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Abstract

Randomness extractors convert weak sources of randomness into an alrfarsh wistribution;
the conversion uses a small amount of pure randomness. In algorigipplications, the use of extra
randomness can be simulated by complete enumeration (alas, at the price sitie@bie slow-down),
but in other applications (e.g. in cryptography) the use of extraaammess is undesirable.

In this paper, we consider the problemd#terministicallyconverting a weak source of randomness
into an almost uniform distribution. Previously, determiristixtraction procedures were known only
for classes of distributions having strong independence requiretdedér complexity assumptions, we
show how to extract randomness from aaynplablaistribution, i.e. a distribution that can be generated
by an efficient sampling algorithm.

Assuming that there are problemsfrthat are not solvable by subexponential-size circuits ®igh
gates, we give a polynomial-time extractor that is able to transfognultribution of lengthn and min
entropy(1 — d)n into an output distribution of lengtfi — O(d)n) that is close to uniform, as long as
the input distribution is samplable by a circuit whose size is atamhsoot of the running time of the
extractor.

Our result is based on a connection between deterministic extraction &mplable distributions
and hardness against nondeterministic circuits, and on the use of aonie$m to substantially speed
up “list decoding” algorithms for error-correcting codes such as muisitampolynomial codes and
Hadamard-like codes.
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1 Introduction

Randomness has proved to be a very useful tool in computencei In algorithms, randomization has
yielded the only known polynomial-time solutions for som®ldems, such as primality testing [SS77,
Mil76, Rab80] and certain approximate counting problem&Ni89, JS89]. In distributed computing,
there are several protocol problems, such as Byzantineemgmat, which have only randomized solu-
tions [FLP85]. In cryptography, secret keys must be chosamaradom (otherwise, they are not secret),
and even the cryptographic algorithms themselves, suchagmion, must be randomized in order to be
secure [GM84].

When randomness is used in the design of algorithms andqaistdhe source of randomness is mod-
eled as an ideal process that outpubiasedandindependentandom bits. On the other hand, the conceiv-
able sources of randomness that an algorithm can effectieeless (e.g. collecting statistics on disk access
time, or on keyboard typing), while containing a noticeadsieount of entropy, can be very biased and in-
volve heavy dependencies. A large body of research, iediat [Blu86, SV86, CG88, VV85], has been
devoted to fill this gap between realistic sources of randesawith biases and dependencies and perfect
sources of randomness. Ideally, one would like to have a [leni that, given an algorithm/protocol that
is guaranteed to work well only with a perfect source of randess, produces an algorithm/protocol that is
guaranteed to work well with a large class of imperfect randources.

1.1 Simulation of Probabilistic Algorithms Using Extractors

For the case of probabilistic algorithms, one way of desigrduch “compilers” is to designrandomness
extractor, as proposed by Nisan and Zuckerman [NZ96]. A randomnesactat is a procedure that on
input a sample from a weak random source and a truly randangsjives an output that is statistically
close to uniform. Formally, &k, ¢)-extractoris a procedure Er : {0,1}" x {0,1} — {0,1}™ such
that if X is random variable of min-entropy at ledgstandU; is the uniform distribution ovef0, 1}, then
EXT(X,U;) is e-close to uniformt A large body of research has produced explicit construstare known
wherek can be essentially arbitrany, is very close tok, and¢ is O(logn) (see [ISWO00] and references
therein). By definition, once we have suclitae)-extractor, we can perform any task which is designed to
usermn truly random bits using instead a single sample from a ranstmmnce of min-entrop¥ together with

t truly random bits Since we still need some truly random bits, this does noaghieve the goal of using
only a weak source of randomness. However, in most algoidtapplications, the need foradditional truly
random bits can be eliminated by enumeratin@aposibilities and combining the algorithm’s outputs for
each, e.g. by majority vote (for decision problems). Thins a slowdown of factor of’, but fortunately
this is still polynomial since we use an extractor wits O(logn).

Note that the fact that randomness extractors can be used tamdomized algorithms with only a weak
random source (and no additional truly random bits) doesmaatn that one caextractalmost uniform bits
from a weak random source without additional truly randomts.bindeed, for any deterministic function
ExT : {0,1}"™ — {0,1}™, there is a distributionX" of min-entropyn — 1 for which EXT(X) is very biased
(in fact, one for which the first bit of £1(X) is constant).

1.2 Deterministic Extraction

The reason why extractors can be used for the simulationobfgilistic algorithms is essentially that when
a probabilistic algorithm usesbits of randomness it can always be simulated determialbtiat the price

LA distribution X hasmin-entropyk if for any element of its rangePr[X = a] < 2~*. Two distributionsX andY” aree-close
if for any subsetS of their rangg Pr[X € S] — Pr[Y € S]| <e.



of a 2! slowdown factor. In other applications of randomness, saglprobabilistic encryption [GM84],
randomness is required by the very nature of the problemthaand is no possibility of trading off efficiency
versus randomness. For such applications, it appears idaél® to look for extraction procedures that
convert a weak random source into an almost uniform digidbudeterministically without the help of
extra randomness. Because of the above-mentioned impibgsisults, such deterministic extractors will
not work for every source of sufficiently large min-entropjowever it is still possible that there are general
and interesting families of weak random sources for whidigiefit deterministic extraction is possible.

When random bits are needed in practice (e.g., to genergseirk@ cryptographic protocol), a typical
approach is to collect weakly random data, and feed it intoyatagraphic hash function. The output of
the hash function is then used as if it were a sequence of mahitls. However, as far as we know, there is
no result providing a theoretical justification for this wasing of a fixed cryptographic hash function to do
deterministic extraction.

On theoretical side, there is a considerable body of worlowelto the problem of deterministic ex-
traction. In fact, most of the early work on the use of wealdman sources was devoted to the construc-
tion of deterministic extractors for increasingly geneskasses of distributions. A classical algorithm by
von Neumann [vN51] extracts randomness from a sequenéedependentoin tosses of the same bi-
ased coin. An improved version by Elias [Eli72] extractsd@amness at a rate close to the entropy of
the source. Blum [Blu84], generalizing bon Neumann’s resliowed how to extract randomness from
any distribution described by a Markov chain. Chor and Gatdr [CG88] (improving results of San-
tha and Vazirani [SV86] and Vazirani [Vaz87]) show how toragt randomness given two independent
weak random sources with enough min-entropy. Another lineark considered the problem of deter-
ministically extracting randomness from various typesaifrses where an adversary can fix some subset
of the bits, mostly motivated by applications of such exteg in cryptography and distributed comput-
ing [CGH'85, BBR88, BL90, KKL88, LLS89, Fri92, CD#H00, Dod00].

The extraction algorithms presented in the above paperk feorclasses of distributions that satisfy
fairly strongindependenceroperties (which is a particularly problematic assumpfiar physical sources
of randomness). Independence requirements are explicitost of the works, and are also implicit in
[BIu86], where the process that samples the distributios limited memory, and works on-line, so that
far-away parts of the output of the distribution can onlyénfimited dependencies. In order to circumvent
the impossibility of deterministic extraction for many sces of interest (in particular, ones without strong
independence guarantees), researchers were led to qotedeeaker task of efficiently simulating ran-
domized algorithms with such sources [VV85, CG88, Vaz84,89yWuc96], and eventually to notion of
extractors which can use a small number of additional tradom bits [NZ96].

1.3 Our Results

Our aim is to identify as general a class of sources as pes&iblwhich efficient deterministic extraction
can be done. Specifically, we examis@mplable distributionsthat is, sources that can be generated by
an efficient sampling algorithm (or circuit). The only othrequirement we place on the source is that it
contains some randomness to be extracted (as measured tntropy). In particular, we do not impose
any independence conditions on the source. This class giflabta distributions contains as special cases
most of the previously studied sources for which deterrtimisxtraction was found to be possible, such
as the model of [BIu86]. In addition to their generality, aren argue that samplable distributions are a
reasonable model for distributions actually arising irunatas argued, for example, by Levin [Lev86]).
Having settled on this class of sources, what we’re lookorgafe functions ET : {0,1}" — {0,1}™

with the following property: for every sourc¥ of some min-entropy: which is samplable by a circuit of
some sizes, EXT(X) is e-close to uniform. Note that although we are placing a coatmnal restriction



on the sampler, we are requiring the output of the extractbestatisticallyclose to uniform.

Nonuniform Extractors and Negative Results. Our first observation is that extracting randomness from
samplable distributions is impossible unless the extrastallowed to use more computational resources
than the sampler. On the other hand, if we allow the runnintgtof the extractor to be polynomially
larger than the running time (or even circuit size) of the glam we show that extraction becomes possible.
The results that we obtain about such deterministic extracre described below. As a first “plausibility”
result, we show in Section A.1 the existence of good detéstitrextractors computed by polynomial-size
circuits. Essentially, it's enough to properly pick a fupatfrom a collection of poly-wise independent hash
functions. These results are reported in the appendix.

A Connection to Nondeterministic Average-case Hardness. While the above observations about nonuni-
form extractors illustrates the feasibility of determtidsextraction, it would be preferable to have a con-
struction in which the extractor is efficiently computable d uniform algorithm. However, we show in
Section A.1 that the existence of such extractors implipsrsgions of complexity classes beyond what's
currently known. Therefore, in order to construct uniforetedministic extractor, we will need to make
complexity assumptions.

Let us consider for starters the task of extracting one almikiased bit (already a fairly non-trivial
problem). Our first result is that if a Boolean function is chéw compute byNP-circuits (i.e., circuits
that can have special gates solving SAT instances) ofssigh advantage better thay then it is also a
good extractor against samplers of size abouhat sample a distribution of lengthof min-entropy about
n — log(1/7). The basic idea in the proof of this result is quite simpleppsse thaff is a function hard
on average foNP-circuits, and thafX is a samplable distribution on whigh{ X) is, say, biased towards 1.
Then the followingNP circuit can predictf (z) in the following way: givenz, first check whethex is in
the range ofX, which is something that can be done efficiently using nardahism, if X is samplable. If
x is in the range, then guess thdtz) is 1, otherwise make a random guess. For a randpthis approach
guesseg (z) with an advantage that depends on the biag(df) and on the min-entropy of .2

Although the assumption that we have a function that is loardverage folNP-circuits (as opposed
to standard circuits) has been used before (e.g., by Arvimtdkedbler [AK97]), it is still natural to ask
whether the nondeterministic hardness assumption isyrealtessary. In Section 3, we observe that a
Boolean function can be very hard on average against steifauits, yet it may not be a good extractor
for samplable distributions, even for min-entrapy- 1. So it appears that a somewhat non-standard hardness
assumption is required. Still, it is of interest to weakes @lssumption, as we do next.

Using Worst-case Hardness Our next goal is to start with a reasonallerst-casecomplexity assump-
tion, such as the one used by Klivans and van Melkebeek [KyM8at E = DTIME(2°(")) contains a
problem that is not solvable HYP-circuits of size2°(™)). We would like to show that such an assumption
implies the existence of polynomial-time computable pratis with strong average-case hardness against
NP-circuits; by the previous results, such predicates woeldybod deterministic extractors. This looks
like the standard problem of worst-case to average-casetied, as solved in [BFNW93, Imp95, IW97,
STV99], and observed to extend MP-circuits in [KvM99]. However, in all such results, one geted-
icates that are hard to predict with an advantage that isaat kn inverse polynomial in the size of the

2Here, and from this point on, the temeterministic extractoalways refers to a deterministic extractor for samplabiéritiu-
tions.

3This explanation is a bit oversimplified: our idea works asadibed only ifX is a samplable “flat” distribution. For non-
flat distribution, a more sophisticated reduction is needduch involves the use of approximate counting algorithmith an
NP-oracle [Sto85, Sip83, JVV86].



adversary (and, for a stronger reason, on the time needamhtpute the predicate). It then follows that an
extractor computable in timgn) obtained using such techniques and the previously mermtiooenection
can only extract randomness from a source of min-entropytabe- log t(n).

In order to extract from sources of lower entropy, we expdoit ability to use nondeterminism in the
reduction, in the spirit of the results of Feige and Lund [B].8bout the average-case complexity of the
permanent. Our starting point is the worst-case to avetage-reduction in [STV99]. That reduction uses
an error-correcting code obtained by “concatenating” aimariate polynomial code and a Hadamard code,
and is analysed by providing a “list-decoding” procedurnetfie polynomial code and using the Goldreich—
Levin [GL89] list-decoding procedure for the Hadamard céden [GL89]. We show that the use of “ap-
proximate counting” (implementable with &P oracle [Sto85, Sip83, JVV86]) can greatly improve the
efficiency of the list-decoding algorithm for the polynoini@mde. But we do not know whether a similar
improvement is possible for the Hadamard code. Instead,hew iow to use approximate counting and
uniform sampling (also using aNP oracle [JVV86, BGP98]) to get a very efficient solution to engwvhat
different problem that still suffices for deterministic edtors.

The final result is that starting from a problemErthat does not admit circuits of size smaller tH4n
with X4-gates, we get an efficient extractor that extracts one alomdsiased bit from any distribution of
lengthn and min-entropy(1 — O(d))n which is samplable by a circuit of size= s(n); the extractor runs
in time poly (s'/9).

Extracting Many Bits.  So far, we described results giving extractors that onlylpce one almost unbi-
ased bit, while it is of course much preferable to extractralmer of random bits that be as close as possible
to the entropy of the source. We first show that our coding+itic methods can be used to extract approx-
imately a logarithmic number of random bits. To this end, we the same polynomial code as before, but
in place of the Hadamard code, we use a similar code on a bédgieabet. Once we have these logarithmic
number of random bits, we can use them as the truly randonfdsithe extractor of Zuckerman [Zuc97],
which we then use to extract almost all the entropy from ourc®m Formally, we prove that if there is a
problem inE that does not admit circuits of size smaller ti28h with X5 gates, we get an efficient extrac-
tor that works for distributions of length and min-entropy(1 — «)n sampled by circuits of size(n); the
extractor has an output of length — O(«))n and runs in timepoly(s*/%), whereq is an arbitrarily small
constant.

1.4 Perspective

Our main motivation for studying samplable distributioegheir generality. However, this generality has
a price; the extractor must use more computational ressul@an the sampler, and has to rely on com-
plexity assumptions. Given the current state-of-therattomplexity theory, it seems unavoidable that even
under strong assumptions, to get an extractor for distabstof lengthn sampled by circuits of size, say,
O(nlogn) one has to come up with a very complex and impractical saiution the other hand, we think
it's interesting to try and explore the limits of the poskihiof deterministic extraction, and it seems that
samplable distributions are a good and natural borderkaenple.

Seemingly, our definition is orthogonal to the one used byr@nhd Goldreich [CG88] for two indepen-
dent weak random sources. In the Chor—Goldreich settisgjlulitions can be arbitrarily complex, but they
satisfy a strong independence requirement. In our caggpditons have to be samplable but can involve ar-
bitrary dependencies. However there is a connection. sngaper, we give “computational” constructions,
using a hard predicate to build our deterministic extragtarthen the result is not a deterministic extractor,
a reduction shows that the predicate is not hard. As showmr#BP], such computational constructions
can have interesting and unexpected information-theonetérpretations, and it is natural to look for the



information-theoretic interpretation of the results asthaper. As it turns out, the information-theoretic
analogue of deterministic extractors for samplable distions is exactly the problem of extracting ran-
domness from two independent weak random sources! Briéflye have two independent weak random
sourcesX; and X, then X, has a large description size (i.e., Kolmogorov complex#ygn conditioned
on X; = xz; for anyz;. Thus, similar to [Tre99], we can vieW(, as the truth table of a hard predicate
relative toX;, which can be used to deterministically extract randomfress X;. Such an interpretation of
our results gives (unconditional) constructions of detaistic extractors for two independent weak random
sources, for the case where the two sources have differegthie and the longer one has a very low entropy
rate. The details of these corollaries are omitted in thirabt.

Part of the purpose of this paper is to point out the need farthdr development of the theory of
deterministic extractors, and to invite the reader to comevith alternative definitions and constructions.
We believe that it would be very good to come up with a definitfor a natural and general class of
distributions that admit an efficient (implementable!)atatinistic extractor. Such a deterministic extractor
could then be used in place of cryptographic hash functiomsder to extract randomness in practice, with
the advantage of having a sound motivation for its use.

2 Preliminaries

Probability Distributions. Let X andY be probability distributions on a discrete univetse X is said
have min-entropyk if for all z € U, Pr[X =z] < 27%. It will also be convenient for us to have the
following equivalent terminology.X hasdensityd in ¢/ if for all max,¢;, Pr[X = z] = 1/(J - U). Note
that if X is uniform over a subsef of U/, thend is the density of5 in ¢/ (hence the terminology). Note that
a distribution has density at leasin {0, 1} iff it has min-entropyn — log(1/4).

Thestatistical differencdetweenX andY is defined to be

def _ _ L . _
SD(X,Y) = max [Pr[X € §] - Pr[V € 8]| = 5 Y IPr[X =a]—Pr[Y =z,

zeU
If SD(X,Y) < ¢, we say thatX andY arec-close U,, denotes the uniform distribution ), 1}". If X
is a distribution or{0, 1}, then we calSD(X, U;) thebiasof X.

We will consider probability distributions given by sammgialgorithms. IfA is a probabilistic algorithm
(Turing machine), we writed(z; y) for the output ofA on inputz and random coing. A(x) denotes the
output distribution ofd on inputz when the coing are chosen uniformly at random. pkobabilistic circuit
is a Boolean circuitC : {0,1}™ x {0,1}" — {0,1}". Forz € {0,1}", we writeC(z) for the distribution
on {0, 1}" obtained by selecting uniformly in {0, 1}" and evaluating’(z; y).

We say that a probability distribution ssmplable by size if there is a circuit of sizes which samples
from it. An ensemble{ X, } of probability distributions isuniformly samplable in time(rn) if there is a
probabilistic algorithmA such that4A(1") = X, for everyn and the running time off on inputl™ is at
mostt(n).

Extractors. A function EXT : {0,1}" x {0,1}¢ — {0,1}™ is a(k, e)-extractorif for every distribution
X on{0,1}" of min-entropyk, EXT (X, Uy) is e-close toU,,,.# As shown by Nisan and Zuckerman [NZ96]
it is necessary to invest > €(log(n — k) + log 1/¢) truly random bits for any nontrivial extraction (i.e.,
whenm < d — 1 andk < n — 1).% In order to make extraction possible without investing anjytrandom
bits, we restrict to samplable distributions:

4This definition of extractor, taken from [NT99], is weakeaththe original definition proposed in [NZ96] (which reqsitbat
thed-bit seed be explicitly included in the output). But this défon suffices for most applications of extractors.
®Better (and tight) bounds afican be found in [RT97].



Definition 2.1 A functionEXT : {0,1}"™ — {0,1}™ is an(k, ¢)-deterministic extractor against circuit-size
s if for every distributionX on {0, 1}" which has min-entropy and is samplable by size EXT(X) is
g-close toU,,,.

Definition 2.2 A family of functiong EXT,, : {0,1}" — {0,1}™™}is a(k(n), ¢(n))-deterministic extrac-
tor against time(n) if for every ensemble of distribution® = {X,,} such thatX’ is uniformly samplable
in time ¢(n) and X, is a distribution on{0, 1}" of min-entropyk(n), we haveEXT(X,,) is ¢(n)-close to
Upn(n)-

Nondeterministic circuits. We denote the levels of the polynomial-time hierarchy abofd: Ay =

Yo=P, B = NP¥i. A %;-algorithmis an algorithm with an oracle fagi. Similarly, aX;-circuit is

a Boolean circuit which can have gates for some fiXgecomplete problem (e.g., QBE,) in addition to
the usualn, v, and— gates. By replacing “algorithm” or “circuit” with ¥;-algorithm” or “X;-circuit” in

the definitions above, we can also defprebabilistic 2;-algorithms,probabilisticY:;-circuits, distributions
samplable by:;-circuits of sizes, (k, ¢)-deterministic extractors againt;-circuits of sizes, etc.

Definition 2.3 A functionf : {0,1}"™ — {0, 1} is (s, €)-hard for;-circuitsif for everyX;-circuit C of size
at mosts, we have
Prif(z) =C(z)] <1/2 +¢€/2

We will make extensive use of the fact that that approximatening and uniform sampling can be done
in the hierarchy:

Theorem 2.4 ([Sto85, Sip83, JVV86])For any fixed:, there is a probabilisticy;, ;-algorithm Approx;
such that for any:;-circuit C : {0,1}™ — {0, 1},

Pr{(1+¢)- N > Approx;(C,e,0) > (1 —¢)-N] > 1 -9,
whereN = |{z : C(x) = 1}|. Moreover the running time dfpprox;(C, ¢, d) is poly(|C|,1/e,log(1/d)).

Theorem 2.5 ([JVV86, BGP98]) For any fixed:, there is a probabilistic polynomial-timg;_, ; -algorithm
Sample; such that for any®;-circuit C' : {0,1}"* — {0,1}, Sample;(C) outputs a uniformly selected

element ofAcc(C) o {r €{0,1}™:C(z) =1} 8

3 Extractors from Average-Case Hardness

Lemma3.1 Letf : {0,1}" — {0,1} be(s, ¢)-hard for £;-circuits. LetX be a flat distribution or{0, 1}"
of min-entropyn. — A samplable by a circuit of size— O(n). Thenf(X) is 22 - e-close to uniform.

In the standard information-theoretic setting, if a fuaotiextracts randomness out of every flat distri-
bution of min-entropyk, then it follows that it also extracts randomness out of amt (iecessarily flat)
distribution of min-entropyk (see [CG88]). This is essentially due to the fact that anyriligion of min-
entropyk is a convex combination of flat distributions of min-entrajpy In our framework of samplable
distributions, it is no more true (or at least no longer gl¢laat any samplable distribution of min-entropy

®Actually, we allowsample, (C') to output a failure symbol with some probabilitg (1/2) and only require that its output be
uniform overAcc(C) conditioned on non-failure. The failure probability canrbduced to an arbitraigy by log(16) independent
trials.



is a convex combination of flat samplable distributions af+@ntropyk. So we need an additional technical
step in order to remove the flatness requirement.

Before continuing, let us pause for a moment to consider tmeleterministic complexity assumption
that we made in the above lemma, and let us discuss its dtrerdgt seen in the previous section, it is
necessary to make a complexity assumption in order to agtstniform deterministic extractors. How-
ever, it is not natural that the assumption should be abautieterministic hardness, and it would be more
appealing to have a construction based on standard aveasgehardness. Even though we do not know
whether nondeterministic hardness assumptions@ressaryo construct deterministic extractors, we can
argue that standard hardness is not sufficient. aLbe a one-way permutation, and [Btbe a hard-core
predicate forr: then f(z) = B(r !(z)) is a hard-on-average function, however it is not an extramte
cause it is easy to sample from the conditional distributbm such thatB(z) = 0 (and such distribution
has min-entropy: — 1). We can conclude that, if one-way permutations existnidspossible to prove that
every hard-on-average predicate is a deterministic exiragainst small samplers.

Now we proceed to relate hondeterministic hardness tomeétistic extraction for samplable distribu-
tions that are not necessarily flat.

Lemma3.2 Let f : {0,1}" — {0,1} be (s,¢)-hard for ¥;-circuits. Then, for evenA < n, f is a
(n — A, 2% - €) extractor against circuit-sizées )4V,

4 Extractors from Worst-Case Hardness

In the previous section, we saw that the property of a funchieing a deterministic extractor is in some
sense a generalization of a function being hard to computaverage. In this section, we show how to
construct deterministic extractors from functions that laard to compute in th&orst case To do this, we
follow the usual paradigm for transforming a worst-casaltfanction f to an average-case hard function
f: we takef to be an encoding of in an appropriate error-correcting code [BFNW93, STV94j.pfove
the correctness of such a construction, one typically ar¢juat given any small circui@ which computes
f on average, i.e. has some advantageer “random guessing”, one can can use a decoding algoféthm
the error-correcting code to build another small ciréfitwhich computes everywhere, contradicting the
worst-case hardness ¢f However, existing results of this form will not yield thestdts we desire. The
reason is that these decoding procedures typically prodd€eof size polynomial inl/j, whereas we are
interested in values of that are much smaller than the hardnesg .oflf we are extracting from a source
of min-entropyk, ¢ will be comparable td /2"~*, whereas the circuit complexity gfwill be at most the
running time of the extractor, which we would like to pely(n).)

In the spirit of the results of Feige and Lund [FL96] aboutdkierage-case complexity of the permanent,
we overcome this difficulty by exploitingondeterminisnin our reduction. Specifically, by augmenting the
polynomial reconstruction algorithm given in [STV99] witlhndeterminism, we obtain the following result:

Lemma 4.1 Let F be a finite field (with some fixed, efficient representationy etp : F* — F be a
polynomial of total degree at mosgt If there is aX;-circuit C' which compute$ correctly on at least a
d = ¢y/d/|F| fraction of points (where is a universal constant), then there isSa,-circuit C’ of size
poly(|C|, d) which computep correctly everywheré.

This lemma implies that if we start with a functigfi which is worst-case hard fot,-circuits and
encode it as a low-degree polynomial, we obtain a funcfievhich is very hard on average fah -circuits,
as desired. However, there is still a problem. While= ¢\/d/|F| is very small, it is still a substantial

"The size ofC” does not explicitly refer ttog | F'| andt because the size 6f is at least the length of its input, whichtitog | F|.



relative advantage over random guessing, which would give successipitity 1/|F’|. The usual method
for getting around this difficulty, is to “concatenate” thelynomial encoding with an “inner” encoding
whose output lies in a much smaller alphabet (6.¢,1}). By combining the decoding procedure for the
polynomial encoding with an analogous one for the inner code proves that no small circuit can compute
the new function in d /2 + ¢’ fraction of points. Unfortunately, we know of no such innede where we
do not incur thepoly(1/4") blow-up in decoding that we hoped to avoid, even if we use atarchinism.

To solve this problem, we exploit the fact that what we needifderministic extraction is weaker than
standard average-case hardness, and it turns out that #ieamomonly used inner code has the properties
we need. Fow € {0,1}", theHadamard encodingf w is the functionHad,, : {0,1}" — {0, 1} obtained
by settingHad,, () to be the mod-2 inner product ef andz. The following lemma lists the only property
of this code that we will use (aside from the fact that, giveandw, Had,,(z) can be computed in time

poly(n)).

Lemma 4.2 Let X be any distribution o0, 1}" of densitys and lete > 0. Then

. 1
# {w : Had,,(X) has bias at least} < 52
- €
The special case of Lemma 4.2 for flat distributiokiscan be deduced from a result of Chor and Goldre-
ich [CG88]. Below we give a direct proof for arbitrary digtutions.
Although Lemma 4.2 does not explicitly give an efficient ddiog algorithm, we can easily obtain one
using nondeterminism:

Lemma 4.3 For every fixed, there is a probabilistic:; ; »-algorithmHadDecode; with the following prop-
erty: LetC' be a probabilisticX;-circuit which samples a distributioX on {0,1}™ of densityd and let
w € {0, 1}" be such thatlad,,(X) has bias at least. ThenHadDecode;(C, €) runs in timepoly(|C]|, 1/¢)
and outputsw with probability (6 - £2).

The key point is that although the success probability ofdéhending procedure depends @rihe running
time does not.

To obtain deterministic extractors, we combine the polyiabmncoding and Hadamard code via the
standard “concatenation” technique. [Fet= GF(29),2 and for a functiorp : ¥ — T, define theHadamard
encodingof p to be the functiorp’ : ¥ x {0,1} — {0, 1} defined byp'(z,y) = Had,()(y), where we
view p(z) € F as a an element 40, 1}97.

In order to analyze this construction, we will need to arche if a concatenated codeword (lik&
is biased on on some distribution of sufficient density, taemoticeable fraction of the inner codewords
(i.e.,Had,,)) are biased on the corresponding conditional distribstiorhis is provided by the following
general lemma.

Lemma4.4 Letf : A x B — C be any function, and leX’ = (X, Xy) be any distribution ond x B of

densityé. For everya € A andc € C, let X¢ denote distribution ofXs conditioned onX; = a. Suppose
that for somec € C, Pr[f(X) =¢] > (1 +¢)/|C|. Then, for at least a&c/3|C| fraction ofa € A, the

following two conditions hold:

1. Prf(a,X%) =¢ > (14+¢/3)/|C|.
2. X has density at leask/3|C| in B.

8The restriction to fields of characteristic 2 is inesserstial only done to make passing between field elements angsstirer
{0, 1} cleaner.



Putting all the above tools together, we obtain the follanimeorem:

Theorem 4.5 LetF = GF(29), letp : F* — IF be a polynomial of degree at magt and letp’ : F* x
{0,1}¢ — {0,1} be its Hadamard encoding. Suppose there is a distribufioon F x {0,1}¢ which
is of densityd and is samplable by sizesuch thaty’(X) has biass. Then there is &,-circuit® of size
poly(s,d, 1/¢) which computeg’ everywhere, provided that

d
82e>ey ] —,
\ IF]

This immediately gives us a construction of deterministitrators from Boolean functions that are
worst-case hard far,-circuits.

wherec is a universal constant.

Theorem 4.6 There is a universal constant > 0 such that the following holds: Let: {0,1}* — {0,1}
be such that n&:,-circuit of sizes can computef, where? < s < 2¢. Then fors’ = s* and anyn satisfying
s' > n > max{l, (¢/logs')?}/a, there is afunctiorEXTj:,e,s :{0,1}™ — {0,1} such that

1. Ext/, isa(n-[1 — (alogs')/€],1/s')-deterministic extractor against circuit-sizé

n,l,s

2. EXTﬁ’&S is computable in tim@oly(n, 2¢) with oracle access tg.

Corollary 4.7 Ifthere is a problem irE = DTIME(2°(")) which hasX,-circuit complexity22(") for all
n, then there is a constant > 0 such that for alln and s satisfyingn < s < 27", thereis a((1 —vy)n,1/s)-
deterministic extractoExT,, s : {0,1}" — {0, 1} against circuit-sizes such thatExT,, , is computable in
timepoly(s).

5 Extracting Many Bits

We begin by describing the replacement for the Hadamardwbdteh will enable us to extract a logarithmic
number of bits. The construction we use is taken from thedzare function” construction described in
[Gol95]. Consider the functiol€C : {0,1}" x {0,1}**™ — {0,1}"™, defined as follows:C(z,y) =
Ci(z,y), -, Cnl(z,y) where, for inputs = (z1,...,z,) andy = (y1,. .., Ynt+m) We have

Ci(z,y) = (&1, 2n)s Wir- -+ Yitn—1))

Notice thatC(x,y) is independent of,,,. We could have define€ as a functionC : {0,1}" x
{0,1}v+tm=1 — f0,1}™, but it would have been annoying to carry the+ m — 1) expression every-
where.

Lemma 5.1 Let X be a distribution over0,1}" of densitys and leta € {0,1}™. Then the number of
stringsy such thatPr[C(X,y) = a] > 27™ + ¢. is at mosR?™ /§e2.

Lemma 5.2 For every fixed, there is a probabilisticz; , »-algorithm CDecode(® with the following prop-
erty: Let C be a probabilisticy;-circuit which samples a distributiodX” on {0,1}" of densitys and
let w € {0,1}" be such that there is am € {0,1}" such thatPr [C(X,w) =a] > 27 + €. Then
Cbecode!? (C, ¢) runs in timepoly(|C|, 1/, m) and outputsw with probability (8 - £2 - 2-2),

®By “sharing” some of the nondeterminism at different levafishe reduction, the number of levels of nondeterminismoint
duced can be reduced a bit. For the sake of modularity in thesétion, we have chosen not to optimize this parameter.



Proof: Essentially identical to the proof of Lemma 4.3. |

Theorem 5.3 LetF = GF(29), letp : F* — F be a polynomial of degree at magtand letp’ : F* x
{0,1}7™ — {0,1}™ be its C-encoding. Suppose there is a distributidhon F* x {0, 1}¢ which is of
densityé and is samplable by size and an element € {0,1}™ such thatPr [p(X) = a] > 27™ + e.
Then there is &4-circuit of sizepoly (s, d, 1/e,m) which computeg’ everywhere, provided that

d
o2 gt gmim > o [ &
|F|

wherec is a universal constant (not the same one of Theorem 4.5).
Proof: Essentially identical to the proof of Theorem 4.5. |

Theorem 5.4 There is a universal constant > 0 such that the following holds: Let: {0,1}* — {0,1}
be such that n&4-circuit of sizes can computef, where? < s < 2¢. Then fors’ = s* and anyn satisfying
s' > n > max{l, (¢/logs')?}/a, there is afunctiorEXTj:é s 10,1} — {0,1}™ such that

1. m=}logs'.

2. Ext/

n,l,s

isa(n-[l— (alogs')/¢],1/Vs')-deterministic extractor against circuit-sizé.
3. EXTT{,&S is computable in timgoly(n, 2¢) with oracle access tg.

Corollary 5.5 If there is a problem ifE = DTIME(2°() which hasy,-circuit complexity2?(™) for all
n, then there is a constant > 0 such that for alln and s satisfyingn < s < 27", thereis a((1 —v)n,1/s)-
deterministic extractoEXT,, s : {0,1}" — {0, 1}!°6 ¢ against circuit-sizes such thatExT,, , is computable
in timepoly(s).

Lemma 5.6 There is a constant: > 0 such the following holds. LeX be a distribution of min-entropy
n1+no — A ranging over{0, 1}"1*72 and let us viewX as a pair(Xy, X,) whereX; ranges ovef0, 1}
and X, ranges over{0,1}"2. Let X be samplable by a circuit of sizg let ExTy : {0,1}"* x {0,1}} —
{0,1}™ be a(n; — A, e)-extractor, and leExTy : {0,1}"2 — {0,1}™2 be a(ny — A — log(1/e),€)-
deterministic extractor against;-circuit-sizes®. ThenEXT (X, X3) = EXT1 (X7, EXTo(X32)) is 3e-close
to uniform.

Theorem 5.7 ([Zuc97]) For everyy > 0 there is a constant, and an explicit construction of &1 —
27v)n, 1/6n)-extractor EXT : {0, 1}" x {0,1}" — {0,1}"™ wheret = ¢, logn andm = (1 — 3y)n.

Theorem 5.8 If there is a problem ifE = DTIME(2°(")) which hasXs-circuit complexity2?(™) for
all n, then for every sufficiently small constanand for everys there is a(1 — ¢, 1/n)-extractor EXT :
{0,1}™ — {0,1}™ against circuit sizes wheremn = (1 — O(6))n. EXT is computable in timgoly(s),
where the exponent of the polynomial depends.on
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A Appendix

A.1 Nonuniform Extractors & Negative Results

Proposition A.1 For everys, n, k < n, ande, there exists artk, )-extractor ExT : {0,1}" — {0,1}"
against circuit-sizes, withm = k — 2log(1/e) — O(log s). Moreover,EXT can be computed by a circuit of
sizepoly(s,n).

Proof: Let N, = s°(*) be the number of circuits of size t = 2log(k + N,) andm = k — 2log(1/e) —
log t—2. We choose ET randomly from a family ot-wise independent functions frof®, 1} — {0, 1},
and argue that it is &, ¢)-deterministic extractor against circuit sizavith high probability. Consider any
fixed distributionX of min-entropyk that is samplable by size A standard application of themoment
method (to be given in more detail shortly) yields:

EPr [EXT(X) is note-close to uniform < 1/N; (1)
XT

Taking a union bound over distributions samplable by sigBows that there exists & k, )-deterministic
extractor from this family. We note there are familieg-ofise independent functions computable by circuits
of sizepoly(t,n).
We now justify Inequality (1). Consider any fixgde {0,1}™. The probability mass thatgets under
ExT(X) is
Mass, = Z Pz * Xa,y,
ze{0,1}»

wherep,. is the probability mass af underX andy,., is the indicator variable for the evejixT (z) = y|.
For a fixedy, the variable x.. , } aret-wise independent and have expectatios 1/2™ (over the choice
of EXT). SinceX has min-entropyt, we havep, - x., € [0,2 %]. Applying a tail inequality for sums of
t-wise independent variables from [BR94], we have

t/2

-2k 4t 1 1 1
PTHMaSSy_MZ‘S'N]S&[W SW<2_’“'E'
Hence, with probability greater than— 1/N,, Mass, < (1 + ¢)/2™ for all y, which implies that KT (X)
is e-close to uniform. |

A similar argument gives nonuniform extractors toriformsamplers.

Proposition A.2 For all functionst(n), k(n) < n, ande(n) there exists dk(n), e(n))-extractor { EXT,, :
{0,1}" — {0,1}™(™} against timet(n), with m(n) = k(n) — 2log(1/e(n)) — O(loglogn). Moreover,
ExT,, can be computed by a circuit of sigely(n).

Note that in Proposition A.1, the extractor has a highendimomplexity than the samplers from which
it extracts. This is necessary, even if we only want to extoae bit from a distribution of min-entropy
n—1:

Proposition A.3 There is a constant such that no functioexT : {0,1}" — {0,1} computable by a
circuit of sizes is a(n — 1,1/5)-deterministic extractor against circuit size s.1°

%The constant of /5 can be replaced by any constant less thaat the price of increasing
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Proof: Without loss of generality, we may assume thatrier) = 1 for at least half of its inputs. Consider
the distributionX sampled by the following algorithm:

1. Selectz uniformly in {0, 1}".

2. If ExT(x) = 1, outputz. Otherwise, output a uniformly selectetic {0,1}".

It is easy to see thaX has min-entropy: — 1 and is samplable by size(s). Moreover, &T(X) = 1 with
probability at leas8/4. |

A similar argument applies to uniform deterministic extaas for uniform samplers (but not to nonuni-
form deterministic extractors for uniform samplers, as destrated by Proposition A.2).

Proposition A.4 There is a constant such that no family of functionfExT,, : {0,1}" — {0,1}} com-
putable in timei(n) is a(n — 1, 1/5)-deterministic extractor against timén).

In subsequent sections, we aim to construct deterministra@ors that are efficiently computable by
uniform algorithms. The following two corollaries show that suchragtors imply separations between
deterministic complexity classes and nonuniform or prdisdic ones. Since such separations are beyond
the current state-of-the-art in complexity theory, ourstainctions should (and will) be based on complexity-
theoretic assumptions.

Corollary A.5 Supposg ExT,, : {0,1}"™ — {0,1}} is a family of functions computable in time:) such
that, for everyn, EXT,, is an(n — 1, 1/5)-deterministic extractor against circuit-sizén). Then there is a
language iINDTIME(¢(n)) of circuit complexity at leas2(s(n)).

Proof: LetL = {z € {0,1}* : EXT|(z) = 1}. Proposition A.3 implies that this language has circuit
complexity at least(n)/c. [

A similar proof, noting that Proposition A.4 holds even iéthaxtractor is computable by a randomized
algorithm, yields:

Corollary A.6 Suppose{ExT,, : {0,1}" — {0,1}} family of functions computable in tim¢n) and is
an (n — 1,1/5)-deterministic extractor against timé&(n). Then there is a language DPTIME(¢(n)) \
BPTIME(Q(t (n)).

A.2 Proofs Omitted From Section 3

Proof: [Of Lemma 3.1] LetX (-) be a circuit of size’ that samples a flat distribution of min-entropy- A
such thatPr,[f(X (a)) = 1] > 1/2 4 €'/2 (the proof would be analogous in caBe,[f (X (a)) = 0] >
1/2 + ¢'/2), wheree' = 22 - ¢. Consider the following algorithmal (that tries to approximatg): on input
x, If z is in the range ofX then output 1, otherwise output a random hit.can be implemented by a
nondeterministic circuit of size’ + O(n). It follows from the definition of4 that

{P(’)rl} [A(z) = f(z)] = Pr[A(z) = f(z)|z in the range ofX] - 274
req0,1;™ T
+Pr[A(z) = f(x)|= not in the range of] - (1 — 27%)
T
1 E, —A 1 —A
| NN 1 e
= 373 TT3ts
that contradicts our assumption on the hardness dfs’ = s — O(n). [
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Proof: [Of Lemma 3.2] LetX be a sampler of siz€ such that

P;r[f(X(a)) =1]>1/2+¢/2
We now describe &, circuit A of sizepoly(s', 1/¢) such that4 approximatesf on a fractionl /2 4274 -
¢’ /2 of the inputs.

We first described as a randomized circuit’ the randomness can be nonunifoficdyg at the end of
the construction. For every € {0,1}", setp, = Pry[X(a) = z]. On inputz, A computes a value,
such thaty, (1 — €') < p, < q.(1 + €¢). After that, A outputs 1 with probabilit2”~2¢,, and it outputs a
random bit with probabilityl — 2"~2¢,. By approximate counting (Theorem 2.4),can be implemented
as a probabilisti&:; -circuit of sizepoly(s’, 1/e).

We have )
PrA(X) =1]= > pe> g+
z:f(z)=1
Prf(X)=0]= Y pe<y—
z:f(x)=0
and
PrlA(s) = f(@)] = PrlA(s) = f(x) = 1] + PrlA(z) = /() = 0]
n 1 2anq$ . 1 2anqx
=2 Z(TL 2>+2 2. (5 2)
z:f(x)=1 x:f(x)=0
1 274
= §+T Z Qe — Z Qx]
| z:f(z)=1 z:f(x)=0
> 2 22 1—¢ 1
> §+T (1—¢€) Z ps— (L+e) Du
| z:f(z)=1 z:f(x)=0
1 24 ' /
= §+T-[(1—e)Pr[f(X):1]—(1+e)Pr[f(X):0]]
_ 1 22 2P X)=1 -1
= 5"‘7'( rlf(X)=1-¢-1)
o1 27A¢
= 273

A.3 Proofs Omitted From Section 4

Proof: [Of Lemma 4.1] Forz, y € I, theline throughz andy is the parametrized set of pointé, , (¢) def

(1 —t)z + ty|t € F}. For afunctionf : F* — T, f restricted to the liné, , is the functionf|,, :F — F
defined byf|e, ,(t) = f(¢s4(t)). Note thatp(¢,,(t)) is a univariate polynomial of degree at mastlt
is shown in [STV99, Lemma 28] that there exists a pairg " such that for at least 8/16 fraction of
pointsz € F™, we have:

1. ple,, andC|,, . agree on at least®'2 fraction of I.
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2. There does not exist any degeépolynomialh : F — IF other tharp|,, , which agrees witlC|,,  in
at least @ /4 fraction of F and satisfied (0) = p(z).

Fix such az; z andp(z) will be nonuniformly hardwired into all the circuits we cdnsct. By approximate
counting (Theorem 2.4), there is a probabilistig, ; -circuit C’ which, on input(x, k) (wherez € F* and
h : F — Fis a degreel polynomial) (a) outputs 1 with high probability if agrees withC'|,_  in at least
a /2 fraction of F andh(0) = p(z), and (b) outputs 0 with high probability if agrees withC|,, , in less
than ad/4 fraction of F or h(0) # p(z). Moreover the size of" is poly(|C|,d). After sufficient error
reduction, the coin tosses 6f can be nonuniformly fixed so that it correctly distinguisliesse two cases
for all z andh. This yields the followingZ;  o-circuit C” for computingp almost everywhere:

C"(z):
1. Use nondeterminism to find @&nsuch thatC’(z, h) = 1 (if one exists).
2. Outputh(1).

C" is of sizepoly(|C],d) and computep in at least al5/16 fraction of points. The “self-corrector” for
polynomials given in [GLR91] convertsC” into a circuitC”” that compute® everywhere. |

Proof: [Of Lemma 4.2] The proof is based on the finite Fourier trarmefoFor two real valued functions
fyg:{0,1}" — R, define their inner product to be

(Fo) =5 O oo,

ze€{0,1}"

Forw € {0,1}", defineL,(z) = (—1)“*, wherew - = denotes inner product mod 2. It is well-known
that{ Ly }wefo,13» form an orthnormal basis (called the Fourier basis) forXhelimensional vector space
of real-valued functions 0f0,1}". Now lety : {0,1}" — R be the probability mass function of,
i.e. pu(z) = Pr[X =«z]. Forw € {0,1}", the bias oflad,,(X) is exactly|2" - (s, L,,)|. By Parseval's
inequality,

S D) =27 () =27 > p()? <2t Y M(x).&l :%_

we{0,1}n ze{0,1}n ze{0,1}n
Hence there are at most (6 - £?) values ofw such thaflad,, (X ) has bias at least [

Proof: [Of Lemma 4.3]
By approximate counting (Theorem 2.4), there is a probsttult:; , ; -algorithmTest;(C, &, v) running
in time poly(|C|, 1/¢) that (a) outputs 1 with probability at least- 2-"~! if Had,(X) has bias at least

and (b) outputs 0 probability at least- 2" ! if Had,(X) has bias at most/2. Thus, with probability

least1/2 over the choice of the random coimsof Test;, C'(v) & Test;(C,¢e,v;) IS a X;4-Circuit

which distinguishes these two cases correctly forvallln particular, C'(w) = 1 and, by Lemma 4.2,
{v : C'(v) = 1}] < (¢/2)%/2"*. Hence applying uniform sampling (Theorem 2.5) to thiswiirgives
the desired result. More formally, the procedHegiDecode; does the following:
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HadDecode;(C, ¢):
1. Uniformly select coing for Test;.
2. LetC’ be theX;;-circuit defined byC’(v) = Test;(C, ¢, v;r).

3. RunSample, (C").

Proof: [Of Lemma 4.4] Note that, for any € B,

« _PT[X:(a,b)] 1
PriX® =t = Pr[X; = a S(5-|A|-|B|-P7“[X1:a]7

so to achieve Condition 2, it suffices to hae[X; = a] > ¢/(3|.A||C|). Now suppose that the conclusion
of the lemma does not hold. Then for greater than-a<J/3|C| fraction ofa € A, we have

PriX;=ecandf(X)=¢ = Pr[X;=ada] -Prif(e,X*) =]
B (1+¢/3) €
< prtn = (S + i

For the remaining. € A, we certainly have

1
Pr[X; =aandf(X)=¢ <Pr[X; =a] < SIA]
sinceX has density). Putting everything together, we have
Prif(X)=c = Y Pr[X;=aandf(X)=c|
acA
(1+4+¢/3) £ ed| Al 1
PriX,=q] —1“2 . .
< 2 Prii=a- e A (g )+ e\
acA
_ 1+e
cl
which is a contradication. |

Proof: [Of Theorem 4.5] For every: € I, define the conditional distributioX® on {0,1}¢ as in
Lemma 4.4. By uniform sampling (Theorem 2.5), edchis samplable by & -circuit C,, of sizepoly(s).
By Lemma 4.4, for at least& /6 fraction ofz € I, the following two conditions hold:

1. Had,(4)(X*) = p'(z, X*) has bias at least/3.
2. X" has density at least /6 in {0, 1}9.

By Lemma 4.3, for every: for which these two conditions holéadDecode; (C;, ¢/3) outputsp(x) with
probability at leas2((e/3)? - (de/6)) = Q(§-€3). By averaging, there exists a settingf the random coins
of this procedure such thét' (z) = HadDecode, (Cy, ¢/3; ) outputsp(z) for at least gde/6) - (5 - £3) =
Q(6? - €*) fraction of z’s. C' is aX3-circuit of sizepoly(|C|, 1/¢). By Lemma 4.1, there is B,-circuit of
sizepoly(|C|, d, 1/¢) computingp everywhere. |
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Proof: [Of Theorem 4.6]

Lett = [¢/logs'] > 1/a, q = [n/(t+1)], andF = GF(29). Let H be a subset df of sizes’, and fix
some injective map : {0,1}* — H'. There exists a polynomial : F* — F of degree at most’ in each
variable such that for alt € {0,1}¢, f(z) = p((x)); moreover such a polynomial can be evaluated at any
point of I in time poly(n, 2). p has total degree at mogt= s't. Letp’ : F* x {0,1}¢ — {0, 1} be the
Hadamard encoding ¢f, and, forz € {0,1}", define E<T£,Ls(a:) = p/(x07), wherej = (t +1)g —n < t.

Now suppose that there is distributidhon {0, 1}" such thatX has min-entropy: - [1 — (alog s')/¢)],
X is samplable by siz¢/, and 5<T£,z,s(X) has bias at leadt/s’. Then the distributiop’(X') has bias at
leastl/s’, whereX’ = X07. X' has density at least

‘[1-(alog s’
_2”[ ( g)/f]Z 1 - )
2(t+1)g ot+(anlogs’)/L

In order to apply Theorem 4.5, we need
1\* d s't
2
o — > — = i
' () =V T Ve

2. (s)0/6 < 29/c2,

i.e.

By Inequality (2), we have

L
/
< 6t 130m€10gs
6¢ 13anlog s’

1
log s’ i 12

l !
4log(1/8) +9log s’ +2logt < 4-[t+an Ogs]—i—Qlogs'—i—Zlogt

IN

19anlog s’
14

19an

t—1

20an 1

t+1

< 20aq + 1.

IN

+1

+1

IN

IN

So,
t2 X (31)9/54 < 220aq+1 < 2q/02,

for sufficiently smalle. Hence Theorem 4.5 applies, and we conclude gh&nd hence alsg) can be
computed by &-circuit of sizepoly(s’,d, 1/s") = poly(s*) < s for sufficiently smallx. This contradicts
the hardness of. |

A.4 Proofs Omitted From Section 5

Proof: [Of Lemma 5.1]
The Vazirani XOR Lemma [Vaz84] says thatdf, ...,c, anday,...,a,, are arbitrary 0/1 random
variables with arbitrary dependencies, then

1 1
Pri(as,....am) = (1, em)] = 5 + > om (2Pr[®icrai = @ierci] — 1)
IC{1,...m},I#0
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A proof of the above statement can be found in, e.g., [Gol®6f Pemma 2.5.6]. Soif there is anc {0, 1}/
such that
PriC(X,y) =a] >27™ +e€

then there is also a non-empty subBet {1,...,m} and a bith = ), ; a; such that

Pr

1 €
@Ci(X,y) :b] >3t5
1€l

Using the definition ofC and the linearity of the inner product operator, this is #i®ms as

—

€
Pri(X, Wi, yin-1)) =] > 5 + 5
el

[\

We know from Lemma 4.2 that there can be at mgsts stringsz € {0, 1}" such that
1 €
Pri(X,z) =b] > = + =

so there are only so many possible values@®y. ; (v, - - . ; ¥i+n—1). On the other hand, the function map-
pingy into @, (vi, - - -, Yi+n—1) is afull-rank linear map, and so it is a reguldt-to-1 function; further-
more this map is totally specified by giving the $gaind there ar@™ — 1 choices for it). It follows thaB
cannot contain more tha2™ — 1) - 2™ /2§ elements of 0, 1}"+™. |

Proof: [Of Lemma 5.8] From the assumption of the theorem, using IGoKo5.5, it follows that there is
a constanty such that for every constant everyns, and everyn§ < s < 27", there is & (1 — y)ng, 1/s)
extractor &T : {0,1}"2 — {0, 1}¢'°&"2 for ¥ -circuit sizes.

Let ¢ be a fixed constant such thak /2. Let X be a distribution ranging oveb, 1}™, of min-entropy
(1—46), and samplable with a circuit of size We view X as a pai( X, X2), whereX, ranges ovef0, 1}"
andX, ranges ovef0, 1}"2, withn; = (1 — §/y)n andny = dn/v. Notice thatn; > n/2.

Let ¢s be such that the construction of [Zuc97] cited in Theoremdivés a((1 — 2d)ny,1/6n1)-
extractor BT : {0,1}"t x {0,1}* — {0,1}™ with m; = (1 — 36)n; andt = cslogn;. We will worsen
the parameters of &, a bit, to simplify subsequent calculations, and we will de&si(n; — dn, 1/3n)-
extractor BTy : {0,1}™ x {0,1}¢ — {0,1}™ withmy = (1 — 36 — 6/y)n > (1 — 36 /v)n.

We also have &((1 — y)ny — log 3n,1/3n) deterministic extractor ¥r, : {0,1}"2 — {0,1}™2 for
YJ1-circuit sizes, wherems = c¢5 log no.

By combining these two extractor using Lemma 5.6, we are done |
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