the surveys of Saks [Sak]
and Wigderson [Wig] for more on these vibrant research areas.

The starting point of our research is a recent result of Reingold [Rei] that showed that UNDIRECTED

S-T CONNECTIVITY has a deterministic log-space algorithm. On the other hand,the best deterministic
space bound onRL in general remainsO(log3/2 n), established by Saks and Zhou [SZ].

1.1 Our Results

In this paper, we revisit the generalRL vs. L question in light of Reingold’s results, and obtain the following
results:

1. Generalizing Reingold’s techniques to directed graphs (aka.digraphs), we present a deterministic,
log-space algorithm that given a Eulerian digraphG (i.e. a graph such that each vertex has an outde-
gree equal to its indegree) and two verticess andt, finds a path betweens andt if one exists. This
involves a new analysis of the zig-zag graph product of [RVW]that generalizes to regular digraphs
and the directed analogue of the spectral gap, which may be ofindependent interest.

2. For the special case of “consistently labelled” regular digraphs we provide a “pseudorandom walk
generator.” A digraph isregular of degreeD, or D-regular, if all vertices have indegreeD and
outdegreeD; a D-regular digraph isconsistently labelledif the D edges leaving each vertex are
numbered from1 to D in such a way that at each vertex, the labels of the incoming edges are all
distinct. Roughly speaking, given a random seed of logarithmic length, our generator constructs, in
log-space, a “short” pseudorandom walk that ends at an almost-uniformly distributed vertex when
taken in any consistently-labelled regular digraph.
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Pseudorandom generators that fool space-bounded computations, are very interesting tools even be-
yond theRL vs.L problem (see [Ind, Siv, HVV, HHR] for just a few of their applications). In partic-
ular, even the pseudorandom walks given in this paper already found an application in the construction
of almostk-wise independent permutations [KNR]. Unfortunately, “oblivious” derandomizations are
more difficult, due to the inability to look at the input. For example, while it is true that every regular
digraph has a consistent labelling, it is not clear how to transform a pseudorandom generator that
works for consistently-labelled regular digraphs such that it would also work for arbitrarily-labelled
regular digraphs.

3. We prove that if our pseudorandom generator from Item 2 could be generalized to all regular digraphs
(instead of just consistently labelled ones), thenRL = L.

We do so by exhibiting a new complete problem forRL: S-T CONNECTIVITY restricted to digraphs
for which the random walk is promised to have polynomial “mixing time,” as measured by a directed
analogue of the spectral gap introduced by Mihail [Mih]. We then show that a pseudorandom walk
generator for regular digraphs can be used to solve our complete problem deterministically in loga-
rithmic space.

1.2 Perspective

We now discuss possible interpretations of the aforementioned results for the derandomization ofRL.
First, let us consider Reingold’s algorithm for undirectedST-connectivity. What are the properties of

undirected graphs that are intrinsic to this algorithm? Oneproperty of undirected graphs is reversibility -
a walk on the graph can immediately undo any of its steps by taking the last edge again (in the reverse
direction). A second property is that the stationary distribution of the walk on an undirected graph is well
behaved (the probability of a vertex is proportional to its degree), and such graphs can easily be reduced to
regular graphs where the stationary distribution is uniform. Our result (1), where we extend the algorithm to
Eulerian digraphs indicates that the latter property of undirected graphs is much more important here than
the former. After all, Eulerian digraphs are non-reversible but their stationary distribution is well behaved
and they can easily be reduced to regular digraphs where the stationary distribution is again uniform (the
reduction is described in Section 5).

A “pseudorandom walk generator” that works for every consistently labelled regularundirectedgraph
is implicit in [Rei]. (Actually, the generator requires a more restrictive form of labelling). Our result (2)
formalizes this generator and shows a generalization to regular consistently-labelled digraphs. In order to
get a general pseudo-random generator for space-bounded generators (which as mentioned above is a goal
of independent interest) there are two restrictions to overcome: regularity and consistency of the labelling.

It is well known that every regular digraph has a consistent labelling . Furthermore, regularity already
proved crucial in our result(1). It may therefore seem that the most stringent of the requirements in our
construction is regularity rather than consistent labelling. Our final result (3) shows that in this context (of
derandomization with pseudorandom walks) regularity is essentially irrelevant. Consistent labelling is in
fact the only obstacle towards a full derandomization ofRL. It remains to be seen how difficult this is to
overcome.

Why is consistent labelling so important? First, as we notedabove,in the context of pseudorandom
walks it is not clear how useful is the mere fact that consistent labelling exists. A pseudorandom walk is
an operation that is oblivious to the particular input graph, but on the other hand, consistently labelling a
graph may not be oblivious (and in fact seems rather “global”). Therefore, it is not clear how to transform
a pseudorandom walk for regular consistently-labelled digraphs into one that is pseudorandom for general
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regular digraphs. An intuitive reason for the importance ofthe labelling is that for any fixed sequence of
edge labels, the corresponding walk on a graph with consistent labels cannot lose entropy (the distribution
of the final vertex has as much entropy as the distribution of the start vertex). On the other hand, with-
out the assumption on the labelling, entropy losses may occur. Therefore progress made in one part of a
pseudorandom walk (i.e. an increase in entropy) may be lost later in the same walk.

1.3 Techniques

The main technical step in the proof of our results (1) and (2)is an analysis of a zig-zag graph product [RVW]
applied to regular digraphs. More specifically, we bound thespectral gap(as defined by Mihail [Mih] and
Fill [Fil] in the context of nonreversible Markov chains) ofthe graph obtained by the zig-zag product of two
regular digraphs. An analogous bound was proven in [RVW] forundirected regular graphs, but their proof
is not immediately applicable to our setting because it usesproperties of symmetric matrices. It turns out
that our new analysis is actually simpler than the one in [RVW], even though it applies to a more general
setting. The proof we present here is even simpler than the one that appeared in the preliminary version of
this paper [RTV]. The new proof is based on an approach of Rozenman and Vadhan [RV], who used it to
analyze a new ‘derandomized squaring’ operation.

Another contribution, that may be of independent interest is the new complete promise problem we
present forRL. Very loosely, this problem is st-connectivity in rapidly mixing Markov chains (where in
the ‘Yes’ case, both nodess and t have noticeable probability mass under the stationary distribution of
walks starting ats). A complete problem forRL based on Markov chains was previously known (see the
survey of Saks [Sak]). However, in that problem one examinesthe behavior of a walk at a particular time
stept. On the other hand, in the new complete problem we discuss thebehavior of the walkin its limit
(i.e., we are interested in the stationary distribution). Such a problem seems much more amenable to the
techniques of [Rei]. In particular, even in the undirected case, we do not know how to space-efficiently and
deterministically simulate the distribution reached by a random walk after a fixed number of steps (unless
this walk was long enough to approach the stationary distribution).

In the proof of our result (3), we define (as a mental experiment) a regular digraph which can be thought
of as a “blow-up” of the input graph in the new complete promise problem forRL. More specifically,
every vertex in the input graph corresponds to a block of vertices in the blow-up graphs, with multiplicity
that is linearly related to the weight of the original vertexunder the stationary distribution. Intuitively, as
heavy vertices are split into many more vertices in the blow-up graph, we indeed obtain a graph where
the stationary distribution is uniform (and is therefore regular). We are not able to construct this blow-up
graph efficiently but we can show (again as a mental experiment) that for some (inconsistent) labelling of
the edges in the blow up graph a walk on the blow-up graph naturally “projects” onto the original graph.
Furthermore, the projected walk can be easily and efficiently simulated by only referring to the original
input graph. By assumption, we know how to generate pseudorandom walks for the blow-up graph and as
we show, simulating the projection of such walks on the original graph is sufficient to solve the promise
problem.

It is natural to attempt the general framework of derandomization studied here with a different measure
of expansion (rather than analogues of eigenvalue gap). We also consider here the combinatorial measure
of edge expansion. We show that edge expansion is preserved and degree is reduced, by taking areplace-
ment productwith an expander graph. We show, however, that edge expansion is not necessarily improved
by powering in digraphs, and it is not clear that there is any other “local” operation that increases edge
expansion. See Appendix A.9 for details.
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1.4 Organization

We begin by defining notions of expansion for digraphs and giving other technical preliminaries in Section 2.
We present in Section 3 our newRL-complete promise problem. The operations of powering, replacement
product and zig-zag graph product are defined for digraphs inSection 4, and the effect of powering and zig-
zag product on regular digraphs is analyzed in Section 5, leading to our algorithm for finding paths in regular
digraphs. Our construction of universal transversal sequences for regular consistently-labelled digraphs, and
our pseudorandom walk generator for regular consistently-labelled digraphs are presented in Section 6. In
Section 7 we prove that a pseudorandom walk generator for general regular digraphs would implyL = RL.
We give a discussion of other measures of expansion in Appendix A.9.

2 Preliminaries

2.1 Graphs and Markov Chains

In this paper, we considerdirected graphs (digraphs for short), and allow them to have multiple edges,
and have self-loops. A graph isout-regular (resp.,in-regular ) if every vertex has the same numberD of
edges leaving it;D is called theout-degree(resp.,in-degree). A graph isregular if it is both out-regular
and in-regular.

Given a graphG onN vertices, we consider the random walk onG described by the transition matrix
MG whose(v, u)’th entry equals the number of edges fromu to v, divided by the outdegree ofv.1

More generally, ifMN×N is a matrix with non-negative entries such that for everyu ∈ [N ] we have
∑

v M(v, u) = 1, then we say thatM is aMarkov chain on state space[N ]. For a Markov chainMN×N ,
we define theunderlying graph of M as the graphG = ([N ], E) such that(u, v) ∈ E if and only if
M(v, u) > 0. A distribution π ∈ R

N is stationary for a Markov chainM if Mπ = π. Note that if

π is stationary forM , thensupp(π)
def
= {v : π(v) > 0} is a closed subset ofM in the sense that there

are no transitions fromsupp(π) to its complement; thusM is well-defined as a Markov chain restricted to
supp(π). A Markov chainM is time reversible with respect to a stationary distributionπ if for every two
verticesu, v ∈ [N ] we haveπ(u)M(v, u) = π(v)M(u, v). If G is an undirected graph, thenMG is time
reversible with respect to the stationary distributionπ(u) = d(u)/2m, whered(u) is the degree ofu andm
is the number of edges. A random walk on a directed graph, however, is typically not time reversible.

We are interested in the rate at which a Markov chainM converge to a stationary distribution For
a time-reversible Markov chainM , it is well-known that the rate of convergence is characterized by the
second largest (in absolute value) eigenvalueλ2(M) of the matrixM . If M is not time-reversible (for
example, ifM is the random walk on a directed graph), thenM need not have real eigenvalues, and the
stationary distribution need not have the largest eigenvalue in absolute value, so the time-reversible theory
is not immediately applicable.

Following Mihail [Mih] and Fill [Fil], we introduce a parameterλ(M) which is equal toλ2(M) if M is
time-reversible, but that remains well-defined even for non-time-reversible Markov chain. For a probability
distributionπ ∈ R

N on vertices, we define a normalized inner product onR
N by:

〈x, y〉π def
=

∑

v∈supp(π)

x(v) · y(v)
π(v)

,

1Often the transition matrix is defined to be the transpose of our definition. Our choice means taking a random walk corresponds
to left-multiplication byMG.
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and a norm‖x‖π def
=

√

〈x, x〉π. Note that this normalization makesπ itself a unit vector (i.e.‖π‖π = 1),
and also implies thatx is orthogonal toπ iff

∑

v x(v) = 0. (Technically,〈·, ·, 〉π is only an inner product on
the subspace{x ∈ R

N : supp(x) ⊆ supp(π)}, since there are nonzero vectorsx outside this subspace such
that‖x‖π = 0. However, it will be convenient to use this notation for arbitrary vectors inRN .)

Definition 2.1 LetM be a Markov chain andπ be a stationary distribution forM . We define thespectral
expansionofM with respect toπ to be

λπ(M)
def
= max

x∈RN :〈x,π〉π=0

‖Mx‖π
‖x‖π

,

For a digraphG and a stationary distribution ofMG, we often writeλπ(G) instead ofλπ(MG).

As noted above, whenM is time-reversible, thenλπ(M) equals the second largest eigenvalue (in ab-
solute value) ofM (more precisely, the submatrix ofM consisting of the rows and columns insupp(π)). In
general,λπ(M) equals the square root of the second largest (in absolute value) ofM̃M , whereM̃ (u, v) =
π(u)M(v, u)/π(v) (again, restricting to submatrices so thatu, v ∈ supp(π)).

The following lemma shows that ifλπ(M) is small, then the Markov chain converges quickly toπ.

Lemma 2.2 Letπ be a stationary distribution of Markov chainM on [N ], and letα be any distribution on
[N ] such thatsupp(α) ⊆ supp(π). Then

‖M tα− π‖π ≤ λπ(M)t · ‖α− π‖π.

In particular, if we start at a vertexv ∈ supp(π) and runM for t steps, then we end at vertexw ∈ supp(π)
with probability at leastπ(w) − λπ(M)t ·

√

π(w)/π(v).

The above lemma refers to convergence in (normalized)ℓ2 distance. The following lemma shows that
this implies convergence in standard variation distance.

Lemma 2.3 For any distributionα, the variation distance betweenα andπ is at most‖α− π‖π.

It is well-known that (connected, nonbipartite) undirected graphsG always satisfyλπ(G) ≤ 1 −
1/poly(N,D), whereN is the number of vertices andD the degree [Lov]. That is, undirected graphs
have at most polynomial mixing time. However, in general directed graphs,λπ(G) can be exponentially
close to 1, and thus the mixing time exponentially large.

Just as in the undirected case, the spectral expansion can bebounded in terms of the sizes of cuts in the
underlying graph.

Definition 2.4 LetM be a Markov chain withN vertices andπ a stationary distribution. Theconductance
ofM with respect toπ is defined to be

hπ(M)
def
= = min

A:0<π(A)≤1/2

∑

u∈A,v 6∈A π(u)M(v, u)

π(A)
.

Lemma 2.5 ([SJ, Mih, Fil]) LetM be a Markov chain onN vertices such thatM(u, u) ≥ 1/2 for everyu
(i.e.M is “strongly aperiodic”), and letπ be a stationary distribution ofM . Thenλπ(M) ≤ 1−hπ(M)2/2.
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When the stationary distributionπ is uniform on the vertices ofG, then the conductance defined above
coincides exactly with the “edge expansion” ofG, defined below.2

Definition 2.6 LetG = (V,E) be a directed graph in which every vertex has outdegreeD. Then theedge
expansionofG is defined to be

ε(G) = min
A

E(A,A)

D ·min{|A|, |Ā|} ,

where the minimum is taken over sets of verticesA andE(A,A) is the set of edges(u, v) whereu ∈ A and
v /∈ A.

2.2 Complexity Classes

We letL, RL, NL, BPL denote the standard logspace complexity classes. We defineprL, prRL and
prBPL as the respective classes ofpromise problemsandsearchL, searchRL andsearchNL as the
respective classes ofsearch problems. See Appendix A.2 for detailed definitions and for definitions of
reductions between search problems. We note the following result.

Proposition 2.7 If prBPL = prL, thensearchRL = searchL.

3 A New Complete Problem forRL

S-T CONNECTIVITY and its search version, FIND PATH, both defined below, are two of the most basic
problems in computer science.

S-T CONNECTIVITY:

• Input: (G, s, t), whereG = (V,E) is a directed graph,s, t ∈ V

• YES instances:There is a path froms to t in G.

• NO instances:There is no path froms to t in G.

FIND PATH:

• Input: (G, s, t), whereG = (V,E) is a directed graph,s, t ∈ V , andk ∈ N

• Promise: There is a path froms to t in G.

• Output: A path froms to t in G.

It is well-known that S-T CONNECTIVITY is complete forNL, and the same argument shows that FIND

PATH is complete forsearchNL. Here we are interested in the complexity of restrictions ofthese problems.
The recent result of Reingold [Rei] shows that their restrictions toundirectedgraphs, UNDIRECTED S-T
CONNECTIVITY and UNDIRECTED FIND PATH, are inL andsearchL, respectively.

It was known (see [Sak]) that a certain restriction of S-T CONNECTIVITY was complete forprRL,
specifically one where we look at the probability that a random walk of a particular length goes froms to t:

2To see thatε(G) = hπ(G) whenπ is the uniform distribution, note that the fact that the stationary distribution is uniform
implies thatG is biregular, which in turn implies thatE(A, A) = E(A, A).
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SHORT-WALK S-T CONNECTIVITY:

• Input: (G, s, t, 1k), whereG = (V,E) is a directed graph,s, t ∈ V

• YES instances:A random walk of lengthk started froms ends att with probability at least1/2.

• NO instances:There is no path froms to t in G.

However, this problem does not seem to capture the properties of UNDIRECTED S-T CONNECTIVITY

used in Reingold’s algorithm [Rei]. His algorithm uses relies on a measure of expansion, specifically the
spectral gap, which refers to thelong-termbehavior of random walks inG (as opposed to walks of a partic-
ular lengthk). We give a complete problem that seems much closer, specifically by restricting to graphs of
polynomial mixing time (as measured byλπ(G)).

POLY-M IXING S-T CONNECTIVITY:

• Input: (G, s, t, 1k), whereG = (V,E) is a out-regular directed graph,s, t ∈ V , andk ∈ N

• YES instances:The random walk onG has a stationary distributionπ such thatλπ(G) ≤ 1 − 1/k,
andπ(s), π(t) ≥ 1/k.

• NO instances:There is no path froms to t in G.

POLY-M IXING FIND PATH:

• Input: (G, s, t, 1k), whereG = (V,E) is a out-regular directed graph,s, t ∈ V , andk ∈ N

• Promise: λs(G) ≤ 1− 1/k, andπs(s), πs(t) ≥ 1/k.

• Output: A path froms to t in G.

The completeness of these two problems is given by the following theorem.

Theorem 3.1 POLY-M IXING S-T CONNECTIVITY is complete forprRL. POLY-M IXING FIND PATH is
complete forsearchRL.

Proof: See Appendix A.3.

4 Operations on Directed Graphs

Given theRL-complete problem from the previous section, it is natural to ask whether Reingold’s algo-
rithm [Rei] for UNDIRECTED S-T CONNECTIVITY can be generalized to work for the complete prob-
lem. Recall that the algorithm works by taking any undirected graphG and applying a sequence of op-
erations to improve its expansion, as measured by spectral gap. Specifically, it relies on a pair of opera-
tions that doubles the spectral gap while keeping the degreeconstant (and increasing the number of ver-
tices by a constant factor). Since the initial (non-bipartite, connected) undirected graphG has spectral gap

γ(G)
def
= 1 − λ(G) ≥ 1/poly(N), afterO(logN) operations, we have a graphG′ with γ(G′) ≥ 1/2. That

is, G′ is a (constant-degree) expander graph and in particular hasdiameterO(logN) (in each connected
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component). Then s-t connectivity can be decided in logspace by enumerating all paths ofO(logN) from
s.

Attempting to generalize this approach to theRL-complete problem POLY-M IXING S-T CONNEC-
TIVITY , we observe that the initial conditionγ(G) ≥ 1/poly(N) holds by the promise (takingN to be
the length of the input). In addition, if we manage to convertG into a constant-degree graphG′ with
γ(G′) ≥ 1/2 while maintaining the fact thats andt have stationary probability at least1/poly(N), then
Lemma 2.2 implies that there is a path of lengthO(logN) from s to t and we can solve s-t connectivity by
enumerating all such paths.

Thus, the “only” missing part of the algorithm is generalizing the operations used by Reingold to im-
prove expansion (without increasing the degree) to directed graphs. Below we suggest some possibilities.

Labellings. Let G be a digraph withN vertices such that every vertex has outdegree at mostDout and
indegree at mostDin. (Recall that we allow multiple edges and self-loops.) Atwo-way labellingof G
provides a numbering of the edges leaving each vertex ofG using some subset of the numbers from1 to
Dout, as well as a numbering of edges entering each vertex ofG using some subset of the numbers from1
toDin. (No two edges leaving a vertex can have the same number, and no two edges entering a vertex can
have the same number.) Such a graph together with its two-waylabelling can be specified by arotation
map RotG : [N ]× [Dout]→ ([N ]× [Din])∪ {⊥}, whereRotG(v, i) = (u, j) if there is an edge numbered
i leavingv and it equals the edge numberedj enteringu, andRotG(v, i) = ⊥ if there is no edge numberedi
leavingv. The operations below will be defined in terms of 2-way labellings, as specified by rotation maps.

See the Appendix A.4 for definitions of powering, replacement and zig-zag product for digraphs.

5 Regular (and Eulerian) Graphs

We define REGULAR DIGRAPH S-T CONNECTIVITY and REGULAR DIGRAPH FIND PATH to be the
problems obtained by restricting S-T CONNECTIVITY and FIND PATH to regular digraphs, and similarly
EULERIAN S-T CONNECTIVITY and EULERIAN FIND PATH to be the restrictions to Eulerian digraphs —
directed graphs where every vertex has the same in-degree asout-degree. There is no additional promise
in these problems. It is not difficult to see that EULERIAN S-T CONNECTIVITY reduces to UNDIRECTED

S-T CONNECTIVITY, simply by making all edges undirected. Whether or nots and t are connected is
maintained because, in an Eulerian graph, every cut has the same number of edges crossing in both di-
rections. Note, however, that this isnot a reduction from EULERIAN FIND PATH to UNDIRECTED FIND

PATH. Nevertheless, here we give a logspace algorithm for EULERIAN FIND PATH by generalizing the ideas
underlying Reingold’s algorithm [Rei] to the directed case. (The proof is in Appendix A.5.)

Theorem 5.1 EULERIAN FIND PATH is in searchL.

6 Oblivious Algorithms for Consistently Labelled Graphs

The algorithm given for REGULAR DIGRAPH FIND PATH in the previous section is in the standard com-
putational model, where the input graph is given explicitlyto the logspace algorithm. However, for s-t
connectivity problems, it is also interesting to seek “oblivious” algorithms that do not explicitly get the in-
put graph, but are only able to walk on the graph by specifyinga sequence of outgoing edge labels. That is,
the algorithm is given the parameters of the input graphG (namely, number of verticesN and degreeD),
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and then tries to produce a walkw ∈ [D]∗ such that the walk inG obtained starting ats and following the
edge labels inw visits t at some point.

Notice that the behavior of such an oblivious algorithm is sensitive to the labelling of outgoing edges
in G, but incoming edge labels are irrelevant. Thus, now we thinkof ourD-regular digraphG as being
specified with aone-way labelling; that is, the outgoing edges from each vertex are numbered from 1 toD.
(In contrast, the algorithm presented in the previous section can be thought of as being given anunlabelled
graph, then it constructs its own two-way labelling to facilitate the applications of the zig-zag product.)

Here we present two types of oblivious algorithms for regular digraphs, one being a deterministic,
logspace construction of “universal traversal sequences”and the other being a logspace-computable “pseudo-
random generator” for random walks on the graph.

These algorithms will only work on regular digraphs that areconsistently labelled, which means that
all the edges coming into any vertex of the graph have distinct labels, i.e. no vertexv can be bothu’s ith-
neighbor andw’s ith-neighbor (for any distinct verticesu andw). In other words, if we use the same labels
to number the edges incoming at each vertex (if(u, v) is thei’th edge leavingu, we consider it to be the
i’th edge enteringv), we obtain a legaltwo-waylabelling of the graph (in that each label in[D] will get
used exactly once as an incoming label each vertex). Every regular digraph has a consistent labelling; this is
equivalent to the fact that everyD-regular bipartite graph is the union ofD perfect matchings. . However,
finding a consistent labelling may not be feasible in log-space, and in any case an oblivious algorithm does
not have the freedom to relabel the graph.

We remark that oblivious algorithms like the ones we describe often have applications that non-oblivious
algorithms may not. For example, pseudorandom generators fooling logspace algorithms, such as [Nis2,
NZ], have a variety of applications that do not seem to followarbitrary deterministic simulations ofRL,
e.g. [Ind, Siv, HVV, HHR]. Even our pseudorandom generator in Section 6.2 below has already found an
application in the construction of almostk-wise independent permutations [KNR].

6.1 Universal Traversal Sequences

Definition 6.1 ([AKL +]) Let D andN be two integers and letG be a subset of the labelledD-regular
connected digraphs onN vertices. We say that a sequence of values in[D] is auniversal traversal sequence
for G, if for every graphG ∈ G, and every vertexs ∈ [N ], the walk that starts ins and follows the edges of
G according to the sequence of labels visits all the vertices of the graph.

We will show how the REGULAR DIGRAPH FIND PATH algorithm described in the previous section
also implies a log-space constructible universal traversal sequence forconsistently labelledregular digraphs.
(The proof is in Appendix A.6)

Theorem 6.2 There exists a log-space algorithm that on input1N , 1D produces a universal traversal se-
quence for all connected, consistently labelledD-regular digraphsG onN -vertices.

6.2 A Pseudorandom Generator

In this section we show that the path finding algorithm also implies a generator with logarithmic seed length
that produces in log-space a “pseudorandom walk” for consistently labelled regular digraphs. This means
that from any start vertex, following the pseudorandom walkleads to an almost uniformly distributed vertex.
In other words, just as the random walk, the pseudorandom walk converges to the stationary distribution.
This seems to be a result of independent interest. In particular, we show in Section 7 that a similar
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pseudorandom generator (or even weaker), that works for regular digraphs witharbitrary labels, would
prove thatRL = L.

The intuition for the generator is as follows. In the path-finding algorithm, an expander graphGexp is
constructed. In this graph a short random walk converges to the uniform distribution. As in the proof for
the universal traversal sequences, the sequence of labels of the (random) walk onGexp can be translated to
a (pseudorandom) sequence of labels for a walk onG. Furthermore, this sequence of labels is independent
of G (and can be computed in log-space without access toG). Note that all nodes of the original graph
G are expanded to “clouds” of equal size. Therefore, the pseudorandom walk converges to the uniform
distribution on the vertices ofG (which is the projection onG of the uniform distribution on the vertices of
Gexp). Formalizing the above arguments will indeed imply a generator that produces a pseudorandom walk
of length polynomial in the size of the graph. However, a truly random walk will converge faster ifG has a
larger eigenvalue gap. Theorem 6.3 below takes this into account and implies, in this case, a pseudorandom
walk that is shorter as well. The proof is in Appendix A.7.

Theorem 6.3 For everyN,D ∈ N, δ, γ > 0, there is a generatorPRG = PRGN,D,δ,γ : {0, 1}r → [D]ℓ

with seed lengthr = O(log(ND/δγ)), and walk lengthℓ = poly(1/γ) · log(ND/δ), computable in space
O(log(ND/δγ)) such that for everyconsistently labelled(N,D, 1−γ) regular digraphG and every vertex
s in G, talking walkPRG(Ur) from s ends at a vertex that is distributedδ-close to uniform (in variation
distance).

7 Reducing all ofRL to the Regular Case

In this section, we prove that if there exists a pseudorandomgenerators for walks on regular digraphswhose
edges are arbitrarily labelled, thenRL = L and alsosearchRL = searchL. Theorem 6.3 implies
a generator for walks on regular digraphs with the additional restriction that the labelling of the edges is
consistent. Lifting this restriction would imply thatRL = L. In fact, such a generator would also imply
BPL = L. However, we concentrate in this preliminary version on thecase ofRL.

Theorem 7.1 There is a universal constantα > 0 such that the following holds for every constanta ∈ N.
Suppose that for everyN,D ∈ N, δ, γ > 0, there is a generatorPRG = PRGN,D,δ,γ : {0, 1}r → [D]ℓ

with seed lengthr = a log(ND/δγ), and walk lengthℓ = (1/(γδ))a · (ND)α, computable in space
a log(ND/δγ) such that for every(N,D, 1 − γ) regular digraphG = (V,E) and every vertexs ∈ V
and every subsetT ⊆ V of density at leastδ, the walk froms following the labelsPRG(Ur) visitsT with
probability at least(δγ)a/(ND)α. ThenRL = L andsearchRL = searchL.

Note that the above theorem requires that the lengthℓ of the pseudorandom walks have limited de-
pendence onN andD, being bounded by(ND)α rather than being polynomial or even linear inND.
Still, this is a much milder requirement than what is achieved by our generator for consistently labelled
graphs (Thm. 6.3), which achieves logarithmic dependence.We also note that a pseudorandom generator
for logspace algorithms with logarithmic seed length wouldimply the above theorem, because a truly ran-
dom walk of lengthO(1/γ) ·O(log(ND/δ)) would end atT with probability at leastδ/2, and such a walk
can be implemented in spaceO(log(ND/δγ)).

Roughly speaking, we will prove Theorem 7.1 by showing that for every poly-mixing graphG, there
exists a regular digraphGreg such that the correctness of the generator onGreg implies the correctness of
(a modification of) the generator onG. Thus, if we have a generator that works well on regular digraphs,
we obtain a generator that works well on instances of POLY-M IXING S-T CONNECTIVITY, which we have
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shown to beRL-complete (Theorem 3.1). We stress that this construction is only done in theanalysis, and
thus need not be computable in log-space. See the Appendix A.8 for details.
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A Appendix

A.1 Proofs Omitted from Section 2

A.1.1 Proof of Lemma 2.2

Proof: [Of Lemma 2.2] We note thatα − π is orthogonal toπ and thatM preserves orthogonality toπ.
Thus,

‖M tα− π‖π = ‖M t(α− π)‖π ≤ λπ(M)t · ‖α− π‖π.
For the “in particular,” we takeα to be the distribution concentrated atv and note that

‖α− π‖2π =
(1− π(v))2

π(v)
+

∑

w 6=v

π(w)2

π(w)
≤ 1

π(v)
,

and that
|(M tα)(w) − π(w)|2 ≤ π(w) · ‖π −M tα‖2π.

A.1.2 Proof of Lemma 2.3

Proof: [Of Lemma 2.3] The variation distance betweenα andπ equals

∑

v:π(v)>α(v)

π(v)− α(v) ≤
∑

v∈supp(π)

|α(v) − π(v)|
√

π(v)
·
√

π(v)

≤





∑

v∈supp(π)

|α(v) − π(v)|2
π(v)





1/2

·





∑

v∈supp(π)

π(v)





1/2

= ‖α− π‖π · 1.

A.1.3 Proof of Lemma 2.5

Proof: [Of Lemma 2.5] Mihail [Mih] proves the bound

λπ(M) ≤
√

1− hπ(M)2 ≤ 1− 1

2
h2

π(M) .

Here we give a simpler proof, using techniques of Fill [Fil].
First of all, we may assume without loss of generality thatπ(u) > 0 for everyu ∈ [N ]. Otherwise, we

can consider the restriction ofM to the sub-matrix whose rows and columns are indexed by verticesu such
thatπ(u) > 0. Such sub-matrix has the same stationary distribution, spectral gap and conductance ofM
and satisfies our assumption.

Define thetime reverseof M as the Markov chainM̃ such thatM̃(u, v) = π(u)M(v, u)/π(v). The
following claims are easy to check:
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• M̃ is a Markov chain, that is, for everyv,
∑

u M̃(u, v) = 1.

(Note that we have
∑

u M̃(u, v) =
∑

u π(u)M(v, u)/π(v) by definition, and
∑

u π(u)M(v, u) =
π(v) by stationarity.)

• π is stationary forM̃ .

• M̃ is strongly aperiodic.

DefineP
def
= M̃M . ThenP is also a Markov chain,π is also a stationary distribution forP and, in

addition, we have thatP is time reversible, that is,π(v)P (u, v) = π(u)P (v, u). The eigenvalues of a time
reversible Markov chainR with stationary distributionπ all real, are all at most 1, and we denote the second
largest eigenvalue in absolute value byλ2(R).

In the particular case ofP , it is not hard to see that

λ2(P ) = (λπ(M))2 (1)

and so we are left with the task of proving thatλ2(P ) ≤ 1− h2
π(M).

SinceM andM̃ are strongly aperiodic, we can write them asM = 1
2I + 1

2L andM̃ = 1
2 + 1

2 L̃ where
L, L̃ are Markov chains with stationary distributionπ. Using this notation, we can write

P = M̃M =

(

1

2
+

1

2
L̃

)(

1

2
+

1

2
L

)

=
1

4
I +

1

4
L̃+

1

4
L+

1

4
L̃L

The next observation is that12L + 1
2 L̃ is a time-reversible Markov chain with stationary probability π,

and so arẽLL andI, and thatλ2 is a norm for such matrices, so we have

λ2(P ) ≤ 1

4
λ2(I) +

1

2
λ2

(

1

2
L+

1

2
L̃

)

+
1

4
λ2(L̃L)

≤ 1

2
+

1

2
λ2

(

1

2
L+

1

2
L̃

)

At this point we are ready to use a result of Jerrum and Sinclair [SJ], who prove that for every time-
reversible Markov chainR and stationary distributionπ we haveλ2(R) ≤ 1 − h2

π(R)/2. Applying this
result to1

2L+ 1
2 L̃ we get

λ2

(

1

2
L+

1

2
L̃

)

≤ 1− 1

2
h2

π

(

1

2
L+

1

2
L̃

)

It remains to study the conductance of1
2L+ 1

2 L̃. We first note that

hπ

(

1

2
L+

1

2
L̃

)

= 2hπ

(

1

2
M +

1

2
M̃

)

because every edge that is not a self-loop has twice as much weight inL (respectivelyL̃) than inM (respec-
tively M̃ ). Finally, we have

hπ

(

1

2
M +

1

2
M̃

)

= hπ(M)

This identity comes from the fact that, for every cutS, [N ]− S of the set of vertices we have
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∑

u∈S,v 6∈S

π(u)M(v, u) =
∑

u∈S,v 6∈S

π(v)M(u, v) =
∑

u∈S,v 6∈S

π(u)M̃ (v, u)

Collecting all our inequalities together we have

λπ(M) =
√

λ2(P ) ≤
√

1

2
+

1

2
λ2

(

1

2
L+

1

2
L̃

)

≤
√

1

2
+

1

2
− 1

4
h2

π

(

1

2
L+

1

2
L̃

)

=
√

1− h2
π(M) ≤ 1−1

2
h2

π(M)

A.2 Definitions of Complexity Classes

We let L, RL, NL, BPL denote the standard logspace complexity classes. That is,L is the class of
decision problems solvable bydeterministiclogarithmic space Turing machines,RL is the class of decision
problems solvable byprobabilisticlogarithmic space Turing machines with bounded one-sided error, BPL

is the class of decision problems solvable byprobabilisticlogarithmic space Turing machines with bounded
two-sided error, andNL is the class of decision problems solvable bynon-deterministiclogarithmic space
Turing machines. We require our machines to always terminate for every input and for every sequence of
random coins or non-deterministic choices. In particular,this implies that every computation terminates
within polynomial time.

We also define thepromise versionof log-space complexity classes. Apromiseproblem is a pair(Y,N)
of disjoint sets of instances. A promise problem(Y,N) is in the classprL if there is a deterministic log-
space Turing machine that accepts all the inputs inY and rejects all the inputs inN . A promise problem
(Y,N) is in prRL if there is a probabilistic logarithmic space Turing machine that accepts inputs inY with
probability at least1/2 and accepts inputs inN with probability 0. A promise problem(Y,N) is in prBPL

if there is a probabilistic logarithmic space Turing machine that accepts inputs inY with probability at least
3/4 and accepts inputs inN with probability at most1/4. When dealing with promise problems, we require
probabilistic machines to halt for every input inY ∪N and for every sequence of random coins. (We allow
infinite loops for inputs not inY ∪N .)

Finally, we define complexity classes ofsearch problems. A search problemis simply a relationR ⊆
Σ∗ × Σ∗. For a relationR and a stringx we defineR(x)

def
= {y : R(x, y)}. The computational problem

associated with a search problemR is the following: givenx such thatR(x) 6= ∅, output a stringy in R(x).
A relation (or search problem)R is log-spaceif there is a polynomialp such thaty ∈ R(x) implies

|y| ≤ p(|x|) and if the predicate(x, y) ∈ R can be decided by a log-space deterministic Turing machine
that has two-way access tox and one-way access toy.

A logspace search problemR is in searchL if there is a logarithmic space transducerA such that
A(x) ∈ R(x) for everyx such thatR(x) 6= ∅. (A transducer is a Turing machine with a read-only input
tape, a work tape, and a write-only output tape. The writing head on the output tape is constrained to always
move right after writing a symbol, but the machine has two-way access to the input tape.)

A logspace search problemR is in searchRL if there is a logarithmic space probabilistic transducerA
and a polynomialp such thatPr [A(x) ∈ R(x)] ≥ 1

p(x) for everyx such thatR(x) 6= ∅. (We require the
transducer to halt for every sequence of random coins and foreveryx such thatR(x) 6= ∅.)

All reductions in this paper are deterministic logspace reductions. The definition of reduction is stan-
dard for decision problems and promise problems.
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For two search problemsR1 andR2, we say thatR1 reduces toR2 if there are two functionsf(·) and
g(·, ·) such that

1. If R1(x) is non-empty thenR2(f(x)) is non-empty;

2. If z ∈ R2(f(x)), theng(x, z) outputs a sequencey1, . . . , yk such that at least one elementyi of the
sequence is inR1(x);

3. f() is computable by a deterministic log-space transducer

4. g(x, y) is computable by a deterministic log-space transducer withtwo-way access tox and one-way
access toz.

It can be verified that ifΠ ∈ searchNL reduces toΠ′, thenΠ′ ∈ searchL⇒ Π ∈ searchL.

A.3 Proof of Theorem 3.1

Proof: [Of Theorem 3.1] First, we show that these problems are inprRL andsearchRL, respectively,
by giving randomized logspace algorithms for them. Given aninstance(G, s, t, 1k), we take a random walk
of lengthm = 2k · ln k from s, whereN is the number of vertices inG. ThesearchRL algorithm simply
outputs this walk, and theprRL algorithm accepts if this walk ends att. If (G, s, t, 1k) is a YES instance,
then by Lemma 2.2, the random walk will end att with probability at least

π(t)− λπ(M)m ·
√

π(t)/π(s) ≥ 1

k
−

(

1− 1

k

)m

·
√
k

≥ 1

k
− 1

k3/2
≥ 1

2k
.

Now we show that every problem inprRL andsearchRL, respectively, reduce to POLY-M IXING S-T
CONNECTIVITY and POLY-M IXING FIND PATH. Let M be a randomized logspace machine, running in
time at mostp(n) ≤ poly(n). Given an inputx of lengthn for M , we construct a graphG whose vertices
are of the form(i, τ), wherei ∈ {1, . . . , p(n)} is a “layer”, andτ ∈ {0, 1}O(log n) describes a possible
configuration ofM (i.e. the state, the contents of the work tape, and the position of the input head). We let
s = (1, α) whereα is the unique start configuration ofM , andt = (p(n), β) whereβ is the (wlog unique)
accepting configuration ofM . (In the case of asearchRL algorithm, we haveM accept if any of the
strings it outputs satisfy the relationR.) We create four outgoing edges from each vertex(i, γ). Two edges
are always self-loops. Ifi = p(n), then the other two edges go tos. If i < p(n), then the they go to vertices
of the form(i + 1, γ′) and(i + 1, γ′′), for γ′, γ′′ as follows. Ifγ is a configuration whereM reads a new
random bit, then we takeγ′ andγ′′ to be the two configurations thatM would enter depending on the two
possible values of the random bit. Ifγ is a configuration whereM does not read a new random bit, then we
setγ′ = γ′′ to be the unique next configuration inM ’s computation onx. If γ is a halting configuration of
M , then we setγ′ = γ′′ = γ.

Let us analyze the stationary distribution and mixing time of a random walk onG. It can be verified
that the following distributionπ is on vertices(i, τ) is stationary forG: choosei uniformly at random from
{1, . . . , p(n)}, runM for i steps on inputx, and letτ beM ’s configuration. We see that ifx ∈ L, then
π(t) > 1/2p(n), and ifx /∈ L, thenπ(t) = 0. In both casesπ(s) = 1/p(n).

To bound the mixing time, we observe that a random walk of length 3p(n) started atanyvertex visitss
with probability1 − 2−Ω(p(n)) ≥ 1/2. Lemma A.1 below says thatG has a stationary distributionπ′ such
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thatλπ′(G) ≤ 1 − 1/(8 · (3p(n))2) andπ′(s) > 0. It follows thatπ′ is the unique stationary distribution
onG, since a random walk started at any vertex eventually passesthroughs and thus converges toπ′ (by
Lemma 2.2). Soπ′ = π.

To conclude, in our reduction, we output(G, s, t, 1k), wherek = 72p(n)2. From the analysis above, this
gives a logspace reduction from any problem inprRL to POLY-M IXING S-T CONNECTIVITY. Similarly,
it gives a reduction from any problem insearchRL to FIND PATH, because with one-way access to any
path froms to t inG, in logspace we can construct polynomially many computation paths ofM , at least one
of which is accepting, and this in turn, can be used to obtain apolynomially many stringsy1, . . . , yℓ at least
of which is inR(x).

The above proof required the following lemma, which says that to show that a Markov chain has poly-
nomial mixing time, it suffices to prove that there is a vertexs such that a random walk of polynomial length
started at any vertex will visits with high probability.

Lemma A.1 LetM be a Markov chain that is strongly aperiodic (i.e. self-loopprobability at least 1/2 at
each vertex). Suppose there is a vertexs and a numberℓ ∈ N such that from every vertexv reachable froms,
a random walk of lengthℓ fromv visitss with probability at least1/2. ThenM has a stationary distribution
π such thatλπ(G) ≤ 1− 1/8ℓ2 andπ(s) ≥ 1/2ℓ.

Proof: Let M ′ be the restriction ofM to the set of all vertices reachable froms. Let π be a stationary
distribution of the random walk on onM ′. Because of the self-loops and the fact thatπ(s) > 0 (since
every vertex inM ′ has a path tos), we can boundλπ(M) by computing the conductancehπ(M) and
applying Lemma 2.5. To lower-bound the conductance, we needto lower boundPr [X ′ /∈ A|X ∈ A] =
Pr [X ∈ A ∧X ′ /∈ A] /π(A), whereX is chosen according toπ,X ′ is a random step fromX, andA is any
set such that0 < π(A) ≤ 1/2. To bound this, we consider a random walkX1, . . . ,Xℓ of lengthℓ started in
the stationary distributionπ, and separate into two cases depending on whethers ∈ A.

If s /∈ A, then the following holds:

ℓ · Pr
[

X ∈ A ∧X ′ /∈ A
]

≥ Pr [∃iXi ∈ A ∧Xi+1 /∈ A]

≥ Pr [X1 ∈ A, s ∈ {X2, . . . ,Xℓ}]
≥ π(A) · (1/2),

where the last inequality holds because a random walk of length ℓ (from any vertex inG′) visits s with
probability at least1/2 by hypothesis.

If s ∈ A, then the following holds:

ℓ · Pr
[

X ∈ A ∧X ′ /∈ A
]

= ℓ · Pr
[

X /∈ A ∧X ′ ∈ A
]

≥ Pr [∃iXi /∈ A ∧Xi+1 ∈ A]

≥ Pr [X1 /∈ A, s ∈ {X2, . . . ,Xℓ}]
≥ π(A)/2

≥ π(A)/2

Thus, we conclude thatPr [X ′ /∈ A|X ∈ A] ≥ 1/(2ℓ) for everyA such that0 < π(A) ≤ 1/2, and
hencehπ(G) ≥ 1/(2ℓ). By Lemma 2.5,λπ ≤ 1− 1/(2 · (2ℓ)2).

To lower boundπ(s), we note that the expected number of timess is visited inX1, . . . ,Xℓ equalsπ(s)·ℓ
on one hand, and is at least1/2 on the other. Thusπ(s) · ℓ ≥ 1/2.
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In fact, the converse is also true — if a Markov chain has polynomial mixing time then there is a vertex
s such that a random walk of polynomial length started at any vertex will visit s with high probability.
Indeed, ifλπ(M) ≤ 1 − γ and we takes to be any vertex such thatπ(s) ≥ 1/N (whereN is the number
of states), then Lemma 2.2 says that a random walk of lengthℓ = O((1/γ) · log(N/pmin )) will end at s
with probability at least1/2N , wherepmin is the minimum (nonzero) probability mass underπ. Repeating
O(N) times, we visits with high probability. In cases we are interested in (e.g. random walks on graphs),
pmin is only exponentially small, so the walk lengthℓ ·N is polynomial.

We note that the proof of Theorem 3.1 can be modified to give a complete problem forprBPL, specif-
ically where the NO instances are replaced with instances such thatλπ(G) ≤ 1 − 1/k, π(s) ≥ 1/k and
π(t) ≤ 1/2k. We also note that, following [AKL+], the randomized algorithm for POLY-M IXING S-T
CONNECTIVITY also gives a nonconstructive existence proof of polynomial-length universal traversal se-
quences for the corresponding class of graphs:

Proposition A.2 There is a polynomialp such that for everyN , D, k, there exists a sequenceψ ∈
[D]p(N,D,k) such that for everyN -vertex labelled directed graphG of outdegreeD and vertexs in G such
thatλs(G) ≤ 1− 1/k, following the walkψ from s visits all verticesv ofG for whichπs(v) ≥ 1/k.

A.4 Operations on Directed Graphs

The first operation used by Reingold [Rei] to improve expansion is powering, simply replaces the edge set
with all walks of lengtht in the graph.

Definition A.3 (powering) LetG be a two-way labelled graph given by rotation mapRotG : [N ]× [D]→
[N ] × [B]. Thet’th power of G is the graphGt with rotation map is given byRotGt : [N ] × [D]t →
[N ]×[B]t defined byRotGt

(v0, (k1, k2, . . . , kt)) = (vt, (ℓt, ℓt−1, . . . , ℓ1)), where these values are computed
via the rule(vi, ℓi) = RotG(vi−1, ki) (and if any of these evaluations yield⊥, then the final output is also
⊥).

In directed graphs, powering improves expansion (i.e. reduces mixing time) as well as it does in undi-
rected graphs:

Lemma A.4 For any stationary distributionπ ofG, λπ(Gt) ≤ λπ(G)t.3

Powering alone does not suffice, because it increases the degree of the graph. Thus, Reingold [Rei]
requires an additional operation to reduce the degree whilemaintaining the expansion. For this, there are two
possibilities — the replacement product and zig-zag product. These operations were defined and analyzed
in [RVW] for undirected regular graphs, and it is not clear what is the ‘right’ generalization to irregular
directed graphs (particularly non-Eulerian graphs, wherethe indegree and outdegree of an individual vertex
may be unequal). Here we suggest one possibility. For simplicity, we restrict to rotation maps where the
outdegree boundD is the same as the indegree boundB.

In the replacement product, we combine a graphG1 with N1 vertices and a rotation map of degreeD1

with a graphG2 that hasD2 vertices and a rotation map of degreeD2. The product graph hasD1N1 vertices,
that we think of as being grouped intoN1 “clouds” of sizeD1, one cloud for each vertex ofG1. Each cloud
is a copy of the graphG2. In addition, if thei-th outgoing edge from vertexv in G1 was thej-th incoming
edge inw (that is, ifRotG1

(v, i) = (w, j), then, in the product graph, there is an edge from thei-th vertex
in the cloud ofv to thej-th vertex in the cloud ofw. The formal definition follows.

3In undirected graphs this is actually an equality, but in digraphs it need not be.
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Definition A.5 (replacement product) If G1 is a two-way labelled graph onN1 vertices with rotation map
RotG1

: [N1]× [D1]→ [N1]× [D1] andG2 is a two-way labelled graph onD1 vertices with rotation map
RotG2

: [D1]× [D2]→ [D1]× [D2], then theirreplacement productG1©r G2 is defined to be the graph on
[N1]× [D1] vertices whose rotation mapRotG1©r G2

: ([N1]× [D1])× [D2 +1]→ ([N1]× [D1])× [D2 +1]
is as follows:

RotG1©r G2
((v, k), i):

1. If i ≤ D2, let (m, j) = RotG2
(k, i) and output((v,m), j).

2. If i = D2 + 1, output(RotG1
(v, k), i).

3. If the computation ofRotG2
or RotG1

yields⊥, then the output is⊥.

A variant, called thebalanced replacement productG1©b G2 in [RVW], gives equal weight to the
edges coming fromG1 and fromG2, by duplicating edges that go between clouds (ie edges of thetype 2)
D2 times, for a total degree of2D2.

The zig-zag product, introduced in [RVW], combines, as before, a graphG1 with N1 vertices and a
rotation map of degreeD1 with a graphG2 that hasD1 vertices and degreeD2. The product graph has
N1D1 vertices as in the replacement product, but now there is an edge between two vertices if there is a
length-three path in the replacement product graph betweenthem, and the middle edge in the path crosses
between two clouds. In particular, the degree of the zig-zagproduct graph isD2

2, instead ofD2 + 1. The
formal definition is below.

Definition A.6 (zig-zag product [RVW]) If G1 is a labelled graph onN1 vertices with rotation mapRotG1
:

[N1] × [D1] → [N1] × [D1] and G2 is a labelled graph onD1 vertices with rotation mapRotG2
:

[D1]× [D2]→ [D1]× [D2], then theirzig-zagproductG1©z G2 is defined to be the graph on[N1]× [D1]
vertices whose rotation mapRotG1©z G2

: ([N1]× [D1])× [D2
2]→ ([N1]× [D1])× [D2

2 ] is as follows:

RotG1©z G2
((v, k), (i, j)):

1. Let(k′, i′) = RotG2
(k, i).

2. Let(w, ℓ′) = RotG1
(v, k′).

3. Let(ℓ, j′) = RotG2
(ℓ′, j).

4. Output((w, ℓ), (j′, i′)).

In typical applications of the zig-zag or replacement products (e.g. [RVW, Rei],G2 is taken to a
constant-degree expander graph (i.e.γ(G2) = Ω(1)). Then, for the case of undirected graphs, it is known
that the zig-zag product and the balanced replacement product have spectral gap that is at most a constant
factor smaller than the spectral gap ofG1 [RVW, MR2].4 Thus they roughly maintain expansion while
reducing the degree to a constant, and this suffices for Reingold’s algorithm [Rei].

Unfortunately, we do not know how to analyze the effect of thezig-zag and/or replacement products (or
variants) on spectral gap for directed graphs in general. Indeed, even the stationary distribution is not well-
behaved under these products; we can construct examples where the stationary probability of a vertext goes

4Actually, the undirected definitions of these products are restricted to two-way labellings that areundirectedin the sense that
every edge{u, v} has the same label as an edge leavingu as it does enteringu. That is,Rot ◦ Rot is the identity.
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from being noticeable (e.g.1/N2) to exponentially small. In Section A.9, we show that the replacement
product can actually be analyzed with respect toedge expansion, but then it turns out that powering no
longer behaves well.

We can analyze these products (and thus extend Reingold’s algorithm) for the case ofregular digraphs,
and these results are presented in the next section.

A.5 Proof of Theorem 5.1

To prove Theorem 5.1, it suffices to provide a logspace algorithm for REGULAR DIGRAPH FIND PATH,
because Eulerian digraphs can be reduced to the case of 2-regular digraphs by replacing each vertexv with
a directed cycleCv of deg(v) vertices, where we connect one outgoing edge ofv and one incoming edge of
v to each of the vertices inCv. Thus in the rest of this section we focus on regular digraphs.

A.5.1 Basic Facts

In a regular digraph of degreeD, the rotation mapRotG : [N ] × [D] → [N ] × [D] is a permutation. Note
that the uniform distribution is a stationary distributionof the random walk on a regular digraph. Thus,
when working with regular digraphs, the inner product〈·, ·〉π and the spectral expansionλπ(G) will always
be with respect toπ being the uniform distribution, and we will usually omitπ from the notation.

First, we note that regular digraphs have nonnegligible spectral gap, just like in the undirected case,
provided every vertex has a self-loop.5

Lemma A.7 LetG be a connected,D-regular digraph onN vertices in which every vertex has at leastαD
self-loops. Thenλ(G) ≤ 1− Ω(α/DN2).

Proof: We reduce to the undirected case using a technique of Fill [Fil]. Let M = MG. The spectral
expansionλ(M) equals the square root ofλ2(M

TM), i.e. the second largest eigenvalue (considering sign)
of the symmetric matrixMTM . Because of the self-loops inG, we can writeM = αI+(1−α)L, whereL
is the transition matrix for the random walk onG with theαD self-loops removed from each vertex. Then

MTM = α2I + 2α · (1− α) · (L+ LT )/2 + (1− α)2LTL.

Now, (L + LT )/2 is the transition matrix for the connected, undirected2D-regular graph obtained by
taking the edges ofG together with their reversals. Thus, by the known bound on the second eigenvalue of
undirected graphs [Lov], we haveλ2((L+ LT )/2) ≤ 1− Ω(1/DN2). Thus,

λ(M)2 = λ2(M
TM)

≤ α2 + (1− α)2 + 2α · (1− α) · λ2((L+ LT )/2)

≤ 1− Ω(α/DN2),

as desired.
5In the preliminary version of this paper [RTV], we erroneously used the standard notion of aperiodicity (i.e. gcd of all cycle

lengths is 1) instead of requiring self-loops. However, thelemma is false in this case; see [RV].
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A.5.2 Zig-zag Product

In this section, we generalize the Zig-Zag Theorem of [RVW] to regular digraphs.

Theorem A.8 If λ(G1) ≤ 1− γ1 andλ(G2) ≤ 1− γ2, thenλ(G1©z G2) ≤ 1− γ1 · γ2
2 .

Our algorithm, like [Rei], we will only use the following consequence of the second bound above: if
G2 is a good expander in the sense thatλ(G2) is bounded by a constant less than 1 andλ(G1) ≤ 1 − γ1,
thenλ(G1©z G2) ≤ 1−Ω(γ1). In the preliminary version of this paper [RTV], we presented a proof of this
1 − Ω(ε1) that was conceptually simpler than the previous proofs of this bound in the undirected case, for
either the zig-zag or replacement products.6 Here we present an even simpler proof, based on an approach
of Rozenman and Vadhan [RV], who used it to analyze a new ‘derandomized squaring’ operation (that gives
an alternative to Reingold’s algorithm as well our generalization to Eulerian digraphs). The key to this
approach is the following lemma:

Lemma A.9 ([RV]) LetM be a Markov chain with stationary distributionπ, and suppose thatλπ(M) ≤ λ.
ThenM = (1 − λ)Jπ + λ · E, whereJπ is the matrix such that every column equalsπ andE has norm at
most 1 with respect to‖ · ‖π. (That is,‖Ex‖π ≤ ‖x‖π for all x.

Intuitively, this lemma says that we can view a random step ona Markov chain with spectral expansion
λ as jumping to a random vertex underπ with probability λ and “not getting any further fromπ” with
probability 1 − λ. This intuition would be precise ifE were stochastic, but it is not guaranteed to be so.
Nevertheless, the intuition will work in the proof below.

Proof: (of Theorem A.8) LetM be the transition matrix of the random walk onG1©z G2. Following
[RVW], we relateM to the transition matrices ofG1 andG2, which we denote byA andB, respectively.
First, we decomposeM into the product of three matrices, corresponding to the three steps in the definition
of G1©z G2’s edges. LetB̃ be the transition matrix for taking a randomG2-step on the second component
of [N1] × [D1], i.e. B̃ = IN1

⊗ B, whereIN1
is theN1 × N1 identity matrix. LetÃ be the permutation

matrix corresponding toRotG1
. By the definition ofG1©z G2, we haveM = B̃ÃB̃.

By Lemma A.9,B = γ2J + (1− γ2)E, where every entry ofJ equals1/D1 andE has norm at most 1.
ThenB̃ = γ2J̃ + (1− γ2)Ẽ, whereJ̃ = IN1

⊗ J andẼ = IN1
⊗ E has norm at most 1.

This gives

M =
(

γ2J̃ + (1− γ2)tildeE
)

Ã
(

γ2J̃ + (1− γ2)Ẽ
)

= γ2
2 J̃ÃJ̃ + (1− γ2

2)F,

whereF has norm at most 1.
Now, the key observation is that

J̃ ÃJ̃ = A⊗ J.
The left-hand side is the stochastic matrix corresponding to the Markov chain that does the following from
state(v, i): choosei′ uniformly in [D1], let (w, j′) = RotG1

(v, i′), choosej uniformly in [D1] and go to
state(w, j). The right-hand side corresponds to: letw be a random neighbor ofv in G1, choosej uniformly
in [D1] and output(w, j). These two processes are identical by the definition of a rotation map.

6The basic analysis of the undirected zig-zag product in [RVW] only gives a bound of1−Ω(ε2
1). Only a much more complicated

and less intuitive analysis, that uses the undirectedness of G1 in additional ways, gives the1 − Ω(ε1) bound. The Martin–
Randall [MR2] decomposition theorem for Markov chains alsoimplies a1−Ω(ε1) bound for the undirected replacement products,
but its full proof (relying on [CPS]) is also fairly involved.
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Combining the above, we have

M = γ2
2 · A⊗ J + (1− γ2

2)F̃ ,

and thus

λ(M) ≤ γ2
2 · λ(A⊗ J) + (1− γ2

2)

≤ γ2
2 · (1− γ1) + (1− γ2

2)

= 1− γ1γ
2
2 ,

as desired.

A.5.3 The Path-Finding Algorithm

We have seen that powering and the zig-zag graph product has essentially the same affect on regular digraphs
as on undirected graphs. Therefore, both the decision and search versions of the st-connectivity algorithm
of [Rei] can be extended (without any substantial change) toregular digraphs. This implies Theorem 5.1,
which states that REGULAR DIGRAPH FIND PATH is in searchL. As the algorithm here is essentially the
same as in [Rei], we only provide a sketch of the proof.

Proof Sketch: [of Theorem 5.1] We describe a log-space algorithmA that gets as input aD-regular (i.e.
both the indegree and the outdegree of each vertex isD) graphG onN -vertices and two verticess andt
and outputs a path froms to t if such a path exists (otherwise, it will output ‘not connected’).

The algorithm will rely on a constant size (undirected) expander graphH, given by its rotation map
RotH , with rather weak parameters. More specifically,H will be De-regular, for some constantDe, it will
have(De)80 vertices (no attempt was made to optimize the constants), and λ(H) ≤ 1/2. The expanderH
can be obtained via exhaustive search or any one of various explicit constructions.

The first step of the algorithm, will be to reduce the inputG, s, t into a new inputGreg, s
′, t′ where

Greg is (De)80-regular onN ·D vertices, every connected component ofGreg is aperiodic, ands andt are
connected inG if and only if s′ andt′ are connected inGreg. Furthermore, a path froms′ to t′ in Greg can
be translated in log-space into a path froms to t in G. The reduction itself is quite standard: Each vertex
of G is replaced with a cycle withD vertices. In addition, theith vertex(v, i) in the cycle that corresponds
to v is connected to(w, j) = RotG(v, i) in the cycle that corresponds tow. Up to now, both the indegree
and the outdegree of each vertex is three. Therefore, we add to each vertex(De)80 − 3 self loops (this also
guarantees that each connected component ofGreg is aperiodic). The verticess′ andt′ are arbitrary vertices
from the cycles that correspond tos andt. A path froms′ to t′ in Greg can easily be projected down to a
path froms to t in G.

The next step is a reduction ofGreg, s
′, t′ to a new inputGexp, s′′, t′′ of REGULAR DIGRAPH FIND

PATH, such that each connected component ofGexp is an expander (and in particular has a logarithmic
diameter), ands′ andt′ are connected inGreg if and only if s′′ andt′′ are connected inGexp. Furthermore,
this is a log-space reduction and a path froms′′ to t′′ in Gexpcan be translated in log-space into a path from
s′ to t′ in Greg. This step is the heart of the algorithm, and it essentially completes the algorithm. All that is
left to do is enumerate all logarithmically-long paths froms′′ in Gexp and output one of them if it reaches
t′′ (after translating it in two steps to a path froms to t in G).

The transformation fromGreg toGexp is defined recursively. SetG0 to equalGreg, and fori > 0 define
Gi recursively by the rule:

Gi = (Gi−1©z H)40.
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Finally, defineGexp = Gℓ for ℓ = O(log(N · D)) (that will be determined by the analysis). It follows
inductively that eachGi is a(De)80-regular digraph over[N ] × [D] × [(De)80]i. In particular, the zig-zag
product ofGi andH is well defined. In addition, sinceDe is a constant, andℓ is logarithmic thenGℓ has
poly(N ·D) vertices.

Assume thatGreg is connected, then by Lemma A.7,λ(Greg) ≤ 1 − 1/poly(N · D). By Lemma A.4
and Theorem A.8 (properties of powering and the zig-zag product for regular digraphs), we have that unless
λ(Gi) is already smaller than some fixed constant thenλ(Gi) ≤ (λ(Gi−1))

2. This means that for some
ℓ = O(log(N · D)), we have thatλ(Gℓ) is guaranteed to be smaller than some fixed constant. In other
words,Gexp is an expander. What ifGreg has several connected components? Since both powering and the
zig-zag product operate separately on each connected component, we have that for everyS ⊆ [N ] × [D],
if S contains the vertices of a connected component ofGreg thenS × [(De)80]ℓ contains the vertices of a
connected component ofGexp, and the subgraph ofGexp induced by these vertices is an expander. By this
argument, it is natural to selects′′ to be any vertex in{s′} × [(De)80]ℓ and similarly regardingt′′. This
choice indeed satisfies the requirements of the reduction.

It remains to argue that the transformation ofGreg toGexp is log-space and that a path onGexp trans-
lates in log-space into a path onGreg. The intuition is that taking a step onGi translates to a constant number
of operations, some of which are taking a step onGi−1 and the rest require constant space. As the space
used for each one of these operations can be reused for the subsequent operations, the space needed to walk
onGi is only larger by a constant than the space needed to walk onGi−1. Furthermore, this evaluation in
particular translates a step onGi to a path of constant length between the corresponding vertices ofGi−1.
The space-efficiency requirements follow by induction. 2

A.6 Proof of Theorem 6.2

Consistent labelling is the weakest restriction for which efficiently constructible universal traversal se-
quences are knowneven for undirected expander graphs[HW]. For general undirected graphs, the st-
connectivity algorithm of [Rei] gives efficiently constructible universal traversal sequences, but these require
an even stronger restriction on the labelling. So in fact, the generalization to regular digraphs is useful even
from the point of view of undirected graphs.

Our first step is to argue that the universal traversal sequences for expanders given by Hoory and Wigder-
son [HW] can be extended to the case ofdirectedexpanders.

Lemma A.10 For every two constantsD andλ whereD is a positive integer andλ < 1, there exists a log-
space algorithm that on input1N produces a universal traversal sequence for all connected,consistently
labelledD-regular digraphsG onN -vertices withλ(G) ≤ λ.

Proof Sketch: The universal traversal sequence of Hoory and Wigderson [HW] works just as well in the
regular case. The only properties used in their analysis arethat (1) A walk that starts at two distinct vertices
and follows the same set of labels ends in two distinct vertices (this is where the consistent labelling is used).
(2) For two sets of verticesA andB one of sizeK and the other of sizeN−K, either the intersectionA∩B
or the number of edges fromA toB areΩ(min{K,N −K}) (this is where the expansion is used). Both of
these properties also hold in the regular case. 2

Now we proceed to construct our universal traversal sequences.

Proof Sketch: (of Theorem 6.2) Consider some connected, consistently labelledD-regular digraphsG on
N -vertices. We will show a log-space algorithmA that produces a universal traversal sequence for{G}.
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We will then argue that the algorithm does not need access toG which will imply the theorem (as the output
of A will be good for any such graphG).

The crucial observation is that, as noted above, given a consistently labelled graphG, we can assume
without loss of generality that every edge(u, v) has the same label as an out going edge fromu and as an
incoming edge tov. Observe that, for the purpose of universal traversal sequence, the only labels that matter
are the outgoing labels from each vertex (the incoming labels, which define the rotation map of the graph,
are ignored during the walk - therefore any legal labelling will do). In other words, we can assume without
loss of generality that whenever(u, j) = RotG(v, i) we have thati = j. From now on, our proof follows
the same lines as the construction of universal traversal sequence in [Rei], and is therefore only sketched
here.

Consider the two graphsGreg andGexp that are obtained fromG (anddo dependonRotG) in the proof
of Theorem 5.1. By the analysis in that proof,Gexp is an expander. Furthermore, as powering and the
zig-zag product preserve the property of consistent labeling, we have thatGexpis also consistently labelled.
Lemma A.10 now implies that there exists a universal traversal sequence~a for {Gexp} and its log-space
construction is independent ofG. Now consider the walk onGexp, following ~a from some vertex(s, 1ℓ+1),
wheres ∈ [N ]. This walk covers all of the vertices ofGexp. By the construction ofGexp, the sequence of

labels~a can be translated in log-space (again, without access toG) into a sequence~b of labels, such that the
walk from (s, 1) (for anys ∈ [N ]) which follows these labels, visits all the vertices ofGreg.

The next step is to translate~b into a universal traversal sequence for{G}. Consider the walk from(s, 1)
onGreg. We want to simulate this walk without knowings and without access toG. On the other hand,
at each step all we want to know is a valuec ∈ [D] such that we are now at some vertex(v, c). To begin
with c is set to one. It is easy updatec (one up or one down) when taking a step on one of the cycles in the
definition ofGreg. Labels that correspond to self loops can be ignored. We are left with edges that cross
between two different cycles (that correspond to two vertices ofG). By our assumption above, in such a
casec remains unchanged. Furthermore, the values ofc when an edge between cycles is taken, are exactly
the labels of edges inG that are traversed by the projection onG of the walk defined by~b. To conclude,
the sequence~c is simply the sequence of values ofc in the simulation described above, when edges between
cycles are traversed. 2

A.7 Proof of Theorem 6.3

Proof Sketch: LetG be aconsistently labelled(N,D, 1−γ) regular graph ands any vertex ofG. We will
construct a distribution on a sequence of labels such that taking a walk froms onG according to these labels,
ends at a vertex that is distributedδ-close to uniform (in variation distance). Since the distribution of labels
will be independent ofG ands (and will only depend onN,D, δ, andγ) this will imply a pseudorandom
generator.

As in the proof of Theorem 5.1, we consider in our analysis twoadditional graphsGreg andGexp. Their
definition will be slightly modified here. First,Greg will be obtained by a zig-zag product (or a replacement
product) with a constant degree expander onD vertices. Adding self loops we get an(ND, (De)80, 1 −
Ω(γ)) regular graph. The advantage of doing that (instead of a replacement product with a cycle as in the
proof of Theorem 5.1), is that the eigenvalue gap ofGreg is only smaller by a constant than the eigenvalue
gap ofG. We now defineGexp similarly to the proof of Theorem 5.1, by recursively applying the zig-zag
product and powering. However, since we start with a stronger guarantee on the eigenvalue gap ofGreg

we only needℓ = O(log(1/γ)) levels of recursion to bring spectral gap to a constant. The size of the final
expanderGexp is thusNfin = N ·D · 2O(ℓ) = ND · poly(1/γ).
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Consider now a random walk of lengthmfin = O(log(Nfin/δ)) = O(log(ND/δγ)) in Gexp. Such a
walk starting from any vertex in the vertices inGexp which correspond tos will converge to the uniform
distribution on the vertices ofGexp, up to variation distanceδ. As in the proof of Theorem 6.2, this walk
projects to a walk onG. Since the uniform distribution on vertices ofGexp projects to the the uniform
distribution on vertices ofG, we get that the walk inG also converges to the uniform distribution on the
vertices ofGexp, up to variation distanceδ. As in the proof of Theorem 6.2, we note that we can assume
without loss of generality that in the rotation map ofG the label of an edge(u, v) is identical both as an
outgoing edge fromu and as an incoming edge tov. This implies (as in that proof), that the edge labels
taken by the walk onG are actually independent ofG ands and can be computed in the required small
space, just knowingN ,D, γ, andδ.

We make the following observations:

• The randomness required isr = O(mfin) = O(log(ND/δγ)).

• The walk length isℓ = mfin · 2O(ℓ) = log(ND/δγ) · poly(1/γ) = log(ND/δ) · poly(1/γ).
2

A.8 Proof of Theorem 7.1

We will prove Theorem 7.1 by showing that for every poly-mixing graphG, there exists a regular digraph
Greg such that the correctness of the generator onGreg implies the correctness of (a modification of) the
generator onG. Thus, if we have a generator that works well on regular digraphs, we obtain a generator that
works well on instances of POLY-M IXING S-T CONNECTIVITY, which we have shown to beRL-complete
(Theorem 3.1). The construction ofGreg from G is given by the following lemma. We stress that this
construction is only done in theanalysis, and thus need not be computable in log-space.

Lemma A.11 There is a universal constantc such that the following holds. LetG = (V,E) be anyd-
outregular graph onn vertices with verticess, t ∈ V and stationary distributionπ such thatπ(s) ≥ 1/k,
π(t) ≥ 1/k, andλπ(G) ≤ 1 − 1/k. Then for everyε > 0, if we setNreg = (ndk/ε)c, Dreg = c ·Nreg/ε,
γ = 1/(ndk)c, there is a(Nreg, d · Dreg, 1 − γ)-regular digraphGreg such that the following holds. The
vertex set ofGreg can be decomposed into “clouds”Vreg =

⋃

v∈V Cv with |Cs|, |Ct| ≥ |Vreg|/2k. There
is a bad set of edge labelsB ⊆ [d] × [Dreg] of densityε such that for everyu ∈ V , vertexû ∈ Cu and
edge label(i, j) ∈ ([d] × [Dreg]) \ B, the(i, j)’th neighbor ofû in Greg is in cloudCv wherev is thei’th
neighbor ofu in Greg.

Before proving this lemma, let’s see how it implies Theorem 7.1.

Proof of Theorem 7.1: Let (G, s, t, 1k) be any instance of POLY-M IXING FIND PATH, whereG is d-
outregular, hasn vertices, and has (promised) stationary distributionπ with π(s), π(t) ≥ 1/k andλπ(G) ≤
1 − 1/k. Setδ = 1/2k, andε = 1/(ndk)b for a large constantb to be specified later, and letNreg =
(ndk/ε)c, Dreg = c · Nreg/ε, γ = 1/(ndk)c be the parameters of the regular digraph guaranteed by
Lemma A.11. LetPRG = PRGNreg,d·Dreg,δ,γ : {0, 1}r → ([d] × [Dreg])

ℓ be the generator hypothesized in
Theorem 7.1, with seed lengthr = a log(NregDreg/δγ) = O(abc log(ndk)). and walk length

ℓ = (1/γδ)a · (Nreg · dDreg)
α = (ndk)O(ac) · (ndk/ε)O(αc) = (ndk)O(ac)/εO(αc)

Without loss of generality we may assume that each componentin PRG(Ur) is uniformly distributed in
[d]× [Dreg]. (Shift each component of the output by adding a random element s← [d]× [Dreg]. This only
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increases the seed length by a constant factor and preservesthe pseudorandomness of the output because it
is equivalent to shifting all labels in the regular digraph by −s.)

The algorithm for POLY-M IXING FIND PATH works as follows. We enumerate the2r = (nkd)O(abc)

seeds ofPRG, for each obtaining a walk̂w ∈ ([d] × [Dreg])
ℓ of lengthℓ = (nkd)O(abc). Taking the first

components of each step in̂w, we obtain an induced walkw ∈ [d]ℓ, which we perform onG, starting ats.
If any of these walks end att, we output that walk.

To analyze this algorithm, we consider a walkŵ ← PRG(Ur) taken inGreg, starting at any vertex of
Cs. Sinceλ(Greg) ≤ 1 − γ, Ct has density at least1/2k, andδ = 1/2k, such a walk will end inCt with
probability at least

(1/δγ)a · (Nreg · dDreg)
α = εO(αc)/(ndk)O(ac).

We now argue that the induced walkw inG will end att with nearly the same probability. By the properties
of Greg, this will be the case provided the walk̂w does not use any edge label fromB. SinceB has density
at mostε and each edge label in̂w is uniformly distributed, the probability any label fromB is used is at
most

ℓ · ε = (ndk)O(ac) · ε1−O(αc).

Thus the walkw in G ends att with probability at least

εO(αc)

(ndk)O(ac)
− (ndk)O(ac) · ε1−O(αc) > 0,

providedα ≤ c/κ andε ≤ (1/ndk)b for a b > κac, whereκ is a sufficiently large universal constant. In
particular, there exists a seed ofPRG that will produce a walk froms to t.

Defining the regular digraph Greg

Proof of Lemma A.11: Let n be the number of vertices inG, d the out-degree ofG, andπ = πs be
the stationary distribution ofG (actually the induced subgraph on vertices reachable froms). By adding
self-loops and applying Lemma 2.2, we may assume thatG has the following properties:

1. π(s) ≥ 1/k, π(t) ≥ 1/k.

2. At least half of the edges leaving each vertex are self-loops.

3. For any vertexv reachable froms, a random walk of lengthℓ = O(n · k3 · log d) from v visits s with
probability at least1/2.

(For Item 3, we note thatπ(v) ≥ d−n, so Lemma 2.2 says that a walk of lengthO((1/(1 − λπ(G))) ·
log(2/

√

π(v)π(s))) = O(k · (n log d + k)) ends ats with probability at leastπ(s)/2 ≥ 1/2k. Repeating
O(k) times increases the probability to 1/2.)

The desired regular digraphGreg will essentially be a blow-up ofG, with each vertex ofG repeated a
number of times proportional to its stationary probability, with small “corrections” to remove low-probability
vertices and to fix slight irregularities (due to round-off errors).

We constructGreg in several phases.
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Step 1: Make all state probabilities nonnegligible. Let ε be the given error parameter. Without loss
of generality, we will assume thatε < 1/poly(n, k, d, ℓ) for a polynomial to be specified later. Then let
D′ = poly(n, ℓ, 1/ε) for a polynomial to be specified later. Define a graphG′ = (V,E′) on the same vertex
set asG, but with degreed · D′. For every vertexv and edge label(i, i′) ∈ [d] × [D′], we set the(i, i′)’th
neighbor ofv in G′ to be thei’th neighbor ofv in G, except that we modify up ton of the edges leavings
in order to ensure that every vertex reachable froms has at least one incoming edge directly froms. (The
edges to modify should be chosen so as to maintain the property that at least half of the edges froms are
self-loops.) Thus a random step onG′ is identical to a random step onG, except with probability at most
n/D′ when at vertexs.

Observe that Property 3 ofG also holds inG′, because any walk from a vertexv in G that visitss also
visits s in G′. Thus, by Lemma A.1, we haveλπ′(G′) ≤ 1 − 1/8ℓ2 for some stationary distributionπ′.
Moreover, if we takeℓ′ = O(ℓ2 log(ℓ/ε)), then by Lemmas 2.2 and 2.3, a random walk of lengthℓ′ from s
in G (resp.,G′) ends at a vertex distributedε-close toπ (resp.,π′). Thus,

π′(t) ≥ Pr [r.w. inG′ of lengthℓ′ from s ends att]− ε
≥ Pr [r.w. inG of lengthℓ′ from s ends att]− ℓ′ · (n/D′)− ε
≥ π(t)− ε− ε− ε
≥ 1/2k,

provided we takeε ≤ 1/6k andD′ ≥ ℓ′n/ε. Similarly, we haveπ′(s) ≥ 1/2k. And for every vertexv
reachable froms, we haveπ′(v) ≥ (1/2k) · (1/D′) since there is at least one edge froms to v.

To summarize, we have established the following propertiesof G′ = (V,E′):

1. For any vertexv reachable froms, a random walk of lengthℓ = O(n · k3 · log d) from v visits s with
probability at least1/2.

2. λπ′(G′) ≤ 1− 1/8ℓ2.

3. π′(s) ≥ 1/2k, π′(t) ≥ 1/2k.

4. At least half of the edges leaving each vertex are self-loops.

5. For every vertexv reachable froms, π′(v) ≥ 1/(2kD′)

6. For every vertexv and every edge label(i, i′) ∈ [d] × [D′], the(i, i′)’th neighbor ofv in G′ equals
the i’th neighbor ofv in G, unlessv = s and(i, i′) ∈ B′ whereB′ ⊆ [d] × [D′] is a set of labels of
density at mostn/D′ ≤ ε.

Step 2: Blow upG′ to a nearly regular digraph G′′ We blow up each vertexv of G′ to a “cloud”
Cv consisting ofNv = ⌈π′(v)N⌉ vertices, for a sufficiently largeN = O(kD′/ε). By Property 5 of
G′, we haveNv ∈ [π′(v) · N, (1 + ε) · π′(v) · N ]. The vertex set ofG′′ is V ′′ =

⋃

v Cv for a total of
N ′′ =

∑

v Nv ∈ [N, (1 + ε) ·N ] vertices. Every vertex inG′′ has degreed ·D′ ·D′′, for a sufficiently large
D′′ = O(N/ε). For(i, i′, i′′) ∈ [d]× [D′]× [D′′], the(i, i′, i′′)’th edge leaving any vertex inCu goes to the
(i′′ mod Nv)’th vertex ofCv, wherev is the(i, i′)’th neighbor ofu in G′.

We now argue thatG′′ is nearly biregular, in the sense that all of the indegrees are close tod ·D′ ·D′′.
Consider any vertex̂v in cloudCv. Each edge(u, v) in G′ induces eitherNu · ⌊D′′/Nv⌋ orNu · ⌈D′′/Nv⌉
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edges intôv. Note thatD′′/Nv ≥ D′′/((1 + ε)N) ≥ 1/ε, if we chooseD′′ ≥ (1 + ε)N/ε. So the indegree
of v̂ is at most

∑

(u,v)∈E′

Nu ·
(

D′′

Nv
+ 1

)

≤
∑

(u,v)∈E′

Nu · (1 + ε) · D
′′

Nv

≤
∑

(u,v)∈E′

[(1 + ε)π′(u)N ] · (1 + ε) · D′′

π′(v)N

=
(1 + ε)2D′′

π′(v)
·

∑

(u,v)∈E′

π′(u)

=
(1 + ε)2D′′

π′(v)
· (d ·D′ · π′(v))

= (1 + ε)2 · d ·D′ ·D′′ = (1 +O(ε)) · d ·D′ ·D′′

By Property 3 ofG′, we observe that|Cs| ≥ π′(s)N ≥ (1 + ε) ·N ′′/2k and similarly|Ct| ≥ (1 + ε) ·
N ′′/2k.

We now enumerate the properties ofG′′ established above.

1. Every vertex inG′′ has out-degreed ·D′ ·D′′ and in-degree at most(1 +O(ε)) · d ·D′ ·D′′.

2. For every vertex̂u in cloudCu and every(i, i′, i′′) ∈ [d]××[D′]× [D′′], the(i, i′, i′′)’th edge leaving
û leads to a vertex̂v in cloudCv, wherev is the(i, i′)’th neighbor ofu in G′. By Property 6 ofG′,
v also equals thei’th neighbor ofu in the original graphG unlessu = s and(i, i′, i′′) ∈ B′′, where
B′′ = B × [D′′] is a set of labels of density at mostε.

3. The number of edges between any two such verticesû and v̂ equals eithereuv · ⌊D′′/Nv⌋ or euv ·
⌈D′′/Nv⌉, whereeuv is the number of edges betweenu andv in G′.

4. Cs andCt are both of density at least1/2k.

Step 3: Add edges toG′′ to make a regular digraphGreg. Property 1 ofG′′ implies that we can make the
graph biregular by addingO(ε·d·D′·D′′) edges leaving each vertex. Specifically, we obtain a regulardigraph
Greg on the same vertex set asG′′, in which every vertex has outdegreed·Dreg forDreg = (1+O(ε))·D′ ·D′′.
Each edge leaving a vertex has a label(i, j) ∈ [d]× [Dreg], and the edges withj ≤ D′ ·D′′ are identical to
the edges ofG′′. We letBreg = [d]× ([Dreg] \ [D′ ·D′′]) be the set of remaining edge labels.

Letπreg denote the uniform distribution on the set of vertices reachable fromCs. SinceGreg is biregular,
this is a stationary distribution forGreg. We now enumerate the properties ofG′′.

1. The vertex set ofGreg is Vreg =
⋃

v∈V Cv, and the outgoing edges are labelled by elements of
[d]× [Dreg]

2. Greg andG′′ differ in at mostO(εdDreg) edges leaving and entering each vertex.

3. Cs andCt are both of density at least1/2k.

4. There is a setB ⊆ [d] × [Dreg] of densityO(ε) such that for every vertex̂u ∈ Cu and every edge
label(i, j) ∈ ([d] × [Dreg]) \B, the(i, j)’th neighbor ofû in Greg is in cloudCv wherev is thei’th
neighbor ofv in G. (Namely, takeB = Breg ∪B′′.)
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5. For everŷs ∈ Cs, we haveλπreg
(Greg) ≤ 1− 1/16ℓ2.

All of these items follow from the previous discussion, except Property 5 bounding the expansion, which
we proceed to do below.

Step 4: Analyze expansion of regular digraph. For this, it is useful to introduce a third Markov chain
G′′′ on vertex setV ′′′ = V ′′ = Vreg, which is more closely related to random walks onG′. From any vertex
û ∈ Cu, the Markov chainG′′′ chooses a random neighborv of u in G′, and goes to a uniformly selected
vertexv̂ ∈ Cv. It can be verified that the distributionπ′′′ that assigns each vertex̂v ∈ Cv probability mass
π′′′(v̂) = π(v)/Nv is stationary forG′′′. Moreover,

λπ′′′(G′′′) = λπ′(G′) ≤ 1− 1

8ℓ2
,

for any ŝ ∈ Cs.
We use this fact, and the fact thatM ′′′ is “close” toGreg to boundλ(Greg). Specifically, letMreg, M ′′,

andM ′′′ denote the transition matrices forGreg, G′′, andG′′′, respectively. Letρ = Dreg/(D
′ · D′′) =

1 + O(ε) be the ratio between the degrees ofGreg andG′′. We consider the two “error” matricesE1 =
ρMreg −M ′′, andE2 = M ′′ −M ′′′. To boundλπreg

(Greg), let x be any vector whose support is reachable
from Cs such that〈x, πreg〉πreg

= 0, i.e.
∑

i xi = 0. We need to show that‖Mregx‖πreg
≤ λreg · ‖x‖πreg

,
whereλreg = 1 − 1/16ℓ2. Note that sinceπreg is uniform, ‖ · ‖πreg

is simply a scaling of the standard
Euclidean norm. We bound‖Mregx‖πreg

as follows.

‖Mregx‖πreg
≤ ‖ρMregx‖πreg

≤ ‖M ′′′x‖πreg
+ ‖E1x‖πreg

+ ‖E2x‖πreg
.

We bound each term separately. To bound the first, we first observe that the norms‖ · ‖πreg
and‖ · ‖π′′′

differ by a factor of at most(1 + ε), becauseπreg andπ′′′ almost identical. Specifically, for every vertex
v̂ ∈ Cv, we haveπ′′′(v) = π′(v)/Nv , πreg(v) = 1/Nreg. These two quantities can be related as follows.

π′(v)

Nv
≥ 1

(1 + ε)N
≥ 1

(1 + ε)Nreg

and
π′(v)

Nv
≤ 1

N
≤ 1 + ε

Nreg
.

Thus,πreg(v̂) ≤ (1 + ε) · π′(v̂) andπ′(v̂) ≤ (1 + ε) · πreg(v̂). This implies that the corresponding norms
differ by a factor of at most(1 + ε). Therefore,

‖M ′′′x‖πreg
≤ (1 + ε) · ‖M ′′′x‖π′′′

≤ (1 + ε) ·
(

1− 1

8ℓ2

)

· ‖x‖π′′′

≤ (1 + ε)2 ·
(

1− 1

8ℓ2

)

· ‖x‖πreg
.

For the second term, involvingE1, we note thatE1 equals1/(dD′D′′) times the adjacency matrixA of
Greg \G′′. Every vertex in this graph has outdegreedDreg − dD′D′′ = Θ(εdD′D′′), and indegree at most
O(εdD′D′′) (by Property 2). This implies that‖Ax‖πreg

≤ O(εdD′D′′) · ‖x‖πreg
. (One way to see this is

to consider the the vectory assigning eachedge(u, v) in Greg \ G′′, the valuexu. The squared length ofy
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equals the squared length ofx times the outdegreeΘ(εdD′D′′). Then we obtainAx by summing the entries
of y incoming at each vertex. By Cauchy-Schwartz, this increases squared length by at most the maximum
indegreeO(εdD′D′′).) Therefore, we have

‖E1x‖πreg
=≤ 1

dD′D′′
· ‖Ax‖πreg

= O(ε) · ‖x‖πreg
.

Finally, we consider the third term, involvingE2. We argue that each entry ofE2 = M ′′ −M ′′′ is small.
For verticesû ∈ Cu, v̂ ∈ Cv, the (û, v̂)’th entry of M ′′′ equals(euv/(dD

′)) · (1/Nv), by definition of
G′′′, whereeuv is the number of edges betweenu andv in G′. On the other hand, by Property 3 ofG′′,
the (û, v̂)’th entry ofM ′′ is in the interval[euv · ⌊D′′/Nv⌋/(dD′D′′), euv · ⌈D′′/Nv⌉/(dD′D′′)], which is
contained in the interval[euv/(dD

′Nv)−1/D′′, euv/(dD
′Nv)+1/D′′], sinceeuv ≤ dD′. Thus, each entry

of E2 has absolute value at most1/D′′. This implies that

‖E2x‖πreg
≤
√
N ′′

D′′
· ‖x‖πreg

≤ ε · ‖x‖πreg
,

where the last inequality comes by recalling thatN ′′ ≤ (1 + ε) ·N andD′′ ≥ N/ε.
Putting all of the above together, we have

‖Mregx‖πreg

‖x‖πreg

≤ (1 + ε)2 ·
(

1− 1

8ℓ2

)

+O(ε) + ε ≤ 1− 1

16ℓ2
,

providedε ≥ c · ℓ2 for a sufficiently large constantc.

A.9 Combinatorial Measures

Other ways in which we can measure progress rather than spectral gaps are combinatorial measures such as
edge expansion or vertex expansion.

Edge expansion is roughly preserved in the replacement product, but can deteriorate quite a bit when the
graph is powered.

Theorem A.12 LetG = (V,E) be a directed graph withn edges, such that every vertex has outdgreeDout

and every indegree is at mostD. Letǫ be the edge expansion ofG. LetH be a biregular directed graph with
D vertices, degreed, and edge expansionδ. ThenG′ := G©r H has edge expansion at least

1

4
· ǫ · Dout

D
·min

{

1

d+ 1
,
δd

d+ 1

}

Concretely, we would use the replacement product using an inner graphH of constant degree and
constant expansion, andDout would be close toD in the outer graph, so that the expansion ofG©r H would
beΩ(ǫ).

Proof: [Of Theorem A.12] Recall that, for a vertexv of G, thecloud ofv is a setCv of D vertices ofG′

that “correspond to” tov in the replacement product.
LetA be a set of less thannD/2 vertices ofG′. We want to prove that there are at least

|A| · d ·
(

1

4
· ǫ · Dout

D
·min

{

1

d
, δ

})
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edges fromA to Ā.
The intuition for the analysis is similar to the intuition inthe analysis of the zig-zag graph product in

[RVW]: if A is a disjoint union of clouds, then the expansion follows from the expansion ofG, and if each
cloud contains only a few elements ofA then the expansion follows from the expansion ofH. For a general
setA, our analysis will use the expansion ofG if most elements ofA are concentrated in “half full” clouds;
our analysis will use the expansion ofG if most elements ofA belong to “half empty” clouds.

LetB ⊆ A be the subset of vertices ofA that belong to “half-empty” clouds. That is, a vertexw ∈ A
is inB if it belongs to a cloudCv such that at mostD/2 elements ofCv are inA. For an half-empty cloud
Cv, defineav = |A ∩ Cv|.

We consider the following two cases.

1. If B > |A|ǫDout/4D, then each cloudCv, v ∈ S, contributes at leastav · δ · d to the cut betweenA
andĀ. (Here we are using the expansion ofH.) Overall, the number of edges in the cut is at least

∑

v∈S

avδd ≥ |B|δd ≥ |A|ǫδdDout/4D

2. If |B| ≤ |A|ǫDout/4D, then letT be the set of verticesv of G such that the cloudCv contains at least
D/2 elements ofA. (These are the “half-full” clouds.) Note that|T | ≥ (|A| − |B|)/D > |A|/2D.

Now we have to consider two sub-cases:

(a) If |T | ≤ 3n/4, then we claim that are at least|A|ǫDout/2D edges inG from T to T̄ . We prove
the claim using the expansion ofG. If |T | ≤ n/2, then the number of edges fromT to T̄ is at
least|T |ǫDout ≥ |A|ǫDout/2D. If n/2 ≤ |T | ≤ 3n/4, then the number of edges fromT to T̄
is at least|T̄ |ǫDout ≥ nǫDout/4 ≥ |A|ǫDout/2D.

Those edges correspond to edges inG′ that go from a vertex in a half-full cloud to a vertex in
a half-empty cloud. We will argue that a reasonable fractionof such edges actually go from
vertices inA to vertices inĀ.

We first note that there are at most|B| ≤ |A|ǫDout/4D edges inG′ going to vertices inA that
belong to half-empty clouds. Therefore, there are at least|A|ǫDout/4D edges inG′ that have
their first endpoint in a half-full cloud and their second endpoint in Ā.

Let us now look at a half-full cloudCv inG′ from which there are, say,kv outgoing edges whose
second endpoint is a vertex in̄A in another cloud, and callcv = |Cv − A|. We note that the
cloud contributes at least(kv − cv) + δdcv ≥ kv min{1, δd} edges to the cut betweenA andĀ.
This is because, of thekv edges leavingCv and going to a vertex in̄A, at leastkv − cv originate
from a vertex inA, and because the number of edges fromA ∩ Cv to Cv − A in Cv is at least
cvδd because of the expansion ofH.

Summing over all the clouds, we get a contribution that is at least
∑

v

kv min{1, δd} ≥ |A|ǫmin{1, δd}Dout/4D

(b) If |T | ≥ 3n/4, then we have3n/4 or more half-full clouds, each one containing betweenD/2
andD elements ofA, even though|A| ≤ nD/2. This means that of the|T | half-full clouds,
at leastn/2 must contain at most3D/4 elements ofA. (If we let c be the number of half-full
clouds with at most3D/4 elements ofA, we getnD/2 ≥ |A| ≥ c ·D/2 + (|T | − c) · 3D/4,
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which, together with|T | ≥ 3n/4, simplifies toc ≥ n/2.) In each such cloud, the number of
edges betweenA andĀ is at leastDδd/4, so that the total number of edges betweenA andĀ is
at leastnDdδ/8, which is at least|A|dδ/4.

For directed graphs, as can be seen by the following example,the edge expansion does not necessarily
improve by powering.

Proposition A.13 There is a directed graphG such that for every constantt > 1, the edge expansion ofGt

is no better than that ofG:
ε(Gt) ≤ ε(G)

Proof: We describe an unlabeled graphG because the labels are irrelevant in our case. LetG be the
directed path on vertices{1, . . . , 2n} together with an additional edge from every vertex to1. Formally, the
edges ofG are(i, i+1) for all i < 2n and also(i, 1) for all i. To make the outdegree2 everywhere duplicate
the edge(2n, 1). The edge expansion of this graph is obtained on the setA = {1, . . . , n}. There is exactly

one edge leaving this set inG, and sinceG is strongly connected the edge expansion isE(A,Ā)
2|A| = 1/2n.

The number edges leavingA in Gt is the number of length-t paths leavingA in G. For t < n, this
number is equal tot. Since the out-degree ofGt is 2t, the edge expansion ofG (being the minimum over all

choices ofA) is bounded byE(A,Ā)
2t|A| = t

2t·n ≤ 1/2n.
Note thatG can easily be made to have bounded in-degree, by ‘spreading’the edges pointing to1 to

point somewhere among the first sayn/2 vertices.
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