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Abstract

Randomness extractors convert weak sources of randomness into an almost uniform distribution;
the conversion uses a small amount of pure randomness. In algorithmicapplications, the use of extra
randomness can be simulated by complete enumeration (alas, at the price of a considerable slow-down),
but in other applications (e.g. in cryptography) the use of extra randomness is undesirable.

In this paper, we consider the problem ofdeterministicallyconverting a weak source of randomness
into an almost uniform distribution. Previously, deterministic extraction procedures were known only
for classes of distributions having strong independence requirement.Under complexity assumptions, we
show how to extract randomness from anysamplabledistribution, i.e. a distribution that can be generated
by an efficient sampling algorithm.

Assuming that there are problems inE that are not solvable by subexponential-size circuits with�5
gates, we give a polynomial-time extractor that is able to transform any distribution of lengthn and min
entropy(1 � �)n into an output distribution of length(1 � O(�)n) that is close to uniform, as long as
the input distribution is samplable by a circuit whose size is a constant root of the running time of the
extractor.

Our result is based on a connection between deterministic extraction from samplable distributions
and hardness against nondeterministic circuits, and on the use of nondeterminism to substantially speed
up “list decoding” algorithms for error-correcting codes such as multivariate polynomial codes and
Hadamard-like codes.
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1 Introduction

Randomness has proved to be a very useful tool in computer science. In algorithms, randomization has
yielded the only known polynomial-time solutions for some problems, such as primality testing [SS77,
Mil76, Rab80] and certain approximate counting problems [KLM89, JS89]. In distributed computing,
there are several protocol problems, such as Byzantine agreement, which have only randomized solu-
tions [FLP85]. In cryptography, secret keys must be chosen at random (otherwise, they are not secret),
and even the cryptographic algorithms themselves, such as encryption, must be randomized in order to be
secure [GM84].

When randomness is used in the design of algorithms and protocols, the source of randomness is mod-
eled as an ideal process that outputsunbiasedandindependentrandom bits. On the other hand, the conceiv-
able sources of randomness that an algorithm can effectively access (e.g. collecting statistics on disk access
time, or on keyboard typing), while containing a noticeableamount of entropy, can be very biased and in-
volve heavy dependencies. A large body of research, initiated in [Blu86, SV86, CG88, VV85], has been
devoted to fill this gap between realistic sources of randomness with biases and dependencies and perfect
sources of randomness. Ideally, one would like to have a “compiler” that, given an algorithm/protocol that
is guaranteed to work well only with a perfect source of randomness, produces an algorithm/protocol that is
guaranteed to work well with a large class of imperfect random sources.

1.1 Simulation of Probabilistic Algorithms Using Extractors

For the case of probabilistic algorithms, one way of designing such “compilers” is to design arandomness
extractor, as proposed by Nisan and Zuckerman [NZ96]. A randomness extractor is a procedure that on
input a sample from a weak random source and a truly random string gives an output that is statistically
close to uniform. Formally, a(k; �)-extractor is a procedure EXT : f0; 1gn � f0; 1gt ! f0; 1gm such
that if X is random variable of min-entropy at leastk, andUt is the uniform distribution overf0; 1gt, then
EXT(X;Ut) is �-close to uniform.1 A large body of research has produced explicit constructions are known
wherek can be essentially arbitrary,m is very close tok, andt is O(log n) (see [ISW00] and references
therein). By definition, once we have such a(k; �)-extractor, we can perform any task which is designed to
usem truly random bits using instead a single sample from a randomsource of min-entropyk together witht truly random bits. Since we still need some truly random bits, this does not yetachieve the goal of using
only a weak source of randomness. However, in most algorithmic applications, the need fort additional truly
random bits can be eliminated by enumerating all2t posibilities and combining the algorithm’s outputs for
each, e.g. by majority vote (for decision problems). This incurs a slowdown of factor of2t, but fortunately
this is still polynomial since we use an extractor witht = O(log n).

Note that the fact that randomness extractors can be used to run randomized algorithms with only a weak
random source (and no additional truly random bits) does notmean that one canextractalmost uniform bits
from a weak random source without additional truly random bits. Indeed, for any deterministic function
EXT : f0; 1gn ! f0; 1gm, there is a distributionX of min-entropyn� 1 for which EXT(X) is very biased
(in fact, one for which the first bit of EXT(X) is constant).

1.2 Deterministic Extraction

The reason why extractors can be used for the simulation of probabilistic algorithms is essentially that when
a probabilistic algorithm usest bits of randomness it can always be simulated deterministically at the price

1A distributionX hasmin-entropyk if for any elementa of its rangePr[X = a] � 2�k. Two distributionsX andY are�-close
if for any subsetS of their rangejPr[X 2 S]� Pr[Y 2 S]j � �.
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of a 2t slowdown factor. In other applications of randomness, suchas probabilistic encryption [GM84],
randomness is required by the very nature of the problem, andthere is no possibility of trading off efficiency
versus randomness. For such applications, it appears unavoidable to look for extraction procedures that
convert a weak random source into an almost uniform distribution deterministically, without the help of
extra randomness. Because of the above-mentioned impossibility results, such deterministic extractors will
not work for every source of sufficiently large min-entropy.However it is still possible that there are general
and interesting families of weak random sources for which efficient deterministic extraction is possible.

When random bits are needed in practice (e.g., to generate keys in a cryptographic protocol), a typical
approach is to collect weakly random data, and feed it into a cryptographic hash function. The output of
the hash function is then used as if it were a sequence of random bits. However, as far as we know, there is
no result providing a theoretical justification for this wayusing of a fixed cryptographic hash function to do
deterministic extraction.

On theoretical side, there is a considerable body of work devoted to the problem of deterministic ex-
traction. In fact, most of the early work on the use of weak random sources was devoted to the construc-
tion of deterministic extractors for increasingly generalclasses of distributions. A classical algorithm by
von Neumann [vN51] extracts randomness from a sequence ofindependentcoin tosses of the same bi-
ased coin. An improved version by Elias [Eli72] extracts randomness at a rate close to the entropy of
the source. Blum [Blu84], generalizing bon Neumann’s result, showed how to extract randomness from
any distribution described by a Markov chain. Chor and Goldreich [CG88] (improving results of San-
tha and Vazirani [SV86] and Vazirani [Vaz87]) show how to extract randomness given two independent
weak random sources with enough min-entropy. Another line of work considered the problem of deter-
ministically extracting randomness from various types of sources where an adversary can fix some subset
of the bits, mostly motivated by applications of such extractors in cryptography and distributed comput-
ing [CGH+85, BBR88, BL90, KKL88, LLS89, Fri92, CDH+00, Dod00].

The extraction algorithms presented in the above papers work for classes of distributions that satisfy
fairly strong independenceproperties (which is a particularly problematic assumption for physical sources
of randomness). Independence requirements are explicit inmost of the works, and are also implicit in
[Blu86], where the process that samples the distribution has limited memory, and works on-line, so that
far-away parts of the output of the distribution can only have limited dependencies. In order to circumvent
the impossibility of deterministic extraction for many sources of interest (in particular, ones without strong
independence guarantees), researchers were led to consider the weaker task of efficiently simulating ran-
domized algorithms with such sources [VV85, CG88, Vaz84, CW89, Zuc96], and eventually to notion of
extractors which can use a small number of additional truly random bits [NZ96].

1.3 Our Results

Our aim is to identify as general a class of sources as possible for which efficient deterministic extraction
can be done. Specifically, we examinesamplable distributions; that is, sources that can be generated by
an efficient sampling algorithm (or circuit). The only otherrequirement we place on the source is that it
contains some randomness to be extracted (as measured by min-entropy). In particular, we do not impose
any independence conditions on the source. This class of samplable distributions contains as special cases
most of the previously studied sources for which deterministic extraction was found to be possible, such
as the model of [Blu86]. In addition to their generality, onecan argue that samplable distributions are a
reasonable model for distributions actually arising in nature (as argued, for example, by Levin [Lev86]).

Having settled on this class of sources, what we’re looking for are functions EXT : f0; 1gn ! f0; 1gm
with the following property: for every sourceX of some min-entropyk which is samplable by a circuit of
some sizes, EXT(X) is �-close to uniform. Note that although we are placing a computational restriction
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on the sampler, we are requiring the output of the extractor to bestatisticallyclose to uniform.

Nonuniform Extractors and Negative Results. Our first observation is that extracting randomness from
samplable distributions is impossible unless the extractor is allowed to use more computational resources
than the sampler. On the other hand, if we allow the running time of the extractor to be polynomially
larger than the running time (or even circuit size) of the sampler, we show that extraction becomes possible.
The results that we obtain about such deterministic extractors are described below. As a first “plausibility”
result, we show in Section A.1 the existence of good deterministic extractors2 computed by polynomial-size
circuits. Essentially, it’s enough to properly pick a function from a collection of poly-wise independent hash
functions. These results are reported in the appendix.

A Connection to Nondeterministic Average-case Hardness.While the above observations about nonuni-
form extractors illustrates the feasibility of deterministic extraction, it would be preferable to have a con-
struction in which the extractor is efficiently computable by a uniform algorithm. However, we show in
Section A.1 that the existence of such extractors implies separations of complexity classes beyond what’s
currently known. Therefore, in order to construct uniform deterministic extractor, we will need to make
complexity assumptions.

Let us consider for starters the task of extracting one almost unbiased bit (already a fairly non-trivial
problem). Our first result is that if a Boolean function is hard to compute byNP-circuits (i.e., circuits
that can have special gates solving SAT instances) of sizes with advantage better than
, then it is also a
good extractor against samplers of size abouts. that sample a distribution of lengthn of min-entropy aboutn � log(1=
). The basic idea in the proof of this result is quite simple: suppose thatf is a function hard
on average forNP-circuits, and thatX is a samplable distribution on whichf(X) is, say, biased towards 1.
Then the followingNP circuit can predictf(x) in the following way: givenx, first check whetherx is in
the range ofX, which is something that can be done efficiently using nondeterminism, ifX is samplable. Ifx is in the range, then guess thatf(x) is 1, otherwise make a random guess. For a randomx, this approach
guessesf(x) with an advantage that depends on the bias off(X) and on the min-entropy ofX.3

Although the assumption that we have a function that is hard-on-average forNP-circuits (as opposed
to standard circuits) has been used before (e.g., by Arvind and Köbler [AK97]), it is still natural to ask
whether the nondeterministic hardness assumption is really necessary. In Section 3, we observe that a
Boolean function can be very hard on average against standard circuits, yet it may not be a good extractor
for samplable distributions, even for min-entropyn�1. So it appears that a somewhat non-standard hardness
assumption is required. Still, it is of interest to weaken the assumption, as we do next.

Using Worst-case Hardness Our next goal is to start with a reasonableworst-casecomplexity assump-
tion, such as the one used by Klivans and van Melkebeek [KvM99]: thatE = DTIME(2O(n)) contains a
problem that is not solvable byNP-circuits of size2o(n)). We would like to show that such an assumption
implies the existence of polynomial-time computable predicates with strong average-case hardness againstNP-circuits; by the previous results, such predicates would be good deterministic extractors. This looks
like the standard problem of worst-case to average-case reduction, as solved in [BFNW93, Imp95, IW97,
STV99], and observed to extend toNP-circuits in [KvM99]. However, in all such results, one getspred-
icates that are hard to predict with an advantage that is at least an inverse polynomial in the size of the

2Here, and from this point on, the termdeterministic extractoralways refers to a deterministic extractor for samplable distribu-
tions.

3This explanation is a bit oversimplified: our idea works as described only ifX is a samplable “flat” distribution. For non-
flat distribution, a more sophisticated reduction is needed, which involves the use of approximate counting algorithmswith anNP-oracle [Sto85, Sip83, JVV86].
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adversary (and, for a stronger reason, on the time needed to compute the predicate). It then follows that an
extractor computable in timet(n) obtained using such techniques and the previously mentioned connection
can only extract randomness from a source of min-entropy about n� log t(n).

In order to extract from sources of lower entropy, we exploitour ability to use nondeterminism in the
reduction, in the spirit of the results of Feige and Lund [FL96] about the average-case complexity of the
permanent. Our starting point is the worst-case to average-case reduction in [STV99]. That reduction uses
an error-correcting code obtained by “concatenating” a multivariate polynomial code and a Hadamard code,
and is analysed by providing a “list-decoding” procedure for the polynomial code and using the Goldreich–
Levin [GL89] list-decoding procedure for the Hadamard codefrom [GL89]. We show that the use of “ap-
proximate counting” (implementable with anNP oracle [Sto85, Sip83, JVV86]) can greatly improve the
efficiency of the list-decoding algorithm for the polynomial code. But we do not know whether a similar
improvement is possible for the Hadamard code. Instead, we show how to use approximate counting and
uniform sampling (also using anNP oracle [JVV86, BGP98]) to get a very efficient solution to a somewhat
different problem that still suffices for deterministic extractors.

The final result is that starting from a problem inE that does not admit circuits of size smaller than2�n
with �4-gates, we get an efficient extractor that extracts one almost unbiased bit from any distribution of
lengthn and min-entropy(1 � O(�))n which is samplable by a circuit of sizes = s(n); the extractor runs
in timepoly(s1=�).
Extracting Many Bits. So far, we described results giving extractors that only produce one almost unbi-
ased bit, while it is of course much preferable to extract a number of random bits that be as close as possible
to the entropy of the source. We first show that our coding-theoretic methods can be used to extract approx-
imately a logarithmic number of random bits. To this end, we use the same polynomial code as before, but
in place of the Hadamard code, we use a similar code on a biggeralphabet. Once we have these logarithmic
number of random bits, we can use them as the truly random bitsfor the extractor of Zuckerman [Zuc97],
which we then use to extract almost all the entropy from our source. Formally, we prove that if there is a
problem inE that does not admit circuits of size smaller than2�n with�5 gates, we get an efficient extrac-
tor that works for distributions of lengthn and min-entropy(1 � �)n sampled by circuits of sizes(n); the
extractor has an output of length(1 � O(�))n and runs in timepoly(s1=�), where� is an arbitrarily small
constant.

1.4 Perspective

Our main motivation for studying samplable distributions is their generality. However, this generality has
a price; the extractor must use more computational resources than the sampler, and has to rely on com-
plexity assumptions. Given the current state-of-the-art in complexity theory, it seems unavoidable that even
under strong assumptions, to get an extractor for distributions of lengthn sampled by circuits of size, say,O(n log n) one has to come up with a very complex and impractical solution. On the other hand, we think
it’s interesting to try and explore the limits of the possibility of deterministic extraction, and it seems that
samplable distributions are a good and natural borderline example.

Seemingly, our definition is orthogonal to the one used by Chor and Goldreich [CG88] for two indepen-
dent weak random sources. In the Chor–Goldreich setting, distributions can be arbitrarily complex, but they
satisfy a strong independence requirement. In our case, distributions have to be samplable but can involve ar-
bitrary dependencies. However there is a connection. In this paper, we give “computational” constructions,
using a hard predicate to build our deterministic extractors; when the result is not a deterministic extractor,
a reduction shows that the predicate is not hard. As shown in [Tre99], such computational constructions
can have interesting and unexpected information-theoretic interpretations, and it is natural to look for the
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information-theoretic interpretation of the results of this paper. As it turns out, the information-theoretic
analogue of deterministic extractors for samplable distributions is exactly the problem of extracting ran-
domness from two independent weak random sources! Briefly, if we have two independent weak random
sourcesX1 andX2, thenX2 has a large description size (i.e., Kolmogorov complexity)even conditioned
onX1 = x1 for anyx1. Thus, similar to [Tre99], we can viewX2 as the truth table of a hard predicate
relative toX1, which can be used to deterministically extract randomnessfromX1. Such an interpretation of
our results gives (unconditional) constructions of deterministic extractors for two independent weak random
sources, for the case where the two sources have different lengths, and the longer one has a very low entropy
rate. The details of these corollaries are omitted in this abstract.

Part of the purpose of this paper is to point out the need for a further development of the theory of
deterministic extractors, and to invite the reader to come up with alternative definitions and constructions.
We believe that it would be very good to come up with a definition for a natural and general class of
distributions that admit an efficient (implementable!) deterministic extractor. Such a deterministic extractor
could then be used in place of cryptographic hash functions in order to extract randomness in practice, with
the advantage of having a sound motivation for its use.

2 Preliminaries

Probability Distributions. Let X andY be probability distributions on a discrete universeU . X is said
havemin-entropyk if for all x 2 U , Pr [X = x] � 2�k. It will also be convenient for us to have the
following equivalent terminology.X hasdensity� in U if for all maxx2U Pr [X = x] = 1=(� � U). Note
that ifX is uniform over a subsetS of U , then� is the density ofS in U (hence the terminology). Note that
a distribution has density at least� in f0; 1gn iff it has min-entropyn� log(1=�).

Thestatistical differencebetweenX andY is defined to beSD(X;Y ) def= maxS�U jPr [X 2 S]� Pr [Y 2 S]j = 12 �Xx2U jPr [X = x]� Pr [Y = x]j :
If SD(X;Y ) � ", we say thatX andY are"-close. Um denotes the uniform distribution onf0; 1gm. If X
is a distribution onf0; 1g, then we callSD(X;U1) thebiasof X.

We will consider probability distributions given by sampling algorithms. IfA is a probabilistic algorithm
(Turing machine), we writeA(x; y) for the output ofA on inputx and random coinsy. A(x) denotes the
output distribution ofA on inputx when the coinsy are chosen uniformly at random. Aprobabilistic circuit
is a Boolean circuitC : f0; 1gm � f0; 1gr ! f0; 1gn. Forx 2 f0; 1gn, we writeC(x) for the distribution
onf0; 1gn obtained by selectingy uniformly in f0; 1gr and evaluatingC(x; y).

We say that a probability distribution issamplable by sizes if there is a circuit of sizes which samples
from it. An ensemblefXng of probability distributions isuniformly samplable in timet(n) if there is a
probabilistic algorithmA such thatA(1n) = Xn for everyn and the running time ofA on input1n is at
mostt(n).
Extractors. A function EXT : f0; 1gn � f0; 1gd ! f0; 1gm is a(k; ")-extractor if for every distributionX onf0; 1gn of min-entropyk, EXT(X;Ud) is "-close toUm.4 As shown by Nisan and Zuckerman [NZ96]
it is necessary to investd � 
(log(n � k) + log 1=") truly random bits for any nontrivial extraction (i.e.,
whenm � d� 1 andk � n� 1).5 In order to make extraction possible without investing any truly random
bits, we restrict to samplable distributions:

4This definition of extractor, taken from [NT99], is weaker than the original definition proposed in [NZ96] (which requires that
thed-bit seed be explicitly included in the output). But this definition suffices for most applications of extractors.

5Better (and tight) bounds ond can be found in [RT97].
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Definition 2.1 A functionEXT : f0; 1gn ! f0; 1gm is an(k; ")-deterministic extractor against circuit-sizes if for every distributionX on f0; 1gn which has min-entropyk and is samplable by sizes, EXT(X) is"-close toUm.

Definition 2.2 A family of functionsfEXTn : f0; 1gn ! f0; 1gm(n)g is a(k(n); "(n))-deterministic extrac-
tor against timet(n) if for every ensemble of distributionsX = fXng such thatX is uniformly samplable
in time t(n) andXn is a distribution onf0; 1gn of min-entropyk(n), we haveEXT(Xn) is "(n)-close toUm(n).
Nondeterministic circuits. We denote the levels of the polynomial-time hierarchy as follows: �0 =�0 = P, �i+1 = NP�i . A �i-algorithm is an algorithm with an oracle for�i. Similarly, a�i-circuit is
a Boolean circuit which can have gates for some fixed�i-complete problem (e.g., QBFi�1) in addition to
the usual̂ , _, and: gates. By replacing “algorithm” or “circuit” with “�i-algorithm” or “�i-circuit” in
the definitions above, we can also defineprobabilistic�i-algorithms,probabilistic�i-circuits, distributions
samplable by�i-circuits of sizes, (k; ")-deterministic extractors against�i-circuits of sizes, etc.

Definition 2.3 A functionf : f0; 1gn ! f0; 1g is (s; �)-hard for�i-circuits if for every�i-circuit C of size
at mosts, we have Pr[f(x) = C(x)] � 1=2 + �=2

We will make extensive use of the fact that that approximate counting and uniform sampling can be done
in the hierarchy:

Theorem 2.4 ([Sto85, Sip83, JVV86])For any fixedi, there is a probabilistic�i+1-algorithm Approxi
such that for any�i-circuit C : f0; 1gm ! f0; 1g,Pr [(1 + ") �N � Approxi(C; "; �) � (1� ") �N ] � 1� �;
whereN = jfx : C(x) = 1gj. Moreover the running time ofApproxi(C; "; �) is poly(jCj; 1="; log(1=�)).
Theorem 2.5 ([JVV86, BGP98]) For any fixedi, there is a probabilistic polynomial-time�i+1-algorithmSamplei such that for any�i-circuit C : f0; 1gm ! f0; 1g, Samplei(C) outputs a uniformly selected

element ofAcc(C) def= fx 2 f0; 1gm : C(x) = 1g.6
3 Extractors from Average-Case Hardness

Lemma 3.1 Letf : f0; 1gn ! f0; 1g be(s; �)-hard for�1-circuits. LetX be a flat distribution onf0; 1gn
of min-entropyn�� samplable by a circuit of sizes�O(n). Thenf(X) is 2� � �-close to uniform.

In the standard information-theoretic setting, if a function extracts randomness out of every flat distri-
bution of min-entropyk, then it follows that it also extracts randomness out of any (not necessarily flat)
distribution of min-entropyk (see [CG88]). This is essentially due to the fact that any distribution of min-
entropyk is a convex combination of flat distributions of min-entropyk. In our framework of samplable
distributions, it is no more true (or at least no longer clear) that any samplable distribution of min-entropyk

6Actually, we allowSamplei(C) to output a failure symbol with some probability (� 1=2) and only require that its output be
uniform overAcc(C) conditioned on non-failure. The failure probability can bereduced to an arbitrary� by log(1�) independent
trials.
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is a convex combination of flat samplable distributions of min-entropyk. So we need an additional technical
step in order to remove the flatness requirement.

Before continuing, let us pause for a moment to consider the nondeterministic complexity assumption
that we made in the above lemma, and let us discuss its strength. As seen in the previous section, it is
necessary to make a complexity assumption in order to construct uniform deterministic extractors. How-
ever, it is not natural that the assumption should be about nondeterministic hardness, and it would be more
appealing to have a construction based on standard average-case hardness. Even though we do not know
whether nondeterministic hardness assumptions arenecessaryto construct deterministic extractors, we can
argue that standard hardness is not sufficient. Let� be a one-way permutation, and letB be a hard-core
predicate for�: thenf(x) = B(��1(x)) is a hard-on-average function, however it is not an extractor be-
cause it is easy to sample from the conditional distributionof x such thatB(x) = 0 (and such distribution
has min-entropyn� 1). We can conclude that, if one-way permutations exist, it’snot possible to prove that
every hard-on-average predicate is a deterministic extractor against small samplers.

Now we proceed to relate nondeterministic hardness to deterministic extraction for samplable distribu-
tions that are not necessarily flat.

Lemma 3.2 Let f : f0; 1gn ! f0; 1g be (s; �)-hard for �1-circuits. Then, for every� � n, f is a(n��; 2� � �) extractor against circuit-size(�s)
(1).
4 Extractors from Worst-Case Hardness

In the previous section, we saw that the property of a function being a deterministic extractor is in some
sense a generalization of a function being hard to compute onaverage. In this section, we show how to
construct deterministic extractors from functions that are hard to compute in theworst case. To do this, we
follow the usual paradigm for transforming a worst-case hard functionf to an average-case hard functionf̂ : we takef̂ to be an encoding off in an appropriate error-correcting code [BFNW93, STV99]. To prove
the correctness of such a construction, one typically argues that given any small circuitC which computesf̂ on average, i.e. has some advantage� over “random guessing”, one can can use a decoding algorithmfor
the error-correcting code to build another small circuitC 0 which computesf everywhere, contradicting the
worst-case hardness off . However, existing results of this form will not yield the results we desire. The
reason is that these decoding procedures typically produceaC 0 of size polynomial in1=�, whereas we are
interested in values of� that are much smaller than the hardness off . (If we are extracting from a source
of min-entropyk, � will be comparable to1=2n�k, whereas the circuit complexity off will be at most the
running time of the extractor, which we would like to bepoly(n).)

In the spirit of the results of Feige and Lund [FL96] about theaverage-case complexity of the permanent,
we overcome this difficulty by exploitingnondeterminismin our reduction. Specifically, by augmenting the
polynomial reconstruction algorithm given in [STV99] withnondeterminism, we obtain the following result:

Lemma 4.1 Let F be a finite field (with some fixed, efficient representation), and let p : Ft ! F be a
polynomial of total degree at mostd. If there is a�i-circuit C which computesp correctly on at least a� = cpd=jF j fraction of points (wherec is a universal constant), then there is a�i+1-circuit C 0 of sizepoly(jCj; d) which computesp correctly everywhere.7

This lemma implies that if we start with a functionf which is worst-case hard for�2-circuits and
encode it as a low-degree polynomial, we obtain a functionf̂ which is very hard on average for�1-circuits,
as desired. However, there is still a problem. While� = cpd=jF j is very small, it is still a substantial

7The size ofC0 does not explicitly refer tolog jF j andt because the size ofC is at least the length of its input, which ist log jF j.
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relative advantage over random guessing, which would give success probability 1=jF j. The usual method
for getting around this difficulty, is to “concatenate” the polynomial encoding with an “inner” encoding
whose output lies in a much smaller alphabet (e.g.,f0; 1g). By combining the decoding procedure for the
polynomial encoding with an analogous one for the inner code, one proves that no small circuit can compute
the new function in a1=2 + �0 fraction of points. Unfortunately, we know of no such inner code where we
do not incur thepoly(1=�0) blow-up in decoding that we hoped to avoid, even if we use nondeterminism.

To solve this problem, we exploit the fact that what we need for deterministic extraction is weaker than
standard average-case hardness, and it turns out that the most commonly used inner code has the properties
we need. Forw 2 f0; 1gn, theHadamard encodingof w is the functionHadw : f0; 1gn ! f0; 1g obtained
by settingHadw(x) to be the mod-2 inner product ofw andx. The following lemma lists the only property
of this code that we will use (aside from the fact that, givenx andw, Hadw(x) can be computed in timepoly(n)).
Lemma 4.2 LetX be any distribution onf0; 1gn of density� and let" > 0. Then# fw : Hadw(X) has bias at least"g � 1� � "2 :
The special case of Lemma 4.2 for flat distributionsX can be deduced from a result of Chor and Goldre-
ich [CG88]. Below we give a direct proof for arbitrary distributions.

Although Lemma 4.2 does not explicitly give an efficient decoding algorithm, we can easily obtain one
using nondeterminism:

Lemma 4.3 For every fixedi, there is a probabilistic�i+2-algorithmHadDecodei with the following prop-
erty: LetC be a probabilistic�i-circuit which samples a distributionX on f0; 1gn of density� and letw 2 f0; 1gn be such thatHadw(X) has bias at least". ThenHadDecodei(C; ") runs in timepoly(jCj; 1=")
and outputsw with probability
(� � "2).
The key point is that although the success probability of thedecoding procedure depends on�, the running
time does not.

To obtain deterministic extractors, we combine the polynomial encoding and Hadamard code via the
standard “concatenation” technique. LetF = GF(2q),8 and for a functionp : Ft ! F, define theHadamard
encodingof p to be the functionp0 : Ft � f0; 1gq ! f0; 1g defined byp0(x; y) = Hadp(x)(y), where we
view p(x) 2 F as a an element off0; 1gq .

In order to analyze this construction, we will need to argue that if a concatenated codeword (likep0)
is biased on on some distribution of sufficient density, thena noticeable fraction of the inner codewords
(i.e.,Hadp(x)) are biased on the corresponding conditional distributions. This is provided by the following
general lemma.

Lemma 4.4 Let f : A � B ! C be any function, and letX = (X1;X2) be any distribution onA � B of
density�. For everya 2 A andc 2 C, letXa denote distribution ofX2 conditioned onX1 = a. Suppose
that for somec 2 C, Pr [f(X) = c] � (1 + ")=jCj. Then, for at least a�"=3jCj fraction of a 2 A, the
following two conditions hold:

1. Pr [f(a;Xa) = c] � (1 + "=3)=jCj.
2. Xa has density at least�"=3jCj in B.

8The restriction to fields of characteristic 2 is inessentialand only done to make passing between field elements and strings overf0; 1g cleaner.
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Putting all the above tools together, we obtain the following theorem:

Theorem 4.5 Let F = GF(2q), let p : Ft ! F be a polynomial of degree at mostd, and letp0 : Ft �f0; 1gq ! f0; 1g be its Hadamard encoding. Suppose there is a distributionX on Ft � f0; 1gq which
is of density� and is samplable by sizes such thatp0(X) has bias". Then there is a�4-circuit9 of sizepoly(s; d; 1=") which computesp0 everywhere, provided that�2 � " � cs djF j ;
wherec is a universal constant.

This immediately gives us a construction of deterministic extractors from Boolean functions that are
worst-case hard for�4-circuits.

Theorem 4.6 There is a universal constant� > 0 such that the following holds: Letf : f0; 1g` ! f0; 1g
be such that no�4-circuit of sizes can computef , where` � s � 2`. Then fors0 = s� and anyn satisfyings0 � n � maxf`; (`= log s0)2g=�, there is a functionEXT

fn;`;s : f0; 1gn ! f0; 1g such that

1. EXT
fn;`;s is a (n � [1� (� log s0)=`]; 1=s0)-deterministic extractor against circuit-sizes0.

2. EXT
fn;`;s is computable in timepoly(n; 2`) with oracle access tof .

Corollary 4.7 If there is a problem inE = DTIME(2O(n)) which has�4-circuit complexity2
(n) for alln, then there is a constant
 > 0 such that for alln ands satisfyingn � s � 2
n, there is a((1�
)n; 1=s)-
deterministic extractorEXTn;s : f0; 1gn ! f0; 1g against circuit-sizes such thatEXTn;s is computable in
timepoly(s).
5 Extracting Many Bits

We begin by describing the replacement for the Hadamard codewhich will enable us to extract a logarithmic
number of bits. The construction we use is taken from the “hard-core function” construction described in
[Gol95]. Consider the functionC : f0; 1gn � f0; 1gn+m ! f0; 1gm, defined as follows:C(x; y) =C1(x; y); � � � ;Cm(x; y) where, for inputsx = (x1; : : : ; xn) andy = (y1; : : : ; yn+m) we haveCi(x; y) = h(x1; : : : ; xn); (yi; : : : ; yi+n�1)i
Notice thatC(x; y) is independent ofyn+m. We could have definedC as a functionC : f0; 1gn �f0; 1gn+m�1 ! f0; 1gm, but it would have been annoying to carry the(n + m � 1) expression every-
where.

Lemma 5.1 Let X be a distribution overf0; 1gn of density� and leta 2 f0; 1gm. Then the number of
stringsy such thatPr[C(X; y) = a] > 2�m + �. is at most22m=��2.
Lemma 5.2 For every fixedi, there is a probabilistic�i+2-algorithmCDecode(i) with the following prop-
erty: Let C be a probabilistic�i-circuit which samples a distributionX on f0; 1gn of density� and
let w 2 f0; 1gn be such that there is ana 2 f0; 1gm such thatPr [C(X;w) = a] > 2�m + �. ThenCDecode(i)(C; ") runs in timepoly(jCj; 1=";m) and outputsw with probability
(� � "2 � 2�2m).

9By “sharing” some of the nondeterminism at different levelsof the reduction, the number of levels of nondeterminism intro-
duced can be reduced a bit. For the sake of modularity in the exposition, we have chosen not to optimize this parameter.
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Proof: Essentially identical to the proof of Lemma 4.3.

Theorem 5.3 Let F = GF(2q), let p : Ft ! F be a polynomial of degree at mostd and letp0 : Ft �f0; 1gq+m ! f0; 1gm be itsC-encoding. Suppose there is a distributionX on Fk � f0; 1gq which is of
density� and is samplable by sizes, and an elementa 2 f0; 1gm such thatPr [p0(X) = a] > 2�m + �.
Then there is a�4-circuit of sizepoly(s; d; 1=";m) which computesp0 everywhere, provided that�2 � "4 � 2�4m � cs djF j ;
wherec is a universal constant (not the same one of Theorem 4.5).

Proof: Essentially identical to the proof of Theorem 4.5.

Theorem 5.4 There is a universal constant� > 0 such that the following holds: Letf : f0; 1g` ! f0; 1g
be such that no�4-circuit of sizes can computef , where` � s � 2`. Then fors0 = s� and anyn satisfyings0 � n � maxf`; (`= log s0)2g=�, there is a functionEXT

fn;`;s : f0; 1gn ! f0; 1gm such that

1. m = 12 log s0.
2. EXT

fn;`;s is a (n � [1� (� log s0)=`]; 1=ps0)-deterministic extractor against circuit-sizes0.
3. EXT

fn;`;s is computable in timepoly(n; 2`) with oracle access tof .

Corollary 5.5 If there is a problem inE = DTIME(2O(n)) which has�4-circuit complexity2
(n) for alln, then there is a constant
 > 0 such that for alln ands satisfyingn � s � 2
n, there is a((1�
)n; 1=s)-
deterministic extractorEXTn;s : f0; 1gn ! f0; 1glog s against circuit-sizes such thatEXTn;s is computable
in timepoly(s).
Lemma 5.6 There is a constant� > 0 such the following holds. LetX be a distribution of min-entropyn1+n2�� ranging overf0; 1gn1+n2 , and let us viewX as a pair(X1;X2) whereX1 ranges overf0; 1gn1
andX2 ranges overf0; 1gn2 . LetX be samplable by a circuit of sizes, let EXT1 : f0; 1gn1 � f0; 1gt !f0; 1gm1 be a(n1 � �; �)-extractor, and letEXT2 : f0; 1gn2 ! f0; 1gm2 be a(n2 � � � log(1=�); �)-
deterministic extractor against�1-circuit-sizes�. ThenEXT(X1;X2) = EXT1(X1;EXT2(X2)) is 3�-close
to uniform.

Theorem 5.7 ([Zuc97]) For every
 > 0 there is a constantc
 and an explicit construction of a((1 �2
)n; 1=6n)-extractorEXT : f0; 1gn � f0; 1gt ! f0; 1gm wheret = c
 logn andm = (1� 3
)n.

Theorem 5.8 If there is a problem inE = DTIME(2O(n)) which has�5-circuit complexity2
(n) for
all n, then for every sufficiently small constant� and for everys there is a(1 � �; 1=n)-extractor EXT :f0; 1gn ! f0; 1gm against circuit sizes wherem = (1 � O(�))n. EXT is computable in timepoly(s),
where the exponent of the polynomial depends on�.
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A Appendix

A.1 Nonuniform Extractors & Negative Results

Proposition A.1 For everys, n, k � n, and", there exists an(k; ")-extractor EXT : f0; 1gn ! f0; 1gm
against circuit-sizes, withm = k� 2 log(1=")�O(log s). Moreover,EXT can be computed by a circuit of
sizepoly(s; n).
Proof: LetNs = sO(s) be the number of circuits of sizes, t = 2 log(k +Ns) andm = k � 2 log(1=") �log t�2. We choose EXT randomly from a family oft-wise independent functions fromf0; 1gn ! f0; 1gm,
and argue that it is a(k; ")-deterministic extractor against circuit sizes with high probability. Consider any
fixed distributionX of min-entropyk that is samplable by sizes. A standard application of thet-moment
method (to be given in more detail shortly) yields:Pr

EXT
[EXT(X) is not"-close to uniform] < 1=Ns (1)

Taking a union bound over distributions samplable by sizes shows that there exists an(s; k; ")-deterministic
extractor from this family. We note there are families oft-wise independent functions computable by circuits
of sizepoly(t; n).

We now justify Inequality (1). Consider any fixedy 2 f0; 1gm. The probability mass thaty gets under
EXT(X) is Massy = Xx2f0;1gn px � �x;y;
wherepx is the probability mass ofx underX and�x;y is the indicator variable for the event[EXT(x) = y].
For a fixedy, the variablesf�x;yg aret-wise independent and have expectation� = 1=2m (over the choice
of EXT). SinceX has min-entropyk, we havepx � �x;y 2 [0; 2�k]. Applying a tail inequality for sums oft-wise independent variables from [BR94], we havePr [jMassy � �j � " � �] � 8 � " t � 2k � �+ t2(2k � " � �)2 #t=2 � 12t=2 < 12k � 1Ns :
Hence, with probability greater than1� 1=Ns, Massy � (1 + ")=2m for all y, which implies that EXT(X)
is "-close to uniform.

A similar argument gives nonuniform extractors foruniformsamplers.

Proposition A.2 For all functionst(n), k(n) � n, and"(n) there exists a(k(n); "(n))-extractorfEXTn :f0; 1gn ! f0; 1gm(n)g against timet(n), with m(n) = k(n) � 2 log(1="(n)) � O(loglogn). Moreover,
EXTn can be computed by a circuit of sizepoly(n).

Note that in Proposition A.1, the extractor has a higher circuit complexity than the samplers from which
it extracts. This is necessary, even if we only want to extract one bit from a distribution of min-entropyn� 1:

Proposition A.3 There is a constantc such that no functionEXT : f0; 1gn ! f0; 1g computable by a
circuit of sizes is a (n� 1; 1=5)-deterministic extractor against circuit sizec � s.10

10The constant of1=5 can be replaced by any constant less than1, at the price of increasingc.
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Proof: Without loss of generality, we may assume that EXT(x) = 1 for at least half of its inputs. Consider
the distributionX sampled by the following algorithm:

1. Selectx uniformly in f0; 1gn.

2. If EXT(x) = 1, outputx. Otherwise, output a uniformly selectedx0 2 f0; 1gn.

It is easy to see thatX has min-entropyn� 1 and is samplable by sizeO(s). Moreover, EXT(X) = 1 with
probability at least3=4.

A similar argument applies to uniform deterministic extractors for uniform samplers (but not to nonuni-
form deterministic extractors for uniform samplers, as demonstrated by Proposition A.2).

Proposition A.4 There is a constantc such that no family of functionsfEXTn : f0; 1gn ! f0; 1gg com-
putable in timet(n) is a (n� 1; 1=5)-deterministic extractor against timet(n).

In subsequent sections, we aim to construct deterministic extractors that are efficiently computable by
uniform algorithms. The following two corollaries show that such extractors imply separations between
deterministic complexity classes and nonuniform or probabilistic ones. Since such separations are beyond
the current state-of-the-art in complexity theory, our constructions should (and will) be based on complexity-
theoretic assumptions.

Corollary A.5 SupposefEXTn : f0; 1gn ! f0; 1gg is a family of functions computable in timet(n) such
that, for everyn, EXTn is an(n� 1; 1=5)-deterministic extractor against circuit-sizes(n). Then there is a
language inDTIME(t(n)) of circuit complexity at least
(s(n)).
Proof: Let L = fx 2 f0; 1g� : EXT jxj(x) = 1g. Proposition A.3 implies that this language has circuit
complexity at leasts(n)=c.

A similar proof, noting that Proposition A.4 holds even if the extractor is computable by a randomized
algorithm, yields:

Corollary A.6 SupposefEXTn : f0; 1gn ! f0; 1gg family of functions computable in timet(n) and is
an (n � 1; 1=5)-deterministic extractor against timet0(n). Then there is a language inDTIME(t(n)) nBPTIME(
(t0(n)).
A.2 Proofs Omitted From Section 3

Proof: [Of Lemma 3.1] LetX(�) be a circuit of sizes0 that samples a flat distribution of min-entropyn��
such thatPra[f(X(a)) = 1] > 1=2 + �0=2 (the proof would be analogous in casePra[f(X(a)) = 0] >1=2 + �0=2), where�0 = 2� � �. Consider the following algorithmA (that tries to approximatef ): on inputx, if x is in the range ofX then output 1, otherwise output a random bit.A can be implemented by a
nondeterministic circuit of sizes0 +O(n). It follows from the definition ofA thatPrx2f0;1gn[A(x) = f(x)] = Prx [A(x) = f(x)jx in the range ofX] � 2��+Prx [A(x) = f(x)jx not in the range ofX] � (1� 2��)> �12 + �02� � 2�� + 12 � �1� 2���= 12 + �02 2�� == 12 + �2
that contradicts our assumption on the hardness off , if s0 = s�O(n).
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Proof: [Of Lemma 3.2] LetX be a sampler of sizes0 such thatPra [f(X(a)) = 1] > 1=2 + �0=2
We now describe a�1 circuit A of sizepoly(s0; 1=�) such thatA approximatesf on a fraction1=2 + 2�� ��0=2 of the inputs.

We first describeA as a randomized circuit’ the randomness can be nonuniformlyfixed at the end of
the construction. For everyx 2 f0; 1gn, setpx = Pra[X(a) = x]. On inputx, A computes a valueqx
such thatqx(1 � �0) � px � qx(1 + �0). After that,A outputs 1 with probability2n��qx, and it outputs a
random bit with probability1 � 2n��qx. By approximate counting (Theorem 2.4),A can be implemented
as a probabilistic�1-circuit of sizepoly(s0; 1=�).

We have Pr[f(X) = 1] = Xx:f(x)=1 px > 12 + �0Pr[f(X) = 0] = Xx:f(x)=0 px < 12 � �0
and Prx [A(x) = f(x)] = Prx [A(x) = f(x) = 1] + Prx [A(x) = f(x) = 0]= 2�n Xx:f(x)=1�12 + 2n��qx2 �+ 2�n Xx:f(x)=0�12 � 2n��qx2 �= 12 + 2��2 � 24 Xx:f(x)=1 qx � Xx:f(x)=0 qx35� 12 + 2��2 � 24(1� �0) Xx:f(x)=1 px � (1 + �) Xx:f(x)=0 px35= 12 + 2��2 � �(1� �0) Pr[f(X) = 1]� (1 + �0) Pr[f(X) = 0]�= 12 + 2��2 � (2Pr[f(X) = 1]� �0 � 1)� 12 + 2���02
A.3 Proofs Omitted From Section 4

Proof: [Of Lemma 4.1] Forx; y 2 Ft , theline throughx andy is the parametrized set of pointsf`x;y(t) def=(1� t)x+ tyjt 2 Fg. For a functionf : Fm ! F, f restricted to the linèx;y is the functionf j`x;y : F ! F
defined byf j`x;y(t) = f(`x;y(t)). Note thatp(`x;y(t)) is a univariate polynomial of degree at mostd. It
is shown in [STV99, Lemma 28] that there exists a pointz 2 Fm such that for at least a15=16 fraction of
pointsx 2 Fm , we have:

1. pj`z;x andCj`z;x agree on at least a�=2 fraction ofF.
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2. There does not exist any degreed polynomialh : F ! F other thanpj`z;x which agrees withCj`z;x in
at least a�=4 fraction ofF and satisfiesh(0) = p(z).

Fix such az; z andp(z) will be nonuniformly hardwired into all the circuits we construct. By approximate
counting (Theorem 2.4), there is a probabilistic�i+1-circuit C 0 which, on input(x; h) (wherex 2 Ft andh : F ! F is a degreed polynomial) (a) outputs 1 with high probability ifh agrees withCj`z;x in at least
a �=2 fraction ofF andh(0) = p(z), and (b) outputs 0 with high probability ifh agrees withCj`z;x in less
than a�=4 fraction of F or h(0) 6= p(z). Moreover the size ofC 0 is poly(jCj; d). After sufficient error
reduction, the coin tosses ofC 0 can be nonuniformly fixed so that it correctly distinguishesthese two cases
for all x andh. This yields the following�i+2-circuit C 00 for computingp almost everywhere:C 00(x):

1. Use nondeterminism to find anh such thatC 0(x; h) = 1 (if one exists).

2. Outputh(1).C 00 is of sizepoly(jCj; d) and computesp in at least a15=16 fraction of points. The “self-corrector” for
polynomials given in [GLR+91] convertsC 00 into a circuitC 000 that computesp everywhere.

Proof: [Of Lemma 4.2] The proof is based on the finite Fourier transform. For two real valued functionsf; g : f0; 1gn ! R, define their inner product to behf; gi = 12n Xx2f0;1gn f(x)g(x):
Forw 2 f0; 1gn, defineLw(x) = (�1)w�x, wherew � x denotes inner product mod 2. It is well-known
thatfLwgw2f0;1gn form an orthnormal basis (called the Fourier basis) for the2n-dimensional vector space
of real-valued functions onf0; 1gn. Now let � : f0; 1gn ! R be the probability mass function ofX,
i.e. �(x) = Pr [X = x]. Forw 2 f0; 1gn, the bias ofHadw(X) is exactlyj2n � h�;Lwij. By Parseval’s
inequality,Xw2f0;1gn j2n � h�;Lwij2 = 22n � h�; �i = 2n � Xx2f0;1gn �(x)2 � 2n � Xx2f0;1gn �(x) � 1� � 2n = 1� :
Hence there are at most1=(� � "2) values ofw such thatHadw(X) has bias at least".
Proof: [Of Lemma 4.3]

By approximate counting (Theorem 2.4), there is a probabilistic�i+1-algorithmTesti(C; "; v) running
in timepoly(jCj; 1=") that (a) outputs 1 with probability at least1� 2�n�1 if Hadv(X) has bias at least"
and (b) outputs 0 probability at least1 � 2�n�1 if Hadv(X) has bias at most"=2. Thus, with probability

least1=2 over the choice of the random coinsr of Testi, C 0(v) def= Testi(C; "; v; r) is a �i+1-circuit
which distinguishes these two cases correctly for allv. In particular,C 0(w) = 1 and, by Lemma 4.2,jfv : C 0(v) = 1gj � ("=2)2=2n�k. Hence applying uniform sampling (Theorem 2.5) to this circuit gives
the desired result. More formally, the procedureHadDecodei does the following:
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HadDecodei(C; "):
1. Uniformly select coinsr for Testi.
2. LetC 0 be the�i+1-circuit defined byC 0(v) = Testi(C; "; v; r).
3. RunSamplei+1(C 0).

Proof: [Of Lemma 4.4] Note that, for anyb 2 B,Pr [Xa = b] = Pr [X = (a; b)]Pr [X1 = a] � 1� � jAj � jBj � Pr [X1 = a] ;
so to achieve Condition 2, it suffices to havePr [X1 = a] � "=(3jAjjCj). Now suppose that the conclusion
of the lemma does not hold. Then for greater than a1� "�=3jCj fraction ofa 2 A, we havePr [X1 = a andf(X) = c] = Pr [X1 = a] � Pr [f(a;Xa) = c]< Pr [X1 = a] � �(1 + "=3)jCj �+ "3jAjjCj
For the remaininga 2 A, we certainly havePr [X1 = a andf(X) = c] � Pr [X1 = a] � 1�jAj ;
sinceX has density�. Putting everything together, we havePr [f(X) = c] = Xa2APr [X1 = a andf(X) = c]< Xa2APr [X1 = a] � (1 + "=3)jCj + jAj �� "3jCj�+ "�jAj3jCj �� 1�jAj�= 1 + "jCj ;
which is a contradication.

Proof: [Of Theorem 4.5] For everyx 2 Ft , define the conditional distributionXx on f0; 1gq as in
Lemma 4.4. By uniform sampling (Theorem 2.5), eachXx is samplable by a�1-circuitCx of sizepoly(s).
By Lemma 4.4, for at least a"�=6 fraction ofx 2 Ft , the following two conditions hold:

1. Hadp(x)(Xx) = p0(x;Xx) has bias at least"=3.

2. Xx has density at least�"=6 in f0; 1gq .
By Lemma 4.3, for everyx for which these two conditions hold,HadDecode1(Cx; "=3) outputsp(x) with
probability at least
(("=3)2 �(�"=6)) = 
(� �"3). By averaging, there exists a settingr of the random coins
of this procedure such thatC 0(x) = HadDecode1(Cx; "=3; r) outputsp(x) for at least a(�"=6) �
(� � "3) =
(�2 � "4) fraction ofx’s. C 0 is a�3-circuit of sizepoly(jCj; 1="). By Lemma 4.1, there is a�4-circuit of
sizepoly(jCj; d; 1=") computingp everywhere.
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Proof: [Of Theorem 4.6]
Let t = d`= log s0e � 1=�, q = dn=(t+1)e, andF = GF(2q). LetH be a subset ofF of sizes0, and fix

some injective map� : f0; 1g` ! Ht. There exists a polynomialp : Ft ! F of degree at mosts0 in each
variable such that for allx 2 f0; 1g`, f(x) = p(�(x)); moreover such a polynomial can be evaluated at any
point of Ft in time poly(n; 2`). p has total degree at mostd = s0t. Let p0 : Ft � f0; 1gq ! f0; 1g be the
Hadamard encoding ofp, and, forx 2 f0; 1gn, define EXT

fn;`;s(x) = p0(x0j), wherej = (t+ 1)q � n � t.
Now suppose that there is distributionX onf0; 1gn such thatX has min-entropyn � [1� (� log s0)=`)],X is samplable by sizes0, and EXT

fn;`;s(X) has bias at least1=s0. Then the distributionp0(X 0) has bias at
least1=s0, whereX 0 = X0j . X 0 has density at least� = 2n�[1�(� log s0)=`]2(t+1)q � 12t+(�n log s0)=` : (2)

In order to apply Theorem 4.5, we need�2 � � 1s0�4 � cs djF j = crs0t2q ;
i.e. t2 � (s0)9=�4 � 2q=c2:
By Inequality (2), we have4 log(1=�) + 9 log s0 + 2 log t � 4 � �t+ �n log s0` �+ 9 log s0 + 2 log t� 6t+ 13�n log s0`� 6`log s0 + 1 + 13�n log s0`� 19�n log s0` + 1� 19�nt� 1 + 1� 20�nt+ 1 + 1� 20�q + 1:
So, t2 � (s0)9=�4 � 220�q+1 � 2q=c2;
for sufficiently small�. Hence Theorem 4.5 applies, and we conclude thatp0 (and hence alsof ) can be
computed by a�4-circuit of sizepoly(s0; d; 1=s0) = poly(s�) � s for sufficiently small�. This contradicts
the hardness off .

A.4 Proofs Omitted From Section 5

Proof: [Of Lemma 5.1]
The Vazirani XOR Lemma [Vaz84] says that ifc1; : : : ; cm anda1; : : : ; am are arbitrary 0/1 random

variables with arbitrary dependencies, thenPr[(a1; : : : ; am) = (c1; : : : ; cm)] = 12m + XI�f1;:::;mg;I 6=; 12m (2Pr[�i2Iai = �i2Ici]� 1)
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A proof of the above statement can be found in, e.g., [Gol95, Pf of Lemma 2.5.6]. So if there is ana 2 f0; 1gl
such that Pr[C(X; y) = a] > 2�m + �
then there is also a non-empty subsetI � f1; : : : ;mg and a bitb =Li2I ai such thatPr "Mi2I Ci(X; y) = b# > 12 + �2
Using the definition ofC and the linearity of the inner product operator, this is the same asPr[hX;Mi2I (yi; : : : ; yi+n�1)i = b] > 12 + �2
We know from Lemma 4.2 that there can be at most1=�2� stringsz 2 f0; 1gn such thatPr[hX; zi = b] > 12 + �2
so there are only so many possible values for

Li2I(yi; : : : ; yi+n�1). On the other hand, the function map-
ping y into

Li2I(yi; : : : ; yi+n�1) is a full-rank linear map, and so it is a regular2m-to-1 function; further-
more this map is totally specified by giving the setI (and there are2m � 1 choices for it). It follows thatB
cannot contain more than(2m � 1) � 2m=�2� elements off0; 1gn+m.

Proof: [Of Lemma 5.8] From the assumption of the theorem, using Corollary 5.5, it follows that there is
a constant
 such that for every constantc, everyn2, and everync2 � s � 2
n, there is a((1 � 
)n2; 1=s)
extractor EXT : f0; 1gn2 ! f0; 1gc log n2 for �1-circuit sizes.

Let � be a fixed constant such that� < 
=2. LetX be a distribution ranging overf0; 1gn, of min-entropy(1��), and samplable with a circuit of sizes. We viewX as a pair(X1;X2), whereX1 ranges overf0; 1gn1
andX2 ranges overf0; 1gn2 , with n1 = (1� �=
)n andn2 = �n=
. Notice thatn1 > n=2.

Let c� be such that the construction of [Zuc97] cited in Theorem 5.7gives a((1 � 2�)n1; 1=6n1)-
extractor EXT1 : f0; 1gn1 � f0; 1gt ! f0; 1gm1 with m1 = (1 � 3�)n1 andt = c� log n1. We will worsen
the parameters of EXT1 a bit, to simplify subsequent calculations, and we will see it as(n1 � �n; 1=3n)-
extractor EXT1 : f0; 1gn1 � f0; 1gt ! f0; 1gm1 with m1 = (1� 3� � �=
)n > (1� 3�=
)n.

We also have a(((1 � 
)n2 � log 3n; 1=3n) deterministic extractor EXT2 : f0; 1gn2 ! f0; 1gm2 for�1-circuit sizes, wherem2 = c� log n2.
By combining these two extractor using Lemma 5.6, we are done.
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