
Extractors: Optimal up to Constant Factors

Chi-Jen Lu
Institute of Information Science,
Academia Sinica, Taipei, Taiwan.

cjlu@iis.sinica.edu.tw

Omer Reingold
∗

AT&T Labs - Research.

omer@research.att.com

Salil Vadhan
†

Harvard University.

salil@eecs.harvard.edu.

Avi Wigderson
‡

Institute for Advanced Study, Princeton and the
Hebrew University , Jerusalem.

avi@ias.edu

ABSTRACT
This paper provides the first explicit construction of extrac-
tors which are simultaneously optimal up to constant fac-
tors in both seed length and output length. More precisely,
for every n, k, our extractor uses a random seed of length
O(log n) to transform any random source on n bits with
(min-)entropy k, into a distribution on (1 − α)k bits that
is ε-close to uniform. Here α and ε can be taken to be any
positive constants. (In fact, ε can be almost polynomially
small).

Our improvements are obtained via three new techniques,
each of which may be of independent interest. The first
is a general construction of mergers [22] from locally de-
codable error-correcting codes. The second introduces new
condensers that have constant seed length (and retain a con-
stant fraction of the min-entropy in the random source).
The third is a way to augment the “win-win repeated con-
densing” paradigm of [17] with error reduction techniques
like [15] so that the our constant seed-length condensers can
be used without error accumulation.

∗Address: AT&T Labs - Research, Room A201, 180 Park
Avenue, Bldg. 103, Florham Park, NJ, 07932, USA. Part of
this research was performed while visiting the Institute for
Advanced Study, Princeton, NJ.
†Address: Harvard University, Division of Engineer-
ing and Applied Sciences, Maxwell Dworkin 337, 33
Oxford Street Cambridge, MA 02138, USA. URL:
http://www.eecs.harvard.edu/~salil. Supported by NSF
grant CCR-0133096 and a Sloan Research Fellowship.
‡Address: Institute for Advanced Study, School of Math.,
Einstein Drive, Princeton, NJ 08540.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Random number gen-
eration, Probabilistic algorithms; G.2 [Discrete Mathe-

matics]: Combinatorics, Graph Theory; F.2 [Analysis of

Algorithms and Problem Complexity]: General; H.1.1
[Systems and Information Theory]: Information theory

General Terms
Theory, Algorithms

Keywords
Randomness Extractors, Pseudorandomness, Condensers, Merg-
ers, Locally Decodable Error-Correcting Codes

1. INTRODUCTION
Extractors are functions that extract almost-uniform bits

from sources of biased and correlated bits. Since their in-
troduction by Nisan and Zuckerman [14], extractors have
played a fundamental and unifying role in the theory of
pseudorandomness. In particular, it has been discovered
that they are intimately related to a number of other impor-
tant and widely studied objects, such as hash functions [9],
expander graphs [14, 28, 18, 23, 4], samplers [7, 30], pseudo-
random generators [26] and error-correcting codes [26, 25,
24]. In addition, extractors have been found to have a vast
and ever-growing collection of applications in diverse aspects
of computational complexity, combinatorics, and cryptogra-
phy. See the excellent surveys [13, 19].

Like the other objects listed above, extractors with very
good parameters can be nonconstructively shown to exist
via the Probabilistic Method, but finding explicit construc-
tions — ones computable in polynomial time — has been
much more difficult. A long body of work has sought to find
explicit constructions which approach the optimal, noncon-
structive bounds.

In this paper, we achieve one of the goals of this line of
work, namely the explicit construction of extractors that are
“optimal up to constant factors”. In order to make sense of
this, we need to define extractors more precisely.

1.1 Extractors and their parameters
To formalize the notion of extractors we first need a mea-

sure of randomness in a source of biased and correlated bits.

The definition offered by [5, 29], relies on min-entropy: A
distribution X is a k-source if the probability it assigns to
every element in its domain is at most 2−k. The min-entropy
of X, (denoted by H∞(X)) is the maximal k such that X
is a k-source. We also need to define what an “almost uni-
form” distribution is. For random variables X,Y over a set
S, we say that X and Y are ε-close if the statistical dif-
ference between X and Y is at most ε, i.e. for all T ⊆ S,
|Pr [X ∈ T] − Pr [Y ∈ T] | ≤ ε.Finally, denote by Un the
uniform distribution over {0, 1}n.

Definition 1 (extractors [14]). A function
Ext : {0, 1}n × {0, 1}d 7→ {0, 1}m is a (k, ε)-extractor if
for any k-source X over {0, 1}n, the distribution Ext(X, Ud)
(the extractor’s output on an element sampled from X and
a uniformly chosen d bit string) is ε-close to Um.

In other words, Ext “extracts” m almost-uniform bits from
a source with k bits of hidden randomness, using a random
d-bit seed as a catalyst.1 Naturally, the goal in constructing
extractors is to simultaneously maximize the output length m
(i.e., extract as much randomness as possible) and minimize
the seed length d (i.e., investing as few truly random bits as
possible). Another goal is to minimize the error ε. In this
discussion we focus on the case that ε is an arbitrarily small
constant, e.g. ε = .01.

Using the Probabilistic Method, it can be nonconstruc-
tively shown that for every n and k ≤ n, there exist extrac-
tors with output length m = k + d − O(1) and seed length
d = log n + O(1), and these are tight up to an additive con-
stant (when k ≤ n/2) [14, 13]. That is, an optimal extractor
extracts almost all the randomness in the source (and seed)
using a seed of only logarithmic length.

1.2 Previous constructions
As mentioned earlier, a long line of work has sought to

obtain explicit constructions whose parameters match that
of the optimal extractor, or at least come within constant
factors2. This goal has remained elusive despite a decade
of effort, but there has been substantial progress towards it
which, we briefly describe here. (For more detailed descrip-
tions, see the surveys [13, 19].)

For the case of constant min-entropy rate, i.e. k = Ω(n),
the construction of Zuckerman [30] is optimal within con-
stant factors. That is, it achieves a seed length of d =
O(log n) and output length m = Ω(k). Much of the sub-
sequent work on extractors has aimed at matching these
parameters for subconstant, indeed arbitrary, min-entropy
rate. However, thus far, it was only known how to optimize
one of two parameters to within a constant factor, while
paying a superconstant factor in the other. Constructions
with seed length d = O(log n) for arbitrary min-entropy were
given in [26, 10, 17, 20], but the best output length achieved
was m = k/ log k [17, 23]. Constructions with output length

1The original definition of extractors in [14] is stronger than
the one above (from [13]) in that it requires the seed to be
explicitly included in the output. Our constructions also im-
ply such strong extractors with almost the same parameters
e.g. using the general transformation of [17].
2This was achieved for dispersers, which are a weaker rel-
ative of extractors which only require that the support of
Ext(X, Ud) is of size at least (1 − ε) · 2m. In [23] it was
shown how to achieve d = O(log n) and m = k for these
objects

m = Ω(k) were given in [13, 16, 17], but the best seed length
achieved was d = O(log n · polyloglog n) [17].

To summarize, for extractors that work for every min-
entropy k, it was only known how to optimize either the
seed length or the output length to within a constant factor,
but not both. In both cases, the best known construction
was given by Reingold, Shaltiel, and Wigderson [17], who
showed how to optimize either parameter while paying a
polylogarithmic factor in the other.

1.3 New Results
In this paper, we construct extractors in which the seed

length and output length are simultaneously optimal to within
constant factors:

Main Theorem. For any constants α, ε > 0,3 every n,
and every k ≤ n, there is an explicit (k, ε)-extractor Ext :
{0, 1}n × {0, 1}d → {0, 1}m, with d = O(log n) and m =
(1− α) · k.

1.4 Techniques
We obtain our extractors by introducing three orthogonal

new techniques, each of which may be of independent inter-
est. In addition to these techniques, we rely on many ideas
from [17, 15, 10, 27] and their predecessors.

Mergers from Locally Decodable Codes. Consider a
random source X which consists of t blocks X = (X1, . . . , Xt) ∈
({0, 1}k)t such that for some (unknown) i, Xi is uniform
over {0, 1}k and the other Xj ’s can depend arbitrarily on
Xi. Such somewhere random sources were introduced in
the work of Ta-Shma [13], and are clearly a special case
of k-sources. Extractors for somewhere random sources are
known as mergers.

Is it easier to construct mergers than general extractors?
The significance of this question comes from the fact that
good mergers imply good extractors for general sources. In-
deed, Ta-Shma [13] showed how to convert a general source
into a somewhere random sources (with polynomially many
blocks). This is further improved to much fewer blocks
(polylog or even polyloglog) with the repeated condensing
of [17] and our improved version of it. Ta-Shma [13] con-
structed mergers with seed length O(log2 n) (in fact O((log t)·
(log k)), which was indeed shorter than the best for general
extractors at the time. However, this seed length is too large
for the current march towards optimality.

In this paper, we give a completely new construction of
mergers, based on locally decodable error-correcting codes.
Informally, a locally decodable code is an error-correcting
code such that given a codeword that has been corrupted
in some fraction of positions, one can recover any individ-
ual symbol of the corresponding message by reading a very
small (ideally constant) number of positions from the cor-
rupted codeword. Locally decodable codes have received a
lot of attention in the computer science literature, due in
part to their applications to program testing, average-case
complexity, and private-information retrieval (cf., [12, 3, 1,
21, 11]).

Roughly speaking, we show that any locally decodable

3In fact, the error can be as small as ε =
exp(− log n/ log(c) n) for any constant c, where log(c) n
is the logarithm iterated c times. See Section 6 for our
results for general ε.

code in which the decoding algorithm reads q codeword
symbols to recover a single message symbol yields a merger
which extracts a 1/q fraction of min-entropy from the source.
(More precisely, it produces a string in {0, 1}k of min-entropy
k/q, so it actually only “condenses” the source.) Intuitively,
we use the local decodability property to show that the
source can be reconstructed from q-tuples of outputs of the
merger. Since the source has k bits of min-entropy, this
means that the outputs of the merger must have at least
k/q bits of min-entropy (certainly on average, and even with
high probability).

We believe this connection is of independent interest, and
lends additional significance to the ongoing effort to close
the huge gap between the upper and lower bounds for locally
decodable codes (cf., [11]). In particular, a construction of
locally decodable codes with polynomial rate and constant
query complexity would yield a major simplification to our
extractors.

At any rate, even with the currently available locally de-
codable codes, our new mergers use seed length which de-
pends only on the number of blocks, but not on their length.
This is used twice in the paper (explained in the next sub-
sections). One use is conventional, extracting from a some-
where random source we create in our repeated condensing.
Another is as a constant seed-length condenser used as a
basic building block in the repeated condensing.

Optimal Repeated Condensing. A condenser converts
a random source (with the help of a seed) into a new source
of higher entropy rate (= min-entropy / source length) with
high probability. A lossless condenser [23] is a special con-
denser whose output, while shorter than the input source,
retains essentially4 all of the min-entropy present in the
source.

It is clear that a lossless condenser is desirable. We could
repeat condensing until we get an extractor. In particular,
if the seed has constant length and the output is a constant
factor shorter than the input, then there is hope that such re-
peated condensing (with O(log n/k) iterations) would yield
an extractor of optimal seed and output length — exactly
what we are looking for.

There are at least two problems with this plan. One is
how to obtain such a lossless condenser with constant seed
length. We will deal with that in the next subsection, so
assume for now we have one. The second problem is the
error. Clearly, the error probability when using a constant-
length seed must be constant as well. As we will have to
repeat the condensing process more than a constant number
of times, we cannot afford the error accumulation.5

One main contribution of this paper is a method for re-
peated condensing which is optimal in both seed length and
error. Specifically, we can take any explicit lossless con-
denser as above and use it to construct, for every parameter
s, an explicit lossless condenser, which uses O(s) bits, and
with probability at least 1 − 2−s shrinks the source length
by a factor of 2s (of course, as long as the final output is
larger than the entropy in the source).

4There will be small entropy losses, but they will be insignif-
icant
5The way [17] deal with that is indeed to use a larger (non-
constant) seed, sufficient to make the error small enough to
tolerate a union bound over all iterations of repeated con-
densing. Thus their extractors have suboptimal seed length

Indeed, we have two different methods to achieve this task.
In both we combine repeated condensing with an error re-
duction technique, in which we apply the condenser on sev-
eral dependent seeds and concatenate the outputs. (This
clearly costs us in the condensing factor, but it turns out
to be affordable.) The first method of combining the two
techniques applies repeated condensing until error goes al-
most up to 1, and then uses pairwise independent sampling
to bring it down to the desired bound. A slightly similar
technique is employed in the extractors of [10]. We omit
this method due to space constraints. The second method,
which we describe in detail, never allows the error to grow,
by alternating condensing and error reduction via sampling
seeds according to random edges in an expander graph, in
the style of [15].

Constant Seed-Length Condensers and Win-Win Loss-

less Condensers. Now we return to the first problem: how
to obtain such lossless condensers with constant seed length.
Actually, we don’t know how. However, it is nevertheless
possible to pretend that we do, using the following win-win
analysis, in the spirit of [10, 17].

The first step, which is in itself one of the key ideas of this
paper, we construct a condenser with a constant seed length.
However, in contrast to the lossless condensers above, these
condensers only retain a constant fraction of the min-entropy
of the source (with constant probability). We actually have
two different constructions of such condensers, one using
the mergers from locally decodable codes mentioned above,
and another from appropriate sampling of sub-blocks of a
(standard) error-corrected version of the source. We will
not elaborate on these here.

Such condensers of course will not suffice for repeated con-
densing, due to the accumulated entropy loss (which does
not happen in lossless condensers). However, if the output
contains a constant fraction of the entropy, but not all of
it, concatenating the input source to it immediately yields
a what is known is block source: an object for which opti-
mal extractors exist. (This is the win-win analysis of [17].)
Thus we can employ the following strategy: We carry out
the repeated condensing augmented with error reduction de-
scribed above as if we have a lossless condenser. But at each
application of the condenser, we also output a candidate
block source. Thus, if we ever fail to condense losslessly,
one of these candidates must actually be a block source (by
the win-win analysis).

In order to formalize this, we abstract the notion of a win-
win condenser, which outputs both a candidate condensed
string and a set of candidate block sources. We carry out
our recursion (repeated condensing + error reduction) on
these win-win condensers, maintaining the invariant that
either the condensing is lossless or one of the candidate block
sources is indeed a block source. This is done until lossless
condensing is impossible (the output length is shorter than
the min-entropy), which means, by our invariant, that one
of the candidates block source is indeed one. Extracting
from all candidate block sources the same (optimal length)
seed, we obtain a somewhere random source. Moreover, the
number of candidates generated is small enough to allow us
to use our new mergers.

1.5 Perspective
We stress that we do not consider our construction to

be the optimal extractor. First, achieving optimal error si-
multaneously with seed and output length remains a chal-
lenging problem (though we strongly believe it will yield
soon). Next, finding a construction in which the output
length and/or seed length are optimal to within additive
constants remains an important open problem. For one,
in some applications of extractors the relevant complexity
measure is not the amount of min-entropy extracted, but
rather the min-entropy loss, i.e. the number of bits not ex-
tracted. Clearly, optimizing the former to within a constant
factor does not imply the same for the latter. In addition,
in many applications, the complexity depends exponentially
on the seed length d, so optimizing the seed to within an
additive constant corresponds to optimizing the application
to within a (multiplicative) constant factor. There has been
significant progress towards individually optimizing the seed
length and output length to within additive constants (cf.,
[16, 25]), but the price paid in the other parameter is more
than a constant factor. Lastly, it would be nice to have a
direct and self-contained construction, which does not re-
quire composing several components the way ours does. In-
deed, our work suggests two appealing approaches to obtain
a more direct construction. The first is to construct better
mergers, which in turn would follow from a better construc-
tion of locally decodable codes. The second is to construct
a lossless condenser with constant seed length, so that the
win-win analysis described above is no longer needed.

2. PRELIMINARIES
For integer n, let [n] denote the set {1, . . . , n}. We use

the convention that random variables are denoted by capi-
tal letters, whereas specific values for them are denoted by
lowercase letters (e.g. Pr [X = x] = 1/2). For a random
variable X and an event E, we write X|E to denote the ran-
dom variable X conditioned on E. For a distribution X,
let Supp(X) denote the support of X. When we refer in
this paper to an explicit function (such as an explicit ex-
tractor), this in fact refers to a family of functions that are
computable in polynomial time (in their input length).

Block sources. One of the most useful notion in the ex-
tractor literature is that of a block source [5]. A block source
is more structured than a general weak source:

Definition 2. (X1, X2) is a (k1, k2)-block source if X1

is a k1-source, and for every x1 ∈ Supp(X1) the distribution
of X2|X1=x1 is a k2-source.

Intuitively, this means that X2 contains k2 bits of random-
ness that are “independent” of X1. The task of extraction
is made significantly easier given this additional structure of
block sources. Indeed, good extractors for block-sources are
already known. Such extractors are called block source ex-
tractors. Based on the method for block-source extraction of
[14] and using newer extractors [16, 13, 10, 23, 20] it is pos-
sible to obtain a block-source extractors that extract k1 bits
using O(log n)-long seed as long as k2 is at least poly log n
(e.g., log4 n).

Somewhere Random Sources. A central notion in our
paper is that of a somewhere random source, as introduced
by Ta-Shma [13]. Roughly speaking, a somewhere random
source is a random variable X = (X1, . . . , Xb) where one of
the Xi’s is uniform and the others may depend arbitrarily on

Xi. Actually, the definition allows the index i of the “good”
block Xi to be a random variable depending on X. We will
also use generalizations of this concept where the property
required of the good block is not necessarily uniformity but
some other property of sources:

Definition 3. Let C be a class of sources on {0, 1}m. A
random variable X = (X1, . . . , Xb) ∈ ({0, 1}m)b is a some-
where C-source if there is a random variable I = I(X) tak-
ing values in [b] such that for every i, Xi|I=i is in C (if
Pr [I = i] > 0). I is called the selector and b is called the
number of blocks.

If C consists of only the uniform distribution on {0, 1}m,
then X is called a somewhere random source. If C is the
class of all k-sources on {0, 1}m, then X is called a some-
where k-source. If C is the class of all (k1, k2) block sources

on {0, 1}m = {0, 1}m/2×{0, 1}m/2, then X is called a some-
where (k1, k2) block source.

In the above definition, we allow the selector I to be a
probabilistic function of X.

Condensers. A condenser is a generalization of an extrac-
tor. Rather than requiring that it outputs a distribution
that is (close to) uniform, the output distribution is only
required to have at least some k′ bits of randomness.

Definition 4. A (k, k′, ε)-condenser is a function Con :

{0, 1}n × {0, 1}d → {0, 1}n
′

, such that for every k-source
X of length n, the distribution Con(X, Ud) is ε-close to a
k′-source.

Note that an extractor is a special case of a condenser,
when n′ = k′.6 It will also be useful to consider a special case
of condensers where the output distribution is a somewhere
random source.

Definition 5. A function Con : {0, 1}n×{0, 1}d → ({0, 1}m)b

is a (k, ε)-somewhere random condenser, if for every k-source
X of length n, the distribution Con(X, Ud) is ε-close to a
somewhere random source.

Mergers. A merger, as defined by Ta-Shma [13], is a
function which extracts randomness from somewhere ran-
dom sources. That is, given a source consisting of t blocks
(X1, . . . , Xt), one of which is uniform, it “merges” the blocks
to produce a single string Z which is close to uniform. We
work with a generalization of this definition, whereby we
only know that one of the blocks has high min-entropy and
we only require that the output has high min-entropy. Thus
the “progress” being made is that the output is shorter than
the concatenation of the original t blocks, yet still contains
much of the min-entropy. It will be convenient for us to
consider mergers whose source and output are over general
alphabets, though of course the notions of min-entropy and
somewhere k-source are independent of the encoding.

Definition 6. A function Merge : (Σn)t×{0, 1}d → Σm

is a (k, k′, ε)-merger if for every somewhere k-source X =
(X1, . . . , Xt), the random variable Merge(X, Ud) is ε-close
to a k′-source.
6We also note that in [17] condensers are defined with the
additional requirement that, k′/n′ > k/n. In other words,
the condenser is required to improve the entropy rate (hence
the name ‘condenser’). We find it useful to define condensers
more generally.

Finally, we note that good extractors for small values of k
are already known (e.g., [10, 23]). This allows us to assume
throughout the paper that k is large enough (i.e., at least
poly log n).

3. MERGERS FROM LOCALLY DECOD-
ABLE CODES

In this section we give a general construction of mergers
from locally decodable error-correcting codes. We consider
this construction to be one of the main technical contribu-
tions of the paper. The major advantage of these merg-
ers compared with previous constructions is that the seed
length of the new mergers is independent of the length of
the blocks. Instead it only depends on the number of blocks
and the error parameter. This property turns out to be very
useful. Indeed the extractors of this paper will be obtained
by first transforming (using a seed of logarithmic length)
an arbitrary k-source into a somewhere random source with
“relatively few” blocks and then applying the new mergers
on this somewhere random source. Since the somewhere
random source has only few blocks, the seed length of the
merger (and thus also the extractor) will be logarithmic. An-
other (more surprising) consequence of these mergers is that
they directly imply condensers with constant seed length
(see Section 5).

3.1 Locally Decodable Erasure Codes
Informally, a locally decodable code is an error-correcting

code such that given a codeword that has been corrupted
in some fraction of positions, one can recover any individual
symbol of the corresponding message by reading very few
positions of the codeword. Locally decodable codes have
received a lot of attention in the computer science litera-
ture, due in part to their applications to program testing,
average-case complexity, and private-information retrieval
(cf., [12, 2, 21, 11]). The notion of locally decodable codes
that we will use here differs in a couple ways from the stan-
dard ones.7 First, we will only be concerned with decoding
from erasures rather than corruptions. Second, we will not
be concerned with the efficiency of the decoding procedure,
except for the number of symbols read. We will not even
require that the positions read by the decoder can be gener-
ated by some probabilistic sampling algorithm; instead we
only require that the positions read depend on only the set
of erased positions (as opposed to the actual symbols in the
codeword).

Definition 7. Consider a code C : Σt → Σu. We say
message position i ∈ [t] is decodable from codeword positions
(j1, . . . , jq) ∈ [u]q if there is a function f : Σq → Σ such
that for all x ∈ Σt, xi = f(C(x)j1 , . . . , C(x)jq

). We call
C a (q, ε) locally decodable erasure code if for every S ⊆
[u] of density greater than ε and every i ∈ [t], there exists
(j1, . . . , jq) ∈ Sq from which i is decodable.

Intuitively, if all but an ε fraction of positions of a code-
word are erased, then we can let S be the set of non-erased

7Actually, despite these differences, it is shown in [6] that
any code satisfying our definition also is also a code accord-
ing to a more standard definition (with related parameters)
and conversely, and thus lower bounds for standard locally
decodable codes also apply to our definition.

positions and the above definition guarantees that each mes-
sage symbol can be recovered by reading only q non-erased
symbols.

Ideally, we would like constructions of codes C : Σt → Σu

such that given x ∈ Σt and j ∈ [u], C(x)j can be computed
in time poly(log |Σ|, t, log u); we call such constructions ex-
plicit. If the computation time is instead poly(log |Σ|, t, u),
we call the construction semi-explicit.

The standard constructions of locally decodable codes sat-
isfy Definition 7:

Lemma 8 (Hadamard codes). For every finite field F

and t ∈ N, there is an explicit (2, 1/|F|) locally decodable
erasure code C : F

t → F
u with u = |F|t.

Proof. For x, y ∈ F
t, we define C(x)y =

∑

i xiyi. For
i ∈ [t], message position i is decodable from any pair of
codeword positions (y, z) which disagree in only their i’th
coordinates (because then xi = (C(x)y − C(x)z)/(yi − zi)).
Now suppose that S ⊂ F

t is such that i is not decodable
from any pair of elements of S. This means that after fixing
all entries of y ∈ F

t other than the i’th one, there is at
most one setting of the i’th entry of y such that y ∈ S
(for otherwise S would contain two vectors disagreeing in
only the i’th coordinate). Thus, S contains at most a 1/|F|
fraction of F

t.

A similar argument applies for Reed–Muller codes of higher
degree, using the fact that the value of a multivariate poly-
nomial p of degree g at a point x can be computed from the
values of p at any d + 1 points collinear with x.

Lemma 9 (Reed–Muller codes). For every finite field
F and g, m ∈ N, there is a semi-explicit (g, g/|F|) locally de-
codable erasure code C : F

t → F
u with t =

(

m+g−1
g−1

)

and

u = |F|m.

3.2 Mergers
We first describe informally our construction of mergers

from locally decodable codes. We view our somewhere ran-
dom source (X1, . . . , Xt) ∈ (Σn)t as a t×n matrix X whose
i’th row is Xi. We encode each column of this matrix using
a locally decodable code, to obtain a bigger, u × n matrix
X̂. Our merger simply outputs a random row of this bigger
encoded matrix.

Intuition for this construction can be obtained by consid-
ering the case of Shannon entropy. Suppose that X is a
distribution over t × n matrices such that some (unknown)
row of X has at least k bits of entropy; call this the random
row. Then we will argue that at least a 1−ε fraction of rows
of X̂ have entropy at least (roughly) k/q.

Suppose not. This means that if we “erase” all rows of X̂
which have entropy at least k/q, we are left with more than
an ε fraction of the rows. But then, by local decodability
of the error-correcting code, each row of X can be decoded
from q unerased rows of X̂ . In particular, the random row
of X can be described by q unerased rows of X̂. But a string
of entropy k cannot be described by q strings of entropy less
than k/q.

Thus, the argument is a form of the “reconstruction paradigm”
developed in [26, 23], whereby one proves that the output of
an extractor or a condenser has high min-entropy by show-
ing that otherwise the source would have a “small” descrip-
tion, contradicting the min-entropy assumed present in the

source. Our construction shows how to benefit from the
fact that, for somewhere random sources, we need only re-
construct a portion of the source to obtain a contradiction.
For example, note that the parameters of the code we use,
and hence the seed length of our merger, do not depend on
n, the length of the blocks!

The following theorem describes the construction formally
and states its properties in terms of min-entropy.

Theorem 10. Given C : Σt → Σu, define Merge : (Σn)t×
[u]→ Σn by Merge((x1, . . . , xt), j) = C(y1)j · · ·C(yn)j , where
y` = x1,`x2,` · · ·xt,` ∈ Σt. If C is a (q, ε) locally decodable
code, then for every k and ε > 0, Merge is a (k, k′, 2ε)
merger for k′ = (k − log(1/ε))/q − log u.

We defer the proof of Theorem 10 (which follows the above
intuition quite closely) to the full version. In the full version
we also describe additional improvements (e.g. showing that
the above are in fact “strong” mergers).

Now we describe the mergers obtained by applying Theo-
rem 10 to the Hadamard and Reed-Muller codes. Using the
Hadamard code over a field of size O(1/ε), we get:

Corollary 11. For every n, t ∈ N and ε > 0, there is
an explicit (k, k′, ε) merger Merge : ({0, 1}n)t × {0, 1}d →
{0, 1}n with d = O(t · log(1/ε)) and k′ = k/2 −O(d).

Using the Reed–Muller code of degree r +1 over a field of
size O(r/ε), we get:

Corollary 12. For every n, t ∈ N, ε > 0, and m, r ∈ N

such that
(

m+r
r

)

≥ t, there is an explicit (k, k′, ε) merger

Merge : ({0, 1}n)t × {0, 1}d → {0, 1}n with d = O(m ·
log(r/ε)) and k′ = Ω(k/r) −O(d).

In particular, for an arbitrarily small constant δ, we can
have d = O(tδ · log(1/ε)) and k′ = Ω(k) − O(d). Alterna-
tively, we can have d = O(log t) and k′ = Ω(εk/ log2 t) −
O(d) for any ε ≥ 1/t.

We note that Reed–Muller codes are a central compo-
nent in the recent extractor constructions of [23, 20]. Those
constructions make use of additional algebraic structure of
Reed–Muller codes beyond the local decodability property,
and are concerned with extraction from general sources rather
than exploiting the structure of somewhere random sources
as we do.

4. WIN-WIN CONDENSERS
Win-win condensers, implicit in [17], are functions that

take a weak random source X (and a short seed) and pro-
duce a shorter string X ′ together with a number of candidate
block sources (Z1, . . . , Zb). The guarantee is that with high
probability, either X ′ contains almost all of the min-entropy
in X or one of the Zi’s will be a block source.

In this section, we give a new construction of win-win
condensers. We obtain them by first constructing an initial
win-win condenser with constant seed length. Then, by ap-
plying certain compositions to it, we improve its parameters
and ultimately turn it into a somewhere random condenser.
In a subsequent section, this is combined with our mergers
from Section 3, to yield our final extractors.

4.1 Definition and Basic Properties
We begin by placing the notion of win-win condensers in a

more general framework, where the candidate block sources
can be replaced by somewhere C-sources for any class C of
random sources. It simplifies the compositions to work with
a generalization of somewhere C-sources where the selector
gives a set of “good” indices rather than a single index.

Definition 13. Let C be a class of sources on {0, 1}n. A
random variable X = (X1, . . . , Xb) ∈ ({0, 1}n)b is a gen-
eralized somewhere C-source if there is a random variable
I = I(X) taking values in 2[b] such that for every i, Xi|i∈I

is in C (if Pr [i ∈ I] > 0).

In this paper, we are most interested in the special case
when C is the class of all (k1, k2) block sources on {0, 1}m =

{0, 1}m/2 × {0, 1}m/2. (For notational convenience, we al-
ways pad our block sources with zeroes so that both blocks
have the same length.) For this class (and other natural
ones) generalized somewhere C-sources are the same as stan-
dard somewhere C-sources, up to a small loss in min-entropy:

Lemma 14. Suppose X = (X1, . . . , Xb) is a generalized
somewhere (k1, k2) block source. Then X is a somewhere
(k1 − log b, k2 − log b) block source.

The advantage of generalized somewhere C-sources over stan-
dard somewhere C-sources is captured by the following lemma.

Lemma 15. Suppose (X, Y) is a random variable and A
and B are events such that X|A is a generalized somewhere
C-source and Y |B is a generalized somewhere C-source. Then
(X, Y)|A∨B is a generalized somewhere C-source.

Note that the above lemma does not require that A and
B are disjoint (as seems necessary if we were to work with
standard somewhere C-sources).

Now we present our definition of win-win condensers. In-
tuitively, these are functions which either condense or pro-
duce a (generalized) somewhere C-source.

Definition 16. Let C be a class of sources on {0, 1}m. A
pair of functions 〈Con, Som〉 : {0, 1}n×{0, 1}d → {0, 1}ρn×
({0, 1}m)b is called a (k, k′, ε, δ) win-win condenser with re-
spect to C if for every k-source X, there are subsets con, som ⊆
{0, 1}n × {0, 1}d such that if Y is uniform on {0, 1}d,

1. Con(X, Y)|(X,Y)∈con is a k′-source.

2. Som(X, Y)|(X,Y)∈som is a b-block generalized somewhere
C-source.

3. With probability at least 1−δ over x
R

←X, PrY [(x, Y) ∈
con ∪ som] ≥ 1− ε.

We say that 〈Con, Som〉 has seed error ε, source error δ,
seed length d, condensation factor ρ, entropy loss k − k′,
and b blocks.

Note the use of two error parameters in the definition. This
is inspired by [15], where it was shown that the error of
extractors can always be essentially separated into source
and seed errors, where the source error can be made expo-
nentially small simply by working with sources of slightly
higher min-entropy. This allows error reduction to focus on
the seed error (which is easier to handle because we can
sample multiple seeds).

4.2 The initial win-win condenser
It turns out that good win-win condensers can be ob-

tained from standard condensers, via the win-win analysis of
[17]. Consider a condenser Con applied to a source X. The
win-win analysis says that either (a) X still has some min-
entropy8 given Con(X, Y) and thus (Con(X, Y), X) forms a
block source, or (b) Con(X, Y) retains almost all of the min-
entropy in X. The benefit of this win-win analysis is that we
can now iterate this condensing process on Con(X, Y), and
only lose a small amount of min-entropy with each applica-
tion (at the price of accumulating candidate block sources).
We will actually combine this win-win analysis with the er-
ror analysis of [15] to make the source error of the win-win
condenser much smaller than the error of the original con-
denser.

Lemma 17. Suppose Con : {0, 1}n × {0, 1}d → {0, 1}m

is a (k, k′, ε) condenser. Define Som : {0, 1}n × {0, 1}d →
({0, 1}2n)1 by Som(x, y) = (Con(x, y), x). Then, for any
ε ≥ δ > 0 and k2 ∈ N, 〈Con, Som〉 is a (k+log(1/δ), k−k2−
2 log(1/δ), 4ε, 3δ) win-win condenser with respect to (k′ −
3 log(1/δ), k2) block sources.

Proof Sketch: Let X be a (k + log(1/δ))-source, and
let Y be uniform in {0, 1}d. Partition the elements {0, 1}m

according to their probability mass under Con(X, Y) as fol-
lows:

• lrg = {z : Pr [Con(X, Y) = z] > 2−(k′−log(1/ε))}.

• med = {z : 2−(k′−log(1/ε)) ≥ Pr [Con(X, Y) = z] >

2−(k−k2)}.

• sml = {z : 2−(k−k2) ≥ Pr [Con(X, Y) = z]}.

The sets lrg,med, sml roughly correspond to the cases of
“error”, “somewhere block source”, and “condense”. This
is formalized in the following claims, which are proven in an
analogous manner to corresponding statements in [15], [17],
and [17], respectively.

Claim 18. With probability at least 1 − δ over x
R

← X,
PrY [Con(x, Y) ∈ lrg] ≤ 2ε.

Claim 19. Suppose Pr [Con(X, Y) ∈ sml] > δ2. Then
Con(X, Y)|Con(X,Y)∈sml is a (k − k2 − 2 log(1/δ))-source.

Claim 20. Suppose Pr [Con(X, Y) ∈ med] > δ2. Then
(Con(X, Y), X)|Con(X,Y)∈med is a (k′ − 3 log(1/δ), k2) block
source.

If Pr [Con(X, Y) ∈ sml] > δ2, we set con = Con−1(sml),
otherwise we set con = ∅. Similarly, if Pr [Con(X, Y) ∈ med] >
δ2, we set som = Con−1(med), otherwise we set som = ∅.
It is not difficult to verify that these settings satisfy all 3
conditions in the definition of win-win condensers. 2

In Section 5, we will describe two simple constructions of
condensers with a constant seed length. Applying the above
lemma to them, we obtain the following win-win condensers
with constant seed length. (Section 5 also sketches a di-
rect construction of a win-win condenser with constant seed
length.) We state the lemma in a more general form, and
note that the seed length is constant for constant ε.
8We will denote this amount k2 below, and it can be taken
to be a fixed poly log(n), and thus is negligible with respect
to k, throughout the paper.

Lemma 21. For every ε > 0, every constant ρ > 0, every
n, k ∈ N, and every δ ≥ 2−αk for some constant α > 0,
there exists an explicit (k, k − Λ, ε, δ) win-win condenser
〈Con, Som〉 : {0, 1}n×{0, 1}d → {0, 1}ρn×({0, 1}n×{0, 1}n)b

with respect to (Ω(k), k2) block sources, with

• condensation factor ρ,

• seed error ε,

• seed length d = O(log(1/ε)),

• entropy loss Λ = O(k2 + log(1/δ)),

• source error δ, and

• b = 1 block.

4.3 Composing Win-Win Condensers
In this section, we describe two methods of composing

win-win condensers which, when alternately applied to the
initial win-win condenser above will yield our final win-win
condenser. These composition methods actually apply to
win-win condensers with respect to any class C of sources.

The first composition method, implicit in [17], is repeated
condensing. This improves the condensation factor while
paying a price in the other parameters (most significantly,
the seed error).

Lemma 22 (repeated condensing). Let C be any class
of sources on {0, 1}m. Suppose we have an explicit (k, k −
Λ, ε, δ) win-win condenser 〈Con1, Som1〉 : {0, 1}n×{0, 1}d →
{0, 1}ρn × ({0, 1}m)b w.r.t. C, and an explicit (k − Λ, k −
2Λ, ε, δ) win-win condenser 〈Con2, Som2〉 : {0, 1}ρn×{0, 1}d →

{0, 1}ρ
2n × ({0, 1}m)b w.r.t. C.

Then there is an explicit (k, k − Λ′, ε′, δ′) win-win con-

denser 〈Con, Som〉 : {0, 1}n×{0, 1}d
′

→ {0, 1}ρ
′n×({0, 1}m)b′

w.r.t. C with

• condensation factor ρ′ = ρ2,

• seed error ε′ = 3ε,

• seed length d′ = 2d,

• entropy loss Λ′ = 2Λ,

• source error δ′ = δ + δ/ε, and

• b′ = 2b blocks.

Moreover, 〈Con, Som〉 is computable in time poly(n, d, m, b)
with one oracle query to 〈Con1, Som1〉 and one oracle query
to 〈Con2, Som2〉.

Proof. For x ∈ {0, 1}n, y1, y2 ∈ {0, 1}d, we define

Con(x, (y1, y2)) = Con2(Con1(x, y1), y2)

and

Som(x, (y1, y2)) = (Som1(x, y1), Som2(Con1(x, y1))).

We defer the analysis to the full version.

The second composition reduces the seed error while pay-
ing a price the other parameters (most importantly, the
condensation factor). Since we have already separated the
source and seed errors as in [15], this error reduction is quite
easily done by running the win-win condenser on multiple
seeds (generated by a randomness-efficient sampler with an
appropriate hitting property). Following [15], we generate

a pair of dependent seeds using a random edge in an ex-
pander graph, because this gives good parameters for the
subsequent recursion. However, other methods of sampling
several seeds (such as pairwise independence) can also be
analyzed in a similar fashion.

Lemma 23 (reducing the seed error). Let C be any
class of sources on {0, 1}m. Suppose there is an explicit
(k, k − Λ, ε, δ) win-win condenser 〈Con, Som〉 : {0, 1}n ×
{0, 1}d → {0, 1}ρn × ({0, 1}m)b w.r.t. C. Then there is an
explicit (k, k − Λ′, ε′, δ′) win-win condenser 〈Con′, Som′〉 :

{0, 1}n × {0, 1}d → {0, 1}ρ
′n × ({0, 1}m)b′ w.r.t. C with

• condensation factor ρ′ = 2ρ,
• seed error ε = 2ε2,
• seed length d′ = d + O(log(1/ε)),
• entropy loss Λ′ = Λ + 1,
• source error δ′ = δ, and
• b′ = 2b blocks.

Moreover, 〈Con′, Som′〉 is computable in time poly(n, d, m, b)
with two oracle queries to 〈Con, Som〉.

Proof. As in [15], we use two dependent seeds with an
appropriate hitting property. Specifically, let 〈H1, H2〉 :

{0, 1}d
′

→ {0, 1}d×{0, 1}d be a function such that for every
set S ⊆ {0, 1}d of density ≥ 1− ε, if we choose Z uniformly

in {0, 1}d
′

, we have

1. H1(Z) and H2(Z) are individually uniform in {0, 1}d,
and

2. Pr [H1(Z) ∈ S ∨ H2(Z) ∈ S] ≥ 1− 2ε2.

Such a function can be obtained explicitly with d′ = d +
O(log(1/ε)) by taking a random edge on a sufficiently good
expander or (almost equivalently) by using the high min-
entropy extractors of [8].

We define Con′(x, z) = Con(x, H1(z))◦Con(x,H2(z)) and
Som′(x, z) = (Som(x, H1(z)),Som(x,H2(z)). Let X be a k-
source on {0, 1}n and let con, som ⊆ {0, 1}n × {0, 1}d be
the sets guaranteed by the win-win property of Con. Define
con′ = {(x, z) : (x,H1(z)) ∈ con ∨ (x, H2(z)) ∈ con} and
som′ = {(x, z) : (x,H1(z)) ∈ som ∨ (x, H2(z)) ∈ som}. It is
not difficult to verify that these satisfy the definition of win-
win condenser with the stated parameters, using the hitting
property of H for the seed error and using Lemma 15 for
som.

4.4 The Recursion
According to Lemma 22 and Lemma 23, if we compose a

win-win condenser with itself and then apply error reduc-
tion, we can essentially square the condensation factor at
the price of doubling the seed length while still maintaining
the seed error. We will apply this process recursively for
r = O(log log(n/k)) iterations until no further condensing is
possible. It is easy to show the following by induction.

Lemma 24. Let C be any class of sources on {0, 1}m.
Suppose for small enough ε0 (say ε0 ≤ 1/18) there is an
explicit (k, k − Λ0, ε0, δ0) win-win condenser 〈Con0, Som0〉 :
{0, 1}n × {0, 1}d0 → {0, 1}ρ0n × ({0, 1}m)b0 w.r.t. C. Then
for any r ∈ N, there is an explicit (k, k−Λr, εr, δr) win-win
condenser 〈Conr, Somr〉 : {0, 1}n × {0, 1}d → {0, 1}ρrn ×
({0, 1}m)br w.r.t. C, with

• condensation factor ρr = (2ρ0)
2r

, seed error εr = ε0,
seed length dr = 2r(d0 + O(log(1/ε0))), entropy loss
Λr = 2rO(Λ0), source error δr = (2/ε0)

rδ0, and br =
4rb0 blocks.

Let 〈Con0, Som0〉 be the win-win condenser in Lemma 21,

with δ0 < (ε0/2)
− log log(n/k) and small enough ρ0, ε0. Then

we can choose r < log log(n/k) such that

• ρrn < k/2, εr = ε0, dr = O(log(n/k) log(1/ε0)), Λr =
poly log(n/ε0) < k/2,9 δr ≤ ε0, and br ≤ log2(n/k).

Since ρrn < k/2 < k − Λr, condensing is impossible. As
a result, we get from Somr a distribution which is 2ε0-
close to a log2(n/k)-block generalized somewhere (Ω(k), k2)
block-source, which is a somewhere (Ω(k)− log2(n/k), k2 −
log2(n/k)) block-source by Lemma 14. Applying efficient
block-source extractors (see Section 2), on each one of the
candidate block-sources using the same seed gives a some-
where random source.

Theorem 25. For any n, k ∈ N and any ε ∈ (0, 1), there
are an explicit (k, ε)-somewhere random condensers Con :

{0, 1}n×{0, 1}d → ({0, 1}m)b, with output length m = Ω(k)
and

1. seed length d = O(log n + log(n/k) · log(1/ε)) and b =
poly log(n/k), or

2. seed length d = O(log(n/ε)) and b = poly log(n/k) ·
log(1/ε) blocks.

Part 2 is obtained by by taking Part 1 with constant ε
and then applying Lemma 23 loglog(1/ε′) times to achieve
any error ε′ (at the price of producing slightly more blocks).

Remark 26. The seed length O(log n)+O(log(n/k) log(1/ε))
in Part 1 has two terms. The first term of O(log n) comes
from the block extraction, and can be made as small as
(1 + o(1)) log n based on block extractors that rely on [25,
20]. This means that the entire seed length above can be

made to be (1 + o(1)) log n in the case where k = n(1−o(1)).
We will elaborate on this feature in the final version.

5. CONDENSERS: CONST. SEED LENGTH
In this section we describe two completely different meth-

ods of constructing condensers with seed length as small as
constant. The particular parameters needed for the con-
struction of extractors are given by the following lemma.

Lemma 27. For every constant ρ > 0, every ε > 0, and
every n, k ∈ N, there exists an explicit (k, Ω(k), ε) condenser
Con : {0, 1}n × {0, 1}d → {0, 1}ρn with seed length d =
O(log(1/ε)).

As we consider these condensers to be of independent in-
terest, we describe them for a more general range of pa-
rameters than that of Lemma 27. We also discuss a direct
construction of (almost lossless) win-win condensers based
on error correcting codes.

9Recall that we assume k being larger than any
poly log(n/ε0), because otherwise the desired extractor has
been known already, as discussed at the end of Section 2.

5.1 Condensers from mergers
The first method of constructing condensers is based on

a very useful observation suggested to us by Ran Raz. The
observation is that any merger can also be viewed as a con-
denser.

Let X be any k-source. For any parameter t, divide X
arbitrarily into t parts X = (X1, . . . , Xt). It is not difficult

to show that X is t · 2−Ω(k/t)-close to a somewhere k/2t-
source. Therefore any merger is indeed also a condenser:

Lemma 28. Let Merge : ({0, 1}n)t × {0, 1}d → {0, 1}n

be a (k/2t, k′, ε) merger then Merge is also a (k, k′, ε + t ·

2−Ω(k/t)) condenser.

We therefore get that the mergers of Section 3 directly im-
ply interesting condensers. In particular, from Corollary 11
we can deduce the following.

Corollary 29. For every n, k, t ∈ N and ε > 0, there
exists an explicit (k, k′, ε + t · 2−Ω(k/t)) condenser Con :

{0, 1}n × {0, 1}d → {0, 1}dn/te with d = O(t · log(1/ε)) and
k′ = Ω(k/t) −O(d).

The above Corollary easily implies Lemma 27.

5.2 Encode-then-sample condensers
We now turn to the second method of constructing con-

densers. This will give a different proof of Lemma 27. The
condensers described here follow ideas from [14, 17, 27] with
an interesting twist of our own. The parameters obtained
by these condensers (given below in Lemma 30) also imply
Lemma 27. In addition, the seed length of these condensers
has better dependence on the condensation factor 1/t and
the error ε than the dependance obtained in Corollary 29.

Lemma 30. For some fixed polynomial poly, for every
n, k, t ∈ N and ε > 0 such that k > poly(t, log 1/ε), there ex-
ists an explicit (k, k′, ε) condenser Con : {0, 1}n×{0, 1}d →

{0, 1}dn/te with d = O(log(t/ε)) and k′ = Ω(k/t).

We coin the condensers used to prove Lemma 30 “encode-
then-sample” as these condensers operate as follows: (1) En-
code the input x with a (constant rate and constant relative
distance) error correcting code EC. (2) Sample part of the
encoded string x̄ = EC(x) and output it. For the second
step we use a sampler taken from [27] which first evenly
divides x̄ into ` = O(t log 1/ε) blocks x̄(1) . . . x̄(`). Using
d = O(log(t/ε)) bits, the sampler then selects a subset of
`/(c · t) blocks where c is the rate of EC. The output of the
condenser is the concatenation of these `/(c · t) blocks. We
defer further details to the full version.

5.3 Win-win condensers from codes
Here we briefly discuss a very simple win-win condenser

based on error correcting codes. We consider these con-
densers interesting for two reasons. First they directly give
condensation that can be larger than constant (rather than
starting with constant condensation and enlarging it through
repeated condensing and error reduction). Even more inter-
estingly, these condensers give new understanding regarding
the nature of error corrected sources. The relation of error
correcting codes to weak random sources has been the sub-
ject of intense interest since Trevisan [26] demonstrated the
usefulness of error correcting weak random sources.

Consider a k-source X and an error correcting code EC
with constant rate c and constant relative distance. As men-
tioned above, a random substring of X̄ = EC(X) of O(k)
bits is close to a k-source. In this sense an error corrected
weak random source is “similar” to a k-wise independent
source (i.e. one in which every k bits are random and inde-
pendent). However, unlike the latter (where every substring
contains all of the entropy), it is not easy to find a short
substring of X̄ which is close to a k-source. At the moment,
the most randomness efficient way of selecting such “good”
substrings is using combinatorial designs [26, 15]. It is in-
teresting to analyze the entropy of more natural substrings.

Divide X̄ to t > 2c blocks X̄(1) . . . X̄(t). What can we say
regarding the entropy of the blocks? As it turns out, each
individual block may contain no entropy. Furthermore, it
is possible to design X and EC such that each one of the
blocks will only contain O(k/t) bits of entropy. This exam-
ple indeed illustrates how non-similar error corrected sources
and k-wise independent sources can really be. Neverthe-
less, based on the proof of Lemma 30 and a refined win-win
analysis we are able to prove an interesting claim regarding
these blocks. Essentially, either one of these blocks contains
k −O(k2) bits of entropy or one of a list of 2t candidates is
an (Ω(k), k2) block source. For every set S ⊂ [t] a candidate
block source is (X̄(S), X) where X̄(S) is the concatenation
of the blocks X̄(i) for i ∈ S. For lack of space we defer a
more formal statement and a proof to the full version. We
note though that this directly implies a win-win condenser
〈Con, Som〉 with condensation factor c/t and seed length
log t, where the min-entropy in the block sources remains
Ω(k) even when t is nonconstant. For i ∈ [t] Con(x, i) is
simply defined as x̄(i), and Som(x, i) just ignores i and out-
puts the 2t candidate block sources.

6. PUTTING IT TOGETHER
We know from Theorem 25 that for any ε, one can use

a seed of length O(log n + log(n/k) log(1/ε)) to produce a
distribution that is ε-close to a generalized somewhere ran-
dom source of poly log(n/k) blocks of length m = Ω(k).
Next, apply on it our (m, k′, ε) Reed-Muller merger in Corol-
lary 12 with k′ = Ω(m) = Ω(k) using a seed of length
O(log(n/k) log(1/ε)). The result is a distribution that is
2ε-close to an Ω(k)-source of length m ≤ k, on which we
can apply Zuckerman’s extractor [30] to extract Ω(k) bits.
We can iterate the extraction using the technique of [28]
to extract all but a small constant fraction of randomness.
Then we have the following.

Lemma 31. For any constant α ∈ (0, 1), every n ∈
N and k ≤ n, and every ε ∈ (0, 1) where ε >

exp(−k/2O(log∗ k)),10 there is an explicit (k, ε)-extractor

Ext : {0, 1}n × {0, 1}O(log n+log(n/k)·log(1/ε)) → {0, 1}(1−α)k.

For constant ε, this gives our main extractor. It is inter-
esting to note that this extractor is derived by starting from
a condenser with constant seed length and then applying
the repeated condensing (using Lemma 22 and Lemma 23)
as described in the introduction.

Theorem 32. For any constants α, ε ∈ (0, 1), every n ∈
N and k ≤ n, there is an explicit (k, ε)-extractor Ext :

{0, 1}n × {0, 1}O(log n) → {0, 1}(1−α)k.
10This restriction on ε is inherited from an analogous restric-
tion in [30].

General ε. In Theorem 32, both the seed length and the
output length are optimal up to constant factors, but the
error is not. A possible solution is to use the error reduction
method for extractors of [15] (as is done in [17]). How-
ever, this will give us extractors with seed length O(log n ·
poly log log n + log(1/ε)), which loses the entire advantage
of our extractors. The problem is that the error reduction of
[15] is suboptimal when applied to constant (or high) error
extractors. Our extractor in Lemma 31 allows us to im-
prove this range of the error reduction of [15] (using ideas
and results from both [15] and [17]). Thus we also obtain
(k, ε)-extractors for an arbitrary ε, and with seed length and
output length that are simultaneously “near-optimal”. For
space constraints we defer the details of the general error
reduction theorem to the full version. Applying it to Theo-
rem 32, we get our final extractors.

Theorem 33. For any constant α ∈ (0, 1), c ∈ N, for

every k, and every ε ∈ (0, 1) where ε > exp(−k/2O(log∗ k)),
there are explicit (k, δ)-extractors Ext : {0, 1}n × {0, 1}d →
{0, 1}m, with each one of the following parameters:

1. d = O(log n), m = (1− α)k, and δ = (1/n)1/ log(c) n.

2. d = O((log∗ n)2 log n + log(1/δ)), m = (1 − α)k, and
δ = ε.

3. d = O(log(n/δ)), m = Ω(k/ log(c) n), and δ = ε.

Acknowledgements
We are grateful to Ran Raz for many fruitful discussions.
Particularly, we would like to thank him for pointing out to
us the connection between mergers and condensers discussed
in Section 5. We would also like to thank Ronen Shaltiel for
very useful discussions.

7. REFERENCES
[1] L. Babai, L. Fortnow, and C. Lund. Nondeterministic

exponential time has two-prover interactive protocols.
Comput. Complexity, 1(1):3–40, 1991.

[2] D. Beaver and J. Feigenbaum. Hiding instances in
multioracle queries. In Proc. 7th STACS, 1990.

[3] M. Blum, M. Luby, and R. Rubinfeld.
Self-testing/correcting with applications to numerical
problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[4] M. Capalbo, O. Reingold, S. Vadhan, and
A. Wigderson. Randomness conductors and
constant-degree lossless expanders. In Proc. 34th
STOC, pages 659–668, 2002.

[5] B. Chor and O. Goldreich. Unbiased bits from sources
of weak randomness and probabilistic communication
complexity. SIAM J. Comput., 17(2):230–261, 1988.

[6] R. de Wolf and I. Kerenidis. Exponential lower bounds
for 2-query locally decodable codes. In these
proceedings, 2003.

[7] O. Goldreich. A sample of samplers: A computational
perspective on sampling. Technical Report TR97-020,
Elec. Colloq. on Comput. Complexity, May 1997.

[8] O. Goldreich and A. Wigderson. Tiny families of
functions with random properties: A quality-size
trade-off for hashing. Random Structures &
Algorithms, 11(4):315–343, 1997.

[9] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby.
A pseudorandom generator from any one-way
function. SIAM J. Comput., 28(4):1364–1396, 1999.

[10] R. Impagliazzo, R. Shaltiel, and A. Wigderson.
Extractors and pseudo-random generators with
optimal seed length. In Proc. 32nd STOC, 2000.

[11] J. Katz and L. Trevisan. On the efficiency of local
decoding procedures for error-correcting codes. In
Proc. 32nd STOC, pages 80–86, 2000.

[12] R. Lipton. New directions in testing. In Proc.
DIMACS Wkshp. on Dist. Comput. & Crypto., 1989.

[13] N. Nisan and A. Ta-Shma. Extracting randomness: A
survey and new constructions. J. Comput. Syst. Sci.,
58(1):148–173, 1999.

[14] N. Nisan and D. Zuckerman. Randomness is linear in
space. J. Comput. Syst. Sci., 52(1):43–52, Feb. 1996.

[15] R. Raz, O. Reingold, and S. Vadhan. Error reduction
for extractors. In Proc. 40th FOCS.

[16] R. Raz, O. Reingold, and S. Vadhan. Extracting all
the randomness and reducing the error in Trevisan’s
extractors. J. Comput. Syst. Sci., 65(1):97–128, 2002.

[17] O. Reingold, R. Shaltiel, and A. Wigderson.
Extracting randomness via repeated condensing. In
Proc. 41st FOCS, 2000.

[18] O. Reingold, S. Vadhan, and A. Wigderson. Entropy
waves, the zig-zag graph product, and new
constant-degree expanders and extractors. In Proc.
41st FOCS, pages 3–13, 2000.

[19] R. Shaltiel. Recent developments in explicit
constructions of extractors. Bull. EATCS, 77, 2002.

[20] R. Shaltiel and C. Umans. Simple extractors for all
min-entropies and a new pseudo-random generator. In
Proc. 42nd FOCS, pages 648–657, 2001.

[21] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom
generators without the XOR lemma. J. Comput. Syst.
Sci., 62:236–266, 2001.

[22] A. Ta-Shma. On extracting randomness from weak
random sources (extended abstract). In Proc. 28th
STOC, pages 276–285, 1996.

[23] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less
condensers, unbalanced expanders, and extractors. In
Proc. 33rd STOC, pages 143–152, 2001.

[24] A. Ta-Shma and D. Zuckerman. Extractor codes. In
Proc. 33rd STOC, pages 193–199, 2001.

[25] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors
from Reed–Muller codes. In Proc. 42nd FOCS, 2001.

[26] L. Trevisan. Extractors and pseudorandom generators.
J. ACM, 48(4):860–879, July 2001.

[27] S. P. Vadhan. On constructing locally computable
extractors and cryptosystems in the bounded storage
model. Cryptology ePrint Arch., 2002/162, 2002.

[28] A. Wigderson and D. Zuckerman. Expanders that
beat the eigenvalue bound: explicit construction and
applications. Combinatorica, 19(1):125–138, 1999.

[29] D. Zuckerman. Simulating BPP using a general weak
random source. Algorithmica, 16(4/5), 1996.

[30] D. Zuckerman. Randomness-optimal oblivious
sampling. Random Structures & Algorithms,
11(4):345–367, 1997.

