
PSEUDORANDOMNESS AND

AVERAGE-CASE COMPLEXITY VIA

UNIFORM REDUCTIONS

Luca Trevisan and Salil Vadhan

Abstract. Impagliazzo and Wigderson (36th FOCS, 1998) gave the
first construction of pseudorandom generators from a uniform complex-
ity assumption on EXP (namely EXP 6= BPP). Unlike results in the
nonuniform setting, their result does not provide a continuous trade-off
between worst-case hardness and pseudorandomness, nor does it explic-
itly establish an average-case hardness result.
In this paper:

◦ We obtain an optimal worst-case to average-case connection for
EXP: if EXP 6⊆ BPTIME(t(n)), then EXP has problems that
cannot be solved on a fraction 1/2 + 1/t′(n) of the inputs by
BPTIME(t′(n)) algorithms, for t′ = tΩ(1).

◦ We exhibit a PSPACE-complete self-correctible and downward
self-reducible problem. This slightly simplifies and strengthens the
proof of Impagliazzo and Wigderson, which used a #P-complete
problem with these properties.

◦ We argue that the results of Impagliazzo and Wigderson, and
the ones in this paper, cannot be proved via “black-box” uniform
reductions.

Keywords. Pseudorandomness, Average-case Complexity, Derandom-
ization, Instance Checkers.

Subject classification. 68Q10

1. Introduction

Over the past two decades, a rich body of work has investigated the relationship
between three basic questions in complexity theory:

1. The existence of problems of high worst-case complexity in classes such
as EXP,

2 Trevisan & Vadhan

2. The existence of problems of high average-case complexity in such classes,
and

3. The existence of good pseudorandom generators implying subexponential
time or even polynomial-time deterministic simulations of BPP.

One of the exciting accomplishments of this body of work has been to
show equivalence of the above three statements in the nonuniform setting.
That is, EXP or E = DTIME(2O(n)) contains problems of high worst-case cir-
cuit complexity iff it contains problems of high average-case circuit complexity
iff there are good pseudorandom generators against nonuniform distinguish-
ers [45, 6]. This equivalence has become increasingly tight quantitatively, with
“low-end” results showing that weak (i.e. slightly superpolynomial) circuit
lower bounds imply slight derandomization (BPP ⊂ SUBEXP), “high-end”
results showing that strong (2Ω(n)) circuit lower bounds imply complete deran-
domization (BPP = P), and a smooth tradeoff between these two extremes
[30, 3, 34, 54, 33, 50, 59].

An important question is to what extent the nonuniformity is really nec-
essary for such results. The results are proven by reductions showing how
breaking the generators implies good average-case “algorithms” for E, and how
this in turn implies good worst-case “algorithms” for E. Almost all of these
reductions are nonuniform and, as we discuss below, this is necessary for reduc-
tions that are “black box,” that is, that work without making any assumptions
on the hard problem being used and on the distinguisher being postulated.

1.1. Uniform Reductions. An exciting recent work of Impagliazzo and
Wigderson [35] has broken out of this mould of nonuniformity, and their paper
is the starting point of our investigation. They prove that under the uniform
assumption EXP 6= BPP, it is possible to simulate BPP algorithms deter-
ministically in subexponential time (on most inputs, for infinitely many input
lengths). This result stands out as an isolated example of using uniform hard-
ness assumptions in derandomization,1 and suggests that perhaps nonunifor-

1Here we do not include the works on the stronger notion of pseudorandom generator
originally introduced by Blum, Micali, and Yao [13, 63], whereby the output of the generator
looks random even to distinguishers with greater running time than the generator — a
property that is essential for cryptographic applications of pseudorandomness, but is not
needed for derandomization. The existence of such ‘cryptographic’ pseudorandom generators
is known to be equivalent to the existence of one-way functions [29], and this equivalence
holds even in the uniform setting. Also, subsequent to [35], there have been several other
interesting results on derandomization in the uniform setting, e.g. [36, 39, 32], but none of
these address the questions we enumerate below.

Uniform Reductions 3

mity is not essential to this area.

One approach to removing nonuniformity in derandomization results is
to show that uniform lower bounds imply nonuniform lower bounds, in the
spirit of Karp and Lipton [37]. In fact, one of the theorems in [37], at-
tributed to Albert Meyer, applies to EXP and shows that EXP 6= Σ2 implies
EXP 6⊆ P/poly; the hypothesis was subsequently improved to EXP 6= MA
in [5]. Thus, since we know how to get nontrivial derandomizations of BPP
under the assumption EXP 6⊆ P/poly, we also get the same derandomizations
assuming EXP 6= MA [6]. However, this does not fully achieve the goal of
removing nonuniformity, because the MA is not a uniform analogue of P/poly;
the two classes seem incomparable. Indeed, Impagliazzo and Wigderson [35]
take a much more indirect approach to get a derandomization of BPP under
only the assumption EXP 6= BPP.

Still, this leads one to wonder whether one can prove a “super Karp–Lipton”
theorem for EXP, showing that EXP 6= BPP if and only if EXP 6⊆ P/poly, or
more generally, that if EXP 6⊆ BPTIME(t(n)) then EXP is not contained in
circuit size t(n)Ω(1). Such a result would be extremely important beyond the
application to derandomization, and it requires a non-relativizing proof [20].
Interestingly, it is plausible that research in derandomization could lead to such
a result. Indeed, Impagliazzo, Kabanets, and Wigderson [32] use derandomiza-
tion techniques to prove that NEXP 6= MA if and only if NEXP 6⊆ P/poly. Al-
ready, this is major progress towards a “super Karp–Lipton” theorem, because
it establishes an equivalence between a uniform lower bound and a nonuni-
form lower bound. However, it still considers a uniform class (MA) that seems
incomparable to the nonuniform class (P/poly).

Another interpretation of the Impagliazzo–Kabanets–Wigderson result is
that any nontrivial derandomization of MA implies circuit lower bounds for
NEXP, because a derandomization of MA (such as MA ⊆ NSUBEXP) would
presumably separate MA from NEXP by the Hierarchy Theorem for Nondeter-
ministic Time (or a variant). It also implies circuit lower bounds from deran-
domizations of promise-BPP, because these imply derandomizations of MA via
the observation that MA = NPpromise-BPP (cf. [26]). Considering that Impagli-
azzo and Wigderson [35] prove that EXP 6= BPP implies a sub-exponential
time derandomization of promise-BPP (for most inputs, on infinitely many in-
put lengths), the two results together come close to proving that if EXP 6= BPP
then NEXP 6⊆ P/poly. Unfortunately, the result of [35] only implies a deran-
domization that works on most inputs of length n, for infinitely many n, which
is not enough to derive a derandomization of MA = NPpromise-BPP and apply
[32]. Still, the combination of the results of [35, 32] come tantalizingly close

4 Trevisan & Vadhan

to a “super Karp-Lipton” result, and provide motivation to further investigate
uniform versus non-uniform results in derandomization and related topics.

In this paper, our goal is to provide uniform versions of the known nonuni-
form trade-offs between worst-case complexity of problems in EXP, average-
case complexity of problems in EXP, and derandomization.

The uniform result by Impagliazzo and Wigderson [35] uses many previ-
ous theorems in complexity theory, some of which do not appear related to
derandomization. In addition, unlike previous (and subsequent) derandomiza-
tion results in the nonuniform setting, it was not stated as giving a continuous
tradeoff between hardness and randomness. It also was not proved by (explic-
itly) presenting a uniform reduction from worst-case to average-case hardness,
which is typically the first step in previous derandomization results. Thus,
their work leaves several intriguing open questions:

◦ What is the best tradeoff between hardness and derandomization in the
uniform setting? In particular, can a sufficiently strong uniform lower
bound on E yield a polynomial-time deterministic simulation of BPP?
By analogy with the nonuniform setting, we might hope to prove that
if E 6⊂ BPTIME(t(n)), then there is a pseudorandom generator that
mapping ≈ n bits into roughly ≈ t(n) bits fooling uniform distinguishers
running in time ≈ t(n) (which implies a time 2O(t−1(n)) simulation of
BPP). Below, we refer to this as the ideal tradeoff.

◦ Of the several previous results that are being used, how many are really
necessary, and what are the properties of EXP that are essential to the
proof?

◦ Is it possible to prove, along similar lines, that if EXP 6= BPP then EXP
contains problems that are hard on average? What is the best tradeoff
for this worst-case vs. avg-case problem in the uniform setting?

1.2. Some Remarks on the Impagliazzo–Wigderson Proof. We first
revisit, in Section 3, the arguments of Impagliazzo and Wigderson [35], and
make the following observations.

1. Analyzing [35] for general time bounds, we can obtain a pseudorandom
generator that stretches ≈ n bits into ≈ t(n) bits that fools distin-
guishers running in time ≈ t(n), under the assumption that EXP 6⊆
BPTIME(t(t(n))).

Recall that the ideal tradeoff, matching what is known in the nonuniform
setting, has t(n) instead of t(t(n)).

Uniform Reductions 5

2. As observed by Cai, Nerukar, and Sivakumar [15], the ideal tradeoff for
derandomization can be obtained from uniform lower bounds on #P (in-
stead of EXP). That is, the same generator as above can be obtained
under the hypothesis that #P 6⊂ BPTIME(t(n)). The key property of
#P that is used in [35, 15] is that it has a complete problem that is
both “random self-reducible” and “downward self-reducible”, namely the
Permanent [60].

3. Result 1 is obtained by constructing two pseudorandom generators, one
from an EXP-complete problem and one from the Permanent. If there
is a time t(n) distinguisher for both generators, then they can be combined
in a sophisticated way (not just by a uniform “reduction”) to obtain a
time t(t(n)) algorithm for EXP. This step makes crucial use of Toda’s
Theorem that Σ2 ⊆ P#P [55].

4. Using the techniques of [35], we can also obtain a uniform worst-case
to average-case connection for EXP: if every problem in EXP admits
a probabilistic algorithm that runs in t(n) time and solves the prob-
lem in a 1/2 + 1/t(n) fraction of inputs of length n, then (roughly)
EXP ⊆ BPTIME(t(t(n)). This is another result that cannot be proved
via black-box reduction. (Previously, a uniform worst-case/average-case
connection was also known for #P, again using special properties of the
Permanent [24, 16].)

The observations above set the stage for our work. One main goal is to
remove the t(t(n)) lower bounds that are needed above, for they are far from
matching the ideal tradeoff, which incurs only a polynomial loss in t rather
than a composition. They give nothing, for example, with t(n) = 2nε

, and
more generally limit t to being at most half-exponential [44]. In terms of deran-
domization, this means that we cannot get anything near a polynomial-time
deterministic simulation of BPP from such results.

1.3. Our Main Results.

Derandomization from PSPACE-hard problems. In Section 4, we give
a direct construction of a PSPACE-complete problem that is both random
self-reducible and downward self-reducible. (This result was apparently known
to some other researchers, but we do not know of a published proof.) This
simplifies the proof of the Impagliazzo–Wigderson result, eliminating the use
of Valiant’s Theorem and Toda’s Theorem, and also strengthens Item 2 giving

6 Trevisan & Vadhan

an ideal derandomization from a uniform lower bound on PSPACE rather than
#P. (It does not, however, provide noticeable improvements when starting
from an assumption on EXP.) Our construction is based on the ideas used in
proving IP = PSPACE [41, 51].

Optimal Hardness Amplification for EXP. In Section 5, we present our
most interesting result: a uniform worst-case to average-case reduction for EXP
whose parameters match the state of the art in the nonuniform setting [54].
Specifically, we prove that if every problem in E can be solved in time t(n) on a
1/2 + 1/t(n) fraction of inputs, then every problem in E can be solved in time
polynomial in t(n). Our result is based on combining the nonuniform version
of the result from [54] with results about instance checkers for EXP.

Recall that worst-case to average-case reductions are only the first step in
derandomization. We do not know how to remove the t(t(n)) loss incurred in
the remaining part of [35], namely going from an average-case hard problem to
a pseudorandom generator, and leave this as an open problem for future work.

Black-box Reductions. In Section 6, we argue that the uniform pseudoran-
dom generator constructions and the uniform worst-case to average-case con-
nections in [35] and here cannot be obtained by black-box reductions. The basic
reason for this is that black-box reductions can be interpreted information the-
oretically, and give rise to randomness extractors in the case of pseudorandom
generators [56] and error-correcting codes in the case of worst-case-to-average-
case reductions. We show that uniform black-box reductions yield such objects
with absurd parameters.

This means that to achieve these uniform results, one must exploit special
properties of either the hard function or the “adversary” in the reductions. For
example, Impagliazzo and Wigderson [35] used the fact that the Permanent is
self-correctible and downward self-reducible. Since only problems in PSPACE
can be downward self-reducible,2 this suggests that to obtain better results
from the hardness of EXP, we should try to identify special properties of EXP-
complete problems that can be exploited. Our optimal hardness amplification
identifies one such property, namely instance checkability. We do not know
whether this property suffices for getting optimal derandomization. Even if
not, it might help point the direction to other properties of EXP that can be
used.

2Recursively evaluating the oracle calls of the downward self-reduction (reusing space
the space for each such evaluation) gives a polynomial space algorithm. (The depth of the
recursion is linear, and the time and space at each node is polynomial.)

Uniform Reductions 7

2. Preliminaries

We call a function t : N→ R+ a nice time bound if n ≤ t(n) ≤ 2n, t(n) is non-
decreasing, t(n) is computable in time poly(n), and t(O(n)) ≤ poly(t(n)) ≤
t(poly(n)). All functions of the form nc, nc log n, 2(log n)c

, 2cn satisfy these
conditions.

Now we define several of the classes of languages we will be examining
throughout the paper. Sometimes we will abuse notation and refer to them
as classes of functions, and we will often identify a language with its charac-
teristic function. BPTIME(t(n)) denotes the class of languages decidable by
probabilistic algorithms with 2-sided error running in time t(n). SIZE(t(n))
denotes the class of languages that can be decided by (nonuniform) Boolean
circuits of size t(n). Σk(t(n)) denotes the class of problems that can be solved
by time t(n) alternating machines with k alternations (starting with an exis-
tential one). A prefix of i.o. to a complexity class means the class of languages
that can be solved on infinitely many input lengths by algorithms within the
stated resource bounds. For example a language L with characteristic function
f is in i.o.-BPTIME(t) if there is a probabilistic algorithm A running in time
t such that for infinitely many n we have that Pr [A(x) = f(x)] ≥ 2/3 for all
inputs x of length n.3

2.1. Average-case Complexity. Let L be a language and D = {Dn}n≥1 be
an ensemble of distributions, where Dn is a distribution over inputs of length
n. Then we call the pair (L,D) a distributional problem.

We say that an ensemble D is samplable in time t(n) if there is a t(n)-time
probabilistic algorithm S such that Pr [S(1n) = ⊥] ≤ 1/2 and the output of
S(1n), conditioned on S(1n) 6= ⊥, is distributed identically to Dn for every n.
PSamp denotes the class of ensembles that are samplable in polynomial time.
We denote by {Un}n≥1 the ensemble where each distribution Un is uniform over
{0, 1}n.

We will give definitions of average-case tractability and intractability of
distributional problems. The conference version of this paper [58] used different
terminology, but here we switch to more commonly used terminology.

3This differs from the traditional definition of i.o. classes, which would require that there
is language L′ ∈ BPTIME(t) such that L ∩ Σn = L′ ∩ Σn for infinitely many n. The reason
is that our definition allows A to accept with probability between 1/3 and 2/3 outside the
infinitely many ‘good’ n, so it may not correspond to a language L′ ∈ BPTIME(t). Another
way around this difficulty is to work with classes of promise problems, in which case our
definition and the traditional definition coincide [23].

8 Trevisan & Vadhan

Definition 2.1 (Heuristic Time for Distributional Problems). Let (L,D) be
a distributional problem and f : {0, 1}∗ → {0, 1} be the characteristic function
of L. Let t(n) be a nice time bound and δ(n) be a poly(n)-time computable
non-increasing function. We say that (L,D) ∈ HeurTIME(t(n), δ(n)) if there
is a time t(n) deterministic algorithm A such that

Pr
x←Dn

[A(x) = f(x)] ≥ 1− δ(n).

If L is a paddable language and (L,D) ∈ HeurTIME(nO(1), 1/nΩ(1)), then it
is possible to show that (L,D) is also in the class HP, for Heuristic Polynomial
Time defined by Impagliazzo [31].

The class HeurBPTIME(t(n), δ(n)) is defined similarly, except that the al-
gorithm A is allowed to be probabilistic, and the probability of outputting a
correct answer is computed over the random choices of the algorithm as well
as over the distribution of inputs.

We think of a language L as being very hard on average when (L,U) 6∈
HeurBPTIME(t(n), 1/2 − δ(n)) for large t(n) and small δ(n) (or even better,
(L,U) 6∈ i.o.-HeurBPTIME(t(n), 1/2− δ(n))). This means that for every fixed
algorithm of running time t(n), if we pick an input x at random, the algorithm
does not have a much better chance of correctly solving the problem on input
x as an algorithm that simply makes a random guess.

A more attractive notion for defining average-case ‘easiness’ is the following,
which requires that there is one algorithm that works well for all efficiently
samplable distributions.

Definition 2.2 (Pseudo-Time for Languages [36]). Let L be a language, f
be its characteristic function, and let t(n) be a nice time bound. Then L ∈
PseudoTIME(t(n)) (resp., L ∈ i.o.-PseudoTIME(t(n)) if there is a determinis-
tic algorithm A that runs in time t(n) such that for every ensemble D ∈ PSamp
and every constant c, we have

Pr
x←Dn

[A(x) = f(x)] ≥ 1− 1/nc,

for all sufficiently large n (resp., for infinitely many n).

Note that if L ∈ PseudoTIME(t(n)), then (L,D) ∈ HeurTIME(t(n), 1/nc)
for every D ∈ PSamp and every constant c. However, the converse is not clear,
because saying that (L,D) ∈ HeurTIME(t(n), 1/nc) allows the time-t(n) al-
gorithm to depend on the samplable ensemble D, whereas PseudoTIME(t(n))
requires a single algorithm that is good for all samplable D. Kabanets [36] ob-
served that the results of Impagliazzo and Wigderson [35] achieve the stronger

Uniform Reductions 9

notion of PseudoTIME, even though they were originally stated in terms of
HeurTIME.

2.2. Self-Reducibility. For f : {0, 1}∗ → {0, 1}, we denote the restriction
of f to inputs of length n by fn. We say that f : {0, 1}∗ → {0, 1} is downward
self-reducible if there is a (deterministic) polynomial time algorithm A such
that for all x ∈ {0, 1}n, Afn−1(x) = fn(x).

We call f : {0, 1}∗ → {0, 1} self-correctible [12, 38, 11] if there is a con-
stant c and a probabilistic polynomial-time algorithm A (a self-corrector for
f) such that if g : {0, 1}n → {0, 1} is any function that agrees with fn

on at least a 1 − 1/nc fraction of inputs, Pr [Ag(x) = f(x)] ≥ 2/3 for all
x ∈ {0, 1}n. Note that if f is self-correctible and f /∈ BPTIME(t(n)), then
(f, U) /∈ HeurBPTIME(t(n)/nc, 1/nc) for some constant c. 4 (The probability
is just over the coin tosses of A.)

2.3. Pseudorandom Generators. We define pseudorandom generators in
a slightly nonstandard way to facilitate the presentation of our results. We
say a function G : {0, 1}∗ → {0, 1}∗ has stretch m(·) if |G(x)| = m(|x|) for all
x. We say that T ε(·)-distinguishes G in time t(·) (resp., size t(·)) if T is a
probabilistic algorithm that runs in time t(n) (resp., is computable by a circuit
of size t(n)) on inputs of length m(n) and

Pr
x←Un

[T (x,G(x)) = 1]− Pr
(x,y)←Un+m(n)

[T (x, y) = 1] > ε(n),

for all sufficiently large n. Intuitively, a “good” pseudorandom generator will
have no efficient distinguisher. Note that, by our definition, if G cannot be
distinguished in time t, it only means that every time t algorithm fails to dis-
tinguish G infinitely often. Note also that we give the distinguisher the seed
x to the pseudorandom generator; sometimes such generators are referred to
as “strong” in analogy with strong randomness extractors (cf. [49]). This
makes sense here because we, following [45], work with pseudorandom genera-
tors whose running time is greater than that of the distinguisher. (In contrast,
“cryptographic” pseudorandom generators, in the sense of [13, 63], allow the
distinguisher more time than the generator, and thus rely on the secrecy of the

4A similar definition is that of f being random self-reducible [1, 18, 19], in which we allow
A oracle access to f itself (rather than a corrupted version of f), but put restrictions on the
distribution of the oracle queries. This implies that f is as hard in the worst case as it is
hard on average with respect to some samplable distribution. For our purposes, it is more
convenient that the definition more directly enforces hardness on average with respect to the
uniform distribution.

10 Trevisan & Vadhan

seed.) However, we will require our pseudorandom generators to be computable
in time 2O(n) on seeds of length n; such a generator is called quick.

With the above definitions, the standard fact that pseudorandom generators
imply derandomization becomes:

Lemma 2.3. Suppose that there exists a quick generator G with stretch m(·)
that cannot be 1/m(·)c-distinguished in time m(·)c for any constant c. Then,

BPTIME(n) ⊆ i.o.-PseudoTIME(n2 · 2m−1(n2)).

Proof. Let M(x; r) be a BPTIME(n) algorithm for a language L, where x
denotes the input and r the coin tosses. By standard error reduction, we can
obtain an algorithm M ′ with error probability 2−Ω(n) and running time n2. Let
`(n) = m−1(n2).

Consider the deterministic algorithm A that, on any input x of length n,
computes

A(x) = maj
y∈{0,1}`(n)

M ′(x; G(y)).

We argue that A decides L correctly with high probability on every distribution
D samplable in polynomial time, for infinitely many input lengths. Let f be
the characteristic function of L, and suppose that

Pr
x←Dn

[A(x) 6= f(x)] ≥ 1/nc

for infinitely many n.
Consider a distinguisher T that does the following on input (y, r), where

|y| = `(n) and |r| = n2: Choose x ← Dn and s ← {0, 1}n2
uniformly at random.

Let br = M ′(x; r) and bs = M ′(x; s). If br 6= bs, output 1, else output 0.
Notice that bs equals f(x) except with probability 2−Ω(n). Now if r ←

{0, 1}t′(n) uniformly at random, then br also equals f(x), except with probability
2−Ω(n), so T outputs 1 with probability at most 2 · 2−Ω(n). On the other hand,
if r comes from G(U`(n)), then by the definition of A and the fact that A has
error probability at least 1/nc, we have that br 6= f(x) with probability at least
(1/2) · (1/nc), and thus T outputs 1 with probability at least (1/2) · (1/nc) −
2−Ω(n).

Thus T distinguishes the output of G(U`(n)) from Un2 with advantage 1/(2nc)−
3 · 2−Ω(n) ≥ 1/4nc, for infinitely many n. Moreover, T has running time
poly(n) + O(n2) = poly(n). This violates the pseudorandomness of G. ¤

We note that the above lemma also implies derandomization of all of BPP
by a standard padding argument.

Uniform Reductions 11

Our convention about feeding the distinguisher the seed means that every
pseudorandom generator gives rise to a hard-on-average function.

Lemma 2.4. If there is an algorithm A that runs in time t(·) (resp., computed
by a circuit of size t(·)) such that

Pr
x←{0,1}n

[
A(x) = G(x)|m(n)

]
>

1

2m(n)
+ ε(n)

for some m(·) and all n, then there is an algorithm that ε(·)-distinguishes G
in time t(·) + m(·) (resp., in size t(·)). Here G(x)|k denotes the first k bits of
G(x).

In particular, if there is a generator G that cannot be ε(·)-distinguished in
time t(·), then the first bit of G defines a language L such that (L, U) is not in
HeurBPTIME(t(n)−O(1), 1/2− ε(·)).

3. The Impagliazzo–Wigderson Proof

The main result of Impagliazzo and Wigderson [35] is the following.

Theorem 3.1 ([35]). If EXP 6= BPP, then BPP ⊆ i.o.-PseudoTIME
(
2nε)

for
every ε > 0.

In this section, we recall the proof of Theorem 3.1 and, in the process, analyze
it for larger time bounds.

The starting point for pseudorandom generation from Boolean functions
of high circuit complexity was the construction of Nisan and Wigderson [45],
which builds a pseudorandom generator from an average-case hard function.

Lemma 3.2 ([45]). For every nice time bound m(·) and every self-correctible
function f , there is a generator G with stretch m(·) and a constant d such that

◦ G(x) can be computed in time m(n)d on inputs x of length n, given oracle
access to f on inputs of length at most n.

◦ If G can be (1/t(n))-distinguished in size t(n) for some nice time bound
t(n) ≥ m(n), then f is in SIZE(t(nd)).

Quantitatively better results that improve the SIZE(t(nd)) to SIZE(t(n)d)
are now known [34, 54, 33, 50, 59], but we use the above for simplicity. The
self-correctible hard function f can be obtained from any hard function f by
taking a multilinear extension:

12 Trevisan & Vadhan

Lemma 3.3 ([9, 6]). For every function f , there is a self-correctible function
f ′ such that f reduces to f ′ in linear time, and f ′ can be computed in linear
space with oracle access to f .

The first new ingredient in [35] was the observation that the circuit com-
plexity conclusion of Lemma 3.2 can be replaced with a uniform conclusion
about learnability.

Definition 3.4. A function f is in LEARNmem(t(n)) if there is a probabilistic
t(n)-time algorithm A such that for every n, Afn(1n) outputs a circuit that
computes fn with probability at least 2/3.

Lemma 3.5 ([35]). For every nice time bound m(·) and every self-correctible
f , there is a generator G with stretch m(·) and a constant d such that

◦ G(x) can be computed in time m(n)d on inputs x of length n, given oracle
access to f on inputs of length at most n.

◦ If G can be (1/t(n))-distinguished in time t(n) for some nice time bound
t(n) ≥ m(n), then f is in LEARNmem(t(nd)).

The next new ingredient of [35] was showing that the learnability can
be turned into standard uniform easiness if the function f is downward self-
reducible.

Lemma 3.6 ([35]). For every downward self-reducible f and nice time bound
t(n), there is a constant d such that if f ∈ LEARNmem(t(n)), then f ∈
BPTIME(t(n)d).

The problem with this is that all downward self-reducible problems lie in
PSPACE, but we would like to start with a hard function in EXP. The way
this is overcome in [35] is to assume that EXP has polynomial-sized circuits
(for otherwise we’re already done by Lemma 3.2). Under this assumption, a
version of the Karp–Lipton Theorem, attributed to Albert Meyer, collapses
EXP to Σ2. Generalizing this to higher time bounds gives:

Lemma 3.7 (Meyer [37]). For every EXP-complete function f , there is a con-
stant d such that if f ∈ SIZE(t(n)) for a nice time bound t, then f ⊂ Σ2(t(n

d)).

Once EXP collapses to Σ2, we get a self-correctible and downward self-
reducible function from the following:

Uniform Reductions 13

Lemma 3.8 ([60, 55, 38, 35]). There is a self-correctible and downward self-
reducible Σ2-hard problem, namely, the Permanent.

Combining all of the above, we get the pseudorandom generator construc-
tion.

Theorem 3.9 (implicit in [35]). For every function f ∈ EXP, there is a con-
stant d such that if f /∈ ⋃

c BPTIME(t(t(nd)c)), then there is a generator G with
stretch t(·) that cannot be 1/t(·)c-distinguished in time t(·)c for any constant
c.

Proof sketch. Let f1 be a self-correctible EXP-complete problem (given
by Lemma 3.3), and let f2 be the Permanent. Use Lemma 3.2 to construct a
generator G1 with stretch t(·) from f1, and use Lemma 3.5 to construct a gener-
ator G2 with stretch t(·) from f2. Suppose for sake of contradiction that both G1

and G2 can be 1/t(·)c-distinguished in time t(·)c. Then f1 ∈ SIZE(t(poly(n))c)
and f2 ∈ LEARNmem(t(poly(n))c). (Here and throughout this proof, the poly(·)
refer to fixed polynomials that depend only on the function f , whereas by def-
inition c depends on the distinguishers to G1 and G2.) Since f2 is downward
self-reducible, Lemma 3.6 gives f2 ∈ BPTIME(t(poly(n))c). Since f1 is EXP-
complete, Lemma 3.7 gives f1 ∈ Σ2(t(poly(n))c). By Lemma 3.8, f1 reduces to
f2 in time t(poly(n))c, from which we conclude f1 ∈ BPTIME(t(t(poly(n))c)c) ⊆
BPTIME(t(t(poly(n))c′)), where the latter inclusion uses the fact that t is a nice
time bound. Since f1 is EXP-complete, we deduce that f ∈ BPTIME(t(t(poly(n))c′)),
contradicting the hypothesis. ¤

Combining this with Lemma 2.3, we get the following generalization of
Theorem 3.1.

Corollary 3.10 (implicit in [35]). If EXP 6⊂ ⋃
c BPTIME(t(t(nc))), then

BPP ⊆
⋃
c

i.o.-PseudoTIME(nc · 2t−1(n)).

Proof. We will show that BPTIME(nk) ⊆ i.o.-PseudoTIME(n2k · 2t−1(n))
for every constant k. Let t′(n) = t(n)2k. Then for any constant c, t′(t′(nc)) ≤
t(t(nc′)) for a constant c′, because t is a nice time bound. So EXP 6⊂ ⋃

c BPTIME(t′(t′(nc))).

By Theorem 3.9 and Lemma 2.3, BPTIME(n) ⊆ i.o.-PseudoTIME(n2·2(t′)−1(n2)).
By padding, BPTIME(nk) ⊆ i.o.-PseudoTIME(n2k · 2(t′)−1(n2k)). Noting that
(t′)−1(n2k) ≤ t−1(n), by the definition of t′, the proof is complete. ¤

14 Trevisan & Vadhan

Note that this only gives a deterministic simulation of BPP infinitely often.
In most previous works on derandomization, it is also possible to obtain a
simulation for all input lengths by assuming that EXP has a problem that is
hard for almost all input lengths, i.e. EXP is not in i.o.-BPTIME(t(n)) for
some t(·). However, one of the steps of the above proof, namely Lemma 3.6,
breaks down if we try to work with an infinitely-often hypothesis.

We also observe that a worst-case vs. average-case connection now follows
from Theorem 3.9 via Lemma 2.4.

Corollary 3.11. If EXP 6⊂ ⋃
c BPTIME(t(t(nc))), then

EXP× {U} 6⊂
⋃
c

HeurBPTIME(t(nc), 1/2− 1/t(nc)).

In Section 5, we improve this corollary in two ways. First, we eliminate the
composition of t (along with other quantitative improvements) to obtain a
result that matches best known nonuniform result. Second, we obtain a version
that says that if EXP has a problem that is worst-case hard for almost all
input lengths, then it has a problem that is average-case hard for almost all
input lengths (in contrast to the above, which only implies hardness “infinitely
often”).

4. A Self-Correctible and Downward Self-Reducible
PSPACE-complete Problem

The proof of Impagliazzo and Wigderson described in Section 3 makes use of
many previous results, and it is unclear how much of that machinery is re-
ally necessary for the result. By isolating the essential ingredients, we may
ultimately succeed in removing the deficiencies described in the introduction
and the previous section. In this section, we show that Valiant’s Theorem
and Toda’s Theorem, which were used in Lemma 3.8, are not necessary. In-
stead, we show that there is a self-correctible and downward self-reducible
complete problem for PSPACE. At first, this seems easy. The canonical
PSPACE-complete problem QBF is downward self-reducible, and Lemma 3.3
impliess that PSPACE also has a self-correctible complete problem. However,
the Impagliazzo–Wigderson proof appears to need a single complete problem
that has both properties simultaneously. In this section, we obtain such a
problem by a careful arithmetization of QBF, using the ideas underlying the
interactive proof system for PSPACE [41, 51].

Uniform Reductions 15

In what follows, Fn is the finite field of size 2n. It is known that a represen-
tation of this field (i.e. an irreducible polynomial of degree n over GF(2)) can
be found deterministically in time poly(n) [52].

Lemma 4.1. For some polynomials t and m, there is a collection of functions
{fn,i : (Fn)t(n,i) → Fn}n∈N,i≤m(n) with the following properties:

(i) (Self-Reducibility) For i < m(n), fn,i can be evaluated with oracle access
to fn,i+1 in time poly(n). fn,m(n) can be evaluated in time poly(n).

(ii) (PSPACE-hardness) For every language L in PSPACE ,with character-
istic function χL, there is a polynomial-time computable function g such
that for all x, g(x) = (1n, y) with y ∈ Ft(n,0)

n , and fn,0(y) = χL(x).

(iii) (Low Degree) fn,i is a polynomial of total degree at most poly(n).

Proof sketch. Consider the interactive proof system for PSPACE-complete
problem QBF, as presented in [53]. In the construction of the proof sys-
tem, a QBF instance φ = ∃x1∀x2 · · · ∃/∀xnψ(x1, . . . , xn) induces a sequence
f0, f1, . . . , fm (m = poly(n)) of multivariate polynomials over any sufficiently
large finite field, say Fn. Each fi has variables (x1, . . . , x`) for some ` = `(i) ≤
m. fm = fm(x1, . . . , xn) is an arithmetization of the propositional formula
ψ(x1, . . . , xn), and for i < n, fi(x1, . . . , x`) is defined in terms of fi+1 using one
of the following rules:

fi(x1, . . . , x`) = fi+1(x1, . . . , x`, 0) · fi+1(x1, . . . , x`, 1)

fi(x1, . . . , x`) = 1− (1− fi+1(x1, . . . , x`, 0)) · (1− fi+1(x1, . . . , x`, 1))

fi(x1, . . . , xk, . . . , x`) = xk · fi+1(x1, . . . , 1, . . . , x`) + (1− xk) · fi+1(x1, . . . , 0, . . . , x`).

(Which rule is used depends solely on i and n in an easily computable way. The
first corresponds to universal quantifiers, the second to existential quantifiers,
and the third is used to reduce the degree in variable xk.) The construction
provides the following guarantees:

◦ If fi depends on ` variables, then when x1 . . . , x` take on Boolean values,
fi(x1, . . . , x`) equals the truth value of φ with the first ` quantifiers re-
moved. f0 is a constant polynomial, and thus equals the truth value of φ
(with all quantifiers present).

◦ fm can be evaluated in time poly(|φ|).

16 Trevisan & Vadhan

◦ For i < m, fi can be evaluated in time poly(|φ|) given oracle access to
fi+1. (This follows from the three possible rules that define fi in terms
of fi+1.)

◦ Each fi is of total degree at most poly(|φ|).
However, this does not yet accomplish what we want since these polyno-

mials depend on φ, and not just its length. To solve this, we incorporate the
formula φ into the arithmetization (as done for PCP’s in, e.g. [5, 17] for differ-
ent reasons). We do this by defining a single “universal” quantified formula Φn

which has some free variables such that by setting these free variables appro-
priately, Φn can be specialized to any instance of QBF. Specifically, Φn has
2n2 free variables {yj,k, zj,k : 1 ≤ j, k ≤ n}, and is defined as follows:

Φn(y, z) = ∃x1∀x2 · · · ∃/∀xn

n∧
j=1

n∨

k=1

(yj,k ∧ xk) ∨ (zj,k ∧ ¬xk)

Now let φ be any instance of QBF. Without loss of generality, we may
assume φ is in the form φ = ∃x1∀x2 · · · ∃/∀xnψ(x1, . . . , xn), where ψ is a
CNF formula with at most n clauses. (These restrictions still preserve the
fact that QBF is a PSPACE-complete problem.) Define y(φ) and z(φ) as fol-
lows: yj,k(φ) = 1 iff the j’th clause of ψ contains xk, and zj,k(φ) = 1 iff the j’th
clause of ψ contains ¬xk. Then, by inspection,

(4.2) Φn(y(φ), z(φ)) ≡ φ

Now we define the polynomials fn,0, fn,1, . . . , fn,m (m = m(n)) to be the se-
quence of polynomials obtained by applying the above-described IP = PSPACE
construction to Φn. One difference is that, unlike a standard instance of QBF,
Φn has the free variables y = (yj,k), z = (zj,k). The effect of this is that each fn,i

will have variables (y, z, x1, . . . , x`) for some ` ≤ n (rather than just (x1, . . . , x`)
as in the original construction.) Analogous to the original construction, the re-
sulting sequence of polynomials has the following properties:

◦ If fn,i depends on ` of the x-variables, then when y, z, and x1 . . . , x` take
on Boolean values, fn,i(y, z, x1, . . . , x`) equals the truth value of Φn with
the first ` quantifiers removed. fn,0 depends on none of the x-variables,
and thus fn,0(y, z) = Φn(y, z) on Boolean inputs.

◦ fn,m(n) can be evaluated in time poly(n).

◦ fn,i can be computed in time poly(n) given oracle access to fn,i+1.

Uniform Reductions 17

◦ Each fn,i is of total degree at most poly(n).

This establishes the self-reducibility and low degree properties. The PSPACE-
hardness follows from the fact that fn,0(y, z) = Φn(y, z). ¤

Now, to deduce the final result, we simply combine the functions fn,i from
Lemma 4.1 into a single function F , with a careful ordering of input lengths
so as to turn the “upwards” reductions from fn,i to fn,i+1 into a downward
self-reduction for F .

Theorem 4.3. PSPACE has a complete problem that is both self-correctible
and downward self-reducible.

Proof. Let {fn,i : (Fn)t(n,i) → Fn}n∈N,i≤m(n) be the collection of functions
given by Lemma 4.1. We will now construct a single function F : {0, 1}∗ →
{0, 1}, so that each function fn,i corresponds to F restricted to some input
length h(n, i). We want to the function h(n, i) to satisfy (a) h(n, i) ≥ n ·
t(n, i) + log n, so that h(n, i) bits are sufficient to encode an input for fn,i from

Ft(n,i)
n as well specify one of the n output bits; (b) h(n, i) > h(n, i + 1), so that

the reduction from fn,i to fn,i+1 turns into a downward self-reduction for F ; and
(c) injectivity, so that we can relate computing Fh(n,i) on a random input to
computing fn,i on a random input. The following inductive definition achieves
these properties.

For i ≤ m(n), we define h(n, i) inductively as follows:

◦ h(1, m(1)) = t(1,m(1)).

◦ For n > 1, h(n,m(n)) = max{h(n− 1, 0) + 1, n · t(n,m(n)) + dlog ne}.
◦ For n > 1, i < m(n), h(n, i) = max{h(n, i + 1) + 1, n · t(n, i) + dlog ne}.
Note that h is injective, and h(n, i) ≤ poly(n). For i ≤ m(n), we define

Fh(n,i) to encode the function fn,i. Specifically, Fh(n,i)(x, j) is the j’th bit of
fn,i(x). Note that x takes n · t(n, i) bits to represent and j takes dlog ne bits,
so together they can indeed be represented by a string of length h(n, i).

For lengths k not of the form h(n, i), we define Fk to equal Fh where h =
max{h(n, i) : h(n, i) ≤ k}. (Thus, Fk will ignore the last k−h bits of its input.)
It can be verified that h can be computed in time poly(k).

The downward self-reducibility and PSPACE-hardness of F follow immedi-
ately from the corresponding properties in Lemma 4.1. The self-correctibility
follows from the fact that each fn,i is a multivariate polynomial of total degree
at most poly(n) over a field of size 2n. Specifically, the well-known self-corrector

18 Trevisan & Vadhan

for multivariate polynomials [38, 9] can be used to correctly compute such a
polynomial everywhere (with high probability) given oracle access to a function
that agrees with it in a 1− 1/nc fraction of positions for some constant c. (In
fact, there are now results that require much less agreement.) ¤

In addition to removing some steps from the Impagliazzo–Wigderson proof,
Theorem 4.3 has the consequence that we can obtain the “right” derandomiza-
tion of BPP from a uniform assumption about hard problems in PSPACE (as
opposed to P#P, as in [35, 15]).

Corollary 4.4. For every function f ∈ PSPACE, there is a constant d such
that if f /∈ ⋃

c BPTIME(t(nd)c), then there is a generator G with stretch t(·)
that cannot be 1/t(·)c-distinguished in time t(·)c for any constant c, and thus
BPP ⊆ ⋃

c i.o.-PseudoTIME(nc · 2t−1(n)).

Corollary 4.5. If PSPACE 6⊂ ⋂
ε>0 BPTIME(2nε

), then
BPP ⊆ ⋃

c i.o.-PseudoTIME(2logc n).

5. Uniform Hardness Amplification

In this section we will prove that if every problem in EXP has a BPTIME(t(n))
algorithm that solves the problem on a fraction 1/2 + 1/t(n) of the inputs of
length n, then EXP is contained in BPTIME(t(poly(n))).

We will prove our result in a series of steps. First, we observe that the
nonuniform worst-case to average-case reduction in [54] actually uses only a
“logarithmic amount of nonuniformity.” More precisely, the reduction can be
implemented by a probabilistic algorithm that first picks its randomness, then
receives a logarithmically long advice string (that depends only on the ran-
domness), and finally receives and solves the input. We formalize this slightly
nonstandard notion of nonuniform probabilistic computation as follows.

Definition 5.1 (nonuniform BPP). For functions t and a, we say that a lan-
guage L with characteristic function f is in BPTIME(t)//a if there is a t(n)-time
algorithm A and a function α such that for every n,

Pr
r∈{0,1}t(n)

[∀x ∈ {0, 1}nA(x, r, α(r)) = f(x)] ≥ 3

4
,

and |α(r)| = a(n) for |r| = t(n).

Using the above notation, we can restate the main result of Section 4 of
Sudan, Trevisan, and Vadhan [54] in the following way:

Uniform Reductions 19

Theorem 5.2 ([54]). There is a constant d such that for every boolean func-
tion f and nice time bound t, there is a boolean function f ′ such that

◦ f is reducible to f ′ (via a linear-time Karp reduction);

◦ f ′ is computable in linear space (and hence in E) given oracle access to
f (and all oracle queries are of size Θ(n));

◦ if (f ′, U) is in HeurBPTIME(t(n), 1/2 − 1/t(n)), then f ′ and f are in
BPTIME(t(n)d)//d log t(n).

Proof sketch. The truth table of the function f ′ is an encoding of the
truth table of the function f using the error-correcting code of Lemma 28 in
[54]. The code is computable in time polynomial in (and space logarithmic in)
the length of the truth table of f , and so if f has inputs of length n, then f ′ is
computable in time 2O(n) and space O(n) given the truth-table of f . (Or, equiv-
alently, given oracle access to f .) The input length of f ′ is O(n), and the con-
struction of the code is such that for every x there is a linear-time constructible
bit string x′ such that f(x) = f ′(x′). The decoding algorithm of Lemma 28
of [54] is such that a HeurBPTIME(t(n), 1/2 − 1/t(n)) algorithm for (f ′, U)
implies the existence of a probabilistic algorithm that runs in time poly(t(n))
and outputs a list of poly(t(n)) circuits such that with high probability one
of them computes f ′ (and hence, by the simple reduction, f) on all inputs.
O(log t(n)) bits of advice can then be used to choose a correct circuit from the
list, thus showing that f ′ (and f) are in BPTIME(poly(t(n)))//O(log t(n)). ¤

We note that some other methods for achieving strong average-case hard-
ness, such as derandomized versions of Yao’s XOR Lemma [30, 34, 57], appear
to require significantly more nonuniformity.

Finally, we show that certain EXP-complete or PSPACE-complete func-
tions can be in BPTIME(poly(t(n)))//O(log(t(n))) only if they are also in
BPTIME(t(poly(n))). This will be a consequence of the fact that EXP-complete
and PSPACE-complete problems have instance checkers in the sense of Blum
and Kannan [12].

Definition 5.3 (instance checker). An instance checker C for a boolean func-
tion f is a polynomial-time probabilistic oracle machine whose output is in
{0, 1, fail} such that

◦ for all inputs x, Pr[Cf (x) = f(x)] = 1.

◦ for all inputs x, and all oracles f ′, then Pr[Cf ′(x) /∈ {f(x), fail}] ≤ 1/4;

20 Trevisan & Vadhan

Intuitively, if f has an instance checker, then machine C, given an input x and
an oracle f ′ that purports to compute f , with high probability will be able
to verify the validity of the oracle on x by comparing f ′(x) to Cf ′(x). This
definition is slightly different from the original definition of [12], but is easily
seen to be equivalent and is more convenient for our purposes.

As observed in [5], the proof of MIP = NEXP in [5] implies the existence
of instance checkers for all EXP-complete problems, and the proof of IP =
PSPACE in [41, 51] implies the existence of instance checkers for all PSPACE-
complete and P#P-complete problems.

Theorem 5.4 ([5],[41, 51]). Every EXP-complete problem, every PSPACE-
complete problem, and every P#P-complete problem has an instance checker.
Moreover, there are EXP-complete problems, PSPACE-complete problems, and
P#P-complete problems for which the instance checker C only makes oracle
queries of length exactly `(n) on inputs of length n for some polynomial `.

The MIP characterization of EXP, which is essentially equivalent to the ex-
istence of instance checkers for EXP, has been in complexity theory before, e.g.
in [5, 6, 14, 61]. Our application of it to worst-case/average-case connections,
however, seems new.

Lemma 5.5. Let f ∈ BPTIME(t)//a be a problem admitting an instance
checker that makes queries of length exactly `(n) on inputs of length n. Then
f ∈ BPTIME(poly(t(`(n))) · 2a(`(n))).

Proof. Let C be the instance checker, let A(·, ·, ·) be the BPTIME(t)//a al-
gorithm for f and let α be the advice function. We reduce the error probability
of the instance checker C to 2−a(`(n))−3 by taking independent repetitions, at
the cost of increasing its running time to poly(t(n)) · a(`(n)).

We now describe a BPTIME(poly(t(`(n))) · 2a(`(n))) algorithm for f . On
input x of length n, we pick r at random, and run CA(·,r,s)(x) for all 2a(`(n))

possible advice strings s for the computation of A on inputs of length `(n).
The first time CA(·,r,s)(x) outputs a value σ other than fail, we output σ. If
CA(·,r,s)(x) outputs fail for all s, we output fail.

We now bound the probability that the above algorithm outputs either fail
or σ 6= f(x). By the error reduction of our instance checker for every fixed r
and s, the probability that CA(·,r,s)(x) /∈ {fail, f(x)} is at most 2−a(`(n))−3.
Thus the probability that the above algorithm’s output is not in {fail, f(x)}
is at most 2a(`(n)) · 2−a(`(n))−3 = 1/8.

Uniform Reductions 21

By the definition of BPTIME(t)//a, A(·, r, α(r)) correctly computes f on
inputs of length `(n) with probability at least 3/4 over the choice of r. If this
happens, then CA(·,r,α(r))(x) = f(x) by the definition of instance checker. Thus,
the above algorithm outputs fail with probability at most 1/4.

Therefore the probability that the above algorithm doesn’t output f(x) is
at most 1/4 + 1/8 = 3/8, so we indeed have a bounded-error algorithm. The
running time can be verified by inspection. ¤
Combining Theorem 5.4 with Lemma 5.5, we get:

Proposition 5.6. There is an EXP-complete function f and a constant d
such that if f ∈ BPTIME(t(n))// log t(n), then f ∈ BPTIME(t(nd)).

This is analogous to the fact that NP ⊆ P/log ⇒ NP = P, which makes use of
the equivalence of search and decision for NP-complete problems [37]. For our
result, we instead used the instance-checkability of EXP-complete problems.

We can now put together all the results, and prove our worst-case to average-
case reduction in the uniform setting.

Theorem 5.7. For every function f ∈ EXP, there is a constant d such that if
f /∈ BPTIME(t(nd)) for a nice time bound t, then there is a function f ′ ∈ EXP
such that

(f ′, U) /∈ HeurBPTIME(t(n), 1/2− 1/t(n)).

Proof. Let g be the EXP-complete problem from Proposition 5.6. Let
f ′ be the function obtained by applying Theorem 5.2 to g. If (f ′, U) ∈
HeurBPTIME(t(n), 1/2−1/t(n)), then g ∈ BPTIME(poly(t(n)))//O(log t(n)),
by Theorem 5.2. Proposition 5.6 then implies that g ∈ BPTIME(poly(t(n))).
By the EXP-completeness of g, we deduce that f ∈ BPTIME(poly(t(poly(n)))) =
BPTIME(t(poly(n))). ¤

Theorem 5.7 improves on what we were able to obtain using the tech-
niques of [35], namely Corollary 3.11, in that we no longer incur a compo-
sition t(t(poly(n))) in the conclusion. Still, the above theorem does not match
what is known in the nonuniform setting. For example, we should be able to
prove that E 6⊆ BPTIME(2o(n)) implies E 6⊆ HeurBPTIME(2o(n), 1/2−1/2o(n)).
Obtaining such finer worst-case to average-case connections in the nonuniform
setting received significant attention in the past few years [30, 34, 54] and was
essential in obtaining P = BPP under worst-case assumptions [34]. To obtain
such a result for the uniform setting, we observe that results on probabilisti-
cally checkable proofs imply the following strengthening of Theorem 5.4 for E.

22 Trevisan & Vadhan

Theorem 5.8 ([7]). There is a problem complete for E under linear-time re-
ductions that has an instance checker that only makes oracle queries of length
exactly `(n) = O(n) on inputs of length n.

Proof. We begin with a paddable language L that is complete for E under
linear-time reductions, e.g. L = {x : the universal TM accepts x within 2|x| steps},
and let f be its characteristic function. The work of Babai, Fortnow, Levin,
and Szegedy [7] gives a probabilistic polynomial-time ‘verifier’ V and a (deter-
ministic) prover P running in time 2cn for a constant c such that for every x of
length n and every b ∈ {0, 1},

1. If f(x) = b and we set π = P (x, b), then Pr [V π(x, b) = 1] = 1.

2. If f(x) 6= b, then for every π∗, Pr
[
V π∗(x, b) = 1

] ≤ 1/4.

The actual statements of the results in [7] refer to a verifier that checks ‘theorem-
proof candidates’ (t, p) once they are encoded to allow efficient probabilistic
verification. In their formulation, the verifier is given t and runs in time
polylog(|t|, |p|) and the prover (constructing the encoded proof) is given t and p
and runs in time poly(t, p). Above, we apply this to the theorem t = [f(x) = b]
of length n+1 together with its corresponding proof p0 of length 2O(n) (namely
the computation of the universal TM). The construction of [7] provides t to
the verifier as an oracle in an error-correcting format, but here our verifier has
enough time to read t in its entirety and so can simulate the theorem-oracle
on its own. Our prover P above will compute the original proof p0 and then
encode it via the construction of [7].

Now we consider the function f ′(x, b, i) = P (x, b)i. By definition, the oracle
queries of the verifier V to the proof P (x, b) can be replaced with oracle queries
to the function f ′(x, b, i), where |i| = O(|x|) (since P (x, b) only has enough
time to construct a proof of length 2O(|x|). In addition, f ′ is in E, so f ′ can be
reduced to f in linear time, so V ’s queries to P (x, b) can actually be replaced
with queries to f itself. This gives us the checker C desired: given any oracle
g and input x, Cg(x) runs V g(x, g(x)) and outputs g(x) if this accepts, and
fail otherwise. The queries of C are all of length O(|x|) and can be made the
exactly the same length by padding. ¤

Using this instance-checker in the proof of Theorem 5.7, we obtain:

Theorem 5.9. For every function f ∈ E, there is a constant d such that if
f /∈ BPTIME(t(n)d) for a nice time bound t, then there is a function f ′ ∈ E
such that

(f ′, U) /∈ HeurBPTIME(t(n), 1/2− 1/t(n)).

Uniform Reductions 23

Corollary 5.10. If E 6⊂ ⋂
ε>0 BPTIME(2εn), then

E× {U} 6⊂ ∩ε>0HeurBPTIME(2εn, 1/2− 1/2εn).

Finally, we observe that our reductions work on an input-length by input-
length basis. That is, if every function in E can be computed on average for
infinitely many input lengths, then every function in E can be computed in the
worst-case for infinitely many input lengths. Equivalently, given a function in
E that is worst-case hard for all but finitely many n, we can obtain a function
in E that is average-case hard for all but finitely many n.

Theorem 5.11. For every function f ∈ E, there is a constant d such that if
f /∈ i.o.-BPTIME(t(n)d) for a nice time bound t, then there is a function f ′ ∈ E
such that

(f ′, U) /∈ i.o.-HeurBPTIME(t(n), 1/2− 1/t(n)).

Recall that the techniques of [35] did not provide this kind of result (and
instead only gave us Corollary 3.11), because the proof of Lemma 3.6 does not
work on an input-length by input-length basis.

6. Black-Box Reductions

In this section, we argue that uniform, black-box reductions cannot be used
to prove the pseudorandom generator constructions and the worst-case-to-
average-case reductions given in [35] and this paper. We suspect that these
negative results can be extended to actually show that the constructions are
nonrelativizing. The fact that we are using reductions that cannot be black-
box suggests that significant and possibly unexpected results could come out
of further studies of uniform reductions in this field.

Let us briefly explain what we mean by black-box reductions, and why
uniform black-box reductions have very strong limitations. Suppose we want
to construct a pseudorandom generator Gf : {0, 1}n → {0, 1}t(n) based on a
hard function f ; our approach (following [45] and most subsequent papers on
the subject) could be to show that given a distinguishing procedure D that
distinguishes the output of Gf from the uniform distribution, it is possible to
construct an oracle procedure P , which may be nonuniform (and indeed typ-
ically is), such that PD computes f . Now, if f is hard to compute and P is
efficient, it cannot be the case that D is efficient. So no efficient procedure dis-
tinguishes the output of Gf from uniform, and G is a pseudorandom generator.
The oracle procedure P implements the reduction from the task of breaking
the generator to the task of computing the hard function f . More formally, we

24 Trevisan & Vadhan

would have the following notion of black-box construction of a pseudorandom
generator from a hard predicate.

Definition 6.1 (Black-Box Pseudorandom Generator Construction). Let G() :
{0, 1}d → {0, 1}m be an oracle algorithm that expects an oracle of the form
f : {0, 1}` → {0, 1}.

We say that G is a black-box generator construction with distinguishing
parameter ε, reduction time t, and reduction advice a if there is an oracle
algorithm R (the reduction) that runs in time at most t such that for every
function f : {0, 1}` → {0, 1} and every function D : {0, 1}m → D, if

Pr
[
D(Gf (Un)) = 1

]− Pr [D(Um) = 1] ≥ ε,

then there exists an advice function A : {0, 1}r → {0, 1}a such that for every
x,

Pr
[
RD(x, Ur, A(Ur)) = f(x)

] ≥ 3

4
We say that G is uniform if a = 0.

In the taxonomy of [48], this definition captures a “fully black-box reduc-
tion,” because both the construction (f 7→ Gf) and the proof of correctness
(D 7→ RD) are “black box” in their use of the hard function f and adversary
D, respectively. (Unlike the notion discussed in [48], we do not give R oracle
access to f , since we are in a setting where it is infeasible for the adversary to
compute the function f .)

To make sense of the definition, note that if such a construction exists,
and f is not solvable in time T using a bits of advice, then the output of the
generator fools every distinguisher that uses time at most T/t, up to an error
of ε.

As shown in [56], pseudorandom generator constructions having this type of
black-box analysis also have very nice information-theoretic properties. Specif-
ically, they yield randomness extractors [46]. In particular, Lemma 3 of [56]
states that construction of [34] is a pseudorandom generator that meets the
above definition, and Section 2.3 of [56] shows how to view such a construction
as an extractor.

In order to state this connection, we first recall the definition of extractors.
A random variable X ranging over {0, 1}n is said to be a k-source if, for every
a ∈ {0, 1}n we have Pr [X = a] ≤ 1/2k. Two random variables X, Y ranging
over {0, 1}m are said to be ε-close if for every function T : {0, 1}m → {0, 1} we
have

|Pr [T (X) = 1]− Pr [T (Y) = 1] | ≤ ε

Uniform Reductions 25

A function E : {0, 1}n×{0, 1}d → Bm is a (k, ε)-extractor if, for every k-source
X, E(X, Ud) is ε-close to Um.

Suppose that we have black-box construction as in Definition 6.1. Define
the function E : {0, 1}2`×{0, 1}d → {0, 1}m as follows: E(x, z) = Gfx(z), where
fx : {0, 1}` → {0, 1} is the function whose truth-table is the string x ∈ {0, 1}2`

.
Section 2.3 in [56] shows that such a function is necessarily a (k, 2ε)-extractor,
where k = a + log 1/ε. (See also [62, 49].)

It follows immediately from the definition that a (k, 2ε)-extractor must sat-
isfy 2k+d ≥ (1 − 2ε) · 2m. Taking ε = 1/4, we see that the advice must satisfy
a ≥ m − d − 3. In particular, we cannot have a uniform (that is, a = 0) con-
struction of a PRG that stretches by more 3 bits, and in fact the advice must
grow linearly with the stretch. In fact, Radhakrishnan and Ta-Shma [47] have
proven a stronger bound on extractors, showing that k+d ≥ m+2 log 1/ε−O(1)
(provided k ≤ n−O(1), d ≤ m−2), which implies that we need advice that also
grows as the error goes to zero. Specifically, we have a ≥ m−d+log(1/ε)−O(1)
(provided a + log(1/ε) < 2` − 1 and d ≤ m− 2). Summarizing, we have:

Proposition 6.2. Let G() : {0, 1}d → {0, 1}m be a black-box generator con-
struction from functions f : {0, 1}` → {0, 1}, with distinguishing parameter ε,
reduction advice a. Then

◦ a ≥ m− d− 3, provided ε ≤ 1/4, and

◦ a ≥ m−d+log(1/ε)−O(1), provided d ≤ m−2 and a+log(1/ε) < 2`−c
for a universal constant c.

We can do a similar argument for worst-case to average-case reductions. A
black-box worst-case to average-case reduction is essentially what is called a
“nice code” in [54]. We give a precise definition below.

Definition 6.3 (Black-box Worst-Case to Average-Case Reduction). A black-
box worst-case to average-case reduction with advantage parameter ε, reduc-
tion time t, and reduction advice a, is transformation H that maps functions
f : {0, 1}n → {0, 1} into functions f ′ : {0, 1}n′ → {0, 1} and a probabilis-
tic oracle randomized algorithm R with advice such that for every function
P : {0, 1}n′ → {0, 1}, if

Pr[P (Un′) = f ′(Un′)] ≥ 1

2
+ ε,

then there is an advice function A : {0, 1}r → {0, 1}a such that for every x,

Pr[RP (x, Ur, A(Ur)) = f(x)] ≥ 3

4

26 Trevisan & Vadhan

It is easy to see (cf. [62]) that H can be thought of as an error-correcting
code C : {0, 1}N → {0, 1}N ′

, where N = 2n and N ′ = 2n′ , that is (1/2− ε, 2a)-
list-decodable, meaning that for every string z ∈ {0, 1}N ′

there are at most
2a strings w ∈ {0, 1}N for which C(w) and z differ in at most (1/2 − ε) · N ′

coordinates. If a = 0, then H is uniquely decodable from a 1/2 − ε fraction
of error, something that is known to be impossible if 1/2 − ε > 1/4 and n is
large enough. Specifically, the Plotkin bound says that a code that is uniquely
decodable from (1 + δ)/4 errors has message length N ≤ 1 + 1/δ. In addition,
it is known that for a code to be (1/2 − ε, L)-list decodable, we must have
|L| = Ω(1/ε2) [10, 27] (provided N ≥ c · (1/ε2) · log(1/ε) for a certain constant
c) and so a ≥ 2 log 1/ε−O(1). Note that the black-box worst-case to average-
case reduction of [54] essentially matches this bound, achieving a = O(log 1/ε).
Summarizing, we have:

Proposition 6.4. Let H be a black-box worst-case to average-case reduction
mapping functions f : {0, 1}n → {0, 1} into functions H(f) : {0, 1}n′ → {0, 1}
advantage parameter ε and reduction advice a. Then,

◦ a > 0, provided that ε < (1− 1/(2n − 1))/4.

◦ a ≥ 2 log(1/ε)−O(1), provided that n ≥ c log(1/ε), where c is a universal
constant.

7. Conclusions and Subsequent Work

The most immediate open problem is whether there is a “high-end” analogue
of the Impagliazzo–Wigderson Theorem (Thm. 3.1). That is, can we get
a polynomial-time or quasi-polynomial-time deterministic simulation of BPP
from a uniform assumption on E or EXP, such as E 6⊆ ∩ε>0BPTIME(2εn) or
EXP 6⊆ ⋂

ε>0 BPTIME(2nε
)? More generally, can we remove the t(t(n)) com-

position from Corollary 3.10? Recall that we have shown how to do this if
EXP is replaced by PSPACE (Corollary 4.4), or if we are interested in only
average-case hardness instead of derandomization (Thms. 5.7 and 5.9). By
Lemma 3.5, it would suffice to show that there is an EXP-complete function
f such that if f ∈ LEARNmem(t(n)) then f ∈ BPTIME(t(poly(n))). Perhaps
instance-checkability and other properties relating to the PCP characterization
of EXP will help here.

Subsequent to our work, Gutfreund, Shaltiel, and Ta-Shma [28] obtained
a “high-end,” uniform derandomization of AM: if E 6⊆ ∩ε>0AMTIME(2εn),
then AM ⊆ i.o.-PseudoNP. They also utilize the instance-checkability of E,

Uniform Reductions 27

together with a special property of the Miltersen–Vinodchandran [43] hitting-
set generator construction. Interestingly, no “low-end” version of their result
(i.e. one based on EXP 6= AM) is known.

Instance checkability of EXP was also recently used by Barak [8] to es-
tablish a hierarchy theorem for probabilistic machines with a small amount of
advice. The advice requirement in Barak’s result was subsequently improved by
Fortnow and Santhanam [21] by making use of our construction of a PSPACE-
complete self-correctible and downward self-reducible problem. More recent
improvements have reduced the amount of advice and extended the techniques
to other classes [25, 22, 42]. Some of the improved results use instance-checkers
(see [42]). Our PSPACE-complete problem was also used by Allender et al. [2]
to prove that the set of strings with high space-bounded Kolmogrov complexity
is complete for PSPACE under zero-error randomized Cook reductions.

Our observation in Section 6 that the connections to extractors and list-
decodable codes could be used to prove negative results about black-box pseu-
dorandom generator constructions and hardness amplification was taken further
by Viola [62] and Lu, Tsai, and Wu [40], who used these connections to prove
negative results about doing such constructions in low complexity classes, such
as the polynomial-time hierarchy.

Acknowledgements

A preliminary version of this paper appeared in CCC ‘02 [58].

We thank Lance Fortnow, Oded Goldreich, Russell Impagliazzo, Valentine
Kabanets, Madhu Sudan, Avi Wigderson, and the anonymous CCC and CC
reviewers for helpful comments and discussions.

L.T. began this work at Columbia University and completed it at U.C.
Berkeley, supported by a Sloan Research Fellowship and the NSF Career award
grants CCR-9984703, CCR-0406156, and the US-Israel BSF grant 2002246.

S.V. began this work at MIT and the Institute for Advanced Study, while
supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship,
and completed it at Harvard University, while supported by NSF grant CCF-
0133096, US-Israel BSF grant 2002246, and ONR grant N00014-04-1-0478.

References

[1] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an
oracle. Journal of Computer and System Sciences, 39:21–50, 1989.

28 Trevisan & Vadhan

[2] Eric Allender, Harry Buhrman, Michal Kouck’y, Dieter van Melkebeek,
and Detlef Ronneburger. Power from random strings. In Proceedings of
the 43rd IEEE Symposium on Foundations of Computer Science, pages
669–678, 2002.

[3] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim.
Worst-case hardness suffices for derandomization: A new method for
hardness-randomness trade-offs. In Pierpaolo Degano, Robert Gorrieri,
and Alberto Marchetti-Spaccamela, editors, Automata, Languages and
Programming, 24th International Colloquium, volume 1256 of Lecture
Notes in Computer Science, pages 177–187, Bologna, Italy, 7–11 July 1997.
Springer-Verlag.

[4] Alexander E. Andreev, Andrea E. F. Clementi, José D. P. Rolim, and
Luca Trevisan. Weak random sources, hitting sets, and BPP simulations.
SIAM Journal on Computing, 28(6):2103–2116 (electronic), 1999.

[5] László Babai, Lance Fortnow, and Carsten Lund. Nondeterministic ex-
ponential time has two-prover interactive protocols. Computational Com-
plexity, 1(1):3–40, 1991.

[6] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has
subexponential time simulations unless EXPTIME has publishable proofs.
Computational Complexity, 3(4):307–318, 1993.

[7] László Babai, Lance Fortnow, Leonid Levin, and Mario Szegedy. Check-
ing computations in polylogarithmic time. In Proceedings of the Twenty
Third Annual ACM Symposium on Theory of Computing, pages 21–31,
New Orleans, Louisiana, 6–8 May 1991.

[8] Boaz Barak. A probabilistic-time hierarchy theorem for “slightly non-
uniform” algorithms. In Randomization and approximation techniques in
computer science, volume 2483 of Lecture Notes in Comput. Sci., pages
194–208. Springer, Berlin, 2002.

[9] Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle
queries. In 7th Annual Symposium on Theoretical Aspects of Computer
Science, volume 415 of Lecture Notes in Computer Science, pages 37–48,
Rouen, France, 22–24 February 1990. Springer.

[10] Volodia M. Blinovsky. Bounds for codes in the case of list decoding of
finite volume. Problems of Information Transmission, 22(1):7–19, 1986.

Uniform Reductions 29

[11] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with appli-
cations to numerical problems. Journal of Computer and System Sciences,
47(3):549–595, 1993.

[12] Manuel Blum and Sampath Kannan. Designing programs that check their
work. Journal of the ACM, 42(1):269–291, 1995.

[13] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM Journal on Computing, 13(4):850–
864, November 1984.

[14] H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet. Using
autoreducibility to separate complexity classes. SIAM Journal on Com-
puting, 29:1497–1520, 2000.

[15] Jin-Yi Cai, Ajay Nerurkar, and D. Sivakumar. Hardness and hierarchy the-
orems for probabilistic quasi-polynomial time. In Annual ACM Symposium
on Theory of Computing (Atlanta, GA, 1999), pages 726–735 (electronic).
ACM, New York, 1999.

[16] Jin-Yi Cai, A. Pavan, and D. Sivakumar. On the hardness of the perma-
nent. In 16th International Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Computer Science, Trier, Germany, March 4–6
1999. Springer-Verlag.

[17] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario
Szegedy. Interactive proofs and the hardness of approximating cliques.
Journal of the ACM, 43(2):268–292, 1996.

[18] J. Feigenbaum, S. Kannan, and N. Nisan. Lower bounds on random-self-
reducibility. In Proceedings of the 5th IEEE Conference on Structure in
Complexity Theory, pages 100–109, 1990.

[19] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of com-
plete sets. SIAM Journal on Computing, 22(5):994–1005, October 1993.

[20] Lance Fortnow. Comparing notions of full derandomization. In Proceedings
of the Sixteenth Annual Conference on Computational Complexity, pages
28–34. IEEE, June 18–21 2001.

[21] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for proba-
bilistic polynomial time. In Proceedings of the 45th IEEE Symposium on
Foundations of Computer Science, pages 316–324, 2004.

30 Trevisan & Vadhan

[22] Lance Fortnow, Rahul Santhanam, and Luca Trevisan. Hierarchies for
semantic classes. In Proceedings of the 37th ACM Symposium on Theory
of Computing, pages 348–355, 2005.

[23] Oded Goldreich. On promise problems (in memory of Shimon Even, 1935–
2004). Technical Report TR05-018, Electronic Colloquium on Computa-
tional Complexity, 2005. See June 2005 revision, available from author’s
homepage.

[24] Oded Goldreich, Dana Ron, and Madhu Sudan. Chinese remaindering
with errors. In Proceedings of the 31st ACM Symposium on Theory of
Computing, pages 225–234, 1999.

[25] Oded Goldreich, Madhu Sudan, and Luca Trevisan. From logarithmic
advice to single-bit advice. Technical Report TR04-093, ECCC, 2004.

[26] Oded Goldreich and David Zuckerman. Another proof that BPP ⊆
PH (and more). Electronic Colloquium on Computational Com-
plexity Technical Report TR97-045, September 1997. http://

www.eccc.uni-trier.de/eccc.

[27] Venkatesan Guruswami and Salil Vadhan. A lower bound on list size
for list decoding. In Chandra Chekuri, Klaus Jansen, José D. P. Rolim,
and Luca Trevisan, editors, Proceedings of the 8th International Workshop
on Randomization and Computation (RANDOM ‘05), number 3624 in
Lecture Notes in Computer Science, pages 318–329, Berkeley, CA, August
2005. Springer.

[28] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hard-
ness versus randomness tradeoffs for Arthur-Merlin games. Computational
Complexity, 12(3-4):85–130, 2003.

[29] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364–1396 (electronic), 1999.

[30] Russell Impagliazzo. Hard-core distributions for somewhat hard problems.
In 36th Annual Symposium on Foundations of Computer Science, pages
538–545, Milwaukee, Wisconsin, 23–25 October 1995. IEEE.

[31] Russell Impagliazzo. A personal view of average-case complexity. In Pro-
ceedings of the 10th IEEE Conference on Structure in Complexity Theory,
pages 134–147, 1995.

Uniform Reductions 31

[32] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search
of an easy witness: exponential time vs. probabilistic polynomial time.
Journal of Computer and System Sciences, 65(4):672–694, 2002.

[33] Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. Extractors and
pseudo-random generators with optimal seed length. In Proceedings of the
Thirty-second Annual ACM Symposium on Theory of Computing, pages
1–10, Portland, Oregon, May 2000. See also ECCC TR00-009.

[34] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires expo-
nential circuits: Derandomizing the XOR lemma. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages
220–229, El Paso, Texas, 4–6 May 1997.

[35] Russell Impagliazzo and Avi Wigderson. Randomness vs. time: De-
randomization under a uniform assumption. In 36th Annual Symposium
on Foundations of Computer Science, Palo Alto, CA, November 8–11 1998.
IEEE.

[36] Valentine Kabanets. Easiness assumptions and hardness tests: trading
time for zero error. Journal of Computer and System Sciences, 63(2):236–
252, 2001.

[37] Richard M. Karp and Richard J. Lipton. Turing machines that take
advice. L’Enseignement Mathématique. Revue Internationale. IIe Série,
28(3-4):191–209, 1982.

[38] Richard Lipton. New directions in testing. In Proceedings of DIMACS
Workshop on Distributed Computing and Cryptography, 1989.

[39] Chi-Jen Lu. Derandomizing Arthur-Merlin games under uniform assump-
tions. In Algorithms and computation (Taipei, 2000), pages 302–312.
Springer, Berlin, 2000.

[40] Chi-Jen Lu, Shi-Chun Tsai, and Hsin-Lung Wu. On the complexity of
hardness amplification. In Proceedings of the 20th Annual IEEE Confer-
ence on Computational Complexity (CCC ‘05), pages 170–182, San Jose,
11–15 June 2005. IEEE.

[41] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. Journal of the ACM,
39(4):859–868, October 1992.

32 Trevisan & Vadhan

[42] D. van Melkebeek and K. Pervyshev. A generic time hierarchy for semantic
models with one bit of advice. In Proceedings of the 21st Annual IEEE
Conference on Computational Complexity, pages 129–142, 2006.

[43] Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing Arthur-
Merlin games using hitting sets. In 40th Annual Symposium on Founda-
tions of Computer Science (New York, 1999), pages 71–80. IEEE Com-
puter Soc., Los Alamitos, CA, 1999.

[44] Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. Super-
polynomial versus half-exponential circuit size in the exponential hier-
archy. In Computing and combinatorics (Tokyo, 1999), pages 210–220.
Springer, Berlin, 1999.

[45] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of
Computer and System Sciences, 49(2):149–167, October 1994.

[46] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal
of Computer and System Sciences, 52(1):43–52, February 1996.

[47] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers,
extractors, and depth-two superconcentrators. SIAM Journal on Discrete
Mathematics, 13(1):2–24 (electronic), 2000.

[48] Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibil-
ity between cryptographic primitives. In M. Naor, editor, Proceedings of
the First Theory of Cryptography Conference (TCC ‘04), volume 2951 of
Lecture Notes in Computer Science, pages 1–20. Springer-Verlag, 19–21
February 2004.

[49] Ronen Shaltiel. Recent developments in extractors. In G. Paun, G. Rozen-
berg, and A. Salomaa, editors, Current Trends in Theoretical Computer
Science, volume 1: Algorithms and Complexity. World Scientific, 2004.

[50] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-
entropies and a new pseudo-random generator. Journal of the ACM,
52(2):172–216, 2005.

[51] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, October
1992.

[52] Victor Shoup. New algorithms for finding irreducible polynomials over
finite fields. Mathematics of Computation, 54(189):435–447, 1990.

Uniform Reductions 33

[53] Michael Sipser. Introduction to the Theory of Computation. Course Tech-
nology, 2nd edition, 2005.

[54] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom genera-
tors without the XOR lemma. Journal of Computer and System Sciences,
62:236–266, 2001.

[55] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM
Journal on Computing, 20(5):865–877, 1991.

[56] Luca Trevisan. Extractors and pseudorandom generators. Journal of the
ACM, 48(4):860–879 (electronic), 2001.

[57] Luca Trevisan. List decoding using the XOR lemma. In Proceedings of
the 44th IEEE Symposium on Foundations of Computer Science, pages
126–135, Cambridge, MA, October 2003.

[58] Luca Trevisan and Salil Vadhan. Pseudorandomness and average-case
complexity via uniform reductions. In Proceedings of the 17th Annual
IEEE Conference on Computational Complexity (CCC ‘02), pages 129–
138, Montréal, CA, May 2002. IEEE.

[59] Christopher Umans. Pseudo-random generators for all hardnesses. Journal
of Computer and System Sciences, 67(2):419–440, 2003.

[60] L. G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189–201, 1979.

[61] N. V. Vinodchandran. AMexp 6⊆ (NP∩ coNP)/poly. Information Process-
ing Letters, 89(1):43–47, 2004.

[62] Emanuele Viola. The complexity of constructing pseudorandom generators
from hard functions. Computational Complexity, 13(3-4):147–188, 2004.

[63] Andrew C. Yao. Theory and applications of trapdoor functions (extended
abstract). In 23rd Annual Symposium on Foundations of Computer Sci-
ence, pages 80–91, Chicago, Illinois, 3–5 November 1982. IEEE.

Manuscript received December 23, 2005

34 Trevisan & Vadhan

Luca Trevisan
Computer Science Division
University of California, Berkeley
luca@eecs.berkeley.edu

Salil Vadhan
School of Engineering and Applied Sci-

ences
Harvard University
salil@eecs.harvard.edu

