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Abstract

We study deterministic extractors for bit-fixing sources (a.k.a. resilient
functions) and exposure-resilient functions for small min-entropy. That
is, of the n bits given as input to the function, k � n bits are uniformly
random and unknown to the adversary.

We show that a random function is a resilient function with high prob-
ability if and only if k is at least roughly logn. In contrast, we show that
a random function is a static (resp. adaptive) exposure-resilient function
with high probability even if k is as small as a constant (resp. log logn).

Next we simplify and improve an explicit construction of resilient func-
tions for sublogarithmic k due to Kamp and Zuckerman (SICOMP 2006),
achieving error exponentially small in k rather than polynomially small
in k. Finally, we show that the short output length (O(log k)) of this con-
struction must hold for any resilient function computed by a restricted
type of space-bounded streaming algorithm (as is the case for our con-
struction).

1 Introduction

Randomness extractors are functions that extract almost-uniform bits from
weak sources of randomness (which may have biases and/or correlations). Ex-
tractors can be used for simulating randomized algorithms and protocols with
weak sources of randomness, have close connections to many other “pseudoran-
dom objects” (such as expander graphs and error-correcting codes), and have a
variety of other applications in theoretical computer science.

The most extensively studied type of extractor is the seeded extractor, intro-
duced by Nisan and Zuckerman [NZ]. These extractors are given as additional
input a small “seed” of truly random bits to use as a catalyst for the random-
ness extraction, and this allows for extracting almost-uniform bits from very
unstructured sources, where all we know is a lower bound on the min-entropy.
In many applications, such as randomized algorithms, the need for truly ran-
dom bits can be eliminated by trying all possible seeds and combining the results
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(e.g. by majority vote). However, prior to the Nisan–Zuckerman notion, there
was a substantial interest in deterministic extractors (which have no random
seed) for restricted classes of sources. Over the past decade, there has been a
resurgence in the study of deterministic extractors, motivated by settings where
enumerating all possible seeds does not work (e.g. distributed protocols) and
by other applications in cryptography.

In this paper, we study one of the most basic models: a bit-fixing source is an
n-bit source where some k bits are uniformly random and the remaining n− k
bits are fixed arbitrarily. Deterministic extractors for bit-fixing sources, also
known as resilient functions (RFs), were first studied in the mid-80’s, motivated
by cryptographic applications [Vaz, BBR, CGH+]. A more relaxed notion is
that of an exposure-resilient function (ERF), introduced in 2000 by Canetti
et al. [CDH+]. Here all n bits of the source are chosen uniformly at random,
but n − k of them are seen by an adversary; an ERF should extract bits that
are almost-uniform even conditioned on what the adversary sees. ERFs come
in two types: static ERFs, where the adversary decides which n − k bits to
see in advance, and adaptive ERFs, where the adversary reads the n − k bits
adaptively. In recent years, there has been substantial progress in giving explicit
constructions of both RFs and ERFs [CDH+, DSS, KZ, GRS].

In this paper, we focus on the case when k, the number of random bits
unknown to the adversary, is very small, e.g. k < log n. While this case is not
directly motivated by applications, it is interesting from a theoretical perspective
for a couple of reasons:

• For many other natural classes of sources (several independent sources [CG],
samplable sources [TV], and affine sources [BKS+]), at least logarithmic
min-entropy is necessary for extraction.1

• This is a rare case where a random function is not an optimal extractor.
For example, the parity function extracts one completely unbiased bit from
any bit-fixing source with k = 1 random bits, but we show that a random
function will fail to extract from some such source with high probability.

Our first results investigate properties of random functions as resilient func-
tions. We show that:

• A random function is a resilient function (with high probability) if and
only if k is at least roughly log n.

• In contrast, for exposure-resilient functions, random functions suffice even
for sublogarithmic k. For static ERFs, k can be as small as a constant,
and for adaptive ERFs, k can be as small as log log n.

All of these results yield resilient functions that output nearly k almost-uniform
bits.

Next, we study (non-random) constructions of resilient functions for sublog-
arithmic values of k.

1For the case of 2 independent sources, the need for logarithmic min-entropy is proven in
[CG]. For sources samplable by circuits of size s = n2, it can be shown by noting that the
uniform distribution on any 2k elements of {0, 1}k+1 ◦ 0n−k−1 is samplable by a circuit of
size O(n ·2k) (and we can pick 2k elements on which the first bit of the extractor is constant).
For affine sources, it can be shown by analyzing the k-th Gowers norm of the set of inputs on
which the first bit of the extractor is constant (as pointed out to us by Ben Green).
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• We simplify and improve an explicit construction of RFs for small k by
Kamp and Zuckerman [KZ]. In particular, the error parameter of our con-
struction can be exponentially small in k, whereas the Kamp–Zuckerman
construction achieves error that is polynomially small in k. Our RF (like
that of [KZ]) extracts only Θ(log k) almost-uniform bits, in contrast to
RFs for superlogarithmic k, which can extract nearly k bits.

• We prove that the Θ(log k) output length of our RF is optimal for RFs
computed by a restricted class of space-bounded streaming algorithms.

2 Preliminaries

Throughout, we will use the convention that a capital letter denotes the ex-
ponentiation of the corresponding lowercase letter. For instance, N denotes
2n.

Definition 2.1 (Statistical Distance). Let X and Y be two random variables
taking values in a set S. The statistical distance ∆(X,Y ) between X and Y is

∆ (X,Y ) = max
T⊂S
|Pr [X ∈ T ]− Pr [Y ∈ T ]| = 1

2

∑
w∈S
|Pr [X = w]− Pr [Y = w]|

We will write X ≈ε Y to mean ∆(X,Y ) ≤ ε, and we will use Un to denote
the uniform distribution on {0, 1}n. When Un appears twice in the same set
of parentheses, it will denote the same random variable. For example, a string
chosen from the distribution (Un, Un) will always be of the form w ◦w for some
w ∈ {0, 1}n.

Definition 2.2 (Oblivious Symbol-Fixing Source). An (n, k, d) oblivious symbol-
fixing source (OSFS) X is a source consisting of n symbols, each drawn from [d],
of which all but k are fixed and the rest are chosen independently and uniformly
at random.

Definition 2.3 (Oblivious Bit-Fixing Source). An (n, k) oblivious bit-fixing
source (OBFS) is an (n, k, 2) oblivious symbol-fixing source.

We will use
{
n
`

}
to denote the set {L ⊂ [n] : |L| = `} and, given some

L ∈
{
n
`

}
and a string a ∈ {0, 1}`, we will write La,n to denote the oblivious

bit-fixing source that has the bits with positions in L fixed to the string a.

Definition 2.4 (Deterministic Randomness Extractor). Let C be a class of
sources on {0, 1}n. A deterministic ε-extractor for C is a function E : {0, 1}n →
{0, 1}m such that for every X ∈ C we have E(X) ≈ε Um.

Here we will focus mainly on deterministic randomness extractors for obliv-
ious bit-fixing sources, also known as resilient functions (RFs).

Definition 2.5 (Resilient Function). A (k, ε)-RF is a function f : {0, 1}n →
{0, 1}m that is a deterministic ε-extractor for (n, k) oblivious bit-fixing sources.

We can also characterize RFs by their ability to fool a distinguisher: consider
a computationally unbounded adversary A that can set some of f ’s input bits
in advance but must allow the rest to be chosen uniformly at random. Then
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f satisfies Definition 2.5 if and only if A is unable to distinguish between f ’s
output and the uniform distribution regardless of how A changes f ’s input.

When viewed through this lens, the notion of resilient functions has a natural
relaxation obtained by restricting A to only read (rather than modify) a portion
of f ’s input bits. Functions that are able to fool adversaries of this type are
called exposure-resilient functions (ERFs). We define below the two simplest
variants of exposure-resilient functions, which correspond to whether A reads
the bits of f ’s input all at once or one at a time.

Definition 2.6 (Static Exposure-Resilient Function). A static (k, ε)-ERF is a
function f : {0, 1}n → {0, 1}m with the property that for every L ∈

{
n

n−k
}

, f
satisfies (Un|L, f(Un)) ≈ε (Un|L, Um).

This definition can be restated in terms of average-case extraction using the
following lemma, whose proof can be found in [Res].

Lemma 2.7. A function f : {0, 1}n → {0, 1}m is a static (k, ε)-ERF if and only
if for every L ∈

{
n

n−k
}

, f satisfies

E
a←Un−k

[∆ (f (La,n) , Um)] ≤ ε

Allowing the adversary to adaptively request bits of f ’s input one at a time
gives rise to the strictly stronger notion of an adaptive ERF:

Definition 2.8 (Adaptive Exposure-Resilient Function). An adaptive (k, ε)-
ERF is a function f : {0, 1}n → {0, 1}m with the property that for every algo-
rithm A : {0, 1}n → {0, 1}∗ that can (adaptively) read at most n− k bits of its
input,2 f satisfies (A(Un), f(Un)) ≈ε (A(Un), Um).

The following lemma will allow us to restrict our attention to algorithms A
that simply output the values of the bits that they request as they receive them.

Lemma 2.9. Let A : {0, 1}n → {0, 1}∗ be an adaptive adversary that reads
at most d bits of its input and let Ar : {0, 1}n → {0, 1}∗ be the algorithm
that adaptively reads the same bits as A and outputs them in the order that
they were read. For every function f : {0, 1}n → {0, 1}m, the statistical dis-
tance between (A(Un), f(Un)) and (A(Un), Um) is at most the distance between
(Ar(Un), f(Un)) and (Ar(Un), Um).

Proof. First, modify Ar by padding its output with 0’s so that its output length
is always d. Now define a second algorithm Ap : {0, 1}d → {0, 1}∗ as follows: on
an input x ∈ {0, 1}d, Ap runs A, sequentially feeding it the bits of x in response
to A’s requests, and then outputs A’s output. The fact that A = Ap ◦ Ar then
implies the desired result.

3 Non-Constructive Results

We begin by examining resilient and exposure-resilient functions using the prob-
abilistic method and determining for what values of the entropy parameter k

2In other words, A is a binary decision tree of depth n− k − 1 with leaves labelled by its
output strings and each internal node labelled by the position of the bit that A requests at
that juncture.
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it is possible to achieve output length m = Ω(k). In the positive direction, we
show that a randomly chosen function f : {0, 1}n → {0, 1}m will almost always
be a static ERF for any k. We then prove that f will be an adaptive ERF when
k is larger than log log n, and that f will be an RF when k is larger than log n.
In the negative direction, we show that k < log n for RFs cannot be achieved
with the probabilistic method.

Before beginning, we state a Chernoff bound and a partial converse to it
that we will use in proving these results.

Lemma 3.1 (A Chernoff bound). Let X1, . . . , Xt be independent random vari-
ables taking values in [0, 1], and let X = (

∑
iXi)/t and µ = E[X]. Then for

every 0 < ε < 1, we have

Pr [|X − µ| > ε] < 2e−tε
2/2 = 2−Ω(tε2)

Lemma 3.2 (Partial converse of Chernoff bound). Let X1, . . . , Xt represent the
results of independent, unbiased coin flips, and let X = (

∑
iXi)/t. Then for

every 0 ≤ ε ≤ 1/2, we have

Pr

[∣∣∣∣X − 1

2

∣∣∣∣ > ε

]
≥ 2−O(tε2)

3.1 Positive Results

The probabilistic constructions of static and adaptive ERFs both proceed by
counting the number of adversaries that must be fooled and then applying
Lemma 3.3 (below), which is an upper bound on the probability that a ran-
domly chosen function will fail to fool a fixed adversary. This lemma applies
equally both to static and adaptive adversaries; the difference in achievable pa-
rameters between static and adaptive ERFs therefore stems solely from the fact
that there are many more adversaries in the adaptive setting.

Lemma 3.3. Let A : {0, 1}n → {0, 1}∗ be an algorithm that reads at most d bits
of its input, let ε > 0, and choose a function f : {0, 1}n → {0, 1}m uniformly at
random with m = n− d− 2 log (1/ε)−O(1). Then f will fail to satisfy

(A (Un) , f (Un)) ≈ε (A (Un) , Um)

with probability at most 2−Ω(Nε2), where N = 2n.

Proof. Lemma 2.9 allows us to assume without loss of generality that A adap-
tively reads d bits and outputs them in the order that they were read. Under
this assumption, we have (A(Un), Um) = Ud+m. We therefore need only to
bound the probability that (A(Un), f(Un)) is far from Ud+m.

Fix a statistical test T ⊂ {0, 1}d × {0, 1}m. In order for (A(Un), f(Un)) to
pass this specific test of uniformity, we need f to satisfy∣∣∣∣Pr [(A (Un) , f (Un)) ∈ T ]− |T |

2d+m

∣∣∣∣ ≤ ε (3.1)

For every w ∈ {0, 1}n, define Iw to be 1 if (A(w), f(w)) ∈ T and 0 otherwise,
and notice that Pr[(A(Un), f(Un)) ∈ T ] = 1

2n

∑
w Iw. For x ∈ {0, 1}d, let Tx
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denote T ∩ ({x} × {0, 1}m). Then, for a fixed w, the expectation of Iw over the
choice of f is exactly |TA(w)|/2m, and so by the regularity of A the expectation

of 1
2n

∑
w Iw over the choice of f is |T |/2d+m. A Chernoff bound (Lemma 3.1)

then gives that the probability over the choice of f that Equation (3.1) is not

satisfied is at most 2−Ω(Nε2).
Since there are 2DM possible choices of T in the above analysis (where D =

2d, M = 2m), a union bound shows that the probability that (A(Un), f(Un))

will fail one or more of them is at most 2DM2−Ω(Nε2) = 2−Ω(Nε2) if m =
n− d− 2 log (1/ε)− c for a sufficiently large constant c.

Having established that a random function will tend to fool a fixed adver-
sary, we now establish the existence of static and adaptive exposure-resilient
functions. In both cases, we do so by taking a union bound over all potential
adversaries and applying Lemma 3.3. Thus, the parameters achieved are simply
those that bring the number of adversaries to below 2Nε

2

.

Theorem 3.4. For every n ∈ N, k ∈ [n], and ε ≥ c
√
n/2n where c is a

universal constant, a randomly chosen function f : {0, 1}n → {0, 1}m with m ≤
k−2 log (1/ε)−O(1) is a static (k, ε)-ERF with probability at least 1−2−Ω(Nε2),
where N = 2n.

Proof. Every static adversary that tries to distinguish the output of f from
uniform is an algorithm A : {0, 1}n → {0, 1}n−k that reads exactly n− k bits of
its input. We can therefore apply Lemma 3.3 with d = n − k to get that the
probability that f will fail to fool any one adversary is at most 2−Ω(Nε2). Taking
a union bound over the

(
n
k

)
possible adversaries, we get that the probability that

f will not fool all adversaries is at most(
n

k

)
2−Ω(Nε2) ≤ N2−Ω(Nε2) = 2−Ω(Nε2)

where the final equality is given by the constraint on ε.

Counting the number of adversaries in the adaptive setting is a bit more
work, but Lemma 2.9 from our preliminaries simplifies this task.

Theorem 3.5. For every n ∈ N, k ∈ [n], and ε > 0, a randomly chosen
function f : {0, 1}n → {0, 1}m with m ≤ k−2 log (1/ε)−O(1) and k ≥ log log n+

2 log (1/ε)+O(1) is an adaptive (k, ε)-ERF with probability at least 1−2−Ω(Nε2),
where N = 2n.

Proof. The proof is identical to that of Theorem 3.4 except that we have to
count the number of adaptive adversaries. We do so below.

First we note that Lemma 2.9 implies that if f fools all adaptive adversaries
that output the bits they read as they read them, then f fools all adaptive
adversaries. We therefore only need to count this smaller set of adversaries.
The process by which such an adversary chooses which bits to request can be
modelled by a decision tree of depth n−k−1 whose internal nodes are labelled by
elements of [n]. Since the number of nodes in such a tree is 2n−k−1−1 < N/2K,
where N = 2n and K = 2k, we can bound the total number of trees—and
therefore adversaries—by nN/2K .
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Proceeding with the same kind of union bound as in the proof of Theo-
rem 3.4, we see that the probability that f will not fool all adaptive adversaries
is at most nN/2K2−Ω(Nε2) = 2−Ω(Nε2), provided that K ≥ (c log n)/ε2 for a
sufficiently large constant c. Taking logarithms yields the theorem.

We now turn to probabilistically constructing resilient functions. Theo-
rem 3.6 below follows from a straightforward application of the Chernoff bound
stated in Lemma 3.1; however, we show later that it is the best we can do using
the probabilistic method.

Theorem 3.6. For every n ∈ N, k ∈ [n], and ε > 0, a randomly cho-
sen function f : {0, 1}n → {0, 1}m with m ≤ k − 2 log (1/ε) − O(1) and k ≥
max{log (n− k), log log

(
n
k

)
}+ 2 log (1/ε) + O(1) is a (k, ε)-RF with probability

at least 1− 2−Ω(Kε2), where K = 2k.

Proof. Fix an (n, k)-OBFS X. Choosing the function f consists of indepen-
dently assigning a string in {0, 1}m to each string in the support of X. In order
for f to map X close to uniform, we need to have chosen it such that, for every
fixed statistical test T ⊂ {0, 1}m, the fraction of strings in X mapped by f into
T is very close to the density of T in {0, 1}m. This is expressed formally by the
condition below. ∣∣∣∣ |f−1(T )|

2k
− |T |

2m

∣∣∣∣ ≤ ε
Now fix one specific test T ⊂ {0, 1}m. For each string w in the support of X,
define the indicator variable Iw to be 1 if f(w) ∈ T and 0 otherwise. Then
Lemma 3.1 (our Chernoff bound) applied to (

∑
w Iw) /2k = |f−1(T )|/2k shows

that f fails the condition above with probability less than 2−Ω(Kε2).
There are 2M possible tests T ⊂ {0, 1}m (where M = 2m). A union bound

over all these tests therefore gives that the probability that f fails to map X
to within ε of uniform is at most 2M−Ω(Kε2). We can perform a similar union
bound over the possible choices of the source X: there are

(
n
k

)
N/K such sources,

yielding that the probability that f is not a (k, ε)-RF is at most(
n

k

)
N

K
2M−Ω(Kε2) = 2−Ω(Kε2)

provided K ≥ max{log (NK ), log
(
n
k

)
}c/ε2 for a sufficiently large constant c and

M ≤ c′Kε2 for a sufficiently small constant c′. Taking logarithms gives the
result.

The max{log (n− k), log log
(
n
k

)
} term in the statement of Theorem 3.6 is

always at most log n, so the theorem always holds when k ≥ log n+2 log (1/ε)+
O(1), as discussed earlier.In the following section we will show that this is tight
in the sense that when k is less than log n, simple application of the probabilistic
method cannot establish the existence of resilient functions.

3.2 Negative Results

We showed above that the probabilistic method gives static ERFs for essentially
any value of k. However, we were not able to do the same for resilient functions.
We now prove a limitation on the extraction properties of random functions
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which shows that the bound on k given for resilient functions in the previous
section is in fact nearly tight.

Theorem 3.7. There is a constant c such that for every n ∈ N, k ∈ [n],
and ε ∈ [0, 1/2] satisfying k ≤ log (n− k) + 2 log (1/ε) − c, a random func-
tion f : {0, 1}n → {0, 1} will fail to be a (k, ε)-RF with probability at least

1− 2−
√
N/K , where N = 2n and K = 2k.

Proof. Fix an input size n and a set L of n− k fixed bits (say, L = [n− k]). To
say that f is a (k, ε)-RF is to say that all 2n−k sets S of the form L∗,n satisfy
the following condition. ∣∣∣∣ Pr

w←S
[f(w) = 1]− 1

2

∣∣∣∣ ≤ ε
Since f(w) is chosen independently for each string w ∈ S, we can use the
converse of our Chernoff bound (Lemma 3.2) to say that the probability that

f satisfies this condition for a fixed set S is at most 1 − 2−O(Kε2), where K =
2k = |S|.

Since there are N/K subsets of the form L∗,n and they are disjoint, the prob-
ability that f will fail the above condition on none of them (i.e. the probability
that f is a resilient function) is at most(

1− 2−O(Kε2)
)N/K

≤ 2−
√
N/K

provided that N/K ≥ 2CKε
2

for a sufficiently large constant C = 2c. Taking
logarithms twice completes the proof.

Theorem 3.7 does not establish that resilient functions with the stated pa-
rameters do not exist; what it does show, however, is that k ≈ log n represents
a critical point below which resilient functions become very rare. Indeed, the
parity function f(x1, . . . , xn) = ⊕xi is a perfect resilient function for even k = 1.
As discussed in the next section, this construction can be generalized to larger
values of k, but the output length remains short (roughly log k).

4 Explicit Results

We now turn exclusively to the question of how many output bits can be ex-
tracted by an explicit resilient function (i.e. extractor for oblivious bit-fixing
sources) when k is less than log n.

4.1 Positive Results

We start with a simplification that slightly improves a previous construction due
to [KZ]. The previous construction is based on very good extractors for oblivious
symbol-fixing sources with d ≥ 3 symbols obtained by using the symbols of the
input string to take a random walk on an expander graph of degree d. Since
expander graphs do not exist with degree d = 2, this approach could not be used
for oblivious bit-fixing sources. However, the construction of [KZ] uses the fact
that while a random walk on an expander is not an option, a random walk on
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a cycle still extracts some randomness, and does so for any k. Our construction
is a slight modification of this random walk that simplifies the argument and
improves the error parameter.

Theorem 4.1. For every n ∈ N, k ∈ [n], ε > 0, and m = 1
2 (log k−log log (1/ε)),

the function f : {0, 1}n → {0, 1}m defined by

f(w) =

n∑
i=1

wi (mod 2m)

is a (k, ε)-RF. In particular, we can take ε = 2−
√
k and have output length

1
4 log k.

Proof. We can treat f as computing the endpoint of a walk on Z/MZ (where
M = 2m) that starts at 0 and either adds 1 or 0 to its state with every bit that
it reads. Since the endpoint of this walk does not depend on the order in which
the input bits are processed, we may assume without loss of generality that all
of the fixed bits in f ’s input come at the beginning. These bits only change the
starting vertex of the random walk and do not affect the distance from uniform
of the resulting distribution. Therefore, to bound the distance from uniform of
any distribution of the form f(L∗,n) we need only bound the mixing time of a
walk on Z/MZ consisting of k random steps. The following claim, whose proof
we defer to the appendix, accomplishes this.

Claim 4.2. Let Wk be the distribution on the vertices of Z/MZ (where M = 2m)
obtained by beginning at 0 and adding 1 or 0 with equal probability k times. The
distance from uniform of Wk is at most

e−kπ
2/2M2

2
(
1− e−3kπ2/2M2

)
Since k ≥ M2, the bottom of the fraction in Claim 4.2 is bounded from

below by 2(1− e−3π2/2) > 1 and so we have bounded the distance from uniform

by e−kπ
2/2M2

. With our setting of parameters this is at most εlog (e)π2/2 ≤ ε, as
desired.

The difference between this construction and that of [KZ] is that each step
of the random walk carried out by f consists of adding either 1 or 0 rather than
1 or −1 to the current state. This has two advantages. First, the random walk
in the construction of [KZ] cannot be carried out on a graph of size 2m since any
even-sized cycle is bipartite and the walk traverses an edge at each step. This
necessitates an additional lemma about converting the output of the random
walk to one that is almost uniformly distributed over {0, 1}m, which incurs at
error polynomially related to k.3 By eliminating the need for this lemma, the
construction of Theorem 4.1 manages to achieve an exponentially small error
parameter. Second, setting m = 1 in the construction of Theorem 4.1 makes
it clear that the idea underlying both it and the [KZ] construction is simply
a generalization of bitwise addition modulo 2—the parity function discussed
earlier.

3This additional error was overlooked in [KZ], and their Theorem 1.2 claims an error
exponentially small in k.

9



However, as discussed previously, our construction still achieves output length
only logarithmic in k. This is considerably worse than the output length of
k − 2 log (1/ε) − O(1) which we showed in Section 3.1 to be possible both for
RFs with k > log n and for static ERFs. In the following section we prove a
lower bound that shows why this is the case.

4.2 Negative Results

The extractor of Theorem 4.1 is a symmetric function; that is, its output is not
sensitive to the order in which the input bits are arranged. We begin building
our negative results by showing that extractors for OBFSs with this property
cannot have superlogarithmic output length.

Lemma 4.3. Suppose that X = La,n is an (n, k)-OBFS and that f : {0, 1}n →
{0, 1}m is a symmetric function of the input bits in L. (That is, for every
permutation π : [n]→ [n] that fixes [n]−L, f(xπ(1), . . . , xπ(n)) = f(x1, . . . , xn).)
Then f(X) ≈ε Um implies that m ≤ log (k/(1− ε)).

Proof. By the symmetry of f on the bits in L, the size of the support of f(X) is
at most k. (The output depends only on the number of input bits in L that equal
1.) Thus, the distance between f(X) and Um is at least (M − k)/M . Together
with f(X) ≈ε Um, this implies that ε ≥ (M − k)/M , which is equivalent to
m ≤ log (k/(1− ε)).

We can use Lemma 4.3 to show that no symmetric function with large output
length can be even a static ERF.

Theorem 4.4. If a symmetric function f : {0, 1}n → {0, 1}m is a static (k, ε)-
ERF then m ≤ log (k/(1− ε)).

Proof. From Lemma 2.7, we have that for f to be a static ERF, it must satisfy,
for all sets L ∈

{
n

n−k
}

,

E
a←Un−k

[∆ (f (La,n) , Um)] ≤ ε

It follows by averaging that there exists a set L and a string a such that
f(La,n) ≈ε Um. Application of Lemma 4.3 to the source La,n then yields the
result.

Since every (k, ε)-RF is a static (k, ε)-ERF and every adaptive (k, ε)-ERF
is a static (k, ε)-ERF, Theorem 4.4 applies to RFs and adaptive ERFs as well.
Thus, Theorem 4.4 explains why constructions like that of Theorem 4.1 and
that of [KZ] have poor output length.

We now extend our lower bound for RFs to a large class of small-source
“streaming algorithms”. To do this, we first define the model of computation
that we will assume.

Definition 4.5 (Streaming Algorithm). A streaming algorithm A : {0, 1}n →
{0, 1}m is given by a 5-tuple (V, v0,Σ

0,Σ1, ϕ), where V is the state space, v0 ∈ V
is the initial state, Σ0 = (σ0

1 , . . . , σ
0
n) and Σ1 = (σ1

1 , . . . , σ
1
n) are two sequences

of functions from V to itself, and ϕ is a function from V to {0, 1}m. On an
input sequence (b1, . . . , bn) ∈ {0, 1}n, A computes by updating its state using
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the rule vi+1 = σbii (vi). A’s output is A(b1, . . . , bn) = ϕ(vn). The function ϕ is
called the output function of A, and the space of A is log |V |.

We say that A is forgetless if and only if for every i at least one of either σi
0

or σi
1 is a permutation. (Thus, if the i-th bit is fixed to a certain value, A does

not “forget” anything about its state when reading that bit.)

We show below that forgetless streaming algorithms with small space cannot
compute RFs with large output length (for small k). This is our main result.

Theorem 4.6. Suppose that a (k, ε)-RF f : {0, 1}n → {0, 1}m can be computed
by a forgetless streaming algorithm A with space s ≤ log (n/k)/k. Then m ≤
log (k/(1− ε)).

Proof. Fix a (k, ε)-RF f : {0, 1}n → {0, 1}m and let A be a forgetless streaming
algorithm with space s ≤ log (n/k)/k that computes f . To show that m ≤
log (k/(1− ε)), we will first reduce to a special case in which we can make some
simplifying assumptions about A. We will then construct an oblivious bit-fixing
source X such that f is symmetric on the set of bit positions not fixed by X.
This will allow us to apply Lemma 4.3 to obtain our result since f must map
X close to uniform.
Reduction to the special case: Let Σ0 and Σ1 be the sequences of functions used
by A, and let ϕ be its output function. We reduce to the special case that every
element of Σ0 is the identity.

Since A is forgetless, we can switch some of the functions σ0
i and σ1

i to make
every function in Σ0 a permutation while preserving the fact that A computes
a (k, ε)-RF. (This corresponds to just negating some input bits.) This allows
us to define a new sequence of functions F = {f1, . . . , fn} and a new output
function ψ by the following relations.

σ0
i ◦ · · · ◦ σ0

1 ◦ fi = σ1
i ◦ σ0

i−1 ◦ · · · ◦ σ0
1

ψ = ϕ ◦ σ0
n ◦ · · · ◦ σ0

1

Then (V, v0, (id, id, . . . , id), (f1, . . . , fn), ψ) can be verified to be a streaming al-
gorithm that computes the same function as (V, v0,Σ

0,Σ1, ϕ).

Constructing the source X: Letting S = 2s, we can choose a set F1 ⊂ F of
size at least n/S such that all the functions in F1 map the initial state v0 to
some common state (call it v1). We can then choose a set F2 ⊂ F1 of size at
least n/S2 such that all functions in F2 map v1 to some common state, which
we call v2. Continuing in this way, we obtain a set Fk ⊂ F of size at least
n/Sk and a sequence (v0, . . . , vk) with the property that every f ∈ Fk satisfies
f(vi) = vi+1 for 0 ≤ i < k. We now define X to be the oblivious bit-fixing
source that has the bits at positions that correspond to functions in Fk un-fixed
and the rest of the bits fixed to 0. By our assumption that s ≤ log (n/k)/k, we
have |Fk| ≥ n/Sk ≥ k, meaning that X has at least k unfixed bits.

Obtaining the desired bound: For any string w in the support of X, f ’s out-
put will be ψ(vH(w)) where H(w) is the Hamming weight of w. Therefore f is a
symmetric function of the bits in positions not fixed by X. Since X contains at
least k independent, uniformly random bits and f is a (k, ε)-resilient function,
Lemma 4.3 yields m ≤ log (k/(1− ε)) as desired.
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What does this theorem tell us about extraction in low-entropy settings?
If we set s = m ≤ k (as in the walk on the cycle of Theorem 4.1) then The-
orem 4.6 implies that when k <

√
log n− log log n we are confined to output

length m ≤ log (k/(1− ε)). In other words, the output length of Ω(log k) offered
by Theorem 4.1 is close to optimal for extractors in this model when k <

√
log n.

Since streaming algorithms under our model cannot produce any output bits
until they have read all the input bits, we have an additional, trivial space lower
bound that applies even to the forgetful case: s > m − 1 when ε < 1/2. It is
worth noting here that this bound can be generalized by a simple adaptation
of [BRST] to streaming algorithms that are allowed to output bits at any point in
their computation. It turns out that the space lower bound for strong extractors
of [BRST] applies to resilient functions as well and gives that s ≥ m − 4 when
ε ≤ 1/8 and k ≤ n/2.

5 Future Work

The general question of whether there exist resilient functions with large output
length in the low-entropy range studied here is still unresolved. This question
is stated formally below.

Open Question 5.1. Does there exist, for all n ∈ N and some growing func-
tion 0 < k(n) < log n, a (k(n), ε)-RF with output length m = Ω(k(n)) and ε
constant?

Theorem 4.6 shows that to resolve this question in the positive direction
requires an algorithm that is either not a forgetless streaming algorithm or
uses a considerable amount of space. In the other direction, an interesting step
towards a negative result would be to at least remove the forgetlessness condition
from the space lower bound proven in that theorem.

We can ask an analogous question for the case of adaptive ERFs with k <
log log n.

Open Question 5.2. Does there exist, for all n ∈ N and some growing
function 0 < k(n) < log log n, an adaptive (k(n), ε)-ERF with output length
m = Ω(k(n)) and ε constant?

In this case, we cannot even rule out the possibility that a more clever use
of the probabilistic method will resolve this question positively. Thus, a first
step toward a negative result might be to prove an analogue to Theorem 3.7
that shows that adaptive ERFs with near-optimal output length become very
rare when k < log log n.

A third open problem arising from this work is that of finding an explicit con-
struction of a static ERF with the parameters achieved using the probabilistic
method in Theorem 3.4. Currently, an output length of Ω(k) is achieved in [DSS]
using strong extractors, but the construction works only when k > log n. For k
smaller than log n, there is no known construction of a static ERF that is not
also an RF, making the construction of Theorem 4.6 the current state of the
art. This leaves us with the following open question:

Open Question 5.3. Does there exist, for all n ∈ N and some growing function
0 < k(n) < log n, an explicit static (k(n), ε)-ERF with output length m =
Ω(k(n)) and ε constant?
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A Proof of Claim 4.2

Claim. Let Wk be the distribution on the vertices of Z/MZ (where M = 2m)
obtained by beginning at 0 and adding 1 or 0 with equal probability k times. The
distance from uniform of Wk is at most

e−kπ
2/2M2

2
(
1− e−3kπ2/2M2

)
Proof. An application of Fourier analysis analogous to that carried out in Chap-
ter 3 of [Dia] gives us that the distance from uniform after k random steps is at
most

1

4

M−1∑
j=1

(
1

2
+

1

2
cos

(
2πj

M

))k
To bound this sum, we first note that 1

2 + 1
2 cos(x) ≤ e−x

2/8 for x ∈ [0, π].
This, together with the fact that M = 2m is even, allows us to write

1

4

M−1∑
j=1

(
1

2
+

1

2
cos

(
2πj

M

))k
=

1

2

(M−2)/2∑
j=1

(
1

2
+

1

2
cos

(
2πj

M

))k

≤ 1

2

(M−2)/2∑
j=1

e−kπ
2j2/2M2

≤ 1

2
e−kπ

2/2M2
∞∑
j=1

e−kπ
2(j2−1)/2M2

≤ 1

2
e−kπ

2/2M2
∞∑
j=0

e−3kπ2j/2M2

=
e−kπ

2/2M2

2
(
1− e−3kπ2/2M2

)
which is the desired result.
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