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Abstract—Controlling confidential information in concurrent
systems is difficult, due to covert channels resulting from inter-
action between threads. This problem is exacerbated if threads
share resources at fine granularity.

In this work, we propose a novel monitoring framework to
enforce strong information security in concurrent programs. Our
monitors are hybrid, combining dynamic and static program
analysis to enforce security in a sound and rather precise fashion.
In our framework, each thread is guarded by its own local
monitor, and there is a single global monitor. We instantiate our
monitoring framework to support rely-guarantee style reasoning
about the use of shared resources, at the granularity of individual
memory locations, and then specialize local monitors further to
enforce flow-sensitive progress-sensitive information-flow control.
Our local monitors exploit rely-guarantee-style reasoning about
shared memory to achieve high precision. Soundness of rely-
guarantee-style reasoning is guaranteed by all monitors coop-
eratively. The global monitor is invoked only when threads
synchronize, and so does not needlessly restrict concurrency. We
prove that our hybrid monitoring approach enforces a knowledge-
based progress-sensitive noninterference security condition.

Keywords-Language-based security; information-flow control
for concurrent systems; hybrid information-flow monitor.

I. INTRODUCTION

Computer systems increasingly exhibit concurrency, includ-
ing systems that handle confidential information. Providing
confidentiality in concurrent systems is challenging, as sharing
of resources and synchronization may create covert channels,
thus facilitating inadvertent leakage of sensitive information.
An additional challenge is to enforce confidentiality without
unnecessarily limiting or reducing concurrency.

Most previous mechanisms to control the flow of sensitive
information (and to prevent information leaks) are inadequate in
the presence of modern concurrency features. Operating system
abstractions (e.g., [2, 3]) are too coarse grained to control
information flow between concurrent threads that share fine-
grained resources. Purely static mechanisms (e.g., [4, 5, 6, 7, 8])
are often too restrictive with respect to sharing of resources and
synchronization between threads. Purely dynamic mechanisms
(such as information-flow control monitors [9, 10, 11, 12])
have not yet been extended to handle fine-grained concurrency,
due in part to the difficulties in dynamically and efficiently
preventing covert channels resulting from thread interactions.

This is the full version of [1] and provides detailed proofs and additional
material such as omitted calculus rules.

We investigate hybrid information-flow control for enforcing
confidentiality in concurrent programs. Hybrid information-
flow control monitors (or, simply, hybrid monitors) combine
static and dynamic program analysis to secure the flow of
information in a system. We present a general framework for
monitoring concurrent programs, and instantiate this framework
for information-flow security. In our framework, monitoring
occurs at two levels: each thread is guarded by a local monitor,
and there is a single global monitor to provide control across
threads. We enable modular, rely-guarantee-style reasoning
about the behavior of multi-threaded programs by extending the
concepts of modes and mode states [13] to a dynamic setting.
Our global monitor ensures that assumptions made by threads
regarding the exclusive or shared use of memory are justified.
Our local monitors ensure that individual threads provide
the guarantees they promise. Our local monitors additionally
control information flow within the guarded threads. The global
monitor is not concerned with information-flow control; its
sole purpose is to ensure that all assumptions are justified.
Crucially, these assumptions can be exploited by the local
monitors to establish information-flow control, both effectively
and precisely.

Threads’ assumptions about memory resources may change
only at synchronization points. Thus, the global monitor is
accessed only when threads synchronize, and the global monitor
does not needlessly restrict concurrency in the program. Exist-
ing hybrid information-flow control monitors for concurrent
programs (e.g., [14]) use a single monitor shared by all threads,
thus causing unnecessary synchronization between threads.

This article’s contributions can be summarized as follows.
• We provide efficient and precise information-flow control for

concurrent programs using hybrid monitors. Our monitoring
approach is novel: each thread has its own local monitor,
and there is a single global monitor. Efficiency is achieved
because the global monitor is accessed only at thread
synchronization points, and so does not needlessly restrict
concurrency. We prove that our monitors enforce a progress-
sensitive noninterference-like security guarantee.

• The generic framework for monitoring concurrent programs
is itself a novel technical contribution. It enables sound
rely-guarantee-style reasoning in a dynamic setting, where
the global monitor ensures the compatibility of assumptions
made with guarantees provided by threads, and the local
monitors enforce the guarantees promised by threads. Local
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monitors can be specialized to impose further constraints
on the guarded thread. By exploiting assumptions, local
monitors are able to effectively enforce also global system
properties. This is the feature from which we benefit in our
hybrid solution for information-flow security.

We consider a simple imperative concurrent calculus, with
input and output operators and barrier synchronization. Our
local monitors support flow-sensitive security types [15], which
facilitates precise reasoning about information flow via program
variables. A thread may soundly allow the security level of a
variable to change only if the thread has exclusive read-access
or exclusive write-access to the variable.

Our local monitors separately track upper bounds on infor-
mation that may be revealed by the relative order of events
(the timing level of a thread) and information that may be
revealed by learning whether control has reached the current
program point or diverged earlier (the termination level of a
thread). These levels are analogous to the pc level traditionally
used in security-type systems for non-concurrent programs [4].
The termination level enables us to enforce progress sensi-
tive security [16], a generalization of termination sensitive
security [17] to interactive programs. Most existing work on
enforcing information-flow security ignores progress sensitivity
due to the complexity and imprecision of the enforcement
mechanism. Use of the timing level enables us to prevent
internal timing leaks [18]. Although the termination level of a
thread increases monotonically, we provide additional precision
by lowering the timing level of threads at synchronization
points, since synchronization between threads restricts the
relative order of events before and after the synchronization.
Our work leverages the insight that resetting the timing levels of
threads at synchronization points is analogous to lowering the
pc level at post-dominators of control-flow branches [18, 4, 19].

II. INFORMATION FLOW IN CONCURRENT PROGRAMS

In this section, we provide intuition for how concurrency and
progress sensitivity complicate the enforcement of information-
flow security, and for how our monitors enforce security in this
challenging setting. We then present our general framework for
monitoring concurrent programs (Sections III–IV), instantiate it
for rely-guarantee reasoning (Section V), and further instantiate
it to enforce information-flow security (Sections VI–VII).

Information flow through concurrent access: Confiden-
tial information may be inadvertently leaked through thread
interaction. For example, consider the following (insecure) pro-
gram, which consists of two threads that execute concurrently.

Thread 1: input H to foo; output foo× 2 to H
Thread 2: foo := 42; output foo to L

The first thread inputs confidential information from high-
security channel H , stores it in variable foo, and then outputs
2 times foo to channel H . The other thread sets foo to the
constant integer 42, then outputs foo to low-security channel
L, which we assume can be observed by an adversary. Each
of these threads is intuitively secure if it were executed in
isolation. However, when executed concurrently, since they
both access foo, it is possible that Thread 2 will output

confidential information to channel L, violating security by
revealing confidential information to the attacker. Indeed, if an
observer of channel L sees an output of anything other than
42, she can infer the confidential input.

Fine-grained resource sharing: Following the work of
Mantel, Sands, and Sudbrock [13], we support fine-grained
reasoning about threads’ access to shared resources (like the
variable foo in the example above) in order to prevent security
violations via thread interaction through such resources. Each
thread uses rely-guarantee reasoning about what variables it
and other concurrently executing threads might read or write.
Consider, for example, the following (secure) program, where
Thread 1 assumes that no other threads will read variable w
(note that Thread 1 stores confidential information in w), and
Thread 2 assumes that no other threads will write variable
v (note that Thread 2 sends the content of v to channel L).
Provided both assumptions hold, the program is secure, even
in the presence of additional threads.

Thread 1: input H to w; output w + v to H
Thread 2: v := 14; output v × 42 to L

Threads’ assumptions and guarantees originate from protocols
the concurrently running threads comply with, where coordina-
tion among threads is often achieved through synchronization
mechanisms. In the following (secure) example, Thread 1 has
exclusive access to variable y before the barrier, and Thread 2
has exclusive access after the barrier.

Thread 1: input L to y; barrier
Thread 2: barrier; output y to L

Assumptions and guarantees of threads must be compatible
when threads are composed. We assume that a thread’s
assumptions are stated explicitly. We use the global monitor
to impose the corresponding guarantees on all other threads,
and use the local monitors of the threads ensure that these
guarantees are indeed provided. Thus, our approach supports
fine-grained resource sharing while preventing information
leakage through concurrent access.

Information flow through nondeterminism: Information
can also be leaked when the relative order of observable
events (such as outputs to low-security channels) depend on
confidential information. In the following (insecure) example,
the output on channel L is either 0 followed by 1, or vice versa,
where the order likely depends on confidential information.

Thread 1: input h to H; while h > 0 do h := h− 1 od;
output 1 to L

Thread 2: output 0 to L
Our monitors prevent information leakage by this program
as follows: Regardless of the value of the confidential input,
Thread 1’s local monitor notices that the relative ordering
between its own output and output of other threads might be
influenced by the while loop, and, hence, the local monitor
intervenes by blocking the thread’s execution before the
output occurs. The following program is, however, secure and
permitted by our monitors.

Thread 1: input h to H; while h > 0 do h := h− 1 od;
barrier; output 1 to L

Thread 2: barrier; output 0 to L
Even though the relative order of the low outputs is

undetermined, the threads cannot perform the output until
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after the barrier. Intuitively, the program is secure because the
synchronization between threads ensures that the order of the
low output does not depend on confidential information, even
though the low output is nondeterministic [20, 21].

To correctly and precisely track what information might be
revealed by the relative timing of events, each local monitor
tracks the timing level, a security level that is an upper
bound on information that has influenced the timing of the
thread’s execution with respect to other threads. Since after
synchronization, the relative timing of threads is independent of
information that affected the timing before the synchronization,
the timing level of a thread can be lowered immediately
after synchronization. This is similar to information-flow
control in single-threaded programs, where the pc level (a
bound on the information that influences whether the current
statement is executed) can be lowered at post-dominators of
control flow decisions. That is, synchronization points are the
post-dominators of concurrent programs, and allow a similar
improvement in precision.

Precision of hybrid monitors: Our use of monitors
improves the precision of security enforcement, since we
consider the security of a single execution, and do not need
to determine whether all possible program executions are
secure. For example, our monitor permits complete execution
of the following single-threaded program if the low input is
positive. In contrast, a static analysis would have to classify this
program as insecure, because executing it will leak confidential
information if the low input is negative or zero.

input L to low;
if low > 0 then input L to x else input H to x fi;
output x to L

Progress sensitivity: If confidential information influences
whether a program terminates, observing the termination or
non-termination of a program can leak confidential information.
This is exacerbated in interactive settings [16] (i.e., where the
program produces observable events before the end of the
program) and concurrent settings (where many threads may
each reveal a small amount of information). For example, in
the following (insecure) program, the program silently diverges
after outputting a low value that is equal to the secret (i.e.,
it diverges without producing any further output). Thus, an
observer of channel L can learn the secret by noting the last
value output.

input H to high; low := 0;
while 1 do

output low to L;
if low<high then low := low+1 else (while 1 do skip od) fi

od
An additional concern is that an enforcement mechanism

itself might reveal information. In the following (insecure)
program, if the secret is positive, a monitor might intervene
to prevent the insecure output of high to L by blocking the
thread. As a consequence, the output of 42 to channel L would
never occur and, hence, an observer of L could infer that the
secret must be a positive value, once she realizes that 42 will
not be output.

input H to high;
if high > 0 then output high to L else skip fi;
output 42 to L

We prevent information leaks via termination and monitor
interventions by tracking the termination level and blocking
level of each thread within our local monitors. These are upper
bounds on information that might have influenced, respectively,
the termination behavior of loops and the blocking behavior
of the monitor. By tracking these levels, we ensure that the
termination and blocking behavior does not leak information.

III. MONITORED MULTI-THREADED COMPUTATIONS

We propose a formal model for multi-threaded programs
that interact with their environment via channels and whose
concurrent threads communicate with each other using shared
memory. In our model, we reuse the concepts of modes and
of mode states from [13] to facilitate rely-guarantee-style
reasoning about the behavior of such programs.

The novelty of our model is that it supports reasoning about
multi-threaded programs that are monitored. In our model,
programs can be monitored at two levels: local monitors provide
control over individual threads while global monitors provide
control across threads. By lifting the concept of mode states
to threads that are monitored, we enable rely-guarantee-style
reasoning both about monitored programs and within monitors.

We recall the concepts of modes and of mode states in
Section III-A, and also define a formal notation for mode state
changes. In Section III-B, we introduce judgments that capture
the behavior of local and global monitors. This provides the
basis for lifting the concepts of mode states to multi-threaded
programs that are monitored in Section III-C.
Notation: We denote the powerset of a set S by P(S). We

use A→ B and A⇀B to denote the set of all total functions
and all partial functions, respectively, with domain A and range
B. We denote the pre-image of a function f : A⇀B by pre(f),
i.e., pre(f) = {a ∈ A | f(a) ∈ B}. We denote the update
of a function f by f [d 7→ v], where f [d 7→ v](d) = v and
f [d 7→ v](d′) = f(d′) for d′ ∈ pre(f) \ {d}.

We refer to partial functions with domain N0, range A,
and a finite pre-image of consecutive numbers starting at 0
as lists over A, and denote the set of all such lists by A∗.
We use ε to denote the empty list, l·a to denote the list that
results from appending an element a ∈ A to the end of a
list l ∈ A∗, and l1·l2 to denote the concatenation of two lists
l1, l2 ∈ A∗. The function filter removes from a list over A
those elements that do not satisfy a predicate p ⊆ A, i.e.,
filter(p, ε) = ε, filter(p, l·a) = filter(p, l)·a if a ∈ p, and
filter(p, l·a) = filter(p, l) if a /∈ p.

Additional notation and notions are defined in Appendix A.

A. Modes, Mode States, and Annotations

We use modes [13] to capture a program developer’s
expectations about the environment in which a program shall
run as well as his intentions. For instance, a program might be
designed to use a particular communication protocol with its
environment and, hence, a thread running such a program will
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provide the desired functionality only in an environment that
complies with this protocol. Such a convention incorporates
both an expectation (namely that the environment will follow
the protocol) and an intention (namely that the thread itself is
programmed correctly to follow the protocol).

In general, modes can be used to express assumptions
and guarantees about arbitrary entities that are relevant for
a program’s behavior. In this article, we restrict ourselves to
modes that express assumptions and guarantees about particular
entities, namely program variables. More concretely, we focus
on assumptions about which variables might be read and written
by a thread’s environment and the dual guarantees. We use
Var to denote the set of all variables.

We use the symbols A-NR and A-NW to express the
assumption that a particular variable will not be read and
will not be written, respectively, by the environment of a
given thread. Moreover, we use the symbols G-NR and G-NW
to express the guarantee that a thread will not read and
will not write, respectively, a particular variable. That is,
the modes A-NR and G-NR are dual to each other, and so
are the modes A-NW and G-NW. We define the function
invert : Mod → Mod to transform a mode mod ∈ Mod
into its dual mode:

invert(G-NR) = A-NR invert(G-NW) = A-NW
invert(A-NR) = G-NR invert(A-NW) = G-NW

We refer to the modes A-NR and A-NW as the no-read and the
no-write assumption. Moreover, we refer to the modes G-NR
and G-NW as the no-read and the no-write guarantee. Formally,
we define the set of assumptions by Asm = {A-NR,A-NW},
the set of guarantees by Gua = {G-NR,G-NW}, and the set
of all modes by Mod = Asm ∪Gua .

We use mode states [13] to track which assumptions are
made and which guarantees are provided. Formally, a mode
state is a function mdst : Mod → P(Var) that returns the
set of all variables that are in a given mode. Accordingly, we
define the set of all mode states by MdSt = Mod → P(Var).

We use terms of the form acq(mod,X) and rel(mod,X)
to specify that the mode mod is acquired and released,
respectively, for all variables in the set X ⊆ Var . We call
such terms annotations and define the set of all annotations
by Ann = {acq(mod,X), rel(mod,X) | mod ∈ Mod , X ⊆
Var}. For singleton sets of variables, we use a shorthand
notation and write acq(mod, x) instead of acq(mod, {x}).
Similarly, we write rel(mod, x) instead of rel(mod, {x}).

We introduce the predicate Has-Mode-In ⊆ Ann ×
P(Mod) to identify annotations with particular modes. We
define this predicate by ann Has-Mode-In M iff ann ∈
{acq(mod,X), rel(mod,X) | X ⊆ Var ∧ mod ∈ M} and
the projection of a list of annotations γ to a set of modes M
by γ �M = filter(λann ∈ Ann : ann Has-Mode-In M,γ).

To model the effects of annotations on mode states, we

define the function update : (MdSt ×Ann)→ MdSt by

update(mdst, acq(mod,X)) =

mdst[mod 7→(mdst(mod)∪X)]

update(mdst, rel(mod,X)) =

mdst[mod 7→(mdst(mod)\X)]

Overloading notation, we lift the function update : (MdSt×
Ann) → MdSt to a function update : (MdSt×Ann?) →
MdSt on lists of annotations by update(mdst, ε) = mdst
and update(mdst, γ·ann) = update(update(mdst, γ), ann),
where mdst ∈ MdSt , ann ∈ Ann, and γ ∈ Ann?.

For instance, the annotation acq(A-NW, x) can be used to
specify that a thread from now on runs under the assumption
that variable x is not written by other threads, mdst(A-NW)
equals the set of all variables for which the no-write as-
sumption is made in mode state mdst, and, in particular,
x ∈ (update(mdst, acq(A-NW, x)))(A-NW) holds.

This fact is explicated by the following proposition.

Proposition 1. Let γ, γ′ ∈ Ann?, mod ∈ Mod , and
mdst,mdst′ ∈ MdSt be arbitrary. If mdst(mod) =
mdst′(mod) and γ � {mod} = γ′ � {mod} then
(update(mdst, γ))(mod) = (update(mdst′, γ′))(mod).

Proof: Let mod ∈ Mod be arbitrary. We first prove the
following implication by induction over the length of γ:

∀γ ∈ Ann? : ∀mdst,mdst′ ∈ MdSt : (1)
(mdst(mod) = mdst′(mod) =⇒

((update(mdst, γ))(mod) =

(update(mdst′, γ � {mod}))(mod)))

Let mdst,mdst′ ∈ MdSt be arbitrary with mdst(mod) =
mdst′(mod).

Base case: Assume γ = ε. From γ = ε, we obtain
γ � {mod} = ε. From the definition of update, γ = ε,
mdst(mod) = mdst′(mod), and γ � {mod} = ε, we obtain
(update(mdst, γ))(mod) = mdst(mod) = mdst′(mod) =
(update(mdst′, γ � {mod}))(mod).

Step case: Assume γ = γ×·ann for some γ× ∈ Ann? and
ann ∈ Ann. Let mdst× = update(mdst, γ×) and mdst′× =
update(mdst′, γ× � {mod}). From the induction assumption,
we obtain mdst×(mod) = mdst′×(mod).

If ann � {mod} = ε then (update(mdst, γ))(mod) =
(update(mdst, γ×))(mod). From mdst×(mod) =
mdst′×(mod) and γ � {mod} = (γ×·ann) �
{mod} = (γ× � {mod})·ε = γ× � {mod} we obtain
(update(mdst, γ))(mod) = (update(mdst, γ×))(mod) =
(update(mdst′, γ× � {mod}))(mod) = (update(mdst′, γ �
{mod}))(mod).

If ann � {mod} 6= ε then ann � {mod} = ann. We
distinguish two cases:

If ann = acq(mod, x) for some x ∈ Var then
(update(mdst, γ))(mod) = (update(mdst×, ann))(mod) =

mdst×(mod) ∪ {x} = mdst×
′
(mod) ∪ {x} =
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(update(mdst×
′
, ann))(mod) = (update(mdst′, γ �

{mod}))(mod).
If ann = rel(mod, x) for some x ∈ Var then

(update(mdst, γ))(mod) = (update(mdst×, ann))(mod) =

mdst×(mod) \ {x} = mdst×
′
(mod) \ {x} =

(update(mdst×
′
, ann))(mod) = (update(mdst′, γ �

{mod}))(mod).
This concludes the proof of Proposition 1. It remains to

argue that the overall proposition follows.
Let mdst,mdst′ ∈ MdSt and γ, γ′ ∈ Ann?

be arbitrary with mdst(mod) = mdst′(mod) and
γ � {mod} = γ′ � {mod}. From Proposition 1
and mdst(mod) = mdst′(mod), we obtain
(update(mdst, γ))(mod) = (update(mdst′, γ �
{mod}))(mod). From γ � {mod} = γ′ � {mod},
we obtain (update(mdst′, γ � {mod}))(mod) =
(update(mdst′, γ′ � {mod}))(mod). From Proposition 1 and
mdst′(mod) = mdst′(mod), we obtain (update(mdst′, γ′ �
{mod}))(mod) = (update(mdst′, γ′))(mod). Thus,
(update(mdst, γ))(mod) = (update(mdst′, γ′))(mod)
holds.

B. Monitors and Events

To control the behavior of individual threads, each thread
is guarded by a local monitor which is invoked each time
the thread performs a computation step. We use local events
to capture information about computation steps needed by a
local monitor. We denote the set of all local events by Ev,
use α ∈ Ev as a meta-variable, use LMon to denote the
set of all possible internal states of local monitors, and use
lmon ∈ LMon as a meta-variable for local monitor states.

We employ the judgment lmon −→δ,α
perm lmon ′ to capture

that a local monitor in state lmon ∈ LMon permits the
combination of α ∈ Ev and δ ∈ Ann?. The local monitor’s
internal state is updated to lmon ′ ∈ LMon .

To control the behavior across threads, a multi-threaded
program is guarded by one global monitor. We use global
events to capture the information about such steps that is needed
by the global monitor. We denote the set of all global events by
GEv , use β ∈ GEv as a meta-variable, use GMonn to denote
the set of all possible internal states of global monitors for pool
states with n threads, and identify the initial global monitor
states in these sets by gmoninit,n ∈ GMonn. We define the
set of all global monitor states by GMon =

⋃
n∈N0

GMonn
and use gmon ∈ GMon as a meta-variable.

In this article, we use the global monitor only to control
mode-state updates. To simplify our exposition, we assume
that threads update their mode state only when synchronizing
with other threads, and we consider only one synchronization
primitive, namely global barrier synchronization. Consequently,
the global monitor needs to be invoked only when the program
passes a barrier and only needs to distinguish between two
global events: sync for barrier synchronization and ε for all
other steps. Throughout this article, the set of all global events
is GEv = {sync, ε}. We use a function χ : Ev → GEv to
extract the corresponding global event from a local event.

When passing a barrier, each alive thread requests changes
to its mode state, and the global monitor decides if a given
combination of requests by the individual threads is permissible.
Moreover, the global monitor may decide to impose mode-state
changes on threads that differ from the requested mode-state
changes. We employ the judgment gmon −→Γ,∆ gmon ′ to
capture that a global monitor in state gmon ∈ GMon accepts
the combination of mode-state-change requests modeled by Γ,
imposes the mode-state changes modeled by ∆ in response,
and updates its internal state to gmon ′. Formally, Γ and ∆ are
functions of type N → Ann?, where N ⊆ N0 is a finite set.
That is, Γ and ∆ return a list of annotations for each number
in their pre-image. As explained later, whenever we use this
judgment, N is the set of identifiers of all threads that are
alive when the global monitor is invoked.

We provide a concrete instantiation of GMonn and
gmoninit,n together with a calculus for global monitor tran-
sitions (i.e., for deriving gmon −→Γ,∆ gmon ′) in Section V.
In Section VI, we provide instantiations of Ev and of χ.
An instantiation of LMon and a calculus for local monitor
transitions are presented in Section VII.

C. Monitored, Multi-threaded Computations

We capture control states of individual threads by terms
that we call commands, use Com to denote the set of all
commands, and express that a thread has terminated by the
special command term ∈ Com .

We capture local states of individual threads by thread states
and collections of the local states of multiple threads by pool
states. Formally, a thread state is a triple [com, lmon,mdst],
where com ∈ Com , lmon ∈ LMon , and mdst ∈ MdSt .
Accordingly, we define the set of all thread states by ThSt =
Com×LMon×MdSt . Formally, a pool state is a list of thread
states. We define the set of all pool states with n threads by
PStn = {0, . . . , n− 1} → ThSt and define the set of all pool
states with arbitrarily many threads by PSt =

⋃
n∈N0

PStn.
We use thread ∈ ThSt as meta-variable for thread states and
pool ∈ PSt as a meta-variable for pool states.

From a thread state thread = [com, lmon,mdst], we
retrieve its components with selector functions, defined
by thread.com = com, thread.lmon = lmon , and
thread.mdst = mdst. For instance, (pool(i)).mdst equals
the mode state of the ith thread in the pool state pool.

We introduce the predicate Alive ⊆ ThSt to capture
that a thread has not yet terminated by Alive (thread) ≡
thread.com 6= term. To retrieve the identifiers of those threads
in a given pool state pool ∈ PSt that have not yet terminated
and that have terminated, respectively, we define the functions
alive : PSt → P(N0) and terminated : PSt → P(N0)
by alive(pool) = {i ∈ pre(pool) | Alive (pool(i))} and
terminated(pool) = pre(pool) \ alive(pool).

Threads communicate with each other via a globally shared
memory and with their environment via channels. We model
the state of the shared memory by a function from variables
to values and the history of prior communications on a given
channel by a trace. Formally, we use Val to denote the set
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of all values, define the set of states of the shared memory
by Mem = Var → Val , and use Ch to denote the set of all
channels. We model that a value v ∈ Val is received from
channel ch ∈ Ch and that v is output on ch by the terms
inp(ch, v) and out(ch, v), respectively. We refer to such terms
as interactions and denote the set of all interactions by IO .
We call lists of interactions traces, define the set of all traces
by Tr = IO?, and use τ ∈ Tr as a meta-variable for traces.

We capture the behavior of a program’s environment by a
communication strategy. A strategy determines which input
the environment supplies to a program on a given channel
after a sequence of prior interactions. Formally, a strategy is
a function σ : (Tr × Ch) → Val such that σ(τ, ch) is the
value supplied next on channel ch if all prior interactions are
captured by the trace τ . We use Σ to denote the set of all
such strategies.

Configurations: For capturing snapshots during program
execution, we employ three layers of configurations: global
configurations, local configurations, and command configura-
tions, where global and local configurations incorporate the
state of a global monitor and of a local monitor, respectively.

We use global configurations to model global snapshots
during a program run. Formally, a global configuration gcnf
is a quadruple 〈〈pool,mem, τ, gmon〉〉, where pool ∈ PSt ,
mem ∈ Mem , τ ∈ Tr , and gmon ∈ GMon . In the global
configuration gcnf , the pool state pool captures the local state
of each thread of the multi-threaded program, the memory state
mem captures the content of all memory locations, the trace
τ captures the inputs and outputs that have occurred so far,
and gmon captures the internal state of the global monitor.

We use local configurations to capture the local view of
individual threads during a run. Formally, a local configuration
lcnf is a triple 〈thread,mem, τ〉 where thread ∈ ThSt ,
mem ∈ Mem , and τ ∈ Tr . While the thread state thread
models a thread’s local state, mem and τ model the content
of the memory and the prior communications, respectively.
In a global configuration 〈〈pool,mem, τ, gmon〉〉, the local
configuration of thread i is 〈pool(i),mem, τ〉.

We use command configurations to define the local effects of
computation steps. Formally, a command configuration ccnf
is a triple (com,mem, τ), where com ∈ Com , mem ∈ Mem ,
and τ ∈ Tr . While com models a thread’s internal state, mem
and τ model the memory content and the prior communications,
respectively. The command configuration of a local configura-
tion 〈[com, lmon,mdst],mem, τ〉 is (com,mem, τ).

We use GCnf , LCnf , and CCnf to denote the set of all
global, local, and command configurations, respectively.

Judgments: For capturing the effects of computation steps
at the level of global, local, and command configurations,
respectively, we employ the following three judgments:

gcnf �σ gcnf
′ lcnf

β,γ,δ−→σ lcnf
′ ccnf

α,γ
_σ ccnf

′

A strategy σ ∈ Σ appears as a subscript of the arrow in all
three judgments. It captures the communication strategy of
the program’s environment. For instance, the first judgment

captures that a transition from a global configuration gcnf to
a global configuration gcnf ′ is possible under the strategy σ.
The arrow in the second judgment carries three additional
annotations: a global event β ∈ GEv and two lists of
annotations γ, δ ∈ Ann? that serve different purposes. While
γ captures which changes to its mode state a thread desires, δ
captures which mode state changes are imposed on the thread in
response. The arrow in the third judgment carries as annotations
a local event α ∈ Ev and a list of annotations γ ∈ Ann? that
captures which changes to its mode state a thread desires.

In the remainder of this section, we provide calculi for
the judgments lcnf

β,γ,δ−→σ lcnf ′ and gcnf �σ gcnf ′. An
exemplary calculus for the judgment ccnf

α,γ
_σ ccnf ′ is

provided in Section VI together with an instantiation of Com .
As usual, these calculi induce transition relations. For

instance, the calculus for local configurations induces a fam-
ily of transition relations (

β,γ,δ−→σ)β∈GEv ,γ,δ∈Ann?,σ∈Σ , where
β,γ,δ−→σ relates two local configurations lcnf and lcnf ′ iff
lcnf

β,γ,δ−→σ lcnf
′ is derivable. We use the usual notation for the

reflexive, transitive closure of such relations, i.e., for instance,
(
β,γ,δ−→σ)∗ denotes the reflexive, transitive closure of

β,γ,δ−→σ .

Local Transitions: The judgment lcnf
β,γ,δ−→σ lcnf ′

defines which transitions between local configurations are
possible. The only rule for deriving instances of this judgment
is depicted in Fig. 1.

The judgment for transitions between command configura-
tions in the first premise of the rule in Fig. 1 reflects that
a thread’s behavior is determined by the command that this
thread is executing. In this article, we employ local monitors
to guard the behavior of individual threads. Accordingly, the
judgment for transitions between local monitor states is used
in the second premise to capture that the local monitor must
deem the step acceptable. Note that the transition between
local monitor states is based on δ and not on γ, i.e., it is based
on the mode state changes imposed on the thread, not on the
mode state changes requested by the thread. Also note that
δ is used to update the mode state in the third premise. The
global event β is extracted from the local event α using the
function χ : Ev → GEv in the last premise of the rule.

This fact is explicated by the following proposition.

Proposition 2. Let com, com′ ∈ Com , lmon, lmon ′ ∈ LMon ,
mdst1,mdst

′
1,mdst2 ∈ MdSt , mem,mem′ ∈ Mem , τ, τ ′ ∈

Tr , β ∈ GEv , γ, δ ∈ Ann?, and σ ∈ Σ be arbitrary.
If

〈[com, lmon,mdst1],mem, τ〉 β,γ,δ−→σ

〈[com′, lmon ′,mdst′1],mem′, τ ′〉

is derivable then there exists a mode state mdst′2 ∈ MdSt
such that

〈[com, lmon,mdst2],mem, τ〉 β,γ,δ−→σ

〈[com′, lmon ′,mdst′2],mem′, τ ′〉

is derivable.
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(com,mem, τ)
α,γ
_σ (com′,mem′, τ ′) lmon −→δ,α

perm lmon ′ mdst′ = update(mdst, δ) β = χ(α)

〈[com, lmon,mdst],mem, τ〉 β,γ,δ−→σ 〈[com′, lmon ′,mdst′],mem′, τ ′〉

Fig. 1. Transitions between local configurations

i ∈ alive(pool) 〈pool(i),mem, τ〉 β,γ,δ−→σ 〈thread′,mem′, τ ′〉 β = ε γ = δ = ε gmon ′ = gmon

〈〈pool,mem, τ, gmon〉〉�σ 〈〈pool[i 7→ thread′],mem′, τ ′, gmon ′〉〉

alive(pool) 6= ∅ Γ,∆ : alive(pool) −→ Ann? gmon −→Γ,∆ gmon ′ pool′ ∈ PSt |pre(pool)|

∀j ∈ terminated(pool) : pool′(j) = pool(j) ∀i ∈ alive(pool) : (〈pool(i),mem, τ〉 sync,Γ(i),∆(i)−→σ 〈pool′(i),mem, τ〉)
〈〈pool,mem, τ, gmon〉〉�σ〈〈pool′,mem, τ, gmon ′〉〉

Fig. 2. Transitions between global configurations

Proof: The mode state before a transition between local
configurations can neither prevent the transition nor affect the
thread state, memory, or trace after the transition according
the rule in Fig. 1.

Global Transitions: Transitions between global config-
urations are captured by the judgment gcnf �σ gcnf ′.
To simplify our presentation, we make three restrictions.
First, we assume that the process structure is static, i.e., if
〈〈pool,mem, τ, gmon〉〉 �σ 〈〈pool′,mem′, τ ′, gmon ′〉〉 then
pre(pool′) = pre(pool). Second, we assume that threads are
scheduled nondeterministically. Third, as stated before, we
assume that barrier synchronization is the only synchronization
primitive and that threads only request changes to their mode
state when they pass a barrier.

The two rules for deriving instances of the judgment
gcnf �σ gcnf

′ are depicted in Fig. 2. The first rule captures
steps by individual threads, and the second rule captures a
barrier synchronization across all threads.

According to the first rule in Fig. 2, an alive thread i
(first premise) may be chosen nondeterministically to perform
a computation step (second premise). This step must not
involve synchronization (third premise), must neither request
nor impose mode state changes (fourth premise), and must
not affect the global monitor state (fifth premise). Such a
step by an individual thread might affect the thread’s control
state, the state of the local monitor supervising this thread, the
shared memory, and the trace. It cannot affect the mode state
of this thread (since δ = ε), the local states of other threads
(conclusion of the rule), and the global monitor state (since
gmon ′ = gmon).

The second rule in Fig. 2 captures synchronization steps.
This rule requires that all alive threads jointly pass a barrier (last
premise of the rule), which faithfully reflects the intuition of a
barrier synchronization. In order to perform a synchronization
step, at least one thread must be alive (first premise). The
function Γ captures which mode state changes are requested by
the individual alive threads (last premise). That is, Γ(i) is the
list of annotations capturing the mode state changes requested
by the ith thread, where i ∈ alive(pool). The function ∆
captures the mode state changes that are imposed on the

individual threads (last premise). Which mode state changes are
imposed on the individual threads in response to their requests
is determined by the global monitor (third premise). Note that
the set of threads cannot change during a synchronization
step (fourth premise) and that the thread states of terminated
threads remain unmodified (fifth premise). Also note that a
synchronization step cannot affect the shared memory or the
trace (conclusion of the rule). Synchronization steps can only
affect the thread state of all alive threads and the state of the
global monitor (conclusion of the rule).

Reachability: We say that a global configuration gcnf ′

is reachable from a global configuration gcnf under a
strategy σ iff gcnf (�σ)∗ gcnf ′ holds. We assume that
runs of multi-threaded programs start in an initial memory
meminit that assigns a dedicated value vinit ∈ Val to all
variables (i.e., ∀x ∈ Var : meminit(x) = vinit ) and with
an empty initial trace τinit (i.e., τinit = ε). We say that a
global configuration gcnf ′ is reachable from a pool state
pool under a strategy σ iff gcnf ′ is reachable from the
global configuration 〈〈pool,meminit , τinit , gmoninit,n〉〉 under
σ, where n = |pre(pool)|. We use greachσ(gcnf) and
reachσ(pool) to denote the set of all global configurations
reachable from gcnf ∈ GCnf and pool ∈ PSt , respectively,
under σ ∈ Σ.

IV. SEMANTICS OF MODES

We formally define what it means for a thread to provide a
guarantee and what it means for an assumption to be justified.
While we define the semantics of G-NR and G-NW in terms
of transitions between local configurations, we define the
semantics of A-NR and A-NW for a given thread in terms
of guarantees given by other threads in a global configuration.
Based on the formal semantics of modes, we define conditions
that allow one to soundly exploit assumptions when reasoning
about the behavior of multi-threaded programs.

Semantics of G-NW and G-NR: We say that a local
configuration lcnf = 〈thread,mem, τ〉 provides the no-write
guarantee for a variable x iff the value of x will remain
unmodified by each next possible step of the thread. This
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requirement is captured by the following formula:

∀σ ∈ Σ : ∀β ∈ GEv : ∀γ, δ ∈ Ann? :
∀〈thread′,mem′, τ ′〉 ∈ LCnf :

〈thread,mem, τ〉 β,γ,δ−→σ 〈thread′,mem′, τ ′〉
=⇒ mem′(x) = mem(x)

We say that a local configuration lcnf = 〈thread,mem, τ〉
provides the no-read guarantee for a variable y iff

∀σ ∈ Σ : ∀β ∈ GEv : ∀γ, δ ∈ Ann? :
∀〈thread′,mem′, τ ′〉 ∈ LCnf :

〈thread,mem, τ〉 β,γ,δ−→σ 〈thread′,mem′, τ ′〉
=⇒
∀v ∈ Val : 〈thread,mem[y 7→v],τ〉 β,γ,δ−→σ 〈thread′,mem′,τ ′〉
∨
∀v ∈ Val : 〈thread,mem[y 7→v],τ〉 β,γ,δ−→σ

〈thread′,mem′[y 7→v],τ ′〉

That is, a no-read guarantee for a variable y ensures that
changing the value of y before a computation step does not
alter the effects of this computation step. The two disjuncts on
the right-hand side of the implication correspond respectively to
the cases where y is overwritten and where y is not overwritten
in a computation step.

A local configuration lcnf=〈[com, lmon,mdst],mem, τ〉
provides its guarantees iff it provides the no-write guarantee
for each variable x ∈ mdst(G-NW) and the no-read guarantee
for each y ∈ mdst(G-NR). Consequently, if lcnf provides its
guarantees then the values of all variables in mdst(G-NW)
will remain unchanged by the thread’s next step and the values
of all variables in mdst(G-NR) will not affect the thread’s next
step. We say that a thread state thread provides its guarantees
iff, for all mem ∈ Mem and all τ ∈ Tr , the local configuration
〈thread,mem, τ〉 provides its guarantees. Moreover, we say
that gcnf = 〈〈pool,mem, τ, gmon〉〉 provides its guarantees
iff pool(i) provides its guarantees for all i ∈ pre(pool).

Semantics of A-NW and A-NR: Given a global config-
uration gcnf = 〈〈pool,mem, τ, gmon〉〉, we say that gcnf
justifies the assumption A-NW of a thread i ∈ pre(pool)
about a variable x iff every other alive thread has acquired the
mode G-NW for x. Similarly, we say that gcnf justifies the
assumption A-NR of a thread i∈pre(pool) about a variable y
iff every other alive thread has acquired the mode G-NR for y.

A global configuration gcnf = 〈〈pool,mem, τ, gmon〉〉
justifies its assumptions iff gcnf justifies both the assumption
A-NW about each variable in (pool(i)).mdst(A-NW) and the
assumption A-NR about each variable in (pool(i)).mdst(A-NR)
for all i ∈ pre(pool), or formally:

∀i ∈ pre(pool) : ∀x ∈ Var : ∀mod ∈ Asm :
x ∈ (pool(i)).mdst(mod)
=⇒ ∀j ∈ (alive(pool) \ {i}) :

x ∈ (pool(j)).mdst(invert(mod))

(2)

Note that assumptions of all threads, including terminated
threads, must be justified. In contrast, only alive threads need
to explicitly provide the dual guarantees for assumptions of

other threads. Terminated threads need not acquire the modes
G-NW and G-NR because, it is clear that they will not be able
to write or read variables in the future.

Sound use of modes: We say that a global configuration
gcnf ensures a sound use of modes iff, for each strategy σ ∈ Σ,
each reachable global configuration gcnf ′ ∈ greachσ(gcnf)
provides its guarantees and justifies its assumptions.

Moreover, we say that a pool state pool ensures a sound
use of modes iff 〈〈pool,meminit , τinit , gmoninit,n〉〉 ensures
a sound use of modes. If a pool state pool ensures a sound
use of modes then, at each intermediate state during each
possible run, each assumption made is justified by guarantees
that are, indeed, provided. Hence, all assumptions made can
be exploited soundly when reasoning about possible behaviors.

V. A MONITORING FRAMEWORK

We propose a framework for monitoring multi-threaded
programs based on our model of computation from Section III.
Our monitoring framework consists of the definition of a global
monitor and of a local monitor. The role of these monitors is
complementary. Our global monitor ensures that assumptions
made by threads are, indeed, justified. Our local monitor ensures
that an individual thread, indeed, provides the guarantees that
it promises to provide. The combination of one global monitor
and a local monitor at each thread jointly ensure a sound use
of modes and, hence, the soundness of modular, rely-guarantee-
style reasoning about the behavior of multi-threaded programs.

Our local monitor can be specialized to enforce additional
properties. By exploiting assumptions, local monitors can not
only establish properties of individual threads, but also global
properties of entire multi-threaded programs. We present a
specialization of local monitors for information-flow control in
Section VII and demonstrate that this specialization soundly
enforces end-to-end information-flow security.

Global Monitoring of Multi-threaded Programs: We
define a global monitor that grants all acquisitions and releases
of assumptions exactly as desired by each thread. In addition,
our global monitor ensures that all assumptions of all threads
are justified. To justify all assumptions, guarantees might be
needed that differ from the guarantees that the individual
threads desire to provide. Consequently, our global monitor
cannot always grant modifications of guarantees according to
these desires.

Our global monitor keeps track of both the assumptions
that each alive thread currently makes and the assumptions
that each terminated thread had made when it terminated.
Formally, a global monitor state for n threads is a function that
returns a mode state for each thread identifier in {0, . . . , n−1}.
Accordingly, we instantiate the set of all global monitor states
for n threads by GMonn = {0, . . . , n − 1} −→ MdSt and
gmoninit,n ∈ GMonn, the initial global monitor state for n
threads, by gmoninit,n(i) = {} for all i ∈ {0, . . . , n− 1}.

We say that a global monitor state gmon ∈ GMon
(recall GMon =

⋃
n∈N0

GMonn) is compatible with a
pool state pool ∈ PSt iff pre(gmon) = pre(pool) and
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gmon ′ = gmon-update(gmon,Γ)
pre(Γ) ⊆ pre(gmon) ∆ = gmon-impose(gmon ′,Γ)

gmon −→Γ,∆ gmon ′

Fig. 3. Transitions between global monitor states

if (gmon(i))(mod) = (pool(i)).mdst(mod) for each i ∈
pre(pool) and mod ∈ Asm .

When threads modify their mode state, the global monitor
state is updated accordingly. To capture such updates of the
global monitor state, we define the function gmon-update :
(GMon × (N0⇀Ann?)) −→ GMon by

gmon-update(gmon,Γ) =
λi ∈ pre(gmon) :
if i ∈ pre(Γ) then update(gmon(i), (Γ(i)� Asm))

else gmon(i)

Note that acquisitions and releases of guarantees in Γ(i) are
ignored when updating the global monitor state. Our global
monitor does not keep track of which guarantees threads
provide.

Our global monitor uses its internal state to determine
which guarantees must be imposed on each individual thread.
To determine the list of annotations that our global monitor
imposes on the individual threads, we define the function
gmon-impose : (GMon × (N0⇀Ann?)) −→ (N0⇀Ann?)
by

gmon-impose(gmon ′,Γ) =
let NW =λi ∈ pre(gmon ′) :⋃

{(gmon ′(j))(A-NW) | j ∈ pre(gmon ′) \ {i}}
NR = λi ∈ pre(gmon ′) :⋃

{(gmon ′(j))(A-NR) | j ∈ pre(gmon ′) \ {i}}
in λi ∈ pre(Γ) :(Γ(i)� Asm)

·acq(G-NW,NW(i))·acq(G-NR,NR(i))
·rel(G-NW, pre(gmon ′) \ NW(i))
·rel(G-NR, pre(gmon ′) \ NR(i))

For each pair (gmon ′,Γ) with pre(Γ) ⊆ pre(gmon ′), the
function gmon-impose is well defined and returns a function
with the same pre-image as Γ.

Fig. 3 presents our global monitor. It is the only rule for
deriving instances of the judgment for transitions between
global monitor states. In the first premise of this rule, the
function gmon-update is used to update the global monitor
state based on the acquisitions and releases of assumptions in
Γ. The second premise ensures that the global monitor is aware
of all threads that request mode state changes. In the third
premise, the function gmon-impose is used to determine ∆,
i.e., the mode state changes to be imposed on all threads that
requested mode state changes. Due to the second premise of
the rule, gmon-impose is well defined for the arguments used.

Note that, for each i ∈ pre(gmon ′) and each assumption
in gmon ′(i), the corresponding guarantee is acquired in
(gmon-impose(gmon ′,Γ))(j) for all j ∈ pre(Γ) \ {i}. That
is, programs do not need to explicitly contain annotations to

acquire guarantees, since guarantees will be imposed on threads
if needed. This means that no program analysis or human effort
is required to determine the guarantees that threads provide.
Annotations for assumptions, however, do need to be provided
explicitly. There are practical analyses that can infer, e.g.,
whether a memory location is thread-local (i.e., exclusively
accessed by a thread). Such analyses might be suitable building
blocks to infer assumption annotations for programs.

Note also that guarantees are acquired in
(gmon-impose(gmon ′,Γ))(i) even if the ith thread is
providing these guarantees already. Analogously, guarantees
are released even if the ith thread is not providing them. Such
unnecessary acquisitions and releases of guarantees could
be avoided by letting the global monitor keep track of the
guarantees that the individual threads provide. We refrain from
elaborating this optimization here in more detail.
Local Monitoring of Individual Threads: Our local

monitor keeps track of assumptions that a monitored thread
makes and of guarantees that a thread provides. In this section,
we assume that the state of a local monitor incorporates a mode
state, but otherwise leave local monitor states under-specified.
We use lmon.mdst to denote the mode state within lmon ∈
LMon , and we say that a thread state [com, lmon,mdst] is
well formed iff lmon.mdst = mdst holds.

We say that a calculus for local monitor transitions properly
tracks modes iff the derivability of lmon −→δ,α

perm lmon ′

implies lmon ′.mdst = update(lmon.mdst, δ). Moreover, we
say that a calculus for local monitor transitions enforces
guarantees iff it ensures that every well-formed thread state
provides its guarantees. We leave the calculus for local monitor
transitions unspecified. Such a calculus and a concrete definition
of LMon are provided in Section VII.

Sound Use of Modes: We say that a global configuration
gcnf = 〈〈pool,mem, τ, gmon〉〉 is well formed iff gmon is
compatible with pool and pool(i) is a well-formed thread state
for each i ∈ pre(pool).

The following theorem states that our framework soundly
enables rely-guarantee-style reasoning. This result is conditional
on two assumptions about the calculus for local monitor
transitions, which we discharge in Section VII (see Theorem 2).

Theorem 1. Let gcnf be a well-formed global configuration
that justifies its assumptions. If the calculus for local monitor
transitions properly tracks modes and enforces guarantees then
gcnf ensures a sound use of modes.

Proof sketch: Well-formedness is an invariant for global
configurations and justifying all assumptions is an invariant
for well-formed global configurations if the calculus for
local monitor transitions properly tracks modes. From these
invariants, we conclude that every global configuration gcnf ′

that is reachable from gcnf is also well formed and justifies
its assumptions by induction on the number of steps from
gcnf to gcnf ′. From the well-formedness of gcnf ′ and the
assumption that the calculus for local monitor transitions
enforces guarantees, we conclude that gcnf ′ provides its
guarantees. Hence, gcnf ensures a sound use of modes.
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A detailed proof of Theorem 1 appears in Appendix D.

VI. EXAMPLE PROGRAMMING LANGUAGE

As an example language, we use a simple concurrent imper-
ative language that supports multi-threading, communication
between threads using shared memory, coordination between
threads using barrier synchronization, and interaction between
a program and its environment using channels.

Expressions: We use Exp to denote the set of expressions
in our language and leave this set under-specified. We assume
that the expressions are free of side effects, and use judgment
e,mem ⇓ v to model that e ∈ Exp evaluates to v ∈ Val in
memory state mem ∈ Mem . Function vars : Exp → P(Var)
retrieves from an expression e ∈ Exp a set of variables that
contains all variables that the value of e might depend on. That
is, for all e ∈ Exp and mem,mem′ ∈ Mem , we have

(∀x ∈ vars(e) : mem(x) = mem′(x))
=⇒ (e,mem ⇓ v) =⇒ (e,mem′ ⇓ v)

Commands: The set of commands Com is defined by:

com ::= x := e | skip | com; com |
if e then com else com fi | while e do com od |
input ch to x | output e to ch | //γ// barrier |
stop | join | more e do com od | term

where x ∈ Var , e ∈ Exp, ch ∈ Ch , and γ ∈ Ann?. Terms
of the form stop, join, more e do com od, and term capture
snapshots of the control state at intermediate computation
points, and are not meant to be part of the surface syntax. The
sub-language without these terms is the programming language
to be used by a programmer.

The behavior of assignments, skip, semicolon, conditionals,
and loops is as usual. A command input ch to x reads the
next input from the channel ch into the variable x, and a
command output e to ch sends the value of the expression
e on the channel ch. The command barrier causes a thread
to block until all non-terminated threads jointly pass the
barrier. Annotations that request a mode state change are
placed as a comment in front of barrier commands as, e.g.,
in //ε·acq(A-NR, x)// barrier; skip. The control state stop
models that the execution of a subprogram has completed. The
control state join models that the join point of a conditional has
been reached. The control state more e do com od models that
a loop with the guard e and the body com has been entered
and that it will be decided next whether to execute the body or
to leave the loop. Finally, the control state term models that
the execution of an entire program has terminated.

Local Events: We define the set of local events Ev for
our example language by the grammar:

α ::= a(x, e) | s | b(e, com1, com2) | join |
enter(e, com) | more(e, com) | leave(e, com) |
input(x, ch, v) | output(ch, e, v) | sync | term

and χ : Ev → GEv , the abstraction function from local events
to global events, as follows:

χ(α) =

{
sync if α = sync
ε otherwise

A local event a(x, e) models that the value of e ∈ Exp is being
assigned to x ∈ Var . The local event s models that a skip
command is being executed. A local event b(e, com1, com2)
models that a conditional with guard e ∈ Exp and the branches
com1 and com2 is being executed, where com1 and com2 are
the “then” and “else” branches respectively. The local event join
models that the join point of a conditional is being passed. The
local event enter(e, com) models that a loop while e do com od
is being entered. A local event more(e, com) models that the
guard e ∈ Exp of a loop with body com has evaluated to
a non-zero value, and the loop body com is being entered.
The local event leave(e, com) models that a loop with guard
e ∈ Exp and with body com is being left. A local event
output(ch, e, v) models that a value v ∈ Val resulting from
the evaluation of expression e ∈ Exp is being output to channel
ch ∈ Ch . A local event input(x, ch, v) models that v ∈ Val
is being received from ch ∈ Ch and stored in x ∈ Var . The
local events sync and term model that a barrier is being passed
and that the thread is about to terminate, respectively.

Note that our language for local events closely resembles
the syntax of our programming language, though there is
no one-to-one correspondence. Note also that some of our
local events capture information that goes beyond the actual
next computation step. For instance, b(e, com1, com2) provides
complete information about both branches of a conditional.
That is, this local event captures information about the next
computation steps, about computation steps that will occur
sometime in the future, and about computation steps that would
have occurred if the control flow were resolved differently.
Formal Semantics: Fig. 4 shows selected inference rules

for the calculus that defines which transitions on command
configurations are possible. The first two rules capture the
execution of assignments and skip. The third rule captures the
passing of a barrier. The fourth rule captures the choice of a
branch in a conditional. It inserts join into the resulting control
state to mark the join point. The fifth rule captures the passing
of a join point. All rules are shown in Appendix B, including
rules for sequential composition, loops, input and output, and
termination of programs.

The requested mode state change, i.e., the first label on
the arrow, is empty (i.e., γ = ε) in the conclusions of all
rules except for in the rule for barriers and one of the rules
for sequential composition. In the rule for barriers, the list
of annotations is retrieved from the comment that precedes
the barrier command. In the sequential composition rule, the
list of annotations is simply propagated from the premise to
the conclusion. This reflects our simplifying assumption from
Section III-B, that threads request mode state changes only
when synchronizing with other threads.

VII. ENFORCING INFORMATION FLOW SECURITY
THROUGH LOCAL MONITORING

We present our novel hybrid approach to establish
information-flow security for multi-threaded programs, building
on our monitoring framework from Section V. We specialize
our generic local monitor definition to a monitor that tracks
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e,mem ⇓ v

(x := e,mem, τ)
a(x,e),ε
_σ (stop,mem[x 7→ v], τ) (skip,mem, τ)

s,ε
_σ (stop,mem, τ) (//γ// barrier,mem, τ)

sync,γ
_σ (stop,mem, τ)

e,mem ⇓ v (v 6= 0 =⇒ i = 1) (v = 0 =⇒ i = 2)

(if e then com1 else com2 fi,mem, τ)
b(e,com1,com2),ε

_σ (comi; join,mem, τ) (join,mem, τ)
join,ε
_σ (stop,mem, τ)

Fig. 4. Transitions between command configurations: selected rules

and controls information flow. This specialization satisfies the
requirements of Section V, modes are properly tracked and
guarantees are enforced. Our solution does not require any
modification of the global monitor definition from Section V.

We capture information-flow requirements by multi-level
security policies and prove the soundness of our approach with
respect to a knowledge-based definition of information-flow
security à la [22]. We are able to establish such an end-to-end
security property through thread-local checks by exploiting
the assumptions that a thread makes about its environment.
The ability to perform rely-guarantee-style reasoning about
information-flow security within local monitors of individual
threads is a distinctive technical feature of our approach. The
practical value of this feature is that it substantially improves
precision of local monitoring. Without being able to exploit
assumptions, a local monitor would have to conservatively
secure the guarded thread for all possible environments,
resulting in severe restrictions on the behavior of threads.

The knowledge-based security definition requires that an
attacker cannot distinguish a given program run from certain
other hypothetical runs. To perform such counter-factual
reasoning, information about other possible runs is needed
within local monitors. This information is provided by the
local events that are emitted during steps of a thread. For
instance, the evaluation of the guard of a conditional emits
a local event b(e, com1, com2), which provides information
about the guard and both branches of the conditional. That
is, the approach to information-flow security proposed in this
section is a hybrid approach.

A. Information-Flow Security

A security policy is a tuple SP = (Lev,v,t,⊥) consisting
of a set of security levels Lev, a partial order v⊆ Lev×Lev,
a least-upper-bound operator t : (Lev×Lev) −→ Lev, and a
least security level ⊥ ∈ Lev. A domain assignment is a function
chlev : Ch → Lev that associates a security level with each
channel. Intuitively, the security level chlev(ch) of a channel
ch is the upper bound on the confidentiality of information
that the channel’s endpoint (e.g., a user or another system) is
permitted to learn. Thus, chlev(ch) constitutes an upper bound
on the confidentiality of information that might be received
from ch and of information that may be sent over ch. When it
is clear from context, we conflate channels with their security
levels, and write, e.g., ch v ` instead of chlev(ch) v `.

Attacker Model: We assume that each attacker is asso-
ciated with a security level, where an attacker at level ` can
observe all interactions on channels ch with ch v `, but cannot

observe interactions on other channels. To express what an
attacker at level ` observes during a program run, we project
the trace emitted during the run to the level `. We define the
projection of trace τ to security level ` by

τ ↓ ` =filter(τ, {inp(ch, v), out(ch, v)
| ch ∈ Ch, chlev(ch) v `, v ∈ Val}

That is, if τ is the trace produced by some run of a multi-
threaded program then an attacker at level ` observes τ ↓ `.
Based on his observations, an attacker can try to infer
information about the communication strategy used. To capture
an upper bound on the attacker’s knowledge about which
communication strategy might be in use, we define the function
κ : (Lev × PSt × Tr) −→ P(Σ) by

κ(`, pool, τ) ={
σ ∈ Σ

∣∣∣∣ ∃〈〈pool′,mem′, τ ′, gmon ′〉〉 ∈ reachσ(pool) :
τ ′ ↓ ` = τ ↓ `

}
The set κ(`, pool, τ) contains all strategies that are compatible
with the observation τ ↓ ` and that thus, from the perspective
of an attacker at level `, might be in use. The smaller the set
κ(`, pool, τ), the more accurate the attacker’s knowledge. The
longer the trace that the attacker observes, the more accurate is
the attacker’s knowledge, i.e., attacker knowledge is monotonic
in the length of the trace the attacker observes.

Note that our definition of κ conservatively allows an attacker
to know the program. That is, κ(`, pool, τ) is an upper bound
on the knowledge of an attacker at level ` after this attacker
observes trace τ , even if the attacker knows the program that
is contained in state pool. However, we assume the attacker
has no a-priori knowledge about which strategy is used.
Security Property: We regard strategies as confidential

information. An attacker at level ` should not be able to
distinguish two strategies that provide identical inputs at level
` and below when all prior interactions at level ` and below
are identical. We capture classes of strategies that should be
indistinguishable by the notion of `-equivalence, defined by

σ1 =` σ2 ,
∀ch ∈ Ch : ∀τ1, τ2 ∈ Tr :
(ch v ` ∧ τ1 ↓ `1 = τ2 ↓ `2) =⇒ σ1(τ1, ch) = σ2(τ2, ch)

We use a knowledge-based definition of information-flow
security, inspired by [22]. The property that we define is
progress-sensitive and suitable for our model from Section III.

Definition 1. We say that a pool state pool ∈ PSt is secure
for a level ` ∈ Lev iff

∀σ ∈ Σ : ∀〈〈pool′,mem′, τ ′, gmon ′〉〉 ∈ reachσ(pool) :
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κ(`, pool, τ ′) ⊇ {σ′ ∈ Σ | σ =` σ
′}

Our security property requires that if an attacker at level `
observes an execution starting in pool under strategy σ, then
his knowledge must be bounded by the set of strategies that are
`-equivalent to σ. That is, the attacker cannot learn anything
about the behavior of the actual strategy on any channel ch 6v `.

B. A Specialized Local Monitor

Our local monitor is parametric in the security policy SP =
(Lev,v,t,⊥) and in the domain assignment chlev : Ch →
Lev. A third parameter is a function L : Var → Lev that
assigns a default security level to each variable. These three
parameters must be chosen identically for the local monitors
of all threads of a multi-threaded program.

Our local monitor maintains a local copy of the mode state
of the guarded thread. As a convention, we use lmdst as a
meta-variable for such copies of a thread’s mode state.

Typing Environment: Information flow into and out of
a variable x is constrained by the local monitor based on the
default security level L(x). However, if the guarded thread has
exclusive write-access to x and the thread previously wrote
information into x that is less confidential than L(x) then the
local monitor can use that. Moreover, if the guarded thread
has exclusive read-access to x then the local monitor may
allow the thread to temporarily store information in x that is
more confidential than L(x). The local monitor uses a typing
environment Γ to track the actual security level of variables
for which the guarded thread has exclusive access in some
sense. Formally, a typing environment is a partial function
Γ : FloatVar⇀Lev, where FloatVar ⊆ Var . The variables
whose security level may float might be limited, for instance,
because the run-time environment accesses some variables
while relying that they store information of a particular security
level (e.g., variables that define thread priorities, accessed by a
priority-based scheduler). The set of variables whose security
level must not float is NonFloatVar = Var \ FloatVar .

We lift a typing environment Γ : FloatVar⇀Lev to a total
function in Var → Lev by

Γ 〈x〉 =

{
Γ (x) if x ∈ pre(Γ )

L(x) otherwise

We write Γ 〈e〉 for
⊔
x∈vars(e) Γ 〈x〉.

Mode-State-Says Notation: To improve readability, we
introduce a notation for properties of mode states. We write
mdst . fact (read “mdst says fact”) iff mode state mdst has
the property expressed by a fact from the following language

mayread(x) |maywrite(x) | exclusiveread(x) |
exclusivewrite(x) | othersmightread(x) | othersmightwrite(x)

with x ∈ Var . The semantics of mdst . fact are defined by:

mdst .mayread(x) , x 6∈ mdst(G-NR)

mdst .maywrite(x) , x 6∈ mdst(G-NW)

mdst . exclusiveread(x) , x ∈ mdst(A-NR)

mdst . exclusivewrite(x) , x ∈ mdst(A-NW)

mdst . othersmightread(x) , x 6∈ mdst(A-NR)

mdst . othersmightwrite(x) , x 6∈ mdst(A-NW)

For brevity, we write mdst.[fact1, . . . , factn] instead of mdst.
fact1, . . . , mdst . factn, a list of mode-state-says statements
concerning the same mode state. We write mdst .mayread(e)
instead of mdst . mayread(x1), . . . , mdst . mayread(xn′),
where vars(e) = {x1, . . . , xn′}.

Local Monitor States: A local monitor state is a tuple
〈Γ , lmdst, pc, br , time, term, block〉. Typing environment Γ :
FloatVar⇀Lev tracks the actual security level of variables
to which the guarded thread has exclusive access, as already
described. Mode state lmdst ∈ MdSt is the local monitor’s
copy of the mode state of the guarded thread. The pc stack
pc and branch environment stack br summarize, respectively,
the control flow decisions to reach the current program point,
and the behavior of the local monitor on execution paths not
taken. The pc stack is a stack of security levels, and the branch
environment stack is a stack of tuples, described below. Each
time the thread enters a conditional or loop, a security level
that bounds the control flow decision is pushed on the pc stack,
and a tuple that approximates the monitor’s behavior on the
branch not taken is pushed on the branch environment stack.
When a conditional or loop is exited, the top element of each
stack is popped.

To track information flow via internal timing, progress
channels, and monitor interventions, local monitor states
include timing level time : Lev, termination level term : Lev,
and blocking level block : Lev. Termination level term is
an upper bound on information that influenced termination
of loops prior to this point in the guarded thread’s execution.
The termination level only increases during thread execution.
Blocking level block is an upper bound on information that
influenced whether the monitor blocked or allowed thread
execution prior to this point in the execution. The blocking
level captures information flow via monitor interventions (or
lack of interventions), and only increases during execution.
Timing level time is an upper bound on information since the
last synchronization that influenced when the guarded thread
reaches its current state. The timing level is lowered after
synchronization barriers, but otherwise only increases during
execution. The timing level describes the information that may
affect the relative timing of this guarded thread with respect
to other threads and is used to prevent internal timing leaks.

When a conditional or loop is exited, the timing, termination,
and blocking levels are updated to account for information
flows due to execution paths that could have been taken, but
weren’t. For example, when a loop is exited, the termination
level is increased to ensure that it is an upper bound of the
information that influenced the loop guard expression, which
determines how many times the loop is executed.
Calculus for Local Monitor Transitions: Selected infer-

ence rules for local monitor transitions are shown in Fig. 5.
All inference rules are presented and explained in Appendix C.

Rule (M-Assign1) is used for an assignment x := e when
x is readable by other threads, according to the current mode
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M-ASSIGN1

lmdst . [maywrite(x),mayread(e), othersmightread(x)]
` = Γ 〈e〉ttimet(tpc)ttermtblock ` v L(x) Γ ′ = Γ 〈x 7→lmdst `〉

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,a(x,e)
perm 〈Γ ′, lmdst, pc, br , time, term, block〉

M-ASSIGN2
lmdst . [maywrite(x),mayread(e), exclusiveread(x)] ` = Γ 〈e〉ttimet(tpc)ttermtblock Γ ′ = Γ 〈x 7→lmdst `〉

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,a(x,e)
perm 〈Γ ′, lmdst, pc, br , time, term, block〉

M-BRANCH
lmdst .mayread(e) (`sb, timesb, termsb, block sb,Γsb) = SB(if e then com1 else com2 fi,Γ , lmdst, pc, time, term, block)

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,b(e,com1,com2)
perm 〈Γ , lmdst, pc·`sb, br ·(timesb, termsb, block sb,Γsb), time, term, block〉

M-JOIN

time ′′ = time t time ′ t ` term ′′ = term t term ′

block ′′ = block t block ′
Γ ′′ = λx.


Γ (x) t Γ ′(x) if x ∈ pre(Γ ) ∩ pre(Γ ′)

Γ (x) if x ∈ pre(Γ ) \ pre(Γ ′)

undef otherwise

〈Γ , lmdst, pc·`, br ·(time ′, term ′, block ′,Γ ′), time, term, block〉 −→ε,join
perm 〈Γ ′′, lmdst, pc, br , time ′′, term ′′, block ′′〉

M-BARRIER-LOCAL
(tpc) t term t block = ⊥ lmdst′ = update(lmdst, δ)

pre(Γ ′) = {x | x ∈ FloatVar ∧ (lmdst′ . exclusiveread(x) ∨ lmdst′ . exclusivewrite(x))}
(lmdst . exclusiveread(x) ∧ lmdst′ . othersmightread(x)) =⇒ Γ (x)vL(x)

lmdst′ . exclusivewrite(x) =⇒ Γ ′(x) = Γ 〈x〉 (lmdst . othersmightwrite(x) ∧ lmdst′ . exclusiveread(x)) =⇒ Γ ′(x) = Γ 〈x〉
(lmdst . exclusivewrite(x) ∧ lmdst′ . [exclusiveread(x), othersmightwrite(x)]) =⇒ Γ ′(x) = Γ (x)tL(x)

〈Γ , lmdst, pc, br , time, term, block〉 −→δ,sync
perm 〈Γ ′, lmdst′, pc, br ,⊥,⊥,⊥〉

Γ 〈x 7→lmdst `〉(y) =


undef if y 6∈ pre(Γ )

Γ (y) if y ∈ pre(Γ ) ∧ y 6= x

` if y ∈ pre(Γ ) ∧ y = x ∧ lmdst . exclusivewrite(x) ∧ x ∈ FloatVar

`tL(x) if y ∈ pre(Γ ) ∧ y = x ∧ lmdst . othersmightwrite(x) ∧ x ∈ FloatVar

Fig. 5. Local monitoring: selected rules

state lmdst. Level ` bounds the information that might be
revealed by evaluating e at this point in the execution: it is
influenced by the level of the variables in e, by the decision to
execute this command (tpc, the join of the pc stack), the fact
that the monitor did not previously block the thread (block ),
the fact that the thread did not previously diverge (term),
and the relative timing of this thread with respect to others
(time).1 Since other threads might read x, we require that ` is
bounded above by L(x), the default security level of x. Rule
(M-Assign2) is similar, but applies when x cannot be read by
other threads, which allows us to treat its level flow-sensitively.
In both cases Γ ′ is computed using operator Γ 〈x 7→lmdst `〉
(defined in Fig. 5) that returns an updated environment with
the type of variable x updated to ` depending on mode state
lmdst. Both rules require x to be writable and all variables in
e to be readable according to lmdst.

Rules (M-Branch) and (M-Join) handle conditionals. Recall
that monitor event b(e, com1, com2) and join are emitted,

1Other threads may modify variables in e concurrently with this thread’s
execution, and thus the relative timing may influence the result of evaluating
e. If the guarded thread has exclusive write access to variables in e, then the
second premise could be replaced by ` = Γ 〈e〉t(tpc)ttermtblock , i.e.,
timing level time does not need to be included in the join. For simplicity, we
do not provide this additional precision.

respectively, when a thread enters and exits a conditional
if e then com1 else com2 fi. Rule (M-Branch) requires that the
local monitor’s mode state allows the thread to read the condi-
tional expression: lmdst.mayread(e). It uses the static bounds
oracle function SB(com,Γ , lmdst, pc, time, term, block) to
approximate the behavior of the monitor on both branches. This
is an on-the-fly static analysis (thus making the local monitor
hybrid) needed for the soundness of information-flow tracking.
Security level `sb returned by the oracle is an upper bound
on the decision about which branch to take, and the monitor
pushes it on pc stack pc. The other elements returned describe,
respectively, upper bounds on the timing level, termination
level, blocking level, and typing environment that the local
monitor would have after completing the conditional. The
analysis in essence considers all possible executions of the
conditional, and approximates the behavior of the guarded
thread in these hypothetical executions. Level timesb is an
upper bound on information that affects when the conditional
finishes, termsb is an upper bound on information that affects
whether execution of the conditional will terminate or diverge,
block sb is an upper bound on the information that affects
whether the monitor will block the thread while executing
the conditional, and Γsb describes upper bounds on the typing

13



environment when the conditional terminates. Note that the
oracle is a partial function: if the result is undefined the monitor
blocks. For example, the result is undefined if a branch contains
a barrier command and the branch condition is not ⊥, since
synchronizations are publicly observable and should not depend
on confidential information. A full description of the static
bounds oracle (including the oracle’s semantic interface and
an implementation) is available in Appendices E and F.

Rule (M-Join) pops the top elements of the pc stack and the
static branching environment stack, and updates the variable
context, timing level, termination level, and blocking level to
account for potential information flows on the branch not taken.

Rule (M-Barrier-Local) regulates when a thread may syn-
chronize. The first premise ((tpc)ttermtblock = ⊥) ensures
that the decision to reach a barrier is influenced only by
public information. The second premise computes the updated
mode state lmdst′. The remaining premises ensure that the
typing environments before and after the barrier (Γ and Γ ′

respectively) are appropriate based on the access this and other
threads may have to variables before and after the barrier.

The other monitor rules, not presented here, are: (M-Skip)
(for skip commands); (M-Input1), (M-Input2), and (M-Output)
for input and output commands; (M-Enter), (M-More), and
(M-Leave) for loops; and (M-Term) for terminated threads.

Theorem 2. Our calculus for local monitor transitions properly
tracks modes and enforces guarantees.

Proof sketch: Given a derivation of lmon −→δ,α
perm lmon ′,

we show lmon ′.mdst = update(lmon.mdst, δ). This implies
that our calculus properly tracks modes. To prove that our
calculus enforces guarantees, we show that every local con-
figuration 〈[com, lmon,mdst],mem, τ〉 with a well-formed
thread state provides the no-write guarantee for each variable
x ∈ mdst(G-NW) and the no-read guarantee for each variable
y ∈ mdst(G-NR) by a case distinction on the local event
emitted when this local configuration performs a step.

A detailed proof of Theorem 2 appears in Appendix D.
From Theorems 1 and 2, we obtain the following corollary.

Corollary 1. If a global configuration is well formed and
justifies its assumptions then it ensures a sound use of modes.

Soundness of Information-Flow Control: Given a multi-
threaded program com1· . . . ·comn ∈ Com∗, we define the
initial pool state for this program by

poolcom1·...·comn
, [com1, lmoninit ,mdstinit ]
· . . .
·[comn, lmoninit ,mdstinit ]

where mdstinit is the inital mode state, defined by

mdstinit(G-NR) = {} mdstinit(G-NW) = {}
mdstinit(A-NR) = {} mdstinit(A-NW) = {}

and lmoninit is the initial local monitor state, defined by

lmoninit , 〈Γinit ,mdstinit , ε, ε,⊥,⊥,⊥〉

where Γinit : FloatVar⇀Lev is defined by pre(Γinit) = {}.

Theorem 3. If com1· . . . ·comn ∈ Com∗ is a multi-threaded
program such that each command comi is in the sub-language
meant to be used by the programmer (as defined in Section VI)
then poolcom1·...·comn

is secure for every level ` ∈ Lev.

Proof sketch: The full proof is in Ap-
pendix E. Let global configuration gcnf =
〈〈poolcom1·...·comn

,meminit , τinit , gmoninit,n〉〉. Since
gcnf is well-formed and justifies its assumptions, we can
soundly use rely-guarantee reasoning based on Definition 1
and Corollary 1. The rest of the proof is lengthy, but uses
established proof techniques. It shows that for any security
level `, given an execution of gcnf with strategy σ that
produces trace τ , and given an `-equivalent strategy σ′, there
exists an execution of gcnf with σ′ that produces trace τ ′

such that τ ↓ ` = τ ′ ↓ `. Thus, the knowledge of an attacker at
level ` that observes trace τ will include both σ and σ′.

When our monitoring framework is instantiated with the
information-flow control local monitors, it accepts all the
secure executions from Section II (with appropriate annotations
to indicate assumptions), and correctly rejects the insecure
executions (by a local monitor blocking at an appropriate point
in the execution). This work presents the first hybrid progress-
sensitive information-flow control monitoring framework for
concurrent programs that uses fine-grained rely-guarantee
reasoning about shared memory. As such, it is the only
sound monitoring framework that accepts all secure execution
examples from Section II. The examples, though simple, exhibit
typical patterns of concurrent programs, and of programs that
manipulate information of differing sensitivity.

VIII. RELATED WORK

Static enforcement: Most existing work on information-
flow security in concurrent programs uses static techniques.
Volpano and Smith [23] provide a type system that enforces
probabilistic noninterference in concurrent programs by pro-
viding an atomic construct, and preventing high-security loop
guards. Russo and Sabelfeld [24] remove the need for the
atomic construct under cooperative scheduling. Sabelfeld and
Sands [25] provide a type system that ensures probabilistic
noninterference for a wide class of schedulers, that also prevents
high-security loop guards, and uses Agat’s padding technique
to prevent timing leaks [26]. Smith [27] presents a type system
that reasons precisely about what information influences the
timing of executions, prevents timing leaks, and thus enforces
probabilistic noninterference for concurrent programs.

Andrews and Reitman [28] present an axiomatic program
logic to reason about information flow in sequential and
concurrent programs. They use two special “certification
variables” in their logic, local and global , which correspond
to the pc level and the termination level respectively.

Boudol and Castellani [29] analyze the program and sched-
uler, and give a type system such that well-typed schedulers and
threads satisfy noninterference, which Barthe and Nieto [30]
verify. Barthe et al. [31] add mechanisms during compilation
to enable a security-aware scheduler to enforce security.
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Sabelfeld [8] considers a concurrent language with
semaphores, and provides a type system that enforces security.
High loops are not allowed, and padding is used to prevent
timing leaks, for both branches and fork commands.

Zdancewic and Myers [18] propose that non-determinism
should not be observable by low-security users (including
non-determinism arising from scheduling, data races, etc.)
and present a type system that enforces low-observational
determinism for single memory locations. Their enforcement
mechanism allows the pc level to be reset at thread synchroniza-
tion points, similar to our lowering of the timing level at barrier
synchronizations. Huisman et al. [32] note that the security
condition may permit more information flow than intended
and strengthen the condition. Terauchi [33] further improves
this condition and enforces it via a fractional-capability type
system, which permits updates of a thread’s capabilities upon
synchronization. This bears similarities to our updates of modes
at synchronization points, but fractional capabilities and modes
are different. For instance, in our framework a thread may
have exclusive write access to a variable without exclusive read
access. In contrast to all three articles, our security condition
does not demand low-observable determinism.

Mantel and Sudbrock [34] present a security condition that
allows nondeterminism in concurrent programs provided secret
information does not influence this nondeterminism. They
present a type system that enforces security for a broad class
of schedulers: once a thread’s timing or termination behavior
is influenced by secret information, it may not interact with
low-security threads. Muller and Chong [21] also permit low-
observable nondeterminism via a type system for an extension
of the X10 programming language.

Mantel, Sands, and Sudbrock [13] use rely-guarantee rea-
soning to support flow-sensitive security types in concurrent
programs, thus allowing more precise enforcement of security.
Our approach is inspired by theirs, but we exploit and justify
rely-guarantee reasoning dynamically rather than statically.

Hybrid and dynamic enforcement: By contrast with
static enforcement techniques, our approach is hybrid, combin-
ing static and dynamic techniques. This enables more precise
enforcement of security, since static techniques must accept or
reject a program in its entirety, whereas dynamic and hybrid
techniques can accept or reject single executions.

Le Guernic [14] presents the first hybrid monitor for
concurrent programs. It is flow sensitive, but uses a single
monitor (and single type environment) for the entire thread
pool, which restricts concurrency. To handle locks, the monitor
uses static analysis to determine when a thread might require a
lock, and acquires it before any high branch in that thread, thus
ensuring lock acquisition does not depend on secret information.
Le Guernic’s monitor suppresses insecure output instead of
blocking the thread. We block threads rather than modify the
semantics of programs by altering or suppressing outputs.

Stefan et al. [35] present a dynamic termination-sensitive
information-flow control mechanism. Their mechanism does
not rely on a single global monitor but rather uses coarse-
grained containers with “floating labels,” where the label of

the container is increased based on information read by the
container, and the label restricts writes and other observable
effects. In addition to preventing internal timing leaks, they
mitigate external timing leaks using predictive mitigation [36].
We do not address external timing leaks, but enforce security
at finer granularity (i.e., per program variable) and with greater
precision (through flow-sensitivity).

IX. CONCLUSION

We have developed a novel framework to monitor concur-
rent programs, and instantiated this framework to enforce a
knowledge-based progress-sensitive noninterference security
condition in concurrent programs where threads share memory
resources at the granularity of individual memory locations.

The framework uses a single global monitor to ensure
that threads can soundly use rely-guarantee reasoning about
shared memory. Each thread has its own local monitor that
both enforces thread guarantees regarding shared memory,
and also tracks and controls information flow within the
thread. The global monitor is accessed only when threads
synchronize, ensuring that the monitoring framework does
not needlessly restrict concurrency. The local monitors are
hybrid: they combine dynamic techniques for information-flow
control with on-the-fly static program analysis to approximate
information flow on untaken execution paths. Local monitor
precision is improved by using rely-guarantee reasoning.
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APPENDIX A
BASIC NOTIONS AND NOTATION

Sets: We use the usual operators for intersection, union, and subtraction of sets. In addition, we use P(S) to denote the
powerset of a set S and S = D \ S to denote the complement of a set S in a given domain D.

Functions: We use A → B and A⇀B to denote the set of all total functions and the set of all partial functions,
respectively, with domain A and range B. For a function f : A⇀B, we use pre(f) to denote the pre-image of f , i.e.,
pre(f) = {a ∈ A | f(a) ∈ B}. We use f [d 7→ v] to denote the update of a function f at position d, i.e., f [d 7→ v](d) = v
and f [d 7→ v](d′) = f(d′) for all d′ ∈ (pre(f) \ {d}). Note that a function update might augment the pre-image of a partial
function. We use a similar notation to define functions: Given a set R and r1, . . . , rn ∈ R, we use [d1 7→ r1] . . . [dn 7→ rn] to
denote the total function f : {d1, . . . , dn} → R that maps di to ri for each i ∈ {1, . . . , n}. Moreover, we use λ-calculus to
define functions: We write λx ∈ A : e for the function that takes as argument an element of domain A, binds this value to the
variable x, and returns the value of the expression e.

Predicates: A predicate over a set A is a subset of A. In addition to a ∈ p, we use p(a) to denote that a predicate p over
A holds at a ∈ A.

Lists: We refer to partial functions with domain N0, range A, and a finite pre-image of consecutive numbers starting at
0 also as lists over A. That is, a partial function l : N0⇀A is a list over A if i ∈ pre(l) for all i < |pre(l)|. We use A∗

to denote the set of all lists over a set A. As a convention, we use ε to denote the empty list, l·a to denote the list that
results from appending an element a ∈ A to the end of a list l ∈ A∗, a·l to denote the list that results from appending
a ∈ A to the beginning of l ∈ A∗, and l1·l2 to denote the concatenation of two lists l1, l2 ∈ A∗. That is, pre(ε) = ∅,
pre(l·a) = pre(l) ∪ {|pre(l)|}, l·a = l[|pre(l)| 7→ a], (a·l)(0) = a, (a·l)(i+ 1) = l(i) for all i ∈ pre(l), (l1·l2)(j) = l1(j) for
all j ∈ pre(l1), and (l1·l2)(k + |pre(l1)|) = l2(k) for all k ∈ pre(l2) hold.

We write a A l to denote that a ∈ A is contained in the list l ∈ A∗. We write a 6A l if a is not contained in list l.
We define the functional map that applies a function f : A → B to each element of a list over A by map(f, ε) = ε and

map(f, l·a) = map(f, l)·f(a). Moreover, we define the functional filter that removes from a list over A those elements that do
not satisfy a predicate p ⊆ A by filter(p, ε) = ε, filter(p, l·a) = filter(p, l)·a if p(a), and filter(p, l·a) = filter(p, l) if ¬p(a).
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APPENDIX B
COMMAND CONFIGURATION RULES

The following is a complete list of the inference rules for the transitions between command configurations. Selected rules
were shown in Figure 4.

We briefly discuss some of the rules that were not explained previously. The rule for loops inserts more e do com od into
the control state. There are two rules that capture the step in a control state of the form more e do com od where the body of
the loop is executed and where the loop is left, respectively.

There is one rule for input, and one rule for output. Note that input commands accept arbitrary values as input, but which
input is supplied by the environment depends on its strategy σ (due to the premise v = σ(τ, ch)).

e,mem ⇓ v

(x := e,mem, τ)
a(x,e),ε
_σ (stop,mem[x 7→ v], τ) (skip,mem, τ)

s,ε
_σ (stop,mem, τ)

(stop; com,mem, τ)
s,ε

_σ (com,mem, τ) (stop,mem, τ)
term,ε
_σ (term,mem, τ)

(com1,mem, τ)
α,γ
_σ (com′1,mem

′, τ ′) com1 6= stop

(com1; com2,mem, τ)
α,γ
_σ (com′1; com2,mem

′, τ ′) (//γ// barrier,mem, τ)
sync,γ
_σ (stop,mem, τ)

e,mem ⇓ v (v 6= 0 =⇒ i = 1) (v = 0 =⇒ i = 2)

(if e then com1 else com2 fi,mem, τ)
b(e,com1,com2),ε

_σ (comi; join,mem, τ) (join,mem, τ)
join,ε
_σ (stop,mem, τ)

(while e do com od,mem, τ)
enter(e,com),ε

_σ (more e do com od,mem, τ)

e,mem ⇓ v v 6= 0

(more e do com od,mem, τ)
more(e,com),ε

_σ (com; more e do com od,mem, τ)

e,mem ⇓ v v = 0

(more e do com od,mem, τ)
leave(e,com),ε

_σ (stop,mem, τ)

v = σ(τ, ch) mem′ = mem[x 7→ v] τ ′ = τ ·inp(ch, v)

(input ch to x,mem, τ)
input(x,ch,v),ε

_σ (stop,mem′, τ ′)

e,mem ⇓ v τ ′ = τ ·out(ch, v)

(output e to ch,mem, τ)
output(ch,e,v),ε

_σ (stop,mem, τ ′)
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APPENDIX C
LOCAL MONITOR RULES

Figures 6, 7, and 8 contain the complete inference rules for the local monitor transitions. Selected rules were shown and
briefly explained in Figure 5. We give more complete descriptions of the rules here.

M-SKIP
〈Γ , lmdst, pc, br , time, term, block〉 −→ε,s

perm 〈Γ , lmdst, pc, br , time, term, block〉

M-ASSIGN1

lmdst . [maywrite(x),mayread(e), othersmightread(x)]
` = Γ 〈e〉ttimet(tpc)ttermtblock ` v L(x) Γ ′ = Γ 〈x 7→lmdst `〉

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,a(x,e)
perm 〈Γ ′, lmdst, pc, br , time, term, block〉

M-ASSIGN2
lmdst . [maywrite(x),mayread(e), exclusiveread(x)] ` = Γ 〈e〉ttimet(tpc)ttermtblock Γ ′ = Γ 〈x 7→lmdst `〉

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,a(x,e)
perm 〈Γ ′, lmdst, pc, br , time, term, block〉

M-INPUT1

timet(tpc)ttermtblock v ch lmdst . [maywrite(x), othersmightread(x)]
` = ch t timet(tpc)ttermtblock ` v L(x) Γ ′ = Γ 〈x 7→lmdst `〉

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,input(x,ch,v)
perm 〈Γ ′, lmdst, pc, br , time, term, block〉

M-INPUT2

timet(tpc)ttermtblock v ch lmdst . [maywrite(x), exclusiveread(x)]
` = ch t timet(tpc)ttermtblock Γ ′ = Γ 〈x 7→lmdst `〉

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,input(x,ch,v)
perm 〈Γ ′, lmdst, pc, br , time, term, block〉

M-OUTPUT
lmdst .mayread(e) Γ 〈e〉 t timet(tpc)ttermtblock v ch

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,output(ch,e,v)
perm 〈Γ , lmdst, pc, br , time, term, block〉

Γ 〈x 7→lmdst `〉(y) =


undef if y 6∈ pre(Γ )

Γ (y) if y ∈ pre(Γ ) ∧ y 6= x

` if y ∈ pre(Γ ) ∧ y = x ∧ lmdst . exclusivewrite(x) ∧ x ∈ FloatVar

`tL(x) if y ∈ pre(Γ ) ∧ y = x ∧ lmdst . othersmightwrite(x) ∧ x ∈ FloatVar

Fig. 6. Local monitoring: skip, assignment, and I/O rules

Figure 6 shows the rules for skip, assignment and input and output. The rules for assignment were described in Section VII-B.
The rule for skip, (M-Skip), leaves the monitor state unchanged. The two rules for inputs are analogous to the rules for
assignments. Because inputs can always be read, there is no corresponding mode state check.

The only rule for outputs is analogous to (M-Assign1). There is no corresponding rule for (M-Assign2), because channel
levels are fixed.

Figure 7 shows the rules for branches and loops.
Rule (M-Branch) requires that the local monitor’s mode state allows the thread to read the conditional expression: lmdst .

mayread(e). It pushes on to the program counter stack an upper bound of the decision about which branch to take (as returned
by the static bounds oracle and pushes the other results of SB(if e then com1 else com2 fi,Γ , lmdst, pc, time, term, block)
on to the stack of static branch environments. See below for more details and intuition of the computation of static branch
environments and the definition of SB(com,Γ , lmdst, pc, time, term, block).

Once the end of the conditional is reached (i.e., the join event is emitted), rule (M-Join) pops off the top elements
of program counter stack and the static branch environment stack. Recall that static branch environment is a tuple
(timesb, termsb, block sb,Γsb) where timesb, termsb, block sb, and Γsb are upper bounds on, respectively, the timing level,
termination level, blocking level, and typing environment of a local monitor for any execution of the conditional. At the end of
the conditional, we raise the current timing level, termination level, blocking level, and typing environment to these upper
bounds, to ensure that they account for information flow that may have occurred due to the non-execution of the other branch.
Thus, the new termination level is the old termination level joined with the termination level in the static branch environment,
the new blocking level is the old blocking level joined with the blocking level in the static branch environment, and the typing
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M-BRANCH
lmdst .mayread(e)

(`sb, timesb, termsb, block sb,Γsb) = SB(if e then com1 else com2 fi,Γ , lmdst, pc, time, term, block)

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,b(e,com1,com2)
perm 〈Γ , lmdst, pc·`sb, br ·(timesb, termsb, block sb,Γsb), time, term, block〉

M-JOIN

time ′′ = time t time ′ t ` term ′′ = term t term ′

block ′′ = block t block ′
Γ ′′ = λx.


Γ (x) t Γ ′(x) if x ∈ pre(Γ ) ∩ pre(Γ ′)

Γ (x) if x ∈ pre(Γ ) \ pre(Γ ′)

undef otherwise

〈Γ , lmdst, pc·`, br ·(time ′, term ′, block ′,Γ ′), time, term, block〉 −→ε,join
perm 〈Γ ′′, lmdst, pc, br , time ′′, term ′′, block ′′〉

M-ENTER
lmdst .mayread(e) (`sb, timesb, termsb, block sb,Γsb) = SB(while e do com od,Γ , lmdst, pc, time, term, block)

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,enter(e,com)
perm 〈Γ , lmdst, pc·`sb, br ·(timesb, termsb, block sb,Γsb), time, term, block〉

M-MORE
lmdst .mayread(e)

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,more(e,com)
perm 〈Γ , lmdst, pc, br , time, term, block〉

M-LEAVE

lmdst .mayread(e) time ′′ = time t time ′ t `
term ′′ = term t term ′ block ′′ = block t block ′

Γ ′′ = λx.


Γ (x) t Γ ′(x) if x ∈ pre(Γ ) ∩ pre(Γ ′)

Γ (x) if x ∈ pre(Γ ) \ pre(Γ ′)

undef otherwise

〈Γ , lmdst, pc·`, br ·(time ′, term ′, block ′,Γ ′), time, term, block〉 −→ε,leave(e,com)
perm 〈Γ ′′, lmdst, pc, br , time ′′, term ′′, block ′′〉

Fig. 7. Local monitoring: branches and loops

environment raises the level of any variable that is both in the domain of the current typing environment and the typing
environment of the static branch environment. Note that the new timing level is the join of the old timing level, the timing
level of the static branch environment, and ` (i.e., an upper bound on the information that influences the value of the branch
condition). Although it can be shown that ` v timesb, we fold in ` explicitly for clarity.

Note that in (M-Join), the domain of the new typing environment Γ ′′ is (and must be) the same as the domain of the original
typing environment Γ . Consider a conditional expression with a low branch, and only one of the two branches has a barrier
in it. Since the domain of the typing environment may change at barriers, the domain of Γ may differ from the domain of
the static branch environment at the top of the stack (Γ ′ in the (M-Join) rule). The definition of Γ ′′ in (M-Join) is careful to
ensure that Γ ′′ has the same domain as Γ , regardless of the domain of Γ ′.

Recall that when a thread enters a loop while e do com od it emits an enter(e, com) event, and the loop becomes
more e do com od. Each time the thread enters the loop body (i.e., given more e do com od, expression e evaluates to a
non-zero value, and more e do com od will step to com; more e do com od) it emits a more(e, com) event. When the loop
terminates (i.e., given more e do com od, expression e evaluates to zero, and more e do com od will step to stop) the thread
emits a leave(e, com) event.

Upon receiving an enter(e, com) event, the thread monitor will either block (if execution of the loop may be insecure) or
Rule (M-Enter) will push onto the program counter stack an upper bound of the decision about which branch to take (as
returned by the static bounds oracle) and pushes the other results of SB(while e do com od,Γ , lmdst, pc, time, term, block)
on to the stack of static branch environments. See below for more details and intuition of the computation of static bounds. In
addition, the rule requires that the thread’s mode state permits it to read expression e.

Upon receiving a more(e, com) event, we simply check that the thread is still permitted to read expression e. We do not
modify the stack of program counter levels, the timing level, termination level, blocking level, or stack of static branch
environments. Intuitively, this is because the result returned by the static oracle already conservatively approximated an upper
bound for the information that may be learned by evaluating the loop guard e in any iteration of the loop (and thus the top
element of the program counter stack does not need to be modified) and also produced a static branch environment that
conservatively approximates the effects on the timing, termination, blocking and typing context from zero or more iterations of
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the loop. Note that the timing level, termination level, blocking level and typing context from the static branching environment
for the loop will be incorporated into the local monitor state when the loop exits.

M-TERM
pc = ε br = ε term = ⊥ block = ⊥

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,term 〈Γ , lmdst, pc, br , time, term, block〉

M-BARRIER-LOCAL
(tpc) t term t block = ⊥ lmdst′ = update(lmdst, δ)

pre(Γ ′) = {x | x ∈ FloatVar ∧ (lmdst′ . exclusiveread(x) ∨ lmdst′ . exclusivewrite(x))}
(lmdst . exclusiveread(x) ∧ lmdst′ . othersmightread(x)) =⇒ Γ (x)vL(x)

lmdst′ . exclusivewrite(x) =⇒ Γ ′(x) = Γ 〈x〉
(lmdst . othersmightwrite(x) ∧ lmdst′ . exclusiveread(x)) =⇒ Γ ′(x) = Γ 〈x〉

(lmdst . exclusivewrite(x) ∧ lmdst′ . [exclusiveread(x), othersmightwrite(x)]) =⇒ Γ ′(x) = Γ (x)tL(x)

〈Γ , lmdst, pc, br , time, term, block〉 −→δ,sync
perm 〈Γ ′, lmdst

′, pc, br ,⊥,⊥,⊥〉

Fig. 8. Local monitoring: Termination and Local Barrier monitoring rules

Figure 8 shows the rules for termination and barrier synchronization.
Rule (M-Term) restricts when a thread may observably terminate. Recall that a thread issues a term event when the thread

changes from stop to term (see Appendix B), and that the thread transition rules ensure that term appears only at the top
level (i.e., not as a subcommand). Unlike a blocked thread, a terminated thread does not prevent barrier synchronization from
occurring, and thus there is a difference between a terminated thread and a blocked thread. So, (M-Term) requires that a thread
may terminate only when the termination level term and blocking level block are ⊥. Otherwise, the fact that the thread is
terminated rather than blocked may reveal confidential information. (This is the same reason that (M-Barrier-Local) requires
(tpc) t term t block = ⊥.) Note also that since the term should only appear at the top level, we require that the program
counter stack pc and the stack of static branching environments br are empty.

Rule (M-Barrier-Local) regulates when a local thread may synchronize. The first premise ((tpc)t term t block = ⊥) ensures
that the decision to reach a barrier is influenced only by public information. The remaining premises ensure that the local
typing environments before and after the barrier (Γ and Γ ′ respectively) are appropriate based on the accesses this and other
threads may have to variables before and after the barrier synchronization.

The second premise of (M-Barrier-Local) computes the updated mode state lmdst′. The third premise (pre(Γ ′) = {x |
x ∈ FloatVar ∧ (lmdst′ . exclusiveread(x) ∨ lmdst′ . exclusivewrite(x))}) ensures that the domain of the new local typing
environment is exactly the variables for the security level is allowed to float (x ∈ FloatVar ) and the thread has either exclusive
read or exclusive write access (since if the thread does not have either exclusive read or exclusive write access, then the security
level of the variable is fixed).

The fourth premise ((lmdst . exclusiveread(x)∧ lmdst′ . othersmightread(x)) =⇒ Γ (x)vL(x)) requires that if this thread
is releasing exclusive read access, the security level of information of x before the barrier Γ (x) is less than or equal to the
default security level for the variable L(x).

The fifth premise (lmdst′ . exclusivewrite(x) =⇒ Γ ′(x) = Γ 〈x〉) requires that if the thread has exclusive write access to x
after the barrier, then the local typing environment must map x to the security level of x before the barrier.

The sixth premise ((lmdst . othersmightwrite(x) ∧ lmdst′ . exclusiveread(x)) =⇒ Γ ′(x) = Γ 〈x〉) similarly requires that
the local typing environment after the barrier must map x to the security level of x before the barrier if this thread did not
have exclusive write access before the barrier, and has exclusive read access after the barrier.

The seventh and final premise ((lmdst . exclusivewrite(x)∧ lmdst′ . [exclusiveread(x), othersmightwrite(x)]) =⇒ Γ ′(x) =
Γ (x)tL(x)) requires that if this thread is giving up exclusive write access to x and has exclusive read access after the barrier
then the local typing environment after the barrier must map x to the join of the security level of x before the barrier and the
default security level of x.

A. Computation of static bounds
When execution of a command branches (either by an if statement or entering a while loop) the monitor statically analyzes

the command, in order to approximate what the monitor would do on any possible execution of the command. The result of
this analysis is used by the monitor in two ways: (1) to add a security level to the program counter stack pc that captures an
upper bound on the decision of which branch to execute, or whether to execute the loop body; and (2) upon exiting the branch
or loop to increase the timing level, termination level, and typing context to account for the possible behavior of the monitor
on other executions of the command. In Appendices E and F we present further details, including a semantic specification of
the analysis, and a static analysis that meets this specification.
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APPENDIX D
SOUNDNESS OF RELY-GUARANTEE STYLE REASONING

In this section, we provide the detailed proof of Theorem 1 and of Theorem 2.
The following proposition clarifies that gmon-impose, indeed, ensures for each i ∈ pre(gmon ′) and each assumption in

gmon ′(i) that the corresponding guarantee is acquired in (gmon-impose(gmon ′,Γ))(j) for each j ∈ pre(Γ) with j 6= i.

Proposition 3. Let gmon, gmon ′ ∈ GMon , Γ : pre(gmon)⇀Ann?, i ∈ pre(gmon), and mod ∈ Asm , be arbitrary. Let
∆ = gmon-impose(gmon ′,Γ). If x ∈ gmon ′(i)(mod) then acq(invert(mod), x) A ∆(j) and rel(invert(mod), x) 6A ∆(j)
holds for all j ∈ pre(Γ) \ {i}.

Proof: Assume ∆ = gmon-impose(gmon ′,Γ). Let x ∈ (gmon ′(i))(mod) and j ∈ pre(Γ) \ {i} be arbitrary.
Since mod ∈ Asm , either mod = A-NW or mod = A-NR. We only prove the first case, the other is analogous.
If mod = A-NW then x ∈ NW(j) holds for the local variable NW in the body of the function gmon-impose because

x ∈ (gmon ′(i))(mod) and i ∈ pre(gmon ′) \ {j}. Hence, acq(G-NW, x) A ∆(j) and rel(G-NW, x) 6A ∆(j) because ∆(j) =
(Γ(j)� Asm)·acq(G-NW,NW(j))·acq(G-NR,NR(j))·rel(G-NW,NW(j))·rel(G-NR,NR(j)), x ∈ NW(j), and x /∈ NW(j). Thus,
acq(invert(mod), x) A ∆(j) and rel(invert(mod), x) 6A ∆(j) hold.

The following proposition explicates some facts about transitions of the global monitor.

Proposition 4. Let gmon, gmon ′ ∈ GMon and Γ,∆ : pre(gmon)⇀Ann? be arbitrary. If gmon −→Γ,∆ gmon ′ then
1) pre(gmon ′) = pre(gmon),
2) pre(∆) = pre(Γ), and
3) (Γ(i))� {mod} = (∆(i))� {mod} for each i ∈ pre(Γ) and mod ∈ Asm .

Proof: Assume gmon −→Γ,∆ gmon ′.
1) According to the definition of the function gmon-update, gmon-update(gmon,Γ) is a function with pre-image pre(gmon).

Hence, pre(gmon ′) = pre(gmon) follows from the first premise of the rule in Figure 3.
2) According to the definition of the function gmon-impose , gmon-impose(gmon ′,Γ) is a function with pre-image pre(Γ).

Hence, pre(∆) = pre(Γ) follows from the third premise of the rule in Figure 3.
3) Let i ∈ pre(Γ) and mod ∈ Asm be arbitrary. From gmon −→Γ,∆ gmon ′ and Figure 3, we obtain ∆ =

gmon-impose(gmon ′,Γ). Hence, ∆(i) � Asm = Γ(i) � Asm follows from the definition of the function gmon-impose.
Since {mod} ⊂ Asm , we have ∆(i)� {mod} = Γ(i)� {mod}.

The following theorem implies that being well formed is an invariant for global configurations.

Theorem 4. Let gcnf = 〈〈pool,mem, τ, gmon〉〉 and gcnf ′ = 〈〈pool′,mem′, τ ′, gmon ′〉〉 be two global configurations such
that gcnf �σ gcnf

′ is derivable for some σ ∈ Σ.
1) If gmon is compatible with pool then gmon ′ is compatible with pool′.
2) If pool(i) is a well-formed thread state for each i ∈ pre(pool) and the calculus for local monitor transitions properly

tracks modes then pool′(j) is a well-formed thread state for each j ∈ pre(pool′).

Proof: Assume gcnf �σ gcnf
′ is derivable for σ ∈ Σ.

Proof of 1st Proposition: Assume gmon is compatible with pool. To prove that gmon ′ is compatible with pool′, we need to
show pre(pool′) = pre(gmon ′) and (pool′(i)).mdst(mod) = (gmon ′(i))(mod) for all i ∈ pre(pool′) and mod ∈ Asm . Let
i ∈ pre(pool′) and mod ∈ Asm be arbitrary.

From i ∈ pre(pool′) and gcnf �σ gcnf
′, we obtain i ∈ pre(pool). Since gmon is compatible with pool and i ∈ pre(pool),

we have pre(pool) = pre(gmon) and (pool(i)).mdst(mod) = (gmon(i))(mod).
Depending on which rule in Figure 2 was used to derive gcnf �σ gcnf

′, we distinguish two cases.
Case 1) If the first rule in Figure 2 was used, we have gmon ′ = gmon and pool′ = pool[j 7→ thread′] for some j ∈ alive(pool)
and thread′ ∈ ThSt . Consequently, pre(pool′) = pre(pool) and pre(gmon) = pre(gmon ′) hold. Hence, pre(pool′) =
pre(gmon ′) follows from pre(pool) = pre(gmon).

We distinguish whether the ith thread performed the computation step (Case 1a) or some other thread (Case 1b).
Case 1a) If the ith thread performed the step then 〈pool(i),mem, τ〉 ε,ε,ε−→σ 〈thread′,mem′, τ ′〉 follows from the second, third,
and fourth premise of the first rule in Figure 2. The only rule for deriving this judgment is the rule in Figure 1, and the third
premise of this rule (i.e., mdst′ = update(mdst, δ) for δ = ε) ensures that the mode state of the ith thread remains unmodified.
Hence, (pool′(i)).mdst(mod) = (pool(i)).mdst(mod) = (gmon(i))(mod) = (gmon ′(i))(mod) follows from gmon ′ = gmon .
Case 1b) If the ith thread did not perform the step then (pool′(i)).mdst(mod) = (gmon ′(i))(mod) follows from pool′ =
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pool[j 7→ thread′] for some j 6= i, (pool(i)).mdst(mod) = (gmon(i))(mod), and gmon = gmon ′.
Case 2) According to the second rule in Figure 2, we have gmon −→Γ,∆ gmon ′ for some Γ,∆ : alive(pool) −→ Ann?.
Consequently, pre(gmon ′) = pre(gmon) follows from Item 1 of Proposition 4. Moreover, according to the fourth premise of
the second rule in Figure 2, we have pre(pool′) = pre(pool). Hence, pre(pool′) = pre(gmon ′) follows from pre(gmon) =
pre(pool).

We distinguish whether the ith thread is alive (Case 2a) or not (Case 2b).
Case 2a) If i ∈ alive(pool) then i ∈ pre(Γ) follows from the second premise of the second rule in Figure 2. From Item 2 of
Proposition 4, we obtain pre(∆) = pre(Γ) and, thus, i ∈ pre(∆). That is Γ and ∆ are both defined at i.

Let mdst = (pool(i)).mdst and mdst′ = (pool′(i)).mdst (hence, mdst(mod) = (gmon(i))(mod) holds). From the last

premise of the second rule in Figure 2, we obtain 〈pool(i),mem, τ〉 sync,Γ(i),∆(i)−→σ 〈pool′(i),mem, τ〉). The only rule for deriving
this judgment is the rule in Figure 1, and this rule ensures that mdst′ = update(mdst,∆(i)).

From gmon −→Γ,∆ gmon ′, the first premise of the rule in Figure 3, and the definition of gmon-update, we obtain
gmon ′(i) = update(gmon(i), (Γ(i)� Asm)). Moreover, ∆(i)� {mod} = (Γ(i)� Asm)� {mod} follows from mod ∈ Asm and
∆(i)� {mod} = Γ(i)� {mod} (Item 3 of Proposition 4). Since mdst(mod) = (gmon(i))(mod) and ∆(i)� {mod} = (Γ(i)�
Asm)� {mod}, we can apply Proposition 1 to obtain (update(mdst,∆(i)))(mod) = (update(gmon(i), (Γ(i)� Asm)))(mod),
and, hence, mdst′(mod) = (gmon ′(i))(mod).

Consequently, (pool′(i)).mdst(mod) = mdst′(mod) = (gmon ′(i))(mod) holds.
Case 2b) If i ∈ terminated(pool) then pool′(i) = pool(i) according to the fifth premise of the second rule in Figure 2. Since
Γ : alive(pool) −→ Ann? according to the second premise of the rule, we have i /∈ pre(Γ). From gmon −→Γ,∆ gmon ′,
the first premise of the rule in Figure 3, i /∈ pre(Γ), and the definition of gmon-update, we obtain gmon ′(i) = gmon(i).
Consequently, (pool′(i)).mdst(mod) = (pool(i)).mdst(mod) = (gmon(i))(mod) = (gmon ′(i))(mod) holds.

That is, gmon ′ is compatible with pool′.

Proof of 2nd Proposition: Assume pool(i) is a well-formed thread state for each i ∈ pre(pool) and that the calculus for local
monitor transitions properly tracks modes. We need to show that pool′(j) is a well-formed thread state for each j ∈ pre(pool′).
Let j ∈ pre(pool′) be arbitrary.

From j ∈ pre(pool′) and gcnf �σ gcnf
′, we obtain j ∈ pre(pool). Hence, pool(j) is a well-formed thread state.

Depending on which rule in Figure 2 was used to derive gcnf �σ gcnf
′, we distinguish two cases.

Case 1) If the first rule in Figure 2 was used, we have 〈pool(k),mem, τ〉 β,γ,δ−→σ 〈pool′(k),mem′, τ ′〉 and pool′ = pool[k 7→
thread′] for some k ∈ alive(pool), β ∈ GEv , and γ, δ ∈ Ann?. If k 6= j then pool′(j) = pool(j) holds and, thus, pool′(j) is
a well-formed thread state.

We assume k = j from now. Let [com, lmon,mdst] = pool(j) and [com′, lmon ′,mdst′] = pool′(j). From
〈pool(j),mem, τ〉 β,γ,δ−→σ 〈pool′(j),mem′, τ ′〉 and the rule in Figure 1 we obtain mdst′ = update(mdst, δ) and that
lmon −→δ,α

perm lmon ′ is derivable for some α ∈ Ev with χ(α) = β. From lmon −→δ,α
perm lmon ′ and our assumption

that the calculus for local monitor transitions properly tracks modes, we obtain lmon ′.mdst = update(lmon.mdst, δ). We
obtain lmon ′.mdst = mdst′ from lmon ′.mdst = update(lmon.mdst, δ), mdst′ = update(mdst, δ), and lmon.mdst = mdst.
Case 2) If the second rule in Figure 2 was used, we have pool′(k) = pool(k) for all k ∈ terminated(pool). Hence, if
k ∈ terminated(pool) then pool′(j) = pool(j) holds and, thus, pool′(j) is a well-formed thread state.

We assume k ∈ alive(pool) from now. From the second rule in Figure 2, we obtain that 〈pool(j),mem, τ〉 sync,γ,δ−→σ

〈pool′(j),mem′, τ ′〉 is derivable for some γ, δ ∈ Ann?. From 〈pool(j),mem, τ〉 sync,γ,δ−→σ 〈pool′(j),mem′, τ ′〉 and the rule in
Figure 1 we obtain mdst′ = update(mdst, δ) and that lmon −→δ,α

perm lmon ′ is derivable for some α ∈ Ev with χ(α) = sync.
From the latter fact and from our assumption that the calculus for local monitor transitions properly tracks modes, we
obtain lmon ′.mdst = update(lmon.mdst, δ). We obtain lmon ′.mdst = mdst′ from lmon ′.mdst = update(lmon.mdst, δ),
mdst′ = update(mdst, δ), and lmon.mdst = mdst.

That is, pool′(j) is a well-formed thread state.
The following theorem implies that justifying all assumptions is an invariant for well-formed global configurations.

Theorem 5. Let gcnf = 〈〈pool,mem, τ, gmon〉〉 and gcnf ′ = 〈〈pool′,mem′, τ ′, gmon ′〉〉 be two global configurations such
that gcnf �σ gcnf

′ is derivable for some σ ∈ Σ.
If all assumptions in gcnf are justified and gmon is compatible with pool then all assumptions in gcnf ′ are justified.

Proof: Assume all assumptions in gcnf are justified, and gmon is compatible with pool.
According to the definition of justified assumptions, we need to show

∀i ∈ pre(pool′) : ∀mod ∈ Asm : ∀x ∈ (pool′(i)).mdst(mod) :
∀j ∈ alive(pool′) \ {i} : x ∈ (pool′(j)).mdst(invert(mod))
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Let i ∈ pre(pool′), mod ∈ Asm , x ∈ (pool′(i)).mdst(mod), and j ∈ alive(pool′) \ {i} be arbitrary. Since j ∈ alive(pool′)
and alive(pool′) ⊆ alive(pool), we have j ∈ alive(pool). Depending on which rule in Figure 2 was used to derive
gcnf �σ gcnf

′, we distinguish two cases:
Case 1) According to the first rule in Figure 2, mode states of threads remain unchanged when this rule is applied. Hence, we
obtain that (pool′(i)).mdst(mod) = (pool(i)).mdst(mod) and (pool′(j)).mdst(invert(mod)) = (pool(j)).mdst(invert(mod))
hold. Thus, x ∈ (pool(i)).mdst(mod) follows from x ∈ (pool′(i)).mdst(mod). Since all assumptions in gcnf are
justified, x ∈ (pool(j)).mdst(invert(mod)) must hold because j ∈ alive(pool). From (pool′(j)).mdst(invert(mod)) =
(pool(j)).mdst(invert(mod)), we obtain x ∈ (pool′(j)).mdst(invert(mod)).
Case 2) Let [comj , lmonj ,mdstj ] = pool(j) and [com′j , lmon ′j ,mdst

′
j ] = pool′(j). According to the second rule in Figure 2,

we have gmon −→Γ,∆ gmon ′ for some Γ,∆ : alive(pool) −→ Ann?. Hence, we obtain ∆ = gmon-impose(gmon ′,Γ) from
the rule in Figure 3.

Since x ∈ (pool′(i)).mdst(mod), we obtain x ∈ (gmon ′(i))(mod) from gcnf �σ gcnf ′, the assumption that
gcnf is well formed, and Theorem 4. Since x ∈ (gmon ′(i))(mod), mod ∈ Asm , and ∆ = gmon-impose(gmon ′,Γ),
we obtain acq(invert(mod), x) A ∆(j) and rel(invert(mod), x) 6A ∆(j) from Proposition 3. Consequently, x ∈
(update(mdstj ,∆(j)))(invert(mod)) according to the definition of the function update.

We have 〈[comj , lmonj ,mdstj ],mem, τ〉
sync,Γ(j),∆(j)−→σ 〈[com′j , lmon ′j ,mdst

′
j ],mem, τ〉) according to the second rule in

Figure 2 because j ∈ alive(pool). The only rule for deriving this judgment is the rule in Figure 1, and the premise
of this rule ensures that mdst′j = update(mdstj ,∆(j)) holds and, thus, x ∈ mdst′j(invert(mod)). Consequently, x ∈
(pool′(j)).mdst(invert(mod)) holds.

That is, all assumptions in gcnf ′ are justified.

The following theorem implies Theorem 1 and, hence, that rely-guarantee-style reasoning is sound under the assumption that
the calculus for local monitor transitions properly tracks modes and enforces guarantees.

Theorem 6. Let gcnf = 〈〈pool,mem, τ, gmon〉〉 and gcnf ′ = 〈〈pool′,mem′, τ ′, gmon ′〉〉 be two global configurations such
that gcnf ′ ∈ greachσ(gcnf) for some σ ∈ Σ.

If all assumptions in gcnf are justified, if gcnf is well formed, and if the calculus for local monitor transitions properly
tracks modes and enforces guarantees then gcnf ′ justifies its assumptions and provides its guarantees.

Proof: We prove that gcnf ′ is a well-formed global configuration that justifies its assumptions by induction over the
number of steps by which gcnf ′ is reached from gcnf using Theorems 4 and 5 in the induction step.

Since gcnf ′ is well formed, pool′(i) is a well-formed thread state for each i ∈ pre(pool′). From our assumption that the
calculus for local monitor transitions enforces guarantees, we obtain that for each i ∈ pre(pool′), the thread state pool′(i)
provides its guarantees. Consequently, gcnf ′ provides its guarantees.

Proof of Theorem 2: We prove the two propositions of the theorem in Part 1 and 2, respectively.

Part 1. To prove that the calculus propertly tracks modes, we need to show that if lmon −→δ,α
perm lmon ′ is derivable then

lmon ′.mdst = update(lmon.mdst, δ). We assume that lmon −→δ,α
perm lmon ′ is derivable and make a case distinction about

the calculus rule applied at the root of this derivation. If (M-Barrier-Local) is applied at the root of the derivation then
lmon ′.mdst = update(lmon.mdst, δ) holds due to the premises of this rule. If some other rule than (M-Barrier-Local) is applied
at the root of the derivation then δ = ε and lmon ′.mdst = lmon.mdst hold according to the conclusion of each such rule.
Hence, lmon ′.mdst = update(lmon.mdst, δ) follows from update(lmon.mdst, δ) = lmon.mdst (holds due to the definition
of the function update for δ = ε).

Part 2. Let thread = [com, lmon,mdst] be an arbitrary well-formed thread state. That is, lmon.mdst = mdst holds. Let
mem ∈ Mem and τ ∈ Tr be arbitary. We need to show that the local configuration lcnf = 〈thread,mem, τ〉 provides its
guarantees. We first show that lcnf provides the no-write guarantee for each variable x ∈ mdst(G-NW) (Part 2a) and then
show that lcnf also provides the no-read guarantee for each variable y ∈ mdst(G-NR) (Part 2b).

Part 2a. We assume that mdst(G-NW) 6= ∅ because, otherwise, the proposition is trivially fulfilled. Let x ∈ mdst(G-NW) be
arbitrary. Moreover, let σ ∈ Σ, β ∈ GEv , γ, δ ∈ Ann?, and lcnf ′ ∈ LCnf be arbitrary such that lcnf

β,γ,δ−→σ lcnf
′ is derivable.

Finally, let 〈thread′,mem′, τ ′〉 = lcnf ′ and [com′, lmon ′,mdst′] = thread′.
From the derivability of lcnf

β,γ,δ−→σ lcnf
′ and the rule in Figure 1, which is the only rule for deriving this judgment, we

obtain that there exists a local event α ∈ Ev such that (com,mem, τ)
α,γ
_σ (com′,mem′, τ ′) is derivable, lmon −→δ,α

perm lmon ′

is derivable, and β = χ(α) holds. We perform a case distinction on α.
Case 2ai. If α = a(x, e) for some e ∈ Exp then the judgment lmon −→δ,α

perm lmon ′ must have been derived with the rule
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(M-Assign1) or with the rule (M-Assign2) according to our calculus for local monitor transitions. Both of these rules require
lmon.mdst . maywrite(x) in their premises. Hence, x /∈ mdst(G-NW) because of lmon.mdst = mdst. This contradicts our
assumption x ∈ mdst(G-NW) and, hence, Case 2ai is impossible.
Case 2aii. If α = input(x, ch, v) for some ch ∈ Ch and v ∈ Val then the judgment lmon −→δ,α

perm lmon ′ must have been
derived with the rule (M-Input1) or with the rule (M-Input2) according to our calculus for local monitor transitions. Both of
these rules require lmon.mdst .maywrite(x) in their premises. Hence, x /∈ mdst(G-NW) because lmon.mdst = mdst. This
contradicts our assumption x ∈ mdst(G-NW) and, hence, Case 2aii is impossible.
Case 2aiii. If α /∈ {a(y, e), input(y, ch, v) | y = x, e ∈ Exp, ch ∈ Ch, v ∈ Val} then we obtain mem′(x) = mem(x) from the
derivability of (com,mem, τ)

α,γ
_σ (com′,mem′, τ ′) and the language semantics (see Appendix B).

That is, lcnf provides the no-write guarantee for each variable x ∈ mdst(G-NW).

Part 2b. We assume that mdst(G-NR) 6= ∅ because, otherwise, the proposition is trivially fulfilled. Let y ∈ mdst(G-NR) be
arbitrary. Moreover, let σ ∈ Σ, β ∈ GEv , γ, δ ∈ Ann?, and lcnf ′ ∈ LCnf be arbitrary such that lcnf

β,γ,δ−→σ lcnf
′ is derivable.

Finally, let 〈thread′,mem′, τ ′〉 = lcnf ′ and [com′, lmon ′,mdst′] = thread′.
From the derivability of lcnf

β,γ,δ−→σ lcnf
′ and the rule in Figure 1, which is the only rule for deriving this judgment, we

obtain that there exists a local event α ∈ Ev such that (com,mem, τ)
α,γ
_σ (com′,mem′, τ ′) is derivable, lmon −→δ,α

perm lmon ′

is derivable, and β = χ(α) holds. We perform a case distinction on α and show for each of the five cases that, for each
v ∈ Val , the judgment 〈thread,mem[y 7→ v], τ〉 β,γ,δ−→σ 〈thread′,mem′, τ ′〉 or the judgment 〈thread,mem[y 7→ v], τ〉 β,γ,δ−→σ

〈thread′,mem′[y 7→ v], τ ′〉 is derivable. Let v ∈ Val be arbitrary.
Case 2bi. If

α ∈
{

a(x, e), b(e, com1, com2), enter(e, com1),
more(e, com1), leave(e, com1), output(ch, e, v′)

∣∣∣∣ x ∈ Var , e ∈ Exp, y ∈ vars(e),
com1, com2 ∈ Com, ch ∈ Ch, v′ ∈ Val

}
then lmon −→δ,α

perm lmon ′ must have been derived by one of the following rules: (M-Assign1), (M-Assign2), (M-Branch),
(M-Enter), (M-More), (M-Leave), and (M-Output). Each of these rules requires lmon.mdst .mayread(e) in its premises. Hence,
y /∈ mdst(G-NR) because lmon.mdst = mdst and y ∈ vars(e). This contradicts our assumption y ∈ mdst(G-NR) and, hence,
Case 2bi is impossible.

Case 2bii. If α = a(y, e) for some e ∈ Exp with y /∈ vars(e) then, according to Appendix B, mem′ = mem[y 7→ v′] must
hold for some value v′ ∈ Val for which e,mem ⇓ v′ is derivable (argument is by induction on the number of applications of the
rule for sequential composition, using the rule for assignments in the base case). Since y /∈ vars(e) and e,mem ⇓ v′ is derivable,
e,mem[y 7→ v] ⇓ v′ must also be derivable according to the properties of the function vars . Since α = a(y, e), e,mem[y 7→ v] ⇓
v′, and (com,mem, τ)

α,γ
_σ (com′,mem[y 7→ v′], τ ′) is derivable, (com,mem[y 7→ v], τ)

α,γ
_σ (com′,mem[y 7→ v′], τ) must

also be derivable according to Appendix B (apply rules in the same way as in the first derivation). From mem′ = mem[y 7→ v′]

and Figure 1, we obtain that 〈thread,mem[y 7→ v], τ〉 β,γ,δ−→σ 〈thread′,mem′, τ ′〉 is derivable, which concludes this case.
Case 2biii. If α = input(y, ch, v′) for some ch ∈ Ch and v′ ∈ Val then mem′ = mem[y 7→ v′] must hold according to

Appendix B (argument is by induction on the number of applications of the rule for sequential composition, using the rule for
input commands in the base case). Since α = input(x, ch, v′) and (com,mem, τ)

α,γ
_σ (com′,mem[y 7→ v′], τ ′) is derivable,

(com,mem[y 7→ v], τ)
α,γ
_σ (com′,mem[y 7→ v′], τ) must also be derivable according to Appendix B (apply rules in the same

way as in the first derivation). From mem′ = mem[y 7→ v′] and Figure 1, we obtain that 〈thread,mem[y 7→ v], τ〉 β,γ,δ−→σ

〈thread′,mem′, τ ′〉 is derivable, which concludes this case.
Case 2biv. If α ∈ {a(x, e), input(x, ch, v′) | x ∈ Var , x 6= y, e ∈ Exp, y /∈ vars(e), ch ∈ Ch, v′ ∈ Val} then

mem′ = mem[x 7→ v′] must hold for some v′ ∈ Val according to Appendix B (argument is by induction on the number
of applications of the rule for sequential composition). Since x 6= y and (com,mem, τ)

α,γ
_σ (com′,mem[x 7→ v′], τ ′) is

derivable, (com,mem[y 7→ v], τ)
α,γ
_σ (com′,mem[y 7→ v][x 7→ v′], τ) must also be derivable according to Appendix B (apply

rules in the same way as in the first derivation). Moreover, mem[y 7→ v][x 7→ v′] = mem[x 7→ v′][y 7→ v] follows from x 6= y.
Consequently, 〈thread,mem[y 7→ v], τ〉 β,γ,δ−→σ 〈thread′,mem′[y 7→ v], τ ′〉 is derivable, which concludes this case.

Case 2bv. If

α ∈
{

s, b(e, com1, com2), join, enter(e, com1),more(e, com1),
leave(e, com1), output(ch, e, v), sync, term

∣∣∣∣ e ∈ Exp, y /∈ vars(e),
com1, com2 ∈ Com, ch ∈ Ch, v ∈ Val

}
then mem′ = mem must hold according to Appendix B. Since y /∈ vars(e) and (com,mem, τ)

α,γ
_σ (com′,mem, τ ′) is

derivable, (com,mem[y 7→ v], τ)
α,γ
_σ (com′,mem[y 7→ v], τ) must also be derivable according to Appendix B (apply rules like

in the first derivation). Consequently, 〈thread,mem[y 7→ v], τ〉 β,γ,δ−→σ 〈thread′,mem′[y 7→ v], τ ′〉 is derivable, which concludes
this case.
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That is, lcnf provides the no-read guarantee for each variable y ∈ mdst(G-NR).
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Fig. 9. Diagram of key theorems for proof of soundness of monitoring

APPENDIX E
SOUNDNESS OF MONITORING

In this section, we prove Theorem 3, which states that the local monitors, combined with the global monitor, enforce security.

Figure 9 provides an overview of the proof. Starting from two identical global configurations gcnf 0
1 and gcnf 0

2, and two
`-equivalent strategies σ1 and σ2, we show that for each step that the first configuration can take (using σ1), the second one
can take zero or more steps (using σ2) to a `-equivalent global configuration. Theorem 11 says that if the first configuration
takes a “low” step, then the second configuration can also take a low step. Theorem 12 says that if the first configuration takes
a “high” step, then the second configuration does not need to take any step. Theorem 13 says that if the first configuration
takes a barrier step, then the second configuration takes zero or more high steps to reach the barrier, whereupon it can take a
barrier step. Theorems 7, 8, and 9 describe the `-equivalence of individual threads, and Theorem 10 states that `-equivalence of
threads is preserved when the memory and trace changes due to other threads taking a step. Theorems 7, 8, 9, and 10 are used
in the proofs of Theorems 11, 12, and 13, as indicated in Figure 9.

The proof of Theorem 13 is more complex than the others, and is contained in Section E-F. In it, we define a stronger notion
of `-equivalence between thread states: time-insensitive-`-equivalence, which in essence requires the components of equivalent
thread states to be identical if the pc stack, termination level, and blocking level are all below ` (i.e., it ignores the timing
level). This time-insensitive-`-equivalence allows us to show that if one thread exits a while loop or conditional command
with the pc stack, termination level and blocking level all below `, then the other thread will also exit the same while loop or
conditional, even though the timing level may be above `.
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A. Static bounds

In Section C-A, we introduced the idea that the local monitor must examine conditional commands and loops in order to
approximate the behavior of the monitor on the code not executed.

More specifically, the local monitor invokes a static oracle, passing in some of the local monitor state, and the oracle returns
a tuple: SB(com,Γ , lmdst, pc, time, term, block) = (`sb, timesb, termsb, block sb,Γsb). Security level `sb will be pushed on to
the program counter stack, and will remain on the stack until the branch or loop command is exited. Thus, `sb should be an
upper bound on the information that determines which branch to take (for branch commands), or how many times to execute
the loop body (for loop commands). The tuple (timesb, termsb, block sb,Γsb) is a static branching environment, and will be
pushed onto the stack of static branching environments, to be incorporated into the local monitor’s timing level, termination
level, blocking level, and typing context when the monitor exits the branch or loop command.

Intuitively, the static branching environment is meant to summarize the behavior of the local monitor during interesting
possible executions of com, other than the execution that actually occurs. Other executions of com are interesting only if they
may reveal secret information, i.e., only if `sb 6= ⊥. If `sb = ⊥, then other possible executions of com are not interesting, and
we do not have any restrictions on static branching environment (timesb, termsb, block sb,Γsb).

If, however, `sb 6= ⊥ then there may be other executions of com where different control flow decisions occur based on
secret information bounded by `sb. In that case, static branching environment (timesb, termsb, block sb,Γsb) summarizes these
other possible executions. Assume that we have a monitored execution of command com, and just before executing com the
local monitor configuration is 〈Γ , lmdst, pc, br , time, term, block〉, and the local monitor’s configuration after successfully
executing com is 〈Γ ′, lmdst′, pc′, br

′
, time ′, term ′, block ′〉.

Then the static branching environment timing level timesb is an upper bound on the local monitor’s timing level at the end
of com (i.e., time ′ v timesb). (Moreover, for loops, timesb is an upper bound of the local monitor’s timing level at the start of
every loop iteration.)

Similarly, the static branching environment termination level termsb, and the blocking level block sb are upper bounds on,
respectively, the local monitor’s termination level and the local monitor’s blocking level at the end of com (i.e., term ′ v termsb

and block ′ v block sb). (Moreover, for loops, termsb and block sb are upper bounds of the local monitor’s termination and
blocking levels at the start of every loop iteration.)

Also, the static branching environment typing environment Γsb has the same domain as the local monitor’s typing environment
at the end of com (i.e., pre(Γ ′) = pre(Γsb)), and for each variable x, Γsb provides an upper bound of the local monitor’s level
for variable x (i.e., ∀x ∈ Var . Γ ′〈x〉 v Γsb〈x〉). (Moreover, for loops, this holds true for the local monitor’s typing environment
at the start of every loop iteration.)

There is one additional constraint on the soundness of the static monitor. If the command com contains any barrier
synchronization, then `sb = ⊥. That is, the decision to execute a barrier synchronization must depend only on public (i.e., level
⊥) information.

We can phrase the informal requirements on the static oracle more formally, as follows. If we have a thread pool where the ith
thread is com and com is the branching or looping command, and Γ , lmdst, time , term , and block are the relevant parts of the
current state of the local monitor of the ith thread, and the monitored execution of com terminates (i.e., the ith thread becomes stop)
with monitor state time ′, term ′, block ′, Γ ′ and SB(com,Γ , lmdst, pc, time, term, block) = (`sb, timesb, termsb, block sbΓsb),
and `sb 6= ⊥ then timesb, termsb, block sb and Γsb are upper bounds of time ′, term ′, block ′ , and Γ ′ respectively. Moreover,
for loops, these are upper bounds on the monitor state every time the loop guard is executed.

Note that this holds true regardless of the current memory, trace, or other threads in the thread pool.
We define soundness of the static oracle by describing the conditions under which the tuple (`sb, timesb, termsb, block sb,Γsb)

is a conservative approximation of the branching, timing, termination, blocking, and floating behavior of a local monitor for
command com, with local monitor configuration 〈Γ , lmdst, pc, br , time, term, block〉.

Definition 2 (Conservative approximation of branching, timing, termination, blocking, and floating behavior). Let com ∈ Com ,
Γ be an environment, lmdst ∈ MdSt , and time , term , and block be security levels, such that
• For all variables x, lmdst . othersmightread(x) =⇒ Γ 〈x〉 v L(x)
• For all variables x, lmdst . othersmightwrite(x) =⇒ L(x) v Γ 〈x〉

Let comstart and comend be defined as either comstart = com and comend = stop or comstart = com; com′ and
comend = stop; com′ for some arbitrary command com′.

We say that the tuple (`sb, timesb, termsb, block sb,Γsb) is a conservative approximation of the branching, timing, termination,
blocking, and floating behavior for com, Γ , lmdst, pc, br , time , term , block if all of the following hold.

1) termsb v timesb

2) For all variables x, lmdst . othersmightread(x) =⇒ Γsb〈x〉 v L(x)
3) For all variables x, lmdst . othersmightwrite(x) =⇒ L(x) v Γsb〈x〉
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4) For all pool ∈ PSt , i ∈ pre(pool), σ ∈ Σ, mem ∈ Mem , τ ∈ Tr , gmon ∈ GMon , and pool′ ∈ PSt , mem′ ∈ Mem ,
τ ′ ∈ Tr , gmon ′ ∈ GMon and Γ ′, lmdst′, pc′, br

′
, time ′, term ′, and block ′ such that

• pool(i) = [comstart,mc,mdst] where mc = 〈Γ , lmdst, pc, br , time, term, block〉
• 〈〈pool,mem, τ, gmon〉〉�∗σ 〈〈pool

′,mem′, τ ′, gmon ′〉〉
• pool′(i) = [comend, 〈Γ ′, lmdst′, pc′, br

′
, time ′, term ′, block ′〉,mdst′]

we have:
• Either `sb = ⊥ or (time ′ v timesb and term ′ v termsb and block ′ v block sb and pre(Γ ′) = pre(Γsb) and ∀x ∈

Var . Γ ′〈x〉 v Γsb〈x〉)
5) For all pool ∈ PSt , i ∈ pre(pool), σ ∈ Σ, mem ∈ Mem , τ ∈ Tr , gmon ∈ GMon such that
• pool(i) = [comstart,mc,mdst] where mc = 〈Γ , lmdst, pc, br , time, term, block〉
• execution of pool(i) may fail to terminate normally because either pool(i) diverges before reaching command comend

or the monitor for pool(i) blocks before reaching command comend

we have:
• `sb v termsb or `sb v block sb

6) If `sb 6= ⊥ then sync-free(com).
7) If com = if e then com1 else com2 fi then Γ 〈e〉 t time v `sb.
8) If com = while e do com1 od then for all pool ∈ PSt , i ∈ pre(pool), σ ∈ Σ, mem ∈ Mem , τ ∈ Tr , gmon ∈ GMon ,

and pool′ ∈ PSt , mem′ ∈ Mem , τ ′ ∈ Tr , gmon ′ ∈ GMon , and Γ ′, lmdst′, pc′, br
′
, time ′, term ′, and block ′ such that

• pool(i) = [comstart,mc,mdst] where mc = 〈Γ , lmdst, pc, br , time, term, block〉
• 〈〈pool,mem, τ, gmon〉〉�∗σ 〈〈pool

′,mem′, τ ′, gmon ′〉〉
• pool′(i) = [commore, 〈Γ ′, lmdst′, pc′, br

′
, time ′, term ′, block ′〉,mdst′] (where commore = more e do com1 od if

comstart = com and commore = (more e do com1 od); com′ if comstart = com; com′).
we have all of the following:
• Γ ′〈e〉 t time ′ v `sb.
• Either `sb = ⊥ or (time ′ v timesb and term ′ v termsb and block ′ v block sb and pre(Γ ′) = pre(Γsb) and ∀x ∈

Var . Γ ′〈x〉 v Γsb〈x〉)

Note that in the clauses that require that `sb is an upper bound of the branching or looping decision, we are more
precise when the current thread has exclusive write access to all variables in e, i.e., lmdst . exclusivewrite(e). Specifically, if
lmdst . exclusivewrite(e) then other threads cannot concurrently change the value that e will evaluate to, and thus Γ 〈e〉 is an
upper bound on the information that may be learned by evaluating e here (i.e., the timing of the evaluation of e relative to
other threads—bounded above by the timing level time—is not relevant). Therefore, in that case, `sb must be an upper bound
only of Γ 〈e〉. Otherwise, if lmdst . othersmightwrite(e), then `sb must be an upper bound of Γ 〈e〉ttime , since the timing of
when the expression is evaluated (relative to concurrent updates to variables in e) may influence that value of the expression.

The static bounds oracle is defined in Appendix F, and a sketch of the proof of soundness.

B. Local configuration results

We first define some properties about single executions of programs. These properties describe invariants and formalize the
intended meaning of monitor state.

1) Properties of local monitors: Each time execution enters a conditional or a loop, a special “control state” term is added to
the program’s continuation, either a join command (for conditionals) or a more e do com od command (for loops). We define
set Continuationn to be the subset of commands that have exactly n occurrences of more e do com od or join as subcommands,
and (for n > 0), start with a more e do com od or join command. This definition will be useful, both to specify that the depth
of a program counter level stack is equal to the number of more e do com od and join commands in the continuation, and also
to identify the continuation that corresponds to the continuation after a particular loop or conditional.

Continuation0 = {com | com does not contain a subcommand
of the form join or more e do com od}

Continuationn+1 = {join; com; com′ | com ∈ Continuation0 and com′ ∈ Continuationn}
∪ {join; com′ | com′ ∈ Continuationn}
∪ {more e do com od; com′; com′′ | com′ ∈ Continuation0 and com′′ ∈ Continuationn}
∪ {more e do com od; com′ | com′ ∈ Continuationn}
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Property 1 (Invariants of local monitors). Let pool0 ∈ PSt , σ ∈ Σ, gmon ∈ GMon and 〈〈pool,mem, τ, gmon〉〉 ∈
reachσ(pool0). If pool(i) = [com, 〈Γ , lmdst, pc, br , time, term, block〉,mdst] for some i ∈ pre(pool) then all of the following
hold.

1) |br | = |pc|
2) Let n = |br |. Either com = com′; com′′ where com′ ∈ Continuation0 and com′′ ∈ Continuationn or com ∈

Continuationn.
3) term v time
4) pre(Γ ) = {x | x ∈ FloatVar ∧ (lmdst . exclusiveread(x) ∨ lmdst . exclusivewrite(x))}
5) For all variables x, lmdst . othersmightread(x) =⇒ Γ 〈x〉 v L(x)
6) For all variables x, lmdst . othersmightwrite(x) =⇒ L(x) v Γ 〈x〉
7) lmdst = mdst.
8) If com = term then pc = ε, br = ε, term = ⊥, and block = ⊥.
9) For all k ∈ |br |, the tuple (pc(k), time(k), term(k), block(k),Γ (k)) (where br(k) = (time(k), term(k), block(k),Γ (k)))

is a conservative approximation (Definition 2) of the branching, timing, termination, and floating behavior for some comk,
Γk, lmdst, pc, br , time , term , block such that there is a global configuration 〈〈pool′k,mem′k, τ ′k, gmon ′k〉〉 with

pool′k(i) = [com′k, 〈Γk, lmdstk, pck, brk, timek, termk, blockk〉,mdstk]

and comk is the redex of com′k and 〈〈pool′k,mem′k, τ ′k, gmon ′k〉〉 ∈ reachσ(pool0) and 〈〈pool′k,mem′k, τ ′k, gmon ′k〉〉�∗σ
〈〈pool,mem, τ, gmon〉〉.

Proof: We proceed by induction on the steps of the global configuration. In the base case, every local configuration for the
global configuration pool0 is of the form

[com, 〈Γ , lmdst, pc, br , time, term, block〉,mdst]

where

time = ⊥
term = ⊥
block = ⊥

pc is empty

br is empty
com ∈ Continuation0

pre(Γ ) = {x | x ∈ FloatVar ∧ (lmdst . exclusiveread(x) ∨ lmdst . exclusivewrite(x))}
∀x ∈ pre(Γ ).Γ (x) = L(x)

lmdst = mdst

All of the invariants hold.
For the inductive case, assume the invariants hold true of all local configurations in a global configuration

gcnf = 〈〈pool,mem, τ, gmon〉〉,

and consider
gcnf 1 �σ 〈〈pool′,mem′, τ ′, gmon ′〉〉

There are two possible inference rules that allow a global configuration to take a step. In one of them, all local configurations
take a synchronization step.

〈pool(i),mem, τ〉 sync,γ,∆(i)−→σ 〈pool′(i),mem, τ〉

In the other inference rule that allows a global configuration to take a step, one local configuration takes a step:

〈pool(i),mem, τ〉 ε,γ,ε−→σ 〈pool′(i),mem′, τ ′〉

We cover both of these cases at the same time by performing an induction on the local monitor step associated with the
local configuration step. Consider

〈Γ , lmdst, pc, br , time, term, block〉 −→δ,α
perm 〈Γ ′, lmdst

′, pc′, br
′
, time ′, term ′, block ′〉
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Assume that the invariants hold for pool(i), and we need to show they hold for pool′(i).
• M-Skip, M-Output, M-Term, M-More. Here δ = ε, Γ ′ = Γ and lmdst′ = lmdst and pc′ = pc and br

′
= br and

time ′ = time and term ′ = term and block ′ = block .
All invariants except for Condition 8 hold trivially, since they held for pool(i). For Condition 8, if the monitor rule was
M-Term, then from the premises of M-Term, we have pc = ε, br = ε, term = ⊥, and block = ⊥, as required.

• M-Assign1 Here δ = ε, Γ ′ = Γ 〈x 7→lmdst `〉 where

` = Γ 〈e〉ttimet(tpc)ttermtblock

and
lmdst . [maywrite(x),mayread(e), othersmightread(x)]

and ` v L(x) and lmdst′ = lmdst and pc′ = pc and br
′

= br and time ′ = time and term ′ = term and block ′ = block .
All invariants hold either by simple inspection or because they held for pool(i).

• M-Assign2 Here δ = ε, Γ ′ = Γ 〈x 7→lmdst `〉 where

` = Γ 〈e〉ttimet(tpc)ttermtblock

and
lmdst . [maywrite(x),mayread(e), exclusiveread(x)]

and lmdst′ = lmdst and pc′ = pc and br
′

= br and time ′ = time and term ′ = term and block ′ = block .
All invariants hold either by simple inspection or because they held for pool(i).

• M-Input1 Here δ = ε, Γ ′ = Γ 〈x 7→lmdst `〉 where

` = ch t timet(tpc)ttermtblock

and
lmdst . [maywrite(x), othersmightread(x)]

and ` v L(x) and lmdst′ = lmdst and pc′ = pc and br
′

= br and time ′ = time and term ′ = term and block ′ = block .
All invariants hold either by simple inspection or because they held for pool(i).

• M-Input2 Here δ = ε, Γ ′ = Γ 〈x 7→lmdst `〉 where

` = ch t timet(tpc)ttermtblock

and
lmdst . [maywrite(x), exclusiveread(x)]

and lmdst′ = lmdst and pc′ = pc and br
′

= br and time ′ = time and term ′ = term and block ′ = block .
All invariants hold either by simple inspection or because they held for pool(i).

• M-Barrier-Local Here pc′ = pc and br
′

= br and time ′ = ⊥ and term ′ = term = ⊥ and block ′ = block = ⊥ and
(tpc) = ⊥.
Condition 1 (|br

′| = |pc′|) holds because |br | = |pc|.
Condition 2 holds because if pool(i).com ∈ Continuationn then pool′(i).com ∈ Continuationn.
Condition 3 holds because term ′ = ⊥ v ⊥ = time ′.
Condition 4 holds because pre(Γ ′) = {x | x ∈ FloatVar ∧ (lmdst′ . exclusiveread(x)∨ lmdst′ . exclusivewrite(x))} is true
by the premise of the M-Barrier-Local rule.
Condition 5 For all variables x, lmdst′ . othersmightread(x) =⇒ Γ ′〈x〉 v L(x) is true by the premises of the M-Barrier-
Local rule.
Condition 6 For all variables x, lmdst′ . othersmightwrite(x) =⇒ L(x) v Γ ′〈x〉 is true by the premises of the M-Barrier-
Local rule.
Condition 7 lmdst′ = mdst′ since lmdst′ = update(lmdst, δ) and mdst′ = update(mdst, δ). But by the inductive
hypothesis we have lmdst = mdst so lmdst′ = mdst′ as required.
Condition 8 is trivially true, since com′ 6= term.
Condition 9 is true because it held for pool(i), and this global configuration is reachable from the previous global configuration.

• M-Branch Here δ = ε, Γ ′ = Γ and lmdst′ = lmdst and pc′ = pc·`sb and br
′

= br ·(timesb, termsb, block sb,Γsb) where

(`sb, timesb, termsb, block sb,Γsb) = SB(if e then com1 else com2 fi,Γ , lmdst, pc, time, term, block)

and time ′ = time and term ′ = term and block ′ = block .
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Except for conditions 2 and 9, all invariants hold trivially, since they held for pool(i).
For condition 2, by inversion on the command, we see that a conditional statement if e then com1 else com2 fi was reduced
to either com1; join or com2; join, and thus the new command for the local configuration has one more join statement than
the previous command, and the size of the program counter stack has also increased by one.
For condition 9, by Lemma 14, (`sb, timesb, termsb, block sb,Γsb) is a conservative approximation of the timing, termination,
blocking, and floating behavior for com, Γ , lmdst, pc, br , time , term , and block where com is the command of the local
configuration before the step, as required.

• M-Join Here δ = ε, lmdst′ = lmdst and pc′·`sb = pc and br
′·(timesb, termsb, block sb,Γsb) = br and time ′ = time t

timesb t `sb and term ′ = term t termsb and block ′ = block t block sb and

Γ ′ = λx.


Γ (x) t Γsb(x) if x ∈ pre(Γ ) ∩ pre(Γsb)

Γ (x) if x ∈ pre(Γ ) \ pre(Γsb)

undef otherwise

Since both the pc stack and the branch information stack decrease in size by one element, condition 1 is satisfied.
By inversion on the command step, we see that the command has one less join in it than previously, and the size of the pc
stack has reduced by one, so condition 2 is satisfied.
Since term v time and termsb v timesb (by Definition 2), we have term ′ v time ′, satisfying condition 3.
Condition 4 is satisfied since pre(Γ ) = pre(Γ ′).
Conditions 5 and 6 hold due to the definition of conservative approximation (Definition 2).
Conditions 7 and 8 are trivially satisfied, and condition 9 follows immediately since it held for pool(i).

• M-Enter Here δ = ε, Γ ′ = Γ and lmdst′ = lmdst and pc′ = pc·`sb and br
′

= br ·(timesb, termsb, block sb,Γsb) where

(`sb, timesb, termsb, block sb,Γsb) = SB(while e do com′ od,Γ , lmdst, pc, time, term, block)

and time ′ = time and term ′ = term and block ′ = block .
Except for conditions 2 and 9, all invariants hold trivially, since they held for pool(i).
For condition 2, by inversion on the command, we see that a while loop while e do com′ od was reduced to more e do com′ od,
and thus the new command for the local configuration has one more more statement than the previous command, and the
size of the program counter stack has also increased by one.
For condition 9, by Lemma 14, (`sb, timesb, termsb, block sb,Γsb) is a conservative approximation of the timing, termination,
blocking, and floating behavior for com, Γ , lmdst, pc, br , time , term , and block where com is the command of the local
configuration before the step, as required.

• M-Leave Here δ = ε, lmdst′ = lmdst and pc′·`sb = pc and br
′·(timesb, termsb, block sb,Γsb) = br and time t timesb v

time ′ and term ′ = term t termsb and block ′ = block t block sb and

Γ ′ = λx.


Γ (x) t Γsb(x) if x ∈ pre(Γ ) ∩ pre(Γsb)

Γ (x) if x ∈ pre(Γ ) \ pre(Γsb)

undef otherwise

Since both the pc stack and the branch information stack decrease in size by one element, condition 1 is satisfied.
By inversion on the command step, we see that the command has one less more in it than previously, and the size of the pc
stack has reduced by one, so condition 2 is satisfied.
Since term v time and termsb v timesb (by Definition 2), we have term ′ v time ′, satisfying condition 3.
Condition 4 is satisfied since pre(Γ ) = pre(Γ ′).
Conditions 5 and 6 hold due to the definition of conservative approximation (Definition 2).
Conditions 7 and 8 are trivially satisfied, and condition 9 follows immediately since it held for pool(i).

Property 2 (Properties of local monitor steps). Let pool ∈ PSt , σ ∈ Σ, and 〈〈pool1,mem1, τ1, gmon1〉〉 ∈ reachσ(pool). If
pool1(i) = [com,mc1,mdst1] for some i ∈ pre(pool) and

〈[com1,mc1,mdst1],mem1, τ1〉
β,γ,δ−→σ 〈[com2,mc2,mdst2],mem2, τ2〉

where mci = 〈Γi, lmdsti, pci, br i, timei, termi, block i〉 then
1) For all variables x, if time1 t (tpc1) t term1 t block1 6v Γ2〈x〉 then mem1(x) = mem2(x) and Γ1(x) = Γ2(x). (i.e.,

time1 t (tpc1)t term1 t block1 is a lower bound on the memory side effects, and the local typing context cannot change.
Note that we use the local typing environment after the step: Γ2. This simplifies the statement of this lemma, since we get
to ignore whether or not x floats.)
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2) For all channels ch if time1t (tpc1)t term1t block1 6v ch then τ1 � ch = τ2 � ch (i.e., time1t (tpc1)t term1t block1

is a lower bound on the I/O effects.)
3) term1 v term2 (i.e., termination level increases monotonically)
4) block1 v block2 (i.e., blocking level increases monotonically)
5) If β 6= sync then time1 t (tpc1) t term1 t block1 v time1 t (tpc1) t term1 t block1 (i.e., the “time-inclusive pc” can

go down only at synchronization steps)
6) If β 6= sync then time1 v time2 (i.e., timing level increases monotonically, except at synchronizations)
7) If β 6= sync then lmdst1 = lmdst2 (i.e., mode state changes only at synchronizations)
8) If (tpc1)t term1 t block1 6= ⊥ then β 6= sync and com2 6= term (i.e., non-bottom termination, blocking, and pc prevents

synchronization or thread termination.)
9) If pc1 6= ε then com2 6= term (i.e., non-empty pc stack prevents thread termination.)

Proof: We consider the local monitor step associated with the local configuration step 〈[com1,mc1,mdst1],mem1, τ1〉
β,γ,δ−→σ

〈[com2,mc2,mdst2],mem2, τ2〉. That is, we consider the step

〈Γ1, lmdst1, pc1, br1, time1, term1, block1〉 −→ε,α
perm 〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉

• M-Skip Here Γ2 = Γ1 and lmdst2 = lmdst1 and pc2 = pc1 and br2 = br1 and time2 = time1 and term2 = term1 and
block2 = block1.
Note that by inversion on the command step, we also have that the memory is not changed and com2 6= term. All of the
conditions are satisfied trivially.

• M-Assign1 Here Γ2 = Γ1〈x 7→lmdst1 `〉 where

` = Γ 〈e〉ttime1t(tpc1)tterm1tblock1

and
lmdst1 . [maywrite(x),mayread(e), othersmightread(x)]

and ` v L(x) and lmdst2 = lmdst1 and pc2 = pc1 and br2 = br1 and time2 = time1 and term2 = term1 and
block2 = block1.
Note that by inversion on the command step, we have that for all variables y if y 6= x then mem1(y) = mem2(y) and
Γ1(y) = Γ2(y), and com2 6= term.
All of the conditions except condition 1 are satisfied trivially.
Consider Γ2〈x〉. If x 6∈ pre(Γ2) then Γ2〈x〉 = L(x), and, since ` v L(x) we have time1t (tpc1)t term1t block1 v Γ2〈x〉.
If x ∈ pre(Γ2) then time1 t (tpc1) t term1 t block1 v ` v Γ2〈x〉. Thus, condition 1 is satisfied.

• M-Assign2 Here Γ2 = Γ1〈x 7→lmdst1 `〉 where

` = Γ1〈e〉ttime1t(tpc1)tterm1tblock1

and
lmdst1 . [maywrite(x),mayread(e), exclusiveread(x)]

and lmdst2 = lmdst1 and pc2 = pc1 and br2 = br1 and time2 = time1 and term2 = term1 and block2 = block1.
Note that by inversion on the command step, we have that for all variables y if y 6= x then mem1(y) = mem2(y) and
Γ1(y) = Γ2(y), and com2 6= term.
All of the conditions except condition 1 are satisfied trivially.
Consider Γ2〈x〉. Since lmdst . [exclusiveread(x)], we must have x ∈ pre(Γ2). Thus, time1 t (tpc1) t term1 t block1 v
` v Γ2〈x〉, and so condition 1 is satisfied.

• M-Input1 Here Γ2 = Γ1〈x 7→lmdst1 `〉 where

` = ch t time1t(tpc1)tterm1tblock1

and
lmdst1 . [maywrite(x), othersmightread(x)]

and ` v L(x) and lmdst2 = lmdst1 and pc2 = pc1 and br2 = br1 and time2 = time1 and term2 = term1 and
block2 = block1.
Note that by inversion on the command step, we have that for all variables y if y 6= x then mem1(y) = mem2(y) and
Γ1(y) = Γ2(y), and com2 6= term, and the trace had an event for channel ch added.
All of the conditions except conditions 1 and 2 are satisfied trivially.
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Consider Γ2〈x〉. If x 6∈ pre(Γ2) then Γ2〈x〉 = L(x), and, since ` v L(x) we have time1t (tpc1)t term1t block1 v Γ2〈x〉.
If x ∈ pre(Γ2) then time1 t (tpc1) t term1 t block1 v ` v Γ2〈x〉. Thus, condition 1 is satisfied.
Also, timet(tpc)ttermtblock v ch , and so condition 2 is satisfied.

• M-Input2 Here Γ2 = Γ1〈x 7→lmdst1 `〉 where

` = ch t time1t(tpc1)tterm1tblock1

and
lmdst1 . [maywrite(x), exclusiveread(x)]

and lmdst2 = lmdst1 and pc2 = pc1 and br2 = br1 and time2 = time1 and term2 = term1 and block2 = block1.
Note that by inversion on the command step, we have that for all variables y if y 6= x then mem1(y) = mem2(y) and
Γ1(y) = Γ2(y), and com2 6= term, and the trace had an event for channel ch added.
All of the conditions except conditions 1 and 2 are satisfied trivially.
Consider Γ2〈x〉. Since lmdst . [exclusiveread(x)], we must have x ∈ pre(Γ2). Thus, time1 t (tpc1) t term1 t block1 v
` v Γ2〈x〉, and so condition 1 is satisfied.
Also, timet(tpc)ttermtblock v ch , and so condition 2 is satisfied.

• M-Output Here Γ2 = Γ1 and lmdst2 = lmdst1 and pc2 = pc1 and br2 = br1 and time2 = time1 and term2 = term1

and block2 = block1.
Note that by inversion on the command step, we have that the memory is unchanged, and com2 6= term, and the trace had
an event for channel ch added.
All of the conditions except condition 2 are satisfied trivially, and since timet(tpc)ttermtblock v ch , condition 2 is also
satisfied.

• M-Term Here Γ2 = Γ1 and lmdst2 = lmdst1 and pc2 = pc1 = ε and br2 = br1 = ε and time2 = time1 and
term2 = term1 = ⊥ and block2 = block1 = ⊥ and, by inversion on the command step, com2 = term.
All conditions are trivially satisfied.

• M-Barrier-Local Here pc2 = pc1 and br2 = br1 and time2 = ⊥ and term2 = term1 = ⊥ and block2 = block1 = ⊥ and
(tpc1) t term1 t block1 = ⊥.
By inversion on the command step, we see that the memory is unchanged and so is the event trace. Moreover, β = sync and
com2 6= term. Thus, all conditions are satisfied.

• M-Branch Here Γ2 = Γ1 and lmdst2 = lmdst1 and pc2 = pc1·`sb and br2 = br1·(timesb, termsb, block sb,Γsb) where

(`sb, timesb, termsb, block sb,Γsb) = SB(if e then com1 else com2 fi,Γ1, lmdst1, pc1, time1, term1, block1)

and time2 = time1 and term2 = term1 and block2 = block1.
By inversion on the command step, we see that the memory and event trace are unchanged, and that β 6= sync and
com2 6= term.
All conditions are thus trivially satisfied.

• M-Join Here lmdst2 = lmdst1 and pc2·`sb = pc1 and br2·(timesb, termsb, block sb,Γsb) = br1 and time2 = time1 t
timesb t `sb and term2 = term1 t termsb and block2 = block1 t block sb and

Γ2 = λx.


Γ1(x) t Γsb(x) if x ∈ pre(Γ1) ∩ pre(Γsb)

Γ1(x) if x ∈ pre(Γ1) \ pre(Γsb)

undef otherwise

By inversion on the command step, we see that the memory and event trace are unchanged, and that β 6= sync and
com2 6= term. All conditions except condition 5 are trivially satisfied.
For condition 5, note that we have

time1 t (tpc1) t term1 t block1 = time1 t (tpc2) t `sb t term1 t block1

v time1 t `sb t timesb t (tpc2) t term1 t block1

v time1 t `sb t timesb t (tpc2) t term1 t termsb t block1 t block sb

= time2 t (tpc2) t term2 t block2

Thus all conditions are satisfied.
• M-Enter Γ2 = Γ1 and lmdst2 = lmdst1 and pc2 = pc1·`sb and br2 = br1·(timesb, termsb, block sb,Γsb) where

(`sb, timesb, termsb, block sb,Γsb) = SB(while e do com2 od,Γ1, lmdst1, pc1, time1, term1, block1)
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and time2 = time1 and term2 = term1 and block2 = block1.
By inversion on the command step, we see that the memory and event trace are unchanged, and that β 6= sync and
com2 6= term.
All conditions are thus trivially satisfied.

• M-More Here Γ2 = Γ1 and lmdst2 = lmdst1 and pc2 = pc1 and br2 = br1 and time2 = time1 and term2 = term1 and
block2 = block1.
By inversion on the command step, we see that the memory and event trace are unchanged, and that β 6= sync and
com2 6= term.
All conditions are thus trivially satisfied.

• M-Leave Here lmdst2 = lmdst1 and pc2·`sb = pc1 and br2·(timesb, termsb, block sb,Γsb) = br1 and time1ttimesb v time2

and term2 = term1 t termsb and block2 = block1 t block sb and

Γ2 = λx.


Γ1(x) t Γsb(x) if x ∈ pre(Γ1) ∩ pre(Γsb)

Γ1(x) if x ∈ pre(Γ1) \ pre(Γsb)

undef otherwise

By inversion on the command step, we see that the memory and event trace are unchanged, and that β 6= sync and
com2 6= term.
All conditions are thus trivially satisfied.

C. `-equivalence relations

We define `-equivalence relations over local configurations and over global configurations. Intuitively, two (local, global)
configurations are `-equivalent if they agree on information that is at level ` or below.

Definition 3 (`-equivalence of local configurations). Two local configurations

〈[com1,mc1,mdst1],mem1, τ1〉 and 〈[com2,mc2,mdst2],mem2, τ2〉

are `-equivalent if and only if all the following conditions hold. Assume that for i = 1, 2 we have

mci = 〈Γi, lmdsti, pci, br i, timei, termi, block i〉

1) τ1 ↓ ` = τ2 ↓ `.
2) lmdst1 = lmdst2.
3) mdst1 = mdst2.
4) pre(Γ1) = pre(Γ2).
5) For all variables x, if x ∈ pre(Γ1) and lmdst1.mayread(x) and Γ1〈x〉ttime1t(tpc1) v ` and Γ2〈x〉ttime2t(tpc2) v `

then mem1(x) = mem2(x) and Γ1〈x〉 = Γ2〈x〉.
6) For all variables x, if x 6∈ pre(Γ1) and lmdst1.mayread(x) and L(x)ttime1t(tpc1) v ` and L(x)ttime2t(tpc2) v `

then mem1(x) = mem2(x).
7) If

time1 t (tpc1) t term1 t block1 v `

or
time2 t (tpc2) t term2 t block2 v `

then time1 = time2 and term1 = term2 and block1 = block2 and pc1 = pc2 and br1 = br2 and com1 = com2 and for
all x, Γ1〈x〉 = Γ2〈x〉.

8) For all j ∈ 1..max(|pc1|, |pc2|), if

time1 t (pc1(0) t . . . t pc1(j − 1)) t term1 t block1 v `

or
time2 t (pc2(0) t . . . t pc2(j − 1)) t term2 t block2 v `

then all of the following holds
• |pc1| ≥ j.
• |pc2| ≥ j.
• For all k ∈ 0..j we have pc1(k) = pc2(k) and br1(k) = br2(k).
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• There exists comcnt ∈ Continuationj such that:
– Either com1 = comcnt or com1 = com′1; comcnt for some com′1; and
– Either com2 = comcnt or com2 = com′2; comcnt for some com′2.

(This says that the pc level stack and the branch environments are identical up to and including the first high branch, and
the two configurations agree on the low continuation.)

Note that the definition of of `-equivalence of local configurations is symmetric. That is, if lcnf 1 and lcnf 2 are `-equivalent,
then lcnf 2 and lcnf 1 are `-equivalent.

We now define `-equivalence for global configurations, using `-equivalence for local configurations as part of the definition.

Definition 4 (`-equivalence of global configurations). Two global configurations 〈〈pool1,mem1, τ1, gmon1〉〉 and
〈〈pool2,mem2, τ2, gmon2〉〉 are `-equivalent if and only if all the following conditions hold.
• pre(pool1) = pre(pool2).
• ∀i ∈ pre(pool1) : 〈pool1(i),mem1, τ1〉 is `-equivalent to 〈pool2(i),mem2, τ2〉.
• τ1 ↓ ` = τ2 ↓ `.
• gmon1 = gmon2

D. `-equivalent local configuration results

We define lemmas and theorems that describe the behavior of `-equivalent local configurations when one configuration takes
a step.

Lemma 1 (Low-equivalent expressions). Let

lcnf 1 = 〈[com1, 〈Γ1, lmdst1, pc1, br1, time1, term1, block1〉,mdst1],mem1, τ1〉

and
lcnf 2 = 〈[com2, 〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉,mdst2],mem2, τ2〉

be `-equivalent local configurations.
For any expression e such that lmdst1 .mayread(e), if Γ1〈e〉 t time1 t (tpc1) v ` and Γ2〈e〉 t time1 t (tpc2) v ` and

e,mem1 ⇓ v1 and e,mem2 ⇓ v2 then v1 = v2.

Proof: By induction on the structure of e. The interesting case is for a variable x. Since lmdst1 .mayread(e) we have
lmdst2 .mayread(x). Since Γ1〈e〉 t time1 t (tpc1) v ` we have Γ1〈x〉 t time1 t (tpc1) v ` and from Γ2〈e〉 v ` we have
Γ2〈x〉 t time2 t (tpc2) v `. So by conditions 5 and 6 we have mem1(x) = mem2(x) as required.

Theorem 7 (Thread Low Step). Let σ1 and σ2 be `-equivalent strategies and let

lcnf 1 = 〈[com1, 〈Γ1, lmdst1, pc1, br1, time1, term1, block1〉,mdst1],mem1, τ1〉

and
lcnf 2 = 〈[com2, 〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉,mdst2],mem2, τ2〉

be `-equivalent local configurations such that

time1 t (tpc1) t term1 t block1 v `

and
time1 t (tpc2) t term2 t block2 v `

and lcnf 1
ε,ε,ε−→σ1 lcnf ′1.

Then lcnf 2
ε,ε,ε−→σ2

lcnf ′2 and lcnf ′1 and lcnf ′2 are `-equivalent.

Proof: From `-equivalence of the two configurations (condition 7) we have that term1 = term2 and block1 = block2 and
pc1 = pc2 and br1 = br2 and com1 = com2 and for all x, Γ1〈x〉 = Γ2〈x〉.

Since lcnf 1
ε,ε,ε−→σ1

lcnf ′1, we have
(com1,mem1, τ1)

α,ε
_σ1

(com′1,mem
′
1, τ
′
1)

and
〈Γ1, lmdst1, pc1, br1, time1, term1, block1〉 −→ε,α

perm 〈Γ ′1, lmdst
′
1, pc′1, br

′
1, time ′1, term ′1, block ′1〉

We proceed by induction on the judgment (com1,mem1, τ1)
α,ε

_σ1
(com′1,mem

′
1, τ
′
1).
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• (x := e,mem, τ)
a(x,e),ε
_σ (stop,mem[x 7→ v], τ)

Here, com1 ≡ x := e and com′1 ≡ stop and mem′1 = mem1[x 7→ v1] and τ ′1 = τ1 and e,mem1 ⇓ v1.
By inversion on the local monitor rules, there are two possible rules that may apply: M-Assign1 and M-Assign2. In both
of these cases, we have lmdst1 = lmdst′1 and pc1 = pc′1 and br1 = br

′
1 and time1 = time ′1 and term1 = term ′1 and

block1 = block ′1 and Γ ′1 = Γ1〈x 7→lmdst1 `
′〉 where `′ = Γ 〈e〉ttime1t(tpc1)tterm1tblock1.

We can construct
(com2,mem2, τ2)

α,ε
_σ2 (com′2,mem

′
2, τ
′
2)

and
〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉 −→ε,α

perm 〈Γ ′2, lmdst
′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉

where com2 ≡ x := e and com′2 ≡ stop and mem′2 = mem2[x 7→ v2] and τ ′2 = τ2 and e,mem2 ⇓ v2 and lmdst2 = lmdst′2
and pc2 = pc′2 and br2 = br

′
2 and time2 = time ′2 and term2 = term ′2 and block2 = block ′2 and Γ ′2 = Γ2〈x 7→lmdst2 `

′〉
where `′ = Γ2〈e〉ttime2t(tpc2)tterm2tblock2.
All of the conditions for `-equivalence of lcnf ′1 and lcnf ′2 follow trivially from `-equivalence of lcnf 1 and lcnf 2, except for
conditions 5 and 6.
If Γ1〈e〉 v ` and time1 v `, then Γ ′1〈x〉 v ` and Γ ′1〈x〉 = Γ ′2〈x〉 and by Lemma 1 we have v1 = v2, so conditions 5 and 6
are satisfied.
If Γ1〈e〉 6v ` or time1 6v `, then Γ ′1〈x〉 6v ` and so conditions 5 and 6 are satisfied.

• (skip,mem, τ)
s,ε

_σ (stop,mem, τ)
Here, com1 ≡ skip and com′1 ≡ stop and mem′1 = mem1 and τ ′1 = τ1.
By inversion on the local monitor step, rule M-Skip must have been used, and we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and
pc1 = pc′1 and br1 = br

′
1 and time1 = time ′1 and term1 = term ′1 and block1 = block ′1.

We can construct
(com2,mem2, τ2)

α,ε
_σ2

(com′2,mem
′
2, τ
′
2)

and
〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉 −→ε,α

perm 〈Γ ′2, lmdst
′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉

where com2 ≡ skip and com′2 ≡ stop and mem′2 = mem2 and τ ′2 = τ2 and lmdst2 = lmdst′2 and pc2 = pc′2 and br2 = br
′
2

and time2 = time ′2 and term2 = term ′2 and block2 = block ′2 and Γ ′2 = Γ2.
The result follows trivially from the `-equivalence of lcnf 1 and lcnf 2.

• (stop; com,mem, τ)
s,ε

_σ (com,mem, τ)
Here, com1 ≡ stop; com′1 and mem′1 = mem1 and τ ′1 = τ1.
By inversion on the local monitor step, rule M-Skip must have been used, we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and
pc1 = pc′1 and br1 = br

′
1 and time1 = time ′1 and term1 = term ′1 and block1 = block ′1.

We can construct
(com2,mem2, τ2)

α,ε
_σ2 (com′2,mem

′
2, τ
′
2)

and
〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉 −→ε,α

perm 〈Γ ′2, lmdst
′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉

where com2 ≡ stop; com′2 and mem′2 = mem1 and τ ′2 = τ1 and lmdst2 = lmdst′2 and pc2 = pc′2 and br2 = br
′
2 and

time2 = time ′2 and term2 = term ′2 and block2 = block ′2 and Γ ′2 = Γ2.
The result follows trivially from the `-equivalence of lcnf 1 and lcnf 2.

• (coma; comb,mem, τ)
α,γ
_σ (com′a; comb,mem

′, τ ′)

Here we have (coma,mem, τ)
α,γ
_σ (com′a,mem

′, τ ′) and the result holds by the inductive hypothesis.

• (if e then coma else comb fi,mem, τ)
b(e,coma,comb),ε

_σ (coma; join,mem, τ)
Here, com1 ≡ if e then coma else comb fi and com′1 ≡ coma; join and mem′1 = mem1 and τ ′1 = τ1.
By inversion on the local monitor step, rule M-Branch must have been used, and we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and
time1 = time ′1 and term1 = term ′1 and block1 = block ′1. Also pc′1 = pc1·`sb and br

′
1 = br1·(timesb, termsb, block sb,Γsb)

where

(`sb, timesb, termsb, block sb,Γsb) = SB(if e then coma else comb fi,Γ1, lmdst1, pc1, time1, term1, block1).

We can construct
(com2,mem2, τ2)

α,ε
_σ2

(com′2,mem
′
2, τ
′
2)

38



and
〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉 −→ε,α

perm 〈Γ ′2, lmdst
′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉

where com2 ≡ if e then coma else comb fi and either com′2 ≡ coma; join or com′2 ≡ comb; join (depending on the result of
evaluation e) and mem′2 = mem2 and τ ′2 = τ2 and Γ2 = Γ ′2 and lmdst2 = lmdst′2 and time2 = time ′2 and term2 = term ′2
and block2 = block ′2. Also pc′2 = pc2·`sb and br

′
2 = br2·(timesb, termsb, block sb,Γsb) since

SB(if e then coma else comb fi,Γ1, lmdst1, pc1, time1, term1, block1) =

SB(if e then coma else comb fi,Γ2, lmdst2, pc2, time2, term2, block2).

We consider two (mutually exclusive and exhaustive) cases, based on whether `sb v `.
– `sb v `. Since (`sb, timesb, termsb, block sb,Γsb) is a conservative approximation to if e then coma else comb fi, etc.,

(Definition 2 and Lemma 14), we have that Γ1〈e〉 t time1 t (tpc1) = Γ2〈e〉 t time2 v `sb v `, so by Lemma 1 we
have e,mem1 ⇓ v and e,mem2 ⇓ v for some v. That is, both executions take the same branch of the conditional, i.e.,
com′1 = com′2 = coma; join.
The result follows from this fact plus the `-equivalence of lcnf 1 and lcnf 2.

– `sb 6v `. Here, we may not have com′1 = com′2, since the two executions may differ on which branch of the conditional
they will take. However, since the pc of the configuration is now “high” (i.e., (tpc′1) 6v ` and (tpc′2) 6v `). The result
follows easily from this and the `-equivalence of lcnf 1 and lcnf 2, including Condition 8.

• (if e then coma else comb fi,mem, τ)
b(e,coma,comb),ε

_σ (comb; join,mem, τ)
This case is symmetric to the case above.

• (join,mem, τ)
join,ε
_σ (stop,mem, τ) Here, com1 ≡ join and com′1 ≡ stop and mem′1 = mem1 and τ ′1 = τ1.

By inversion on the local monitor step, rule M-Join must have been used, and we have lmdst′1 = lmdst1 and pc1 = pc′1·`sb
and br1 = br

′
1·(timesb, termsb, block sb,Γsb) and time ′1 = time1ttimesbt`sb and term ′1 = term1ttermsb and block ′1 =

block1tblock sb and

Γ ′1 = λx.


Γ1(x) t Γsb(x) if x ∈ pre(Γ1) ∩ pre(Γsb)

Γ1(x) if x ∈ pre(Γ1) \ pre(Γsb)

undef otherwise

Note that for all variables x we have Γ1(x) v Γ ′1(x).
We can construct

(com2,mem2, τ2)
α,ε

_σ2
(com′2,mem

′
2, τ
′
2)

and
〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉 −→ε,α

perm 〈Γ ′2, lmdst
′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉

where com2 ≡ com1 ≡ join and com′2 ≡ com1 ≡ stop and mem′2 = mem2 and τ ′2 = τ2 and lmdst2 = lmdst′2 and
pc2 = pc1 = pc′1·`sb = pc′2·`sb and br2 = br1 = br

′
1·(timesb, termsb, block sb,Γsb) = br

′
2·(timesb, termsb, block sb,Γsb) and

time ′2 = time2ttimesbt`sb = time ′1 and term ′2 = term2ttermsb = term ′1 and block ′2 = block2tblock sb = block ′1 and

Γ ′2 = λx.


Γ2(x) t Γsb(x) if x ∈ pre(Γ2) ∩ pre(Γsb)

Γ2(x) if x ∈ pre(Γ2) \ pre(Γsb)

undef otherwise

All of the conditions for `-equivalence of lcnf ′1 and lcnf ′2 follow easily.

• (while e do com od,mem, τ)
enter(e,com),ε

_σ (more e do com od,mem, τ) Here, com1 ≡ while e do od and com′1 ≡
more e do com od and mem′1 = mem1 and τ ′1 = τ1.
By inversion on the local monitor step, rule M-Enter must have been used, and we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and
time1 = time ′1 and term1 = term ′1 and block1 = block ′1. Also pc′1 = pc1·`sb and br

′
1 = br1·(timesb, termsb, block sb,Γsb)

where
(`sb, timesb, termsb, block sb,Γsb) = SB(while e do com od,Γ1, lmdst1, pc1, time1, term1, block1).

We can construct
(com2,mem2, τ2)

α,ε
_σ2 (com′2,mem

′
2, τ
′
2)

and
〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉 −→ε,α

perm 〈Γ ′2, lmdst
′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉
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where com2 ≡ com1 ≡ while e do com od and com′2 ≡ com′1 ≡ more e do com od and mem′2 = mem2 and τ ′2 = τ2 and
Γ2 = Γ ′2 and lmdst2 = lmdst′2 and time2 = time ′2 and term2 = term ′2 and block2 = block ′2. Also pc′2 = pc2·`sb and
br
′
2 = br2·(timesb, termsb, block sb,Γsb) since

SB(while e do com od,Γ1, lmdst1, pc1, time1, term1, block1) =

SB(while e do com od,Γ2, lmdst2, pc2, time2, term2, block2).

The result follows easily from the `-equivalence of lcnf 1 and lcnf 2.

• (more e do com od,mem, τ)
more(e,com),ε

_σ (com; more e do com od,mem, τ)
Here, com1 ≡ more e do com od and com′1 ≡ com; more e do com od and mem′1 = mem1 and τ ′1 = τ1.
By inversion on the local monitor step, rule M-More must have been used, and we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and
pc1 = pc′1 and br1 = br

′
1 and time1 = time ′1 and term1 = term ′1 and block1 = block ′1.

From Property 1, we have that for k = |br1|, the tuple (pc(k), time(k), term(k), block(k),Γ (k)) (where br(k) =
(time(k), term(k), block(k),Γ (k))) is a conservative approximation (Definition 2) of the branching, timing, termination, and
floating behavior for while e do com od (and the local monitor state as at the time the while loop was entered).
Thus, by Definition 2, we have that Γ1〈e〉 t time1 v pc(k) v `. So, from `-equivalence of lcnf 1 and lcnf 2, we have
that Γ2〈e〉 t time2 v pc(k) v `. Thus by Lemma 1 we have e,mem1 ⇓ v and e,mem2 ⇓ v for some v. That is, in both
executions, the loop condition evaluates to true.
So we can construct

(com2,mem2, τ2)
α,ε

_σ2
(com′2,mem

′
2, τ
′
2)

and
〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉 −→ε,α

perm 〈Γ ′2, lmdst
′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉

where com2 ≡ more e do com od and com′2 ≡ com′1 ≡ com; more e do com od and mem′2 = mem2 and τ ′2 = τ2 and
Γ2 = Γ ′2 and lmdst2 = lmdst′2 and time2 = time ′2 and term2 = term ′2 and block2 = block ′2 and pc2 = pc′2 and br2 = br

′
2.

The result follows easily from the `-equivalence of lcnf 1 and lcnf 2.

• (more e do com od,mem, τ)
leave(e,com),ε

_σ (stop,mem, τ)
Here, com1 ≡ more e do com od and com′1 ≡ stop and mem′1 = mem1 and τ ′1 = τ1.
By inversion on the local monitor step, rule M-Leave must have been used, and we have lmdst′1 = lmdst1 and pc1 = pc′1·`sb
and br1 = br

′
1·(timesb, termsb, block sb,Γsb) and time ′1 = time1ttimesb and term ′1 = term1ttermsb and block ′1 =

block1tblock sb and

Γ ′1 = λx.


Γ1(x) t Γsb(x) if x ∈ pre(Γ1) ∩ pre(Γsb)

Γ1(x) if x ∈ pre(Γ1) \ pre(Γsb)

undef otherwise

Note that for all variables x we have Γ1(x) v Γ ′1(x).
From Property 1, we have that for k = |br1|, the tuple (pc(k), time(k), term(k), block(k),Γ (k)) (where br(k) =
(time(k), term(k), block(k),Γ (k))) is a conservative approximation (Definition 2) of the branching, timing, termination, and
floating behavior for while e do com od (and the local monitor state as at the time the while loop was entered).
Thus, by Definition 2, we have that Γ1〈e〉 t time1 v pc(k) v `. So, from `-equivalence of lcnf 1 and lcnf 2, we have
that Γ2〈e〉 t time2 v pc(k) v `. Thus by Lemma 1 we have e,mem1 ⇓ v and e,mem2 ⇓ v for some v. That is, in both
executions, the loop condition evaluates to false.
So we can construct

(com2,mem2, τ2)
α,ε

_σ2
(com′2,mem

′
2, τ
′
2)

and
〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉 −→ε,α

perm 〈Γ ′2, lmdst
′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉

where com2 ≡ more e do com od and com′2 ≡ com′1 ≡ stop and mem′2 = mem2 and τ ′2 = τ2 and lmdst′2 = lmdst2 and
pc2 = pc′2·`sb and br2 = br

′
2·(timesb, termsb, block sb,Γsb) and time ′2 = time2ttimesb and term ′2 = term2ttermsb and

block ′2 = block2tblock sb and

Γ ′2 = λx.


Γ2(x) t Γsb(x) if x ∈ pre(Γ2) ∩ pre(Γsb)

Γ2(x) if x ∈ pre(Γ2) \ pre(Γsb)

undef otherwise

The result follows easily from the `-equivalence of lcnf 1 and lcnf 2.
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• (input ch to x,mem, τ)
input(x,ch,v),ε

_σ (stop,mem[x 7→ v], τ ·inp(ch, v)) Here, com1 ≡ input ch to x and com′1 ≡ stop and
mem′1 = mem1[x 7→ v1] and τ ′1 = τ1·inp(ch, v1) where v1 = σ1(τ1, ch).
By inversion on the local monitor rules, there are two possible rules that may apply: M-Input1 and M-Input2, (which differ on
whether lmdst1 . exclusiveread(x) or lmdst1 . othersmightread(x)). Regardless of which of the two monitor rules is used,
we have lmdst1 = lmdst′1 and pc1 = pc′1 and br1 = br

′
1 and time1 = time ′1 and term1 = term ′1 and block1 = block ′1 and

Γ ′1 = Γ 〈x 7→lmdst1 `
′〉 where `′ = chtΓ 〈e〉ttime1t(tpc1)tterm1tblock1.

We can construct
(com2,mem2, τ2)

α,ε
_σ2

(com′2,mem
′
2, τ
′
2)

and
〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉 −→ε,α

perm 〈Γ ′2, lmdst
′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉

where com2 ≡ input ch to x and com′2 ≡ stop and mem′2 = mem2[x 7→ v2] and τ ′2 = τ2·inp(ch, v2) where v2 = σ2(τ2, ch).
Also, we have lmdst2 = lmdst′2 and pc2 = pc′2 and br2 = br

′
2 and time2 = time ′2 and term2 = term ′2 and block2 = block ′2

and Γ ′2 = Γ2〈x 7→lmdst2 `
′〉 where `′ = chtΓ 〈e〉ttime2t(tpc2)tterm2tblock2.

All of the conditions for `-equivalence of lcnf ′1 and lcnf ′2 follow easily from `-equivalence of lcnf 1 and lcnf 2, except for
conditions 1 and 5 and 6. There are two (mutually exclusive and exhaustive) cases to consider.
– If ch v ` then v1 = v2 since σ1 and σ2 are `-equivalent strategies so v1 = σ1(τ1, ch) = σ2(τ2, ch) = v2. So conditions 1,

5, and 6 are satisfied.
– If ch 6v ` then Γ ′1〈x〉 6v ` and so conditions 1, 5, and 6 are satisfied.

• (output e to ch,mem, τ)
output(ch,e,v),ε

_σ (stop,mem, τ ·out(ch, v))
Here, com1 ≡ output e to ch and com′1 ≡ stop and mem′1 = mem1 and τ ′1 = τ1·out(ch, v1) where e,mem1 ⇓ v1.
By inversion on the local monitor step, we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and pc1 = pc′1 and br1 = br

′
1

and time1 = time ′1 and term1 = term ′1 and block1 = block ′1. We also know that lmdst . mayread(e) and Γ1〈e〉 t
time1t(tpc1)tterm1tblock1 v ch
We can construct

(com2,mem2, τ2)
α,ε

_σ2
(com′2,mem

′
2, τ
′
2)

and
〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉 −→ε,α

perm 〈Γ ′2, lmdst
′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉

where τ ′2 = τ2·out(ch, v2) where e,mem2 ⇓ v2 and Γ2 = Γ ′2 and lmdst2 = lmdst′2 and pc2 = pc′2 and br2 = br
′
2 and

time2 = time ′2 and term2 = term ′2 and block2 = block ′2.
All of the conditions for `-equivalence of lcnf ′1 and lcnf ′2 follow easily from `-equivalence of lcnf 1 and lcnf 2, except for
condition 1. There are two (mutually exclusive and exhaustive) cases to consider.
– If ch v ` then Γ1〈e〉 t time1t(tpc1)tterm1tblock1 = Γ2〈e〉 t time2t(tpc2)tterm2tblock2 v ch v `, and so by

Lemma 1 we have v1 = v2. Thus τ ′1 ↓ ` = τ1 ↓ `·out(ch, v1) = τ2 ↓ `·out(ch, v2)τ ′2 ↓ `, and condition 1 holds.
– If ch 6v ` then τ ′1 ↓ ` = τ1 ↓ ` = τ2 ↓ `τ ′2 ↓ `, and condition 1 holds.

• (//γ// barrier,mem, τ)
sync,γ
_σ (stop,mem, τ)

This case is impossible, since rule (M-Barrier-Local) is the only rule that could be used to allow the local monitor to take a
step (due to the event sync), but this is not a synchronization event: sync 6= ε.

• (stop,mem, τ)
term,ε
_σ (term,mem, τ)

Here, com1 ≡ stop and com′1 ≡ term and mem′1 = mem1 and τ ′1 = τ1.
By inversion on the local monitor step, rule M-Term must have been used, and we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and
pc1 = pc′1 = ε and br1 = br

′
1 = ε and time1 = time ′1 and term1 = term ′1 = ⊥ and block1 = block ′1 = ⊥.

We can construct
(com2,mem2, τ2)

α,ε
_σ2

(com′2,mem
′
2, τ
′
2)

and
〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉 −→ε,α

perm 〈Γ ′2, lmdst
′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉

where com2 ≡ stop and com′2 ≡ term and mem′2 = mem2 and τ ′2 = τ2 and lmdst2 = lmdst′2 and pc2 = pc′2 = ε and
br2 = br

′
2 = ε and time2 = time ′2 and term2 = term ′2 = ⊥ and block2 = block ′2 = ⊥ and Γ ′2 = Γ2.

The result follows trivially from the `-equivalence of lcnf 1 and lcnf 2.
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Theorem 8 (Thread High Step). Let σ1 and σ2 be `-equivalent strategies and let

lcnf 1 = 〈[com1, 〈Γ1, lmdst1, pc1, br1, time1, term1, block1〉,mdst1],mem1, τ1〉

and
lcnf 2 = 〈[com2, 〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉,mdst2],mem2, τ2〉

be `-equivalent local configurations such that

time1 t (tpc1) t term1 t block1 6v `

and lcnf 1
ε,ε,ε−→σ1

lcnf ′1 where

lcnf ′1 = 〈[com′1, 〈Γ ′1, lmdst
′
1, pc′1, br

′
1, time ′1, term ′1, block ′1〉,mdst

′
1],mem′1, τ

′
1〉

and
time ′1 t (tpc′1) t term ′1 t block ′1 6v `.

Then lcnf ′1 and lcnf 2 are `-equivalent.

Proof: Since lcnf 1
ε,ε,ε−→σ1 lcnf ′1, we have

(com1,mem1, τ1)
α,ε

_σ1
(com′1,mem

′
1, τ
′
1)

and
〈Γ1, lmdst1, pc1, br1, time1, term1, block1〉 −→ε,α

perm 〈Γ ′1, lmdst
′
1, pc′1, br

′
1, time ′1, term ′1, block ′1〉

We proceed by induction on the judgment (com1,mem1, τ1)
α,ε

_σ1 (com′1,mem
′
1, τ
′
1).

• (x := e,mem, τ)
a(x,e),ε
_σ (stop,mem[x 7→ v], τ)

Here, com1 ≡ x := e and com′1 ≡ stop and mem′1 = mem1[x 7→ v] and τ ′1 = τ1 and e,mem ⇓ v.
By inversion on the local monitor rules, there are two possible rules that may apply: M-Assign1 and M-Assign2. In both
of these cases, we have lmdst1 = lmdst′1 and pc1 = pc′1 and br1 = br

′
1 and time1 = time ′1 and term1 = term ′1 and

block1 = block ′1, and Γ ′1 = Γ1〈x 7→lmdst `
′〉 where `′ = Γ1〈e〉ttime1t(tpc1)tterm1tblock1. Note that `′ 6v `, since by

assumption we have time1 t (tpc1) t term1 t block1 6v `.
All of the conditions for `-equivalence of lcnf ′1 and lcnf 2 follow trivially from `-equivalence of lcnf 1 and lcnf 2, except for
conditions 5 and 6.
We consider three (mutually exclusive and exhaustive) cases, based on variable x.
– x 6∈ pre(Γ )1. Then we have Γ ′1 = Γ1, and conditions 5 and 6 follow trivially from `-equivalence of lcnf 1 and lcnf 2.
– x ∈ pre(Γ )1 ∧ lmdst1 . exclusivewrite(x) ∧ x ∈ FloatVar then Γ ′1〈x〉 = `′. Since x is a floating variable, condition 6 is

satisfied for x, and trivially satisfied for all other variables from `-equivalence of lcnf 1 and lcnf 2. Since `′ 6v `, Γ ′1〈x〉 6v `,
condition 5 is satisfied for x, and trivially satisfied for all other variables from `-equivalence of lcnf 1 and lcnf 2.

– x ∈ pre(Γ )1 ∧ lmdst1 . othersmightwrite(x) ∧ x ∈ FloatVar then Γ ′1(x) = `′tL(x). Since x is a floating variable,
condition 6 is satisfied for x, and trivially satisfied for all other variables from `-equivalence of lcnf 1 and lcnf 2. Since
`′ 6v `, Γ ′1〈x〉 = `′tL(x) 6v `, condition 5 is satisfied for x, and trivially satisfied for all other variables from `-equivalence
of lcnf 1 and lcnf 2.

• (skip,mem, τ)
s,ε

_σ (stop,mem, τ)
Here, com1 ≡ skip and com′1 ≡ stop and mem′1 = mem1 and τ ′1 = τ1.
By inversion on the local monitor step, we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and pc1 = pc′1 and br1 = br

′
1 and

time1 = time ′1 and term1 = term ′1 and block1 = block ′1.
The result follows trivially from the `-equivalence of lcnf 1 and lcnf 2.

• (stop; com,mem, τ)
s,ε

_σ (com,mem, τ)
Here, com1 ≡ stop; com′1 and mem′1 = mem1 and τ ′1 = τ1.
By inversion on the local monitor step, we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and pc1 = pc′1 and br1 = br

′
1 and

time1 = time ′1 and term1 = term ′1 and block1 = block ′1.
The result follows trivially from the `-equivalence of lcnf 1 and lcnf 2.

• (coma; comb,mem, τ)
α,γ
_σ (com′a; comb,mem

′, τ ′)

Here we have (coma,mem, τ)
α,γ
_σ (com′a,mem

′, τ ′) and the result holds by the inductive hypothesis.

• (if e then coma else comb fi,mem, τ)
b(e,coma,comb),ε

_σ (coma; join,mem, τ)
Here, com1 ≡ if e then coma else comb fi and com′1 ≡ coma; join and mem′1 = mem1 and τ ′1 = τ1.
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By inversion on the local monitor step, rule M-Branch must have been used, and we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and
time1 = time ′1 and term1 = term ′1 and block1 = block ′1. Also pc′1 = pc1·`sb and br

′
1 = br1·(timesb, termsb, block sb,Γsb)

where

(`sb, timesb, termsb, block sb,Γsb) = SB(if e then coma else comb fi,Γ1, lmdst1, pc1, time1, term1, block1).

All of the conditions for `-equivalence of lcnf ′1 and lcnf 2 follow trivially from `-equivalence of lcnf 1 and lcnf 2.

• (if e then coma else comb fi,mem, τ)
b(e,coma,comb),ε

_σ (comb; join,mem, τ)
This case is symmetric to the case above.

• (join,mem, τ)
join,ε
_σ (stop,mem, τ) Here, com1 ≡ join and com′1 ≡ stop and mem′1 = mem1 and τ ′1 = τ1.

By inversion on the local monitor step, rule M-Join must have been used, and we have lmdst′1 = lmdst1 and pc1 = pc′1·`sb
and br1 = br

′
1·(timesb, termsb, block sb,Γsb) and time ′1 = time1ttimesbt`sb and term ′1 = term1ttermsb and block ′1 =

block1tblock sb and

Γ ′1 = λx.


Γ1(x) t Γsb(x) if x ∈ pre(Γ1) ∩ pre(Γsb)

Γ1(x) if x ∈ pre(Γ1) \ pre(Γsb)

undef otherwise

Note that for all variables x we have Γ1(x) v Γ ′1(x).
All of the conditions for `-equivalence of lcnf ′1 and lcnf 2 follow trivially from `-equivalence of lcnf 1 and lcnf 2.

• (while e do com od,mem, τ)
enter(e,com),ε

_σ (more e do com od,mem, τ) Here, com1 ≡ while e do od and com′1 ≡
more e do com od and mem′1 = mem1 and τ ′1 = τ1.
By inversion on the local monitor step, rule M-Enter must have been used, and we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and
time1 = time ′1 and term1 = term ′1 and block1 = block ′1. Also pc′1 = pc1·`sb and br

′
1 = br1·(timesb, termsb, block sb,Γsb)

where
(`sb, timesb, termsb, block sb,Γsb) = SB(while e do com od,Γ1, lmdst1, pc1, time1, term1, block1).

All of the conditions for `-equivalence of lcnf ′1 and lcnf 2 follow trivially from `-equivalence of lcnf 1 and lcnf 2.

• (more e do com od,mem, τ)
more(e,com),ε

_σ (com; more e do com od,mem, τ)
Here, com1 ≡ more e do com od and com′1 ≡ com; more e do com od and mem′1 = mem1 and τ ′1 = τ1.
By inversion on the local monitor step, rule M-More must have been used, and we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and
pc1 = pc′1 and br1 = br

′
1 and time1 = time ′1 and term1 = term ′1 and block1 = block ′1.

All of the conditions for `-equivalence of lcnf ′1 and lcnf 2 follow trivially from `-equivalence of lcnf 1 and lcnf 2.

• (more e do com od,mem, τ)
leave(e,com),ε

_σ (stop,mem, τ)
Here, com1 ≡ more e do com od and com′1 ≡ stop and mem′1 = mem1 and τ ′1 = τ1.
By inversion on the local monitor step, rule M-Leave must have been used, and we have lmdst′1 = lmdst1 and pc1 = pc′1·`sb
and br1 = br

′
1·(timesb, termsb, block sb,Γsb) and time ′1 = time1ttimesb and term ′1 = term1ttermsb and block ′1 =

block1tblock sb and

Γ ′1 = λx.


Γ1(x) t Γsb(x) if x ∈ pre(Γ1) ∩ pre(Γsb)

Γ1(x) if x ∈ pre(Γ1) \ pre(Γsb)

undef otherwise

Note that for all variables x we have Γ1(x) v Γ ′1(x).
All of the conditions for `-equivalence of lcnf ′1 and lcnf 2 follow trivially from `-equivalence of lcnf 1 and lcnf 2.

• (input ch to x,mem, τ)
input(x,ch,v),ε

_σ (stop,mem[x 7→ v], τ ·inp(ch, v)) Here, com1 ≡ input ch to x and com′1 ≡ stop and
mem′1 = mem1[x 7→ v] and τ ′1 = τ1·inp(ch, v).
There are two possible monitor rules that are applicable: (M-Input1) and (M-Input2) (which differ on whether lmdst1 .
exclusiveread(x) or lmdst1 . othersmightread(x)). Regardless of which of the two monitor rules is used, we have lmdst1 =

lmdst′1 and pc1 = pc′1 and br1 = br
′
1 and time1 = time ′1 and term1 = term ′1 and block1 = block ′1 and Γ ′1 = Γ 〈x 7→lmdst

`′〉 where `′ = chtΓ1〈e〉ttime1t(tpc1)tterm1tblock1. Note that `′ 6v `, and since (from the premises of (M-Input1) and
(M-Input2)) time1t(tpc1)tterm1tblock1 v ch , we also have ch 6v `, and so τ1 ↓ ` = τ ′1 ↓ ` (which satisfies condition 1 of
`-equivalence).
All of the conditions for `-equivalence of lcnf ′1 and lcnf 2 follow trivially from `-equivalence of lcnf 1 and lcnf 2, except for
conditions 5 and 6.
We consider three (mutually exclusive and exhaustive) cases, based on variable x.
– x 6∈ pre(Γ )1. Then we have Γ ′1 = Γ1, and conditions 5 and 6 follow trivially from `-equivalence of lcnf 1 and lcnf 2.
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– x ∈ pre(Γ )1 ∧ lmdst1 . exclusivewrite(x) ∧ x ∈ FloatVar then Γ ′1〈x〉 = `′. Since x is a floating variable, condition 6 is
satisfied for x, and trivially satisfied for all other variables from `-equivalence of lcnf 1 and lcnf 2. Since `′ 6v `, Γ ′1〈x〉 6v `,
so condition 5 is satisfied for x, and trivially satisfied for all other variables from `-equivalence of lcnf 1 and lcnf 2.

– x ∈ pre(Γ )1 ∧ lmdst1 . othersmightwrite(x) ∧ x ∈ FloatVar then Γ ′1(x) = `′tL(x). Since x is a floating variable,
condition 6 is satisfied for x, and trivially satisfied for all other variables from `-equivalence of lcnf 1 and lcnf 2. Since
`′ 6v `, Γ ′1〈x〉 = `′tL(x) 6v `, so condition 5 is satisfied for x, and trivially satisfied for all other variables from
`-equivalence of lcnf 1 and lcnf 2.

• (output e to ch,mem, τ)
output(ch,e,v),ε

_σ (stop,mem, τ ·out(ch, v))
Here, com1 ≡ output e to ch and com′1 ≡ stop and mem′1 = mem1 and τ ′1 = τ1·out(ch, v) where e,mem1 ⇓ v.
By inversion on the local monitor step, we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and pc1 = pc′1 and br1 = br

′
1 and

time1 = time ′1 and term1 = term ′1 and block1 = block ′1.
We also have (from the premises of (M-Output) that timet(tpc)ttermtblock v ch , and thus ch 6v `, and so τ1 ↓ ` = τ ′1 ↓ `
All other conditions for `-equivalence of lcnf ′1 and lcnf 2 follow trivially from `-equivalence of lcnf 1 and lcnf 2.

• (//γ// barrier,mem, τ)
sync,γ
_σ (stop,mem, τ)

This case is impossible, since rule (M-Barrier-Local) is the only rule that could be used to allow the local monitor to take a
step (due to the event sync), but this is not a synchronization event: sync 6= ε.

• (stop,mem, τ)
term,ε
_σ (term,mem, τ)

Here, com1 ≡ stop and com′1 ≡ term and mem′1 = mem1 and τ ′1 = τ1.
By inversion on the local monitor step, we have Γ1 = Γ ′1 and lmdst1 = lmdst′1 and pc1 = pc′1 and br1 = br

′
1 and

time1 = time ′1 and term1 = term ′1 and block1 = block ′1.
The result follows trivially from the `-equivalence of lcnf 1 and lcnf 2.

Note that by the properties of local monitor steps (Property 2, condition 5), we have that the time inclusive PC (time t
(tpc) t term t block ) increases monotonically except at synchronization steps. This means that given a sequence of local
configuration steps (i.e., the execution of a thread), once we apply the high-step theorem (Theorem 8) we cannot apply the
low-step theorem (Theorem 7) until the thread reaches a barrier.

Theorem 9 (Thread barrier step). Let σ1 and σ2 be `-equivalent strategies and let

lcnf 1 = 〈[com1, 〈Γ1, lmdst1, pc1, br1, time1, term1, block1〉,mdst1],mem1, τ1〉

and
lcnf 2 = 〈[com2, 〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉,mdst2],mem2, τ2〉

be `-equivalent local configurations such that lcnf 1
sync,γ,δ−→σ1 lcnf ′1 and lcnf 2 is at a barrier (i.e., the next command to reduce is

a barrier command), and moreover, the following two conditions hold.
1) If (tpc1) t term1 t block1 v ` or (tpc2) t term2 t block2 v ` then time1 = time2 and term1 = term2 and

block1 = block2 and pc1 = pc2 and br1 = br2 and com1 = com2 and for all x, Γ1〈x〉 = Γ2〈x〉.
2) For all j ∈ 1..max(|pc1|, |pc2|), if

(pc1(0) t . . . t pc1(j − 1)) t term1 t block1 v `

or
(pc2(0) t . . . t pc2(j − 1)) t term2 t block2 v `

then all of the following holds
• |pc1| ≥ j.
• |pc2| ≥ j.
• For all k ∈ 0..j we have pc1(k) = pc2(k) and br1(k) = br2(k).
• There exists comcnt ∈ Continuationj such that:

– Either com1 = comcnt or com1 = com′1; comcnt for some com′1; and
– Either com2 = comcnt or com2 = com′2; comcnt for some com′2.

Then
lcnf 2

sync,γ,δ−→σ2
lcnf ′2

and lcnf ′1 and lcnf ′2 are `-equivalent.

Proof:
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Since lcnf 1
sync,γ,δ−→σ1

lcnf ′1, the monitor rule (M-Barrier-Local) must have been used, so we have (tpc1)t term1tblock1 = ⊥
and lmdst′1 = update(lmdst1, δ) and pre(Γ ′1) = {x | x ∈ FloatVar∧(lmdst′1.exclusiveread(x)∨lmdst′1.exclusivewrite(x))}
and (lmdst1.exclusiveread(x)∧lmdst′1.othersmightread(x)) =⇒ Γ1(x)vL(x) and lmdst′1.exclusivewrite(x) =⇒ Γ ′1(x) =
Γ1〈x〉 and (lmdst1 .othersmightwrite(x)∧ lmdst′1 . exclusiveread(x)) =⇒ Γ ′1(x) = Γ1〈x〉 and (lmdst1 . exclusivewrite(x)∧
lmdst′1 . [exclusiveread(x), othersmightwrite(x)]) =⇒ Γ ′1(x) = Γ1(x)tL(x).

Thus, we have time1 = time2 and term1 = term2 and block1 = block2 and pc1 = pc2 and br1 = br2 and com1 = com2

and for all x, Γ1〈x〉 = Γ2〈x〉.
We can therefore construct

(com2,mem2, τ2)
sync,γ
_σ2 (com′2,mem

′
2, τ
′
2)

and
〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉 −→δ,sync

perm 〈Γ ′2, lmdst
′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉

where com2 ≡ com1 and com′2 ≡ com′1 and mem′2 = mem2 and τ ′2 = τ2 and pc2 = pc′2 and br2 = br
′
2 and time2 = time ′2

and term2 = term ′2 = ⊥ and block2 = block ′2 = ⊥ and lmdst′2 = update(lmdst2, δ) and Γ ′2 = Γ ′1.
By setting Γ ′2 = Γ ′1, we ensure that the preconditions for (M-Barrier-Local) are satisfied, namely: pre(Γ ′2) =

{x | x ∈ FloatVar ∧ (lmdst′2 . exclusiveread(x) ∨ lmdst′2 . exclusivewrite(x))} and (lmdst2 . exclusiveread(x) ∧
lmdst′2 . othersmightread(x)) =⇒ Γ2(x)vL(x) and lmdst′2 . exclusivewrite(x) =⇒ Γ ′2(x) = Γ2〈x〉 and
(lmdst2 . othersmightwrite(x)∧ lmdst′2 . exclusiveread(x)) =⇒ Γ ′2(x) = Γ2〈x〉 and (lmdst2 . exclusivewrite(x)∧ lmdst′2 .
[exclusiveread(x), othersmightwrite(x)]) =⇒ Γ ′2(x) = Γ2(x)tL(x).

We consider each condition of `-equivalence of local configurations (Definition 3) to ensure that they all hold.

• Condition 1 (τ ′1 ↓ ` = τ ′2 ↓ `) holds trivially from the `-equivalence of lcnf 1 and lcnf 2.
• Condition 2 (lmdst′1 = lmdst′2) holds because lmdst′1 = update(lmdst1, δ) = update(lmdst2, δ) = lmdst′2.
• Condition 3 (mdst′1 = mdst′2) holds because lmdst′1 = lmdst′2 and, by Property 1, LMmst′1 = mdst′1 and LMmst′2 =
mdst′2.

• Condition 4 (pre(Γ ′1) = pre(Γ ′2)) holds because

pre(Γ ′1) = {x | x ∈ FloatVar ∧ (lmdst′1 . exclusiveread(x) ∨ lmdst′1 . exclusivewrite(x))}
= {x | x ∈ FloatVar ∧ (lmdst′2 . exclusiveread(x) ∨ lmdst′2 . exclusivewrite(x))}
= pre(Γ ′2)

• Condition 5 requires that for all variables x, if x ∈ pre(Γ ′1) and lmdst′1 .mayread(x) and Γ ′1〈x〉 t time ′1 t (tpc′1) v ` and
Γ ′2〈x〉 t time ′2 t (tpc′2) v ` then mem′1(x) = mem′2(x) and Γ ′1〈x〉 = Γ ′2〈x〉.
Let x ∈ pre(Γ ′1) and lmdst′1 .mayread(x) and Γ ′1〈x〉 t time ′1 t (tpc′1) v ` and Γ ′2〈x〉 t time ′2 t (tpc′2) v `.
The preconditions for (M-Barrier-Local) ensure that Γ1〈x〉 v Γ ′1〈x〉 and Γ2〈x〉 v Γ ′2〈x〉. Thus we have Γ1〈x〉 t time1 t
(tpc1) v ` and Γ2〈x〉 t time2 t (tpc2) v `. So by `-equivalence of lcnf 1 and lcnf 2, we have mem′1(x) = mem1(x) =
mem2(x) = mem′2(x).
Since Γ ′1 = Γ ′2 we have Γ ′1〈x〉 = Γ ′2〈x〉.

• Condition 6 requires that for all variables x, if x 6∈ pre(Γ1) and lmdst1 .mayread(x) and L(x) t time1 t (tpc1) v ` and
L(x) t time2 t (tpc2) v ` then mem1(x) = mem2(x).
Let x 6∈ pre(Γ1) and lmdst1 .mayread(x) and L(x) t time1 t (tpc1) v ` and L(x) t time2 t (tpc2) v `.
The preconditions for (M-Barrier-Local) ensure that Γ1〈x〉 v Γ ′1〈x〉 and Γ2〈x〉 v Γ ′2〈x〉. Thus we have Γ1〈x〉 t time1 t
(tpc1) v ` and Γ2〈x〉 t time2 t (tpc2) v `. So by `-equivalence of lcnf 1 and lcnf 2, we have mem′1(x) = mem1(x) =
mem2(x) = mem′2(x).

• Condition 7 requires that if
time ′1 t (tpc′1) t term ′1 t block ′1 v `

or
time ′2 t (tpc′2) t term ′2 t block ′2 v `

then time ′1 = time ′2 and term ′1 = term ′2 and block ′1 = block ′2 and pc′1 = pc′2 and br
′
1 = br

′
2 and com′1 = com′2 and for all

x, Γ ′1〈x〉 = Γ ′2〈x〉.
This follows immediately from `-equivalence of lcnf 1 and lcnf 2 and since Γ ′1 = Γ ′2.

• Condition 8 follows immediately by assumption.
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We define a useful lemma that says that if we have two `-equivalent local configurations, and one of them takes a step,
and modifies variable x, which it thinks is level ` or below, and the other local configuration takes zero or one steps to a
`-equivalent configuration, then the value of x will be the same in the two final configurations.

Lemma 2. Let σ1 and σ2 be `-equivalent strategies and let

lcnf 1 = 〈[com1, 〈Γ1, lmdst1, pc1, br1, time1, term1, block1〉,mdst1],mem1, τ1〉

and
lcnf 2 = 〈[com2, 〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉,mdst2],mem2, τ2〉

be `-equivalent local configurations such that lcnf 1
ε,ε,ε−→σ1 lcnf ′1 where

lcnf ′1 = 〈[com′1, 〈Γ ′1, lmdst
′
1, pc′1, br

′
1, time ′1, term ′1, block ′1〉,mdst

′
1],mem′1, τ

′
1〉

and either
lcnf 2 = lcnf ′2

or
lcnf 2

ε,ε,ε−→σ2
lcnf ′2

and
lcnf ′2 = 〈[com′2, 〈Γ ′2, lmdst

′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉,mdst

′
2],mem′2, τ

′
2〉

and lcnf ′1 and lcnf ′2 are `-equivalent. (That is, lcnf 2 takes zero or one steps to reach local configuration lcnf ′2 that is
`-equivalent to lcnf ′1.)

For any variable x, if mem1(x) 6= mem′1(x) and Γ ′1〈x〉 v ` then

lcnf 2
ε,ε,ε−→σ2 lcnf ′2

and mem′1(x) = mem′2(x).

Proof: Let x be a variable such that mem1(x) 6= mem′1(x) and Γ ′1〈x〉 v `. By Property 2, we have

time1 t (tpc1) t term1 t block1 v Γ ′1〈x〉 v `

By `-equivalence of lcnf 1 and lcnf 2 (Definition 3) we have

time2 t (tpc2) t term2 t block2 v `

By inspection of the operational semantics for local configurations, we see that the only way the value of variable x can change
is by an assignment to x or an input to x from some channel. These correspond to local monitor rules (M-Assign1), (M-Assign2),
(M-Input1), and (M-Input2). In all cases, we have that time1 = time ′1, pc1 = pc′1, term1 = term ′1, and block1 = block ′1, and
so

time ′1 t (tpc′1) t term ′1 t block ′1 v `.

By `-equivalence of lcnf 1 and lcnf 2 (Definition 3, condition 7) we have com1 = com2 and com′1 = com′2, and so
lcnf 2

ε,ε,ε−→σ2
lcnf ′2.

Also, by inspection of rules (M-Assign1), (M-Assign2), (M-Input1), and (M-Input2), we see that Γ1〈e〉 v Γ ′1〈x〉 v ` and
mdst1 . mayread(e). Moreover, by condition 7 of Definition 3 applied to the variables in e, we have Γ2〈e〉 v `. Therefore
by `-equivalence of lcnf 1 and lcnf 2 and Lemma 1, we have e,mem1 ⇓ v and e,mem2 ⇓ v where v = mem′1(x), and thus
mem′1(x) = mem′2(x) as required.

Theorem 10 (Preservation of local equivalence). Let 〈〈pool1,mem1, τ1, gmon1〉〉 and 〈〈pool2,mem2, τ2, gmon2〉〉 be `-equivalent
global configurations, and let σ1 and σ2 be `-equivalent strategies. Assume

〈pool1(i),mem1, τ1〉
ε,ε,ε−→σ1 〈thread

′
1,i,mem

′
1, τ
′
1〉

and we have thread′2,i, mem
′
2, and τ ′2,i such that 〈thread′1i

,mem′1, τ
′
1〉 and 〈thread′2,i,mem′2, τ ′2〉 are `-equivalent. and

either thread′2,i = pool2(i), mem′2 = mem2, and τ ′2,i = τ2 or

〈pool2(i),mem2, τ2〉
ε,ε,ε−→σ2

〈thread′2,i,mem′2, τ ′2,i〉.

Then for all j ∈ pre(pool1) \ {i} we have 〈pool1(j),mem′1, τ
′
1〉 and 〈pool2(j),mem′2, τ

′
2〉 are `-equivalent.

Proof: First note that τ ′1 ↓ ` = τ ′2 ↓ `, since 〈thread′1i
,mem′1, τ

′
1〉 and 〈thread′2,i,mem′2, τ ′2〉 are `-equivalent.
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Let j ∈ pre(pool1)\{i}. By `-equivalence of 〈〈pool1,mem1, τ1, gmon1〉〉 and 〈〈pool2,mem2, τ2, gmon2〉〉 we have that local
configurations 〈pool1(j),mem1, τ1〉 and 〈pool2(j),mem2, τ2〉 are `-equivalent, and we need to show that 〈pool1(j),mem′1, τ

′
1〉

and 〈pool2(j),mem′2, τ
′
2〉 are `-equivalent (Definition 3).

Let
pool1(j) = [com1, 〈Γ1, lmdst1, pc1, br1, time1, term1, block1〉,mdst1]

and
pool2(j) = [com2, 〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉,mdst2]

and
pool′1(i) = [comi

1, 〈Γ i
1, lmdst

i
1, pci1, br

i

1, timei1, termi
1, block i1〉,mdst

i
1]

and
pool′2(i) = [comi

2, 〈Γ i
2, lmdst

i
2, pci2, br

i

2, timei2, termi
2, block i2〉,mdst

i
2]

Since τ ′1 and τ ′2 are `-equivalent, and 〈pool1(j),mem1, τ1〉 and 〈pool2(j),mem2, τ2〉 are `-equivalent, we only need to
check that conditions of local-configuration-`-equivalence that involve the memory are still satisfied. Specifically, we need to
show conditions 5 and 6 hold.
• Condition 5 requires that if x ∈ pre(Γ1) and lmdst1 .mayread(x) and Γ1〈x〉 t time1 t (tpc1) v ` and Γ2〈x〉 t time2 t

(tpc2) v ` then mem1(x) = mem2(x) and Γ1〈x〉 = Γ2〈x〉.
• Condition 6 requires that for all variables x, if x 6∈ pre(Γ1) and lmdst1 .mayread(x) and L(x) t time1 t (tpc1) v ` and
L(x) t time2 t (tpc2) v ` then mem1(x) = mem2(x).
We will address both of these cases at once. Let x be a variable such that lmdst1.mayread(x) and Γ1〈x〉ttime1t(tpc1) v `

and Γ2〈x〉 t time2 t (tpc2) v `.
If it is not the case that lmdsti1 .maywrite(x) (and thus, not the case that lmdsti1 .maywrite(x)), then the ith threads could

not have written to x, and so, mem1(x) = mem′1(x) and mem2(x) = mem′2(x). Moreover, since 〈pool1(j),mem1, τ1〉 and
〈pool2(j),mem2, τ2〉 are `-equivalent, we have mem1(x) = mem2(x), and thus mem′1(x) = mem′2(x) as required.

Otherwise, it is the case that lmdsti1 .maywrite(x) (and thus, lmdsti1 .maywrite(x)). From the sound use of mode states,
this means that lmdst1 . othersmightwrite(x) and lmdsti1 . othersmightread(x). By Property 1, we have L(x) v Γ1〈x〉
and Γ i

1〈x〉 v L(x). Thus, we have Γ i
1〈x〉 v `. If thread i did not write x, then by a similar argument above, we have

mem′1(x) = mem′2(x) as required. If thread i did write x, then by Lemma 2, we have mem′1(x) = mem′2(x) as required.

E. `-equivalent global configuration results

We present two of the theorems related to showing that given two `-equivalent global configurations, if one of them takes a
step, then the other can take zero or more steps to a `-equivalent global configuration. We actually require more than just two
`-equivalent global configurations: we require that those two global configurations were produced by executions that started
from the same initial pool state, and that these two executions are “well aligned”, i.e., the global configurations in the executions
can be lined up into `-equivalent pairs.

Definition 5. Let gcnf 1 and gcnf 2 be two `-equivalent global configurations, and let σ1 and σ2 be two `-equivalent strategies.
We say that gcnf 1 and gcnf 2 are well aligned for σ1 and σ2 (or, simply, well aligned if the strategies are clear from context)
if there exists an initial pool state pool0, k1 and k2 such that

gcnf 0
1 = gcnf 0

2 = 〈〈pool0,meminit , τinit , gmoninit,|pre(pool0)|〉〉

and
for all i ∈ 0..(k1 − 1). gcnf i1 �σ1 gcnf i+1

1

and
gcnf 1 = gcnf k11

and
for all j ∈ 0..(k2 − 1). gcnf j2 �σ2 gcnf j+1

2

and
gcnf 2 = gcnf k22

and there is a relation R ⊆ {0, . . . , k1} × {0, . . . , k2} such that all of the following hold.
• if (i, j) ∈ R then gcnf i1 is `-equivalent to gcnf j2.
• (0, 0) ∈ R.
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• for all i ∈ {0, . . . , k1} there exists j ∈ {0, . . . , k2} such that (i, j) ∈ R.
• for all j ∈ {0, . . . , k2} there exists i ∈ {0, . . . , k1} such that (i, j) ∈ R.
• for all (i, j) ∈ R and (i′, j′) ∈ R, if i < i′ then j ≤ j′; and, symmetrically, if j < j′ then i ≤ i′.

Note that this definition implies that gcnf 1 ∈ reachσ1(pool0) and gcnf 2 ∈ reachσ2(pool0) but also requires that the
executions to reach these global configurations can be lined up appropriately into `-equivalent configurations. The relation R is
a correspondence [37], which shows how the configurations in the two executions line up.

The proof of the soundness of our monitor relies on being given an execution using strategy σ1 and constructing a well-aligned
execution from σ2, where σ1 and σ2 are `-equivalent strategies. This essentially implies that an observer of the channel `
cannot distinguish the two executions.

Theorem 11 (Non-barrier global low step). Let gcnf 1 and gcnf 2 be `-equivalent global configurations, and let σ1 and σ2 be
`-equivalent strategies. Suppose that gcnf 1 and gcnf 2 are well aligned. Suppose gcnf 1 �σ1

gcnf ′1 by the ith thread taking a
step using the first rule of Figure 2, where

timei t (tpci) t termi t block i v `

and
pool1(i) = [comi, 〈Γi, lmdsti, pci, br i, timei, termi, block i〉,mdsti]

and
gcnf 1 = 〈〈pool1,mem1, τ1, gmon1〉〉.

Then there exists gcnf ′2 such that gcnf 2 �σ2
gcnf ′2 and gcnf ′1 and gcnf ′2 are `-equivalent and well aligned.

Proof: Since gcnf 1 and gcnf 2 = 〈〈pool2,mem2, τ2, gmon2〉〉 are `-equivalent, we have that local configurations
〈pool1(i),mem1, τ1〉 and 〈pool2(i),mem2, τ2〉 are `-equivalent. The result follows immediately by Theorem 7 and Theorem 10.

Theorem 12 (Non-barrier global high step). Let gcnf 1 and gcnf 2 be `-equivalent global configurations, and let σ1 and σ2 be
`-equivalent strategies. Suppose that gcnf 1 and gcnf 2 are well aligned. Suppose gcnf 1 �σ1 gcnf ′1 by the ith thread taking a
step using the first rule of Figure 2, where

timei t (tpci) t termi t block i 6v `

and
pool1(i) = [comi, 〈Γi, lmdsti, pci, br i, timei, termi, block i〉,mdsti]

and
gcnf 1 = 〈〈pool1,mem1, τ1, gmon1〉〉.

Then gcnf ′1 and gcnf 2 are `-equivalent.

Proof: Since gcnf 1 and gcnf 2 = 〈〈pool2,mem2, τ2, gmon2〉〉 are `-equivalent, we have that local configurations
〈pool1(i),mem1, τ1〉 and 〈pool2(i),mem2, τ2〉 are `-equivalent.

Let
pool′1(i) = [com′i, 〈Γ ′i , lmdst

′
i, pc′i, br

′
i, time ′i, term ′i, block ′i〉,mdst

′
i]

where
gcnf ′1 = 〈〈pool′1,mem′1, τ ′1, gmon ′1〉〉.

By Property 2, since this is not a synchronization step, we have that

timei t (tpci) t termi t block i v time ′i t (tpc′i) t term ′i t block ′i

and so
time ′i t (tpc′i) t term ′i t block ′i 6v `

The result follows immediately by Theorem 8 and Theorem 10.

48



F. Global barrier results

The global barrier theorem (Theorem 13) states, essentially, that if we have two `-equivalent global configurations, and one of
them performs a barrier synchronization, then the other global configuration can also reach the global barrier, and successfully
perform the synchronization.

In order to prove this, we first define a notion of low equivalence, very similar to `-equivalence of local configurations, but
ignoring the timing level. We call this time-insensitive-`-equivalence. Some key differences from `-equivalence include: the
strong guarantees apply when the pc excluding the timing is low; we don’t care about equality of memory; we require that the
time-inclusive pc is high (simplifies some of the cases).

Definition 6 (Time-insensitive-`-equivalence of thread states). Two thread states

[com1,mc1,mdst1] and [com2,mc2,mdst2]

are time-insensitive-`-equivalent if and only if all the following conditions hold. Assume that for i = 1, 2 we have

mci = 〈Γi, lmdsti, pci, br i, timei, termi, block i〉

1) time1 t (tpc1) t term1 t block1 6v ` and time2 t (tpc2) t term2 t block2 6v `.
2) If

(tpc1) t term1 t block1 v `

or
(tpc2) t term2 t block2 v `

then time1 = time2 and term1 = term2 and block1 = block2 and pc1 = pc2 and br1 = br2 and com1 = com2 and for
all x, Γ1〈x〉 = Γ2〈x〉.

3) For all j ∈ 1..max(|pc1|, |pc2|), if

(pc1(0) t . . . t pc1(j − 1)) t term1 t block1 v `

or
(pc2(0) t . . . t pc2(j − 1)) t term2 t block2 v `

then all of the following holds
• |pc1| ≥ j.
• |pc2| ≥ j.
• For all k ∈ 0..j we have pc1(k) = pc2(k) and br1(k) = br2(k).
• There exists comcnt ∈ Continuationj such that:

– Either com1 = comcnt or com1 = com′1; comcnt for some com′1; and
– Either com2 = comcnt or com2 = com′2; comcnt for some com′2.

(This says that the pc level stack and the branch environments are identical up to and including the first high branch, and
the two configurations agree on the low continuation.)

We use this definition of time-insensitive-`-equivalence to define the following key lemma for proving the global barrier
theorem.

Lemma 3 (Time-insensitive-`-equivalent execution). Let gcnf 1 = 〈〈pool1,mem1, τ1, gmon1〉〉 and gcnf 2 =
〈〈pool2,mem2, τ2, gmon2〉〉 be `-equivalent global configurations, and let σ1 and σ2 be `-equivalent strategies. Suppose
that gcnf 1 and gcnf 2 are well aligned.

Let gcnf ′1 = 〈〈pool′1,mem′1, τ ′1, gmon ′1〉〉.
Let gcnf 1 �

∗
σ1

gcnf ′1 without executing a synchronization step.
Suppose i ∈ pre(pool1) and pool1(i) and pool2(i) are time-insensitive-`-equivalent, and

pool′1(i) = [com′i, 〈Γ ′i , lmdst
′
i, pc′i, br

′
i, time ′i, term ′i, block ′i〉,mdst

′
i]

where
(tpc′i) t term ′i t block ′i v `.

Then for all (fair) executions from gcnf 2, there exists a gcnf ′2 = 〈〈pool′2,mem′2, τ ′2, gmon ′2〉〉 in the execution (reachable
without going through a synchronization step) such that pool′1(i) and pool′2(i) are time-insensitive-`-equivalent.
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In order to prove Lemma 3, we first state and prove several supporting lemmas (Lemma 4, Lemma 5, and Lemma 6), which
are analogous to, respectively, a high-step lemma, a low-step lemma, and a high-to-low-step lemma, but for time-insensitive-`-
equivalence instead of `-equivalence. Another key difference is that while the `-equivalence theorems simply needed to find
some steps that satisfied the requirements, these lemmas must hold for all fair executions. This is because at this point in the
proof, the second execution has already been chosen (by the `-equivalence theorems) and we need to show that these executions
satisfy some additional properties.

Lemma 4 (Time-insensitive-`-equivalence high step). Let

gcnf 1 = 〈〈pool1,mem1, τ1, gmon1〉〉

and
gcnf 2 = 〈〈pool2,mem2, τ2, gmon2〉〉

be `-equivalent global configurations, and let σ1 and σ2 be `-equivalent strategies. Suppose that gcnf 1 and gcnf 2 are well
aligned. i ∈ pre(pool1) and assume pool1(i) and pool2(i) are time-insensitive-`-equivalent.

Let gcnf 1 �σ1 gcnf ′1 be a non-synchronization step. Let gcnf ′1 = 〈〈pool′1,mem′1, τ ′1, gmon ′1〉〉 and

pool1(i) = [com1,i, 〈Γ1,i, lmdst1,i, pc1,i, br1,i, time1,i, term1,i, block1,i〉,mdst1,i]

and
pool′1(i) = [com′1,i, 〈Γ ′1,i, lmdst

′
1,i, pc′1,i, br

′
1,i, time ′1,i, term ′1,i, block ′1,i〉,mdst

′
1,i]

If pool1(i) 6= pool′1(i) and
(tpc1,i) t term1,i t block1,i 6v `

and
(tpc′1,i) t term ′1,i t block ′1,i 6v `

then pool′1(i) is time-insensitive-`-equivalent to pool2(i).

Proof: First note that (tpc2,i) t term2,i t block2,i 6v `, since (tpc1,i) t term1,i t block1,i 6v ` and pool1(i) is time-
insensitive-`-equivalent to pool2(i),

We show that each condition holds.
• Condition 1. Since (tpc′1,i) t term ′1,i t block ′1,i 6v ` we have time ′1,i t (tpc′1,i) t term ′1,i t block ′1,i 6v `. Also, time2,i t

(tpc2,i) t term2,i t block2,i 6v ` since pool1(i) is time-insensitive-`-equivalent to pool2(i).
• Condition 2. We have (tpc2,i) t term2,i t block2,i 6v `. Also, by assumption we have (tpc′1,i) t term ′1,i t block ′1,i 6v `.

Thus the precondition is false, and this condition is trivially satisfied.
• Condition 3. By cases on the monitor rule used in the derivation of judgment

〈pool1(i),mem1, τ1〉
β,γ,δ−→σ1

〈pool′(i),mem′1, τ ′1〉

– (M-Skip), (M-Assign1), (M-Assign2), (M-Input1), (M-Input2), (M-Output), and (M-Term). In all of these rules, most of
the monitor state remains the same (pc1 = pc′1, br1 = br

′
1, term1 = term ′1, and block1 = block ′1), which ensures that

most of the requirements of Condition 3 are met. Note also that none of these commands reduce a join or a more, and so
if there previous existed a comcnt that satisfied the requirements, there will continue to exist such a comcnt that satisfies
the requirements.

– (M-Branch), (M-Enter). These commands increase the pc and branch environment stack by one. But since (tpc1,i) t
term1,i t block1,i 6v `, the precondition is not satisfied for this new branch.

– (M-Join), (M-Leave). These commands pop an element off the pc and branch environment stack, and increase the termination
and blocking levels. Thus, the required conditions follow from the time-insensitive-`-equivalence of pool1(i) and pool2(i).

– (M-Barrier-Local) is impossible, since it was a non-synchronization step.

Lemma 5 (Time-insensitive-`-equivalence low step). Let gcnf 1 = 〈〈pool1,mem1, τ1, gmon1〉〉 be a global configuration and
let gcnf 0

2, gcnf 1
2, gcnf 2

2, gcnf 3
2, . . . be a (finite or infinite) sequence of global configurations such that for all j < n we have

gcnf j2 �σ2
gcnf j+1

2 (without taking a synchronization step), and the execution is fair (i.e., for any thread that can take a
non-synchronization step, it eventually does) and gcnf 1 is `-equivalent to gcnf j2 for all gcnf j2 in the sequence. Moreover,
suppose that gcnf 1 and gcnf 0

2 are well aligned.
Let gcnf j2 = 〈〈poolj2,mem

j
2, τ

j
2 , gmonj2〉〉.

Let i ∈ pre(pool1) and assume pool1(i) and pool02(i) are time-insensitive-`-equivalent.
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Let gcnf 1 �σ1
gcnf ′1 be a non-synchronization step. Let gcnf ′1 = 〈〈pool′1,mem′1, τ ′1, gmon ′1〉〉 and

pool1(i) = [com1,i, 〈Γ1,i, lmdst1,i, pc1,i, br1,i, time1,i, term1,i, block1,i〉,mdst1,i]

and
pool′1(i) = [com′1,i, 〈Γ ′1,i, lmdst

′
1,i, pc′1,i, br

′
1,i, time ′1,i, term ′1,i, block ′1,i〉,mdst

′
1,i]

If pool1(i) 6= pool′1(i) and
(tpc1,i) t term1,i t block1,i v `

then there exists a k such that for all j ∈ 1..k, poolj2(i) = pool02(i) and poolk2(i) 6= poolk+1
2 (i) and pool′1(i) is time-insensitive-

`-equivalent to poolk+1
2 (i) (i.e., the next step that thread i takes is to an equivalent thread state).

Proof: Assume pool1(i) 6= pool′1(i) and (tpc1,i) t term1,i t block1,i v `.
Since pool1(i) and pool02(i) are time-insensitive-`-equivalent, by Condition 2 of Definition 6 we have time1,i = timek2,i

and term1,i = termk
2,i and block1,i = blockk2,i and pc1,i = pck2,i and br1,i = br

k

2,i and com1,i = comk
2,i and for all x,

Γ1,i〈x〉 = Γ k
2,i〈x〉.

Moreover, since the step gcnf 1 �σ1
gcnf ′1 was not a synchronization step, we have

〈pool1(i),mem1, τ1〉
ε,ε,ε−→σ1

〈pool′1(i),mem′1, τ
′
1〉

and thus, by inversion on the inference rule in Figure 1,

(com1,i,mem1, τ1)
α,ε

_σ1
(com′1,i,mem

′
1, τ
′
1)

and

〈Γ1,i, lmdst1,i, pc1,i, br1,i, time1,i, term1,i, block1,i〉 −→ε,α
perm 〈Γ ′1,i, lmdst

′
1,i, pc′1,i, br

′
1,i, time ′1,i, term ′1,i, block ′1,i〉

Since the execution from gcnf 0
2 is fair, the ith thread must be scheduled eventually. Assume that this occurs after k steps,

i.e., poolk2(i) 6= poolk+1
2 (i).

We proceed by induction on the command comk
2,i. We show that we can construct a derivation for

〈poolk2(i),memk
2 , τ

k
2 〉

ε,ε,ε−→σ2 〈pool
k+1
2 (i),memk+1

2 , τk+1
2 〉

such that pool′1(i) is time-insensitive-`-equivalent to poolk+1
2 (i)

• comk
2,i = skip. Here, comk+1

2,i = com′1,i = stop and time1,i = timek2,i = time ′1,i = timek+1
2,i and term1,i = termk

2,i =

term ′1,i = termk+1
2,i and block1,i = blockk2,i = block ′1,i = blockk+1

2,i and pc1,i = pck2,i = pc′1,i = pck+1
2,i and br1,i = br

k

2,i =

br
′
1,i = br

k+1

2,i and for all x, Γ1,i〈x〉 = Γ k
2,i〈x〉 = Γ ′1,i〈x〉 = Γ k+1

2,i 〈x〉.
The result follows trivially.

• comk
2,i = stop; com. Here, comk+1

2,i = com′1,i = com and time1,i = timek2,i = time ′1,i = timek+1
2,i and term1,i =

termk
2,i = term ′1,i = termk+1

2,i and block1,i = blockk2,i = block ′1,i = blockk+1
2,i and pc1,i = pck2,i = pc′1,i = pck+1

2,i and

br1,i = br
k

2,i = br
′
1,i = br

k+1

2,i and for all x, Γ1,i〈x〉 = Γ k
2,i〈x〉 = Γ ′1,i〈x〉 = Γ k+1

2,i 〈x〉.
The result follows trivially.

• comk
2,i = stop. Here, comk+1

2,i = com′1,i = term and time1,i = timek2,i = time ′1,i = timek+1
2,i and term1,i = termk

2,i =

term ′1,i = termk+1
2,i = ⊥ and block1,i = blockk2,i = block ′1,i = blockk+1

2,i = ⊥ and pc1,i = pck2,i = pc′1,i = pck+1
2,i = ε and

br1,i = br
k

2,i = br
′
1,i = br

k+1

2,i = ε and for all x, Γ1,i〈x〉 = Γ k
2,i〈x〉 = Γ ′1,i〈x〉 = Γ k+1

2,i 〈x〉.
The result follows trivially.

• comk
2,i = x := e.

Here, comk+1
2,i = com′1,i = stop and time1,i = timek2,i = time ′1,i = timek+1

2,i and term1,i = termk
2,i = term ′1,i = termk+1

2,i

and block1,i = blockk2,i = block ′1,i = blockk+1
2,i and pc1,i = pck2,i = pc′1,i = pck+1

2,i and br1,i = br
k

2,i = br
′
1,i = br

k+1

2,i .
For the typing environment, there are two cases to consider. If lmdst1,i . [maywrite(x),mayread(e), othersmightread(x)]
then ` = Γ1,i〈e〉ttime1,it(tpc1,i)tterm1,itblock1,i and ` v L(x) and Γ ′1,i = Γ1,i〈x 7→lmdst1,i `〉. But in this case, since
lmdst1,i = lmdstk2,i, and from the other equalities, we have Γ k+1

2,i = Γ k
2,i〈x 7→lmdst2,i `〉, and the result follows.

The other case is that lmdst1,i . [maywrite(x),mayread(e), exclusiveread(x)] and so ` =
Γ1,i〈e〉ttime1,it(tpc1,i)tterm1,itblock1,i and Γ ′1,i = Γ1,i〈x 7→lmdst1,i `〉. Here again, since lmdst1,i = lmdstk2,i,
and from the other equalities, we have Γ k+1

2,i = Γ k
2,i〈x 7→lmdst2,i `〉, and the result follows.

• comk
2,i = input ch to x. This case is nearly identical to the assignment case above.
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• comk
2,i = output e to ch.

Here, comk+1
2,i = com′1,i = stop and time1,i = timek2,i = time ′1,i = timek+1

2,i and term1,i = termk
2,i = term ′1,i = termk+1

2,i

and block1,i = blockk2,i = block ′1,i = blockk+1
2,i and pc1,i = pck2,i = pc′1,i = pck+1

2,i and br1,i = br
k

2,i = br
′
1,i = br

k+1

2,i and
for all x, Γ1,i〈x〉 = Γ k

2,i〈x〉 = Γ ′1,i〈x〉 = Γ k+1
2,i 〈x〉.

Moreover, we have lmdst1,i . mayread(e) and Γ1,i〈e〉 t time1,it(tpc1,i)tterm1,itblock1,i v ch . But since lmdst1,i =

lmdstk2,i, and from the other equalities, we have lmdstk2,i.mayread(e) and Γ k
2,i〈e〉ttimek2,it(tpck2,i)ttermk

2,itblockk2,i v ch .
We can thus construct an appropriate derivation, and the result follows easily.

• comk
2,i = while e do com od. Here, comk+1

2,i = com′1,i = more e do com od and time1,i = timek2,i = time ′1,i = timek+1
2,i

and term1,i = termk
2,i = term ′1,i = termk+1

2,i and block1,i = blockk2,i = block ′1,i = blockk+1
2,i and for all x, Γ1,i〈x〉 =

Γ k
2,i〈x〉 = Γ ′1,i〈x〉 = Γ k+1

2,i 〈x〉.
Also, we have lmdst1,i .mayread(e) and

(`sb, timesb, termsb, block sb,Γsb) = SB(while e do com od,Γ1,i, lmdst1,i, pc1,i, time1,i, term1,i, block1,i)

and pc′1,i = pc1,i·`sb and br
′
1,i = br1,i·(timesb, termsb, block sb,Γsb).

Since lmdst1,i = lmdstk2,i, and from the other equalities, we have lmdstk2,i . mayread(e) and
(`sb, timesb, termsb, block sb,Γsb) = SB(while e do com od,Γ k

2,i, lmdst
k
2,i, pck2,i, timek2,i, termk

2,i, blockk2,i).

We can thus construct an appropriate derivation, where pck+1
2,i = pck2,i·`sb and br

k+1

2,i = br
k

2,i·(timesb, termsb, block sb,Γsb),
and the result follows easily.

• comk
2,i = join. Here, comk+1

2,i = com′1,i = stop and pc1,i = pc′1,i·`sb and br1,i = br
′
1,i·(timesb, termsb, block sb,Γsb), and

time ′1,i = time1,i t timesb t `sb and term ′1,i = term1,i t termsb and block ′1,i = block1,i t block sb and

Γ ′1,i = λx.


Γ1,i(x) t Γsb(x) if x ∈ pre(Γ1,i) ∩ pre(Γsb)

Γ1,i(x) if x ∈ pre(Γ1,i) \ pre(Γsb)

undef otherwise

We can easily construct an appropriate derivation, such that time ′1,i = timek+1
2,i and term ′1,i = termk+1

2,i and block ′1,i =

blockk+1
2,i and pc′1,i = pck+1

2,i and br
′
1,i = br

k+1

2,i and for all x, Γ ′1,i〈x〉 = Γ k+1
2,i 〈x〉, whereupon the result follows trivially.

• comk
2,i = if e then comt else comf fi. Here, either com′1,i = comt or com′1,i = comf and time1,i = timek2,i = time ′1,i =

timek+1
2,i and term1,i = termk

2,i = term ′1,i = termk+1
2,i and block1,i = blockk2,i = block ′1,i = blockk+1

2,i and for all x,
Γ1,i〈x〉 = Γ k

2,i〈x〉 = Γ ′1,i〈x〉 = Γ k+1
2,i 〈x〉.

Also, we have lmdst1,i .mayread(e) and

(`sb, timesb, termsb, block sb,Γsb) = SB(while e do com od,Γ1,i, lmdst1,i, pc1,i, time1,i, term1,i, block1,i)

and pc′1,i = pc1,i·`sb and br
′
1,i = br1,i·(timesb, termsb, block sb,Γsb).

Since lmdst1,i = lmdstk2,i, and from the other equalities, we have lmdstk2,i . mayread(e) and
(`sb, timesb, termsb, block sb,Γsb) = SB(while e do com od,Γ k

2,i, lmdst
k
2,i, pck2,i, timek2,i, termk

2,i, blockk2,i).
By Definition 2, we have Γ1,i〈e〉 v `sb.
We consider two possible cases, based on whether `sb v `.
If `sb v ` then by `-equivalence of gcnf 1 and gcnf k2 , we have mem1(e) = memk

2(e). Thus, based on the inference rules for
conditionals, com′1,i = comk+1

2,i , and we can construct appropriate derivations such that pool′1(i) is time-insensitive-`-equivalent
to poolk+1

2 (i) because all of the thread state is identical.
Otherwise, `sb 6v `, and so we don’t know whether com′1,i = comk+1

2,i . However, in this case, (tpc′1,i)t term ′1,itblock ′1,i 6v `
and (tpck+1

2,i ) t termk+1
2,i t blockk+1

2,i 6v `, and so Condition 2 of time-insensitive-`-equivalence is trivially satisfied, as is
Condition 3 for j = |pck+1

2,i |.
• comk

2,i = more e do com od. Here, either com′1,i = com; more e do com od or com′1,i = stop, based on the value of
mem1(e). We consider these cases separately.
– com′1,i = com; more e do com od.

Here time1,i = time ′1,i and term1,i = term ′1,i and block1,i = block ′1,i and for all x, Γ1,i〈x〉 = Γ ′1,i〈x〉.
Also, we have lmdst1,i .mayread(e) and pc′1,i = pc1,i = pc·`sb and br

′
1,i = br1,i = br ·(timesb, termsb, block sb,Γsb).

By Definition 2, we have Γ1,i〈e〉 v `sb.
Since lmdst1,i = lmdstk2,i, and from the other equalities, we have lmdstk2,i . mayread(e) and br

k

2,i =

br ·(timesb, termsb, block sb,Γsb).
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We consider two possible cases, based on whether `sb v `.
If `sb v ` then by `-equivalence of gcnf 1 and gcnf k2 , we have mem1(e) = memk

2(e). Thus, based on the inference rules
for loops, com′1,i = comk+1

2,i , and we can construct appropriate derivations such that pool′1(i) is time-insensitive-`-equivalent
to poolk+1

2 (i) because all of the thread state is identical.
Otherwise, `sb 6v `, and so we don’t know whether com′1,i = comk+1

2,i . However, in this case, (tpc′1,i)tterm ′1,itblock ′1,i 6v `
and (tpck+1

2,i ) t termk+1
2,i t blockk+1

2,i 6v `, and so Condition 2 of time-insensitive-`-equivalence is trivially satisfied, as is
Condition 3 for j = max(|pc′1,i|, |pck+1

2,i |).
– com′1,i = stop.

Here, lmdst1,i .mayread(e) and pc1,i = pc′1,i·`sb and br1,i = br
′
1,i·(timesb, termsb, block sb,Γsb) and time ′1,i = time1,it

timesb t `sb and term ′1,i = term1,i t termsb and block ′1,i = block1,i t block sb and

Γ ′1,i = λx.


Γ1,i(x) t Γsb(x) if x ∈ pre(Γ1,i) ∩ pre(Γsb)

Γ1,i(x) if x ∈ pre(Γ1,i) \ pre(Γsb)

undef otherwise

Also, we have By Definition 2, we have Γ1,i〈e〉 v `sb.
Since lmdst1,i = lmdstk2,i, and from the other equalities, we have lmdstk2,i . mayread(e) and br

k

2,i =

br
′
1,i·(timesb, termsb, block sb,Γsb).

We consider two possible cases, based on whether `sb v `.
If `sb v ` then by `-equivalence of gcnf 1 and gcnf k2 , we have mem1(e) = memk

2(e). Thus, based on the inference rules
for loops, com′1,i = comk+1

2,i , and we can construct appropriate derivations such that pool′1(i) is time-insensitive-`-equivalent
to poolk+1

2 (i) because all of the thread state is identical.
Otherwise, `sb 6v `, and so we don’t know whether com′1,i = comk+1

2,i . However, in this case, (tpc′1,i)tterm ′1,itblock ′1,i 6v `
and (tpck+1

2,i ) t termk+1
2,i t blockk+1

2,i 6v `, and so Condition 2 of time-insensitive-`-equivalence is trivially satisfied, as is
Condition 3 for j = max(|pc′1,i|, |pck+1

2,i |).

• comk
2,i = term. This case is impossible, as com1,i = comk

2,i, and there is no com′1,i such that (com1,i,mem1, τ1)
α,ε

_σ1

(com′1,i,mem
′
1, τ
′
1).

Lemma 6 (Time-insensitive-`-equivalence high-to-low step). Let gcnf 1 = 〈〈pool1,mem1, τ1, gmon1〉〉 be a global configuration
and let gcnf 0

2, gcnf 1
2, gcnf 2

2, gcnf 3
2, . . . be a (finite or infinite) sequence of global configurations such that for all j < n we

have gcnf j2 �σ2
gcnf j+1

2 (without taking a synchronization step), and the execution is fair (i.e., for any thread that can take a
non-synchronization step, it eventually does). Moreover, suppose that gcnf 1 and gcnf 0

2 are well aligned, and that gcnf 1 is
`-equivalent to gcnf j2 for all gcnf j2 in the sequence.

Let gcnf j2 = 〈〈poolj2,mem
j
2, τ

j
2 , gmonj2〉〉.

Let i ∈ pre(pool1) and assume pool1(i) and pool02(i) are time-insensitive-`-equivalent.
Let gcnf 1 �σ1

gcnf ′1 be a non-synchronization step. Let gcnf ′1 = 〈〈pool′1,mem′1, τ ′1, gmon ′1〉〉 and

pool1(i) = [com1,i, 〈Γ1,i, lmdst1,i, pc1,i, br1,i, time1,i, term1,i, block1,i〉,mdst1,i]

and
pool′1(i) = [com′1,i, 〈Γ ′1,i, lmdst

′
1,i, pc′1,i, br

′
1,i, time ′1,i, term ′1,i, block ′1,i〉,mdst

′
1,i]

If pool1(i) 6= pool′1(i) and
(tpc1,i) t term1,i t block1,i 6v `

and
(tpc′1,i) t term ′1,i t block ′1,i v `

then there exists a k such that pool′1(i) is time-insensitive-`-equivalent to poolk+1
2 (i) (i.e., the second configuration will take

some number of high steps, and eventually get to an equivalent thread state).

Proof: Assume (tpc1,i) t term1,i t block1,i 6v ` and (tpc′1,i) t term ′1,i t block ′1,i v `. By examination of the monitor
rules, we see that the only way this can be true is if the monitor rule used for the step is (M-Join) or (M-Leave), i.e., the thread
is exiting the scope of an if command or while command. More specifically, we must have pc′1,i = pc1,i·`sb where `sb 6v `

and br
′
1,i = br1,i·(timesb, termsb, block sb,Γsb) where termsb v ` and block sb v `. Moreover, since an if command or while
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command just finished, either com′1,i = stop; com for some com, or com′1,i = stop. We will assume that com′1,i = stop; com,
as the other case proceeds very similarly.

By Property 1, we have that (`sb, timesb, termsb, block sb,Γsb) is a conservative approximation of the branching, timing,
termination, and floating behavior for some thread state such that the execution of the ith thread had when it started the if
command or while command that was just completed. Moreover, the join of the pc stack, termination, and blocking levels of
the local monitor when it started the if command or while command was bounded above by ` (since termination and blocking
levels increase monotonically, and the pc stack follows a stack discipline).

Let j = |pc1,i|−1. We have pc1,i(0)t . . .tpc1,i(j−1)t term1,itblock1,i v `, since pc1,i(0)t . . .tpc1,i(j−1) = (tpc′1,i),
and term1,i v term ′1,i and block1,i v block ′1,i and (tpc′1,i) t term ′1,i t block ′1,i v `.

So because pool1(i) and pool02(i) are time-insensitive-`-equivalent, we have that pool1(i).com = comcnt for some
comcnt and either pool02(i).com = comcnt or pool02(i).com = com′; comcnt for some com′. Moreover, let pool02(i).lmon =

〈Γ 0
2,i, lmdst

0
2,i, pc0

2,i, br
0

2,i, time0
2,i, term0

2,i, block0
2,i〉; we have that br

0

2,i(j) = br1,i(j) = (`sb, timesb, termsb, block sb,Γsb).
Thus (`sb, timesb, termsb, block sb,Γsb) is a conservative approximation for the command that pool02(i) is in the middle of

executing.
Since `sb 6v ` and (tpc)t term t block v ` and termsb t block sb v `, we have that for any execution through the command

that pool02(i) is in the middle of executing, it cannot encounter a while loop or possibly reach a state where the monitor
might block (since otherwise the termination or blocking level would be at least `sb, which is impossible, by the definition of
conservative approximation). Since it cannot loop indefinitely or block, it must terminate.

Thus, we have that there exists a k such that poolk+1
2 (i).com = pool′1(i).com.

Consider the time-insensitive-`-equivalence of pool′1(i) and poolk+1
2 (i). Conditions 2 and 3 of Definition 6 follow immediately

from the fact that poolk+1
2 (i).com = pool′1(i).com. By examining the (M-Join) and (M-Leave) monitor rules, we see that

`sb v time ′1,i, and since `sb 6v `, we have time ′1,i 6v `, thus satisfying Condition 1.

We can now prove Lemma 3.
Proof of Lemma 3: Let gcnf 1 = 〈〈pool1,mem1, τ1, gmon1〉〉 and gcnf 2 = 〈〈pool2,mem2, τ2, gmon2〉〉 be `-equivalent

global configurations, and let σ1 and σ2 be `-equivalent strategies. Assume that gcnf 1 and gcnf 2 are well aligned.
Let gcnf ′1 = 〈〈pool′1,mem′1, τ ′1, gmon ′1〉〉.
Let gcnf 1 �

∗
σ1

gcnf ′1 without executing a synchronization step.
Assume i ∈ pre(pool1) and pool1(i) and pool2(i) are time-insensitive-`-equivalent, and

pool′1(i) = [com′i, 〈Γ ′i , lmdst
′
i, pc′i, br

′
i, time ′i, term ′i, block ′i〉,mdst

′
i]

where
(tpc′i) t term ′i t block ′i v `.

Suppose we have a fair execution from gcnf 2 without executing a synchronization step (i.e., we do not get to choose how
gcnf 2 evolves, but each thread eventually gets the opportunity to make progress).

We proceed by induction on the length of the execution gcnf 1 �
∗
σ1

gcnf ′1.
Base case: Clearly if gcnf 1 = gcnf ′1 then the result holds immediately.
Inductive case: Consider gcnf 1 �σ1

gcnf ′′1 . For notational convenience, let gcnf ′′1 = 〈〈pool′′1 ,mem′′1 , τ ′′1 , gmon ′′1〉〉, and

pool′′1(i) = [com′′1,i, 〈Γ ′′1,i, lmdst
′′
1,i, pc′′1,i, br

′′
1,i, time ′′1,i, term ′′1,i, block ′′1,i〉,mdst

′′
1,i].

There are 4 (mutually exclusive and exhaustive) cases.
1) pool′′1(i) = pool1(i).

Here, the step gcnf 1 �σ1 gcnf ′′1 did not advance thread i, and so pool′′1(i) is time-insensitive-`-equivalent to pool2(i) as
required.

2) pool′′1(i) 6= pool1(i) and (tpc1,i) t term1,i t block1,i 6v ` and (tpc′′1,i) t term ′′1,i t block ′′1,i 6v `.
Here, the ith thread took a step and had a high (time-exclusive) pc level before and after the step.
By Lemma 4, pool′′1(i) is time-insensitive-`-equivalent to pool2(i) as required.

3) pool′′1(i) 6= pool1(i) and (tpc1,i) t term1,i t block1,i v `.
Here, the ith thread took a step and had a low (time-exclusive) pc level before the step.
By Lemma 5, the next step that thread i takes in the 2nd execution will be to a thread configuration that is time-insensitive-
`-equivalent, as required.

4) pool′′1(i) 6= pool1(i) and (tpc1,i) t term1,i t block1,i 6v ` and (tpc′′1,i) t term ′′1,i t block ′′1,i v `.
Here, the ith thread took a step and had a high (time-exclusive) pc level before the step, and a low (time-exclusive) pc
level before the step.
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By Lemma 6, thread i in the 2nd execution will eventually reach a thread configuration that is time-insensitive-`-equivalent,
as required.

We state and prove one additional lemma, that shows that time-insensitive-`-equivalence is established when two `-equivalent
local configurations go from a “low pc” to a “high pc”.

Lemma 7 (Establishment of time-insensitive-`-equivalence). Let ` be a security level. Let σ1 and σ2 be `-equivalent strategies
and let

lcnf 1 = 〈[com1, 〈Γ1, lmdst1, pc1, br1, time1, term1, block1〉,mdst1],mem1, τ1〉

and
lcnf 2 = 〈[com2, 〈Γ2, lmdst2, pc2, br2, time2, term2, block2〉,mdst2],mem2, τ2〉

be `-equivalent local configurations such that

time1 t (tpc1) t term1 t block1 v `.

let
lcnf ′1 = 〈[com′1, 〈Γ ′1, lmdst

′
1, pc′1, br

′
1, time ′1, term ′1, block ′1〉,mdst

′
1],mem′1, τ

′
1〉

and
lcnf ′2 = 〈[com′2, 〈Γ ′2, lmdst

′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉,mdst

′
2],mem′2, τ

′
2〉

be `-equivalent local configurations such that

time ′1 t (tpc′1) t term ′1 t block ′1 6v `.

Let lcnf 1
ε,ε,ε−→σ1

lcnf ′1 and lcnf 2
ε,ε,ε−→σ2

lcnf ′2.
Then thread states

[com′1,mc′1,mdst
′
1] and [com′2,mc′2,mdst

′
2]

are time-insensitive-`-equivalent, where

mc′1 = 〈Γ ′1, lmdst
′
1, pc′1, br

′
1, time ′1, term ′1, block ′1〉

and
mc′2 = 〈Γ ′2, lmdst

′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉.

Proof: By the definition of `-equivalence of local configurations (condition 7), since

time1 t (tpc1) t term1 t block1 v `

we have
time2 t (tpc2) t term2 t block2 v `

and since
time ′1 t (tpc′1) t term ′1 t block ′1 6v `

we have
time ′2 t (tpc′2) t term ′2 t block ′2 6v `.

Thus Condition 1 of time-insensitive-`-equivalence holds.
For Conditions 2 and 3 of time-insensitive-`-equivalence, consider how the pc level can be raised. It must be because one

of the monitor rules M-Branch, M-Join, M-Enter, or M-Leave was used. In all of these cases, since the monitor states and
commands of lcnf 1 and lcnf 2 were identical, the monitor states and commands of lcnf ′1 and lcnf ′2 are identical.

Having proven Lemma 3, we can now state and prove the global barrier theorem.

Theorem 13 (Global barrier). Let gcnf 1 and gcnf 2 be `-equivalent global configurations, and let σ1 and σ2 be `-equivalent
strategies. Assume that gcnf 1 and gcnf 2 are well aligned.

Suppose gcnf 1 �σ1
gcnf ′1 by all live thread configurations taking a synchronization step (i.e., second rule of Figure 2).

There exists a finite sequence of global configurations gcnf 0
2, gcnf 1

2, . . . , gcnf n2 , gcnf n+1
2 , such that gcnf 0

2 = gcnf 2 and for
all i < n we have gcnf i2 �σ2

gcnf i+1
2 (without taking a synchronization step), and gcnf n2 �σ2

gcnf n+1
2 is a synchronization

step. Moreover, for all 0 ≤ i ≤ n we have that gcnf i2 is `-equivalent to gcnf 1 and gcnf n+1
2 is `-equivalent to gcnf ′1.
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Proof: Let gcnf 1 = 〈〈pool1,mem1, τ1, gmon1〉〉 and gcnf 2 = 〈〈pool2,mem2, τ2, gmon2〉〉.
First, construct a fair schedule for the second execution (i.e., that gives each thread in gcnf 2 infinitely many time steps).

Execute gcnf 2 using that schedule, preventing barrier synchronization steps. Note that at this point, the execution may be finite
(if all threads either get stuck, terminate, or reach a barrier), or infinite (if at least one thread diverges).

Now consider each thread i ∈ pre(pool1). Let

pool1(i) = [comi
1, 〈Γ i

1, lmdst
i
1, pci1, br

i

1, timei1, termi
1, block i1〉,mdst

i
1]

and
pool2(i) = [comi

2, 〈Γ i
2, lmdst

i
2, pci2, br

i

2, timei2, termi
2, block i2〉,mdst

i
2].

If timei1t(tpci1)ttermi
1tblock i1 v ` then, by `-equivalence of gcnf 1 and gcnf 2 we have timei1 = timei2 and termi

1 = termi
2

and block i1 = block i2 and pci1 = pci2 and br
i

1 = br
i

2 and comi
1 = comi

2 and for all x, Γ i
1〈x〉 = Γ i

2〈x〉. This implies that (1) if
thread i 6∈ alive(pool1), then comi

1 = term = comi
2, and so i 6∈ alive(pool2); and (2) if i ∈ alive(pool1) then pool1(i) is

ready to execute the barrier step, and all pre-conditions are satisfied, and thus pool2(i) is also ready to execute the barrier.
Otherwise, timei1 t (tpci1) t termi

1 t block i1 6v ` but (tpci1) t termi
1 t block i1 v `. Consider the execution that lead up to

gcnf 1. There was some step from one global configuration to some global configuration gcnf init
1 such that the timing-inclusive

program counter level (i.e., time t (tpc)t term tblock ) was v ` before the step, and 6v ` after the step, and remained 6v ` until
gcnf 1 was reached. Note that since that step, no synchronization step could have been taken during the execution. If we consider
the execution that lead to gcnf 1, there was some global configuration gcnf init

2 such that gcnf init
1 and gcnf init

2 are `-equivalent,
and gcnf init

2 �
∗
σ2

gcnf 2. Note that the ith thread of gcnf init
1 is time-insensitive-`-equivalent to the ith thread of gcnf init

2 , by
Lemma 7. Then, by Lemma 3, the execution from gcnf init

2 to gcnf 2 and beyond will eventually reach a global configuration
gcnf ′2 = 〈〈pool′2,mem′2, τ ′2, gmon ′2〉〉 such that gcnf ′2(i) = [com′2, 〈Γ ′2, lmdst

′
2, pc′2, br

′
2, time ′2, term ′2, block ′2〉,mdst

′
2] is time-

insensitive-`-equivalent to pool1(i). Since (tpci1)ttermi
1tblock i1 v `, by Definition 6 (Condition 2), we have that timei1 = time ′2

and termi
1 = term ′2 and block i1 = block ′2 and pci1 = pc′2 and br

i

1 = br
′
2 and comi

1 = com′2 and for all x, Γ i
1〈x〉 = Γ ′2〈x〉. This

implies that (1) if thread i 6∈ alive(pool1), then comi
1 = term = com′2, and so i 6∈ alive(pool′2); and (2) if i ∈ alive(pool1)

then pool1(i) is ready to execute the barrier step, and all pre-conditions are satisfied, and thus pool′2(i) is also ready to execute
the barrier.

Thus, since each thread i eventually reaches the barrier or terminates, and no thread can take a step over the barrier until all
non-terminated threads are ready to step over the barrier, we have that there is a finite sequence of global configurations gcnf 0

2,
gcnf 1

2, . . . , gcnf n2 , such that gcnf 0
2 = gcnf 2 and for all i < n we have gcnf i2 �σ2 gcnf i+1

2 (without taking a synchronization
step). By induction on this execution, we can show, by repeated application of Theorem 12, that for all 0 ≤ i ≤ n we have that
gcnf i2 is `-equivalent to gcnf 1.

Thus, gcnf n2 can take a barrier step, since all preconditions for the barrier step are satisfied: gcnf n2 �σ2
gcnf n+1

2 . We now
need to show that gcnf n+1

2 is `-equivalent to gcnf ′1. To give names to the components of gcnf ′1, gcnf n2 , and gcnf n+1
2 let

gcnf ′1 = 〈〈pool′1,mem′1, τ ′1, gmon ′1〉〉

and
gcnf n2 = 〈〈pooln2 ,memn

2 , τ
n
2 , gmonn2 〉〉

and
gcnf n+1

2 = 〈〈pooln+1
2 ,memn+1

2 , τn+1
2 , gmonn+1

2 〉〉

and
pool′1(i) = [com′1,i, 〈Γ ′1,i, lmdst

′
1,i, pc′1,i, br

′
1,i, time ′1,i, term ′1,i, block ′1,i〉,mdst

′
1,i]

and
pooln2 (i) = [comn

2,i, 〈Γn
2,i, lmdst

n
2,i, pcn2,i, br

n

2,i, timen2,i, termn
2,i, blockn2,i〉,mdst

n
2,i]

and
pooln+1

2 (i) = [comn+1
2,i , 〈Γ

n+1
2,i , lmdstn+1

2,i , pcn+1
2,i , br

n+1

2,i , timen+1
2,i , termn+1

2,i , blockn+1
2,i 〉,mdst

n+1
2,i ].

Note that we have alive(pool′1) = alive(pooln+1
2 ), and that the annotation requests in both executions are identical (since

annotation requests come from the commands, which are identical).
Note that since gcnf n2 is `-equivalent to gcnf 1 and the barrier step does not modify the trace or memory, or domain of the

pool states, we have that τ ′1 ↓ ` = τn+1
2 ↓ ` and pre(pool′1) = pre(pooln+1

2 ).
It just remains to show that ∀i ∈ pre(pool′1) : 〈pool′1(i),mem′1, τ

′
1〉 is `-equivalent to 〈pooln+1

2 (i),memn+1
2 , τn+1

2 〉. Let
i ∈ pre(pool′1). We will apply Theorem 9. Note that if timen2,i t (tpcn2,i) t termn

2,i t blockn2,i v `, then from `-equivalence of
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〈pool1(i),mem1, τ1〉 and 〈pooln2 (i),memn
2 , τ

n
2 〉, the preconditions of Theorem 9 are satisfied. Otherwise, if timen2,it(tpcn2,i)t

termn
2,i t blockn2,i 6v `, then, by construction, pool1(i) is time-insensitive-`-equivalent to pooln2 (i), and the preconditions of

Theorem 9 are satisfied. Either way, we can apply Theorem 9 and get the required result.

G. Finally, the soundness proof

Using the previously defined lemmas, we now define the key lemma, which says that given `-equivalent global configurations,
when one configuration takes a step, the other configuration can take zero or more steps to an `-equivalent global configuration.

Lemma 8. Let gcnf 1 and gcnf 2 be `-equivalent global configurations, and let σ1 and σ2 be `-equivalent strategies. Assume
that gcnf 1 and gcnf 2 are well aligned.

If gcnf 1 �σ1
gcnf ′1 then there exists gcnf ′2 such that gcnf 2 �

∗
σ2

gcnf ′2 and gcnf ′1 and gcnf ′2 are `-equivalent and gcnf ′1
and gcnf ′2 are well aligned.

Proof: Consider the possible derivations of gcnf 1 �σ1
gcnf ′1. If the step was due to a barrier synchronization, then the

result holds immediately by Theorem 13. Otherwise, if the step was an individual thread, then it was either a low step or a high
step. If it was a low step, the result follows by Theorem 11, and if it was a high step, the result follows by Theorem 12.

We are now ready to prove Theorem 3.
Proof of Theorem 3: Let pool ∈ PSt , σ ∈ Σ, and 〈〈pool′,mem′, τ ′, gmon ′〉〉 ∈ reachσ(pool). Let ` be a security level.

We need to show that
κ(`, pool, τ ′) = {σ′ ∈ Σ | σ =` σ

′}

where
κ(`, pool, τ ′) = {σ′ ∈ Σ | ∃〈〈pool′′,mem′′, τ ′′, gmon ′′〉〉 ∈ reachσ′(pool) : τ ′′ ↓ ` = τ ′ ↓ `}

Let σ′ be a strategy such that σ =` σ
′. We need to show that σ′ ∈ κ(`, pool, τ ′). That is, we need to show that there exists

〈〈pool′′,mem′′, τ ′′, gmon ′′〉〉 ∈ reachσ′(pool) such that τ ′′ ↓ ` = τ ′ ↓ `.
Since 〈〈pool′,mem′, τ ′, gmon ′〉〉 ∈ reachσ(pool), there is an execution 〈〈pool,meminit , τinit , gmoninit〉〉 �∗σ

〈〈pool′,mem′, τ ′, gmon ′〉〉.
First note that 〈〈pool,meminit , τinit , gmon〉〉 is `-equivalent to itself, and so by repeated applications of Lemma 8, we can

construct a global configuration 〈〈pool′′,mem′′, τ ′′, gmon ′′〉〉 such that

〈〈pool,meminit , τinit , gmoninit〉〉�∗σ′ 〈〈pool′′,mem′′, τ ′′, gmon ′′〉〉

and 〈〈pool′′,mem′′, τ ′′, gmon ′′〉〉 is `-equivalent to 〈〈pool′,mem′, τ ′, gmon ′〉〉. From the definition of `-equivalence for global
configurations (Definition 4), we have τ ′′ ↓ ` = τ ′ ↓ ` as required.
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APPENDIX F
SOUNDNESS OF STATIC BOUNDS ORACLE

In this section we define the static bounds oracle, and sketch the proof of its soundness.

STATIC-SKIP

Γ , lmdst, pc, br , time, term, block ` skip : ⊥, pc, br ,Γ , time, term, block

STATIC-ASSIGN
` = Γ 〈e〉 t time t (tpc) t term t block Γ ′ = Γ 〈x 7→lmdst `〉

block ′ =


block if lmdst . [maywrite(x),mayread(e), othersmightread(x)] and ` v L(x)

block if lmdst . [maywrite(x),mayread(e), exclusiveread(x)]

block t term t time t (tpc) otherwise

Γ , lmdst, pc, br , time, term, block ` x := e : ⊥, pc, br ,Γ ′, time, term, block ′

STATIC-INPUT
`∗ = time t (tpc) t term t block ` = ch t `∗ Γ ′ = Γ 〈x 7→lmdst `〉

block ′ =


block if lmdst . [maywrite(x), othersmightread(x)] and `∗ v ch and ` v L(x)

block if lmdst . [maywrite(x), exclusiveread(x)] and `∗ v ch

block t term t time t (tpc) otherwise

Γ , lmdst, pc, br , time, term, block ` input ch to x : ⊥, pc, br ,Γ ′, time, term, block ′

STATIC-OUTPUT

block ′ =

{
block if lmdst .mayread(e) and Γ 〈e〉 t time t (tpc) t term v ch

block t term t time t (tpc) otherwise

Γ , lmdst, pc, br , time, term, block ` output e to ch : ⊥, pc, br ,Γ , time, term, block ′

STATIC-SEQ

Γ , lmdst, pc, br , time, term, block ` com1 : `1, pc1, br1,Γ1, time1, term1, block1

Γ1, lmdst, pc1, br1, time1, term1, block1 ` com2 : `2, pc2, br2,Γ2, time2, term2, block2

Γ , lmdst, pc, br , time, term, block ` com1; com2 : ⊥, pc2, br2,Γ2, time2, term2, block2

STATIC-BRANCH

comi ∈ S block ′ =

{
block if lmdst .mayread(e)

block t term t time t (tpc) otherwise
` = Γ 〈e〉 t time ` 6= ⊥

br
′
i = br ·(timei, termi, block i,Γi) Γ , lmdst, pc·`, br

′
i, time, term, block ′ ` comi : `i, pc·`, br

′
i,Γi, timei, termi, block i

(i = 1, 2) Γ ′ = λy ∈ pre(Γ ) . Γ1(y) t Γ2(y)

Γ , lmdst, pc, br , time, term, block ` if e then com1 else com2 fi :

`, pc, br ,Γ ′, time1 t time2 t `, term1 t term2, block1 t block2

Fig. 10. Flow-sensitive (timing/control-sensitive) static analysis of the termination and typing environments bounds (part 1)

Definition 7 (Surface syntax). Define set S to be the set of commands that do not contain commands join or more e do com od.

To define the static bounds oracle, we use a flow-sensitive type judgement

Γ , lmdst, pc, br , time, term, block ` com : `′,Γ ′, time ′, term ′, block ′

This judgment is defined in Figures 10–12. Using this judgment we define the static bounds oracle below.

Definition 8 (Static bounds operator). Given program com ∈ S, environment Γ , mode state lmdst, and levels
time, term and block , define partial function SB(com,Γ , lmdst, pc, time, term, block) to return a tuple of form
(`sb, timesb, termsb, block sb,Γsb) as follows.

1) If com is if e then com1 else com2 fi such that (tpc) t Γ 〈e〉 t time = ⊥ then return tuple (⊥,⊥,⊥,⊥,Γ ).
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STATIC-LOOP-ALGORITHMIC
com ∈ S ∀x ∈ e. x ∈ NonFloatVar `0 = Γ 〈e〉 t time `i+1 = Γ ′i+1〈e〉 t `i `i 6= ⊥

br
′
i = br ·(time ′i, term ′i, block ′i,Γ

′
i )

Γ ′i , lmdst, pc·`i, br
′
i, time, term, block ` com : `?i , pc·`i, br

′
i,Γ
′′
i , time ′′i , term ′′i , block ′′i 0 ≤ i ≤ n

Γ ′0 = Γ , Γ ′i+1 = Γ ′′i t Γ , Γ ′n+1 = Γ ′n

time ′i = time ′′1 t . . . t time ′′i time ′n+1 = time ′n

term ′i = term ′′1 t . . . t term ′′i t `i t pc, term ′n+1 = term ′n

block ′i =

{
block t block ′′1 t . . . t block ′′i if lmdst .mayread(e)

block t block ′′1 t . . . t block ′′i t term t time t (tpc) otherwise

block ′n+1 = block ′n

Γ , lmdst, pc, br , time, term, block ` while e do com od : `n, pc, br ,Γ ′n, time ′n, term ′n, block ′n

Fig. 11. Flow-sensitive (timing/control-sensitive) static analysis of the termination and typing environments bounds (part 2)

STATIC-STOP

Γ , lmdst, pc, br , time, term, block ` stop : ⊥, pc, br ,Γ , time, term, block

STATIC-JOIN
Γ ′′ = λy ∈ pre(Γ ) . Γ (y) t Γ ′(y)

Γ , lmdst, pc·`, br ·(time ′, term ′, block ′,Γ ′), time, term, block ` join : ⊥, pc, br ,Γ ′′, timettime ′t`, termtterm ′, blocktblock ′

STATIC-MORE

com ∈ S br = br
′·(time?, term?, block?,Γ ?) pc = pc′·`?

∀x ∈ e. x ∈ NonFloatVar `0 = Γ 〈e〉 t time `i+1 = Γ ′i 〈e〉 t `i `i 6= ⊥ br
′
i = br

′·(timei, termi, block i,Γi)

Γ ′i , lmdst, pc′·`i, br
′
i, time, term, block ` com : `?i , pc′·`i, br

′
i,Γ
′′
i , time ′′i , term ′′i , block ′′i 0 ≤ i ≤ n

Γ ′0 = Γ , Γ ′i+1 = Γ ′′i t Γ Γ ′n+1 = Γ ′n

time ′i = time ′′1 t . . . t time ′′i time ′n+1 = time ′n

term ′i = term ′′1 t . . . t term ′′i t `i t pc term ′n+1 = term ′n

block ′i =

{
block t block ′′1 t . . . t block ′′i if lmdst .mayread(e)

block t block ′′1 t . . . t block ′′i t term t time t (tpc) otherwise

block ′n+1 = block ′n
Γ ′n v Γ ? time ′n v time? term ′n v term? block ′n v block?

Γ , lmdst, pc, br , time, term, block ` more e do com od : ⊥, pc′, br
′
,Γ ?, time?, term?, block?

Fig. 12. Extension of flow-sensitive (timing/control-sensitive) static analysis to intermediate commands

2) If com is while e do com od such that ∀x ∈ e. x ∈ NonFloatVar and (tpc) t Γ 〈e〉 t time = ⊥ then return tuple
(⊥,⊥,⊥,⊥,Γ ).

3) If none of the above applies, then return (`sb, timesb, termsb, block sb,Γsb) such that Γ , lmdst, pc, ε, time, term, block `
com : `sb, pc, ε,Γsb, timesb, termsb, block sb

Note that the static bounds oracle is a partial function: it may not return any result, which would cause the local monitor to
block.

The static bounds operator is sound, in that it returns a conservative approximation for its arguments. We sketch the proof of
this claim below.

Definition 9 (Well-formedness of typing environments with respect to mode states). Given Γ and lmdst, say that Γ is
well-formed w.r.t. lmdst, written lmdst ok Γ , if

1) For all variables x, lmdst . othersmightread(x) =⇒ Γ 〈x〉 v L(x)
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2) For all variables x, lmdst . othersmightwrite(x) =⇒ L(x) v Γ 〈x〉

Lemma 9 (Local properties of static bounds). Given Γ , lmdst, pc, br , time, term, block such that
1) term v time
2) lmdst ok Γ
3) Γ , lmdst, pc, br , time, term, block ` com : `sb,Γsb, timesb, termsb, block sb

then it holds that
1) termsb v timesb

2) lmdst ok Γsb

Proof: Straightforward induction on the typing derivation.

Lemma 10 (Monotonicity of branching environments). For all com, Γ , lmdst, pc, br , time , term , block , and br
′

it holds that

Γ , lmdst, pc, br , time, term, block ` com : `sb, pcsb, br sb,Γsb, timesb, termsb, block sb

then br sb is a prefix of br .

Proof: By induction on the typing derivation.

Lemma 11 (Irrelevance of branching environments for surface commands). For all com ∈ S, such that, and all Γ , lmdst, pc,
br , time , term , block , and br

′
it holds that

Γ , lmdst, pc, br , time, term, block ` com : `sb, pcsb, br ,Γsb, timesb, termsb, block sb

then
Γ , lmdst, pc, br

′
, time, term, block ` com : `sb, pcsb, br

′
,Γsb, timesb, termsb, block sb

Proof: By induction on the typing derivation using Lemma 10.

Lemma 12 (Static bound typing rules are deterministic). For all com, Γ , lmdst, pc, br , time , term , block , and br
′

such that

Γ , lmdst, pc, br , time, term, block ` com : `sb, pcsb, br ,Γsb, timesb, termsb, block sb

and
Γ , lmdst, pc, br , time, term, block ` com : `′sb, pc′sb, br

′
,Γ ′sb, time ′sb, term ′sb, block ′sb

it holds that
1) `sb = `′sb
2) pcsb = pc′sb
3) br sb = br

′
sb

4) Γsb = Γ ′sb
5) timesb = time ′sb
6) termsb = term ′sb
7) block sb = block ′sb

Proof: By induction on the typing derivation.

Lemma 13 (Monotonicity of typing for surface commands). Given a com ∈ S, Γ , lmdst, pc·`, br , time , term , block and Γ ′,
lmdst′, pc·`′, br , time , term ′, block ′ such that

1) lmdst ok Γ
2) lmdst ok Γ ′

3) Γ , lmdst, pc·`, br , time, term, block ` com : `sb, pcsb, br ,Γsb, timesb, termsb, block sb

4) time ′ v time
5) term ′ v term
6) block ′ v block
7) ∀x ∈ Var . Γ ′〈x〉 v Γ 〈x〉
8) `′ v `

then there are Γ ′sb, lmdst
′
sb, pcsb·`′, time ′sb, term ′sb, block ′sb such that

1) Γ ′, lmdst′, pc′, br , time ′, term ′, block ′ ` com : `′sb, pc′sb, br ,Γ ′sb, time ′sb, term ′sb, block ′sb
2) time ′sb v timesb

3) term ′sb v termsb
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4) block ′sb v block sb

5) ∀x ∈ Var . Γ ′sb〈x〉 v Γsb〈x〉
Proof: By induction on the typing derivation.

Lemma 14 (Preservation of static bounds). Given pool ∈ PSt , i ∈ pre(pool), σ ∈ Σ, mem ∈ Mem , τ ∈ Tr , gmon ∈ GMon ,
and pool′ ∈ PSt , mem′ ∈ Mem , τ ′ ∈ Tr , gmon ′ ∈ GMon and Γ ′, lmdst′, pc′, br

′
, time ′, term ′, and block ′ such that

1) pool(i) = [com,mc,mdst] where mc = 〈Γ , lmdst, pc, br , time, term, block〉
2) 〈〈pool,mem, τ, gmon〉〉�σ 〈〈pool′,mem′, τ ′, gmon ′〉〉
3) pool′(i) = [com′,mc′,mdst′] where mc′ = 〈Γ ′, lmdst′, pc′, br

′
, time ′, term ′, block ′〉

4) Γ , lmdst, pc, br , time, term, block ` com : `sb, pcsb, br sb,Γsb, timesb, termsb, block sb

5) com does not satisfy conditions (1) and (2) in Definition 8.
then

1) Γ ′, lmdst′, pc′, br
′
, time ′, term ′, block ′ ` com′ : `′sb, pc′sb, br

′
sb,Γ

′
sb, time ′sb, term ′sb, block ′sb

2) time ′sb = timesb

3) term ′sb = termsb

4) block ′sb = block sb

5) Γ ′sb = Γsb

Proof: There are two possible inference rules that allow a global configuration to take a step. In one of them, all local
configurations take a synchronization step. This does not satisfy assumptions of our Lemma, because barrier command cannot
be typed according to the rules of Figures 10 and 11. Consider the other inference rule that allows the global configuration
to take a step. There are two sub-cases here. In one of the sub-cases, the step is taken by some thread j 6= i, and therefore,
pool(i) = pool′(i); then we are done trivially. In the other sub-case, the i-th configuration takes a step:

〈pool(i),mem, τ〉 ε,γ,ε−→σ 〈pool′(i),mem′, τ ′〉

Consider the local configuration step and an associated local monitor step.

(com,mem, τ)
α,ε
_σ (com′,mem′, τ ′)

and
〈Γ , lmdst, pc, br , time, term, block〉 −→δ,α

perm 〈Γ ′, lmdst
′, pc′, br

′
, time ′, term ′, block ′〉

We proceed by induction on the typing derivation

Γ , lmdst, pc, br , time, term, block ` com : `sb, pcsb, br sb,Γsb, timesb, termsb, block sb

Case Static-Skip In this case, it must be that com′ = stop; the corresponding local monitor transition rule is (M-Skip); then
we are done by inspecting rule (Static-Stop).

Case Static-Assign We have that com′ = stop. There are two possible local monitor transition rules: (M-Assign1) and
(M-Assign2). In both cases, we observe that it holds that time ′ = time, term ′ = term, and block ′ = block . Moreover,
the environment Γ ′ is obtained by updating Γ in both of the rules exactly as it is updated in (Static-Assign), namely by
using ` = Γ 〈e〉ttimet(tpc)ttermtblock . Then we are done by inspecting the rule (Static-Stop).

Case Static-Input Similar to (Static-Assign).
Case Static-Output Similar to (Static-Assign), but we only have one matching monitor rule.
Case Static-Seq By induction hypothesis.
Case Static-Branch Assume we take branch i (i = 1,2). In this case com′ = comi; join. We have that α = b(e, com1, com2)

and the only matching monitor rule is (M-Branch). We have

〈Γ , lmdst, pc, br , time, term, block〉 −→δ,b(e,com1,com2)
perm 〈Γ , lmdst, pc·`∗, br ·(time∗, term∗, block∗,Γ ∗), time, term, block〉

and

Γ , lmdst, pc, br , time, term, block ` if e then com1 else com2 fi : `sb, pcsb, br sb,Γsb, timesb, termsb, block sb

In this case, *-annotated environments are obtained from running the static oracle

SB(if e then com1 else com2 fi,Γ , lmdst, pc, time, term, block)

By Definition 8, we have three possible cases
1) (tpc) t Γ 〈e〉 t time = ⊥. This contradicts condition (5) of our Lemma.
2) Does not match our command.
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3) This is the only applicable case. We consider it below. In this case, by Definition 8 (Static bounds operator), it must be
that

Γ , lmdst, pc, ε, time, term, block ` if e then com1 else com2 fi : `∗, pc, ε,Γ ∗, time∗, term∗, block∗

By Lemma 11 (Irrelevance of branching environments for surface commands), we have that

Γ , lmdst, pc, br , time, term, block ` if e then com1 else com2 fi : `∗, pc, br ,Γ ∗, time∗, term∗, block∗

By Lemma 12 (Static bound typing rules are deterministic), we have that
• `sb = `∗

• pcsb = pc∗

• br sb = br
∗

• Γsb = Γ ∗

• timesb = time∗

• termsb = term∗

• block sb = block∗

By examining the rule (Static-Branch) we have that

Γ , lmdst, pc·`, br ·(timei, termi, block i,Γi), time, term, block ′ ` comi :

`i, pc·`, br ·(timei, termi, block i,Γi),Γi, timei, termi, block i

where for all y ∈ pre(Γ) it holds that Γi(y) v Γ ∗, timei v time∗, termi v term∗, and block i v block i. By Lemma 11
(Irrelevance of branching environments for surface commands) we have that

Γ , lmdst, pc·`, br ·(time∗, term∗, block∗,Γ ∗), time, term, block ′ ` comi :

`i, pc·`, br ·(time∗, term∗, block∗,Γ ∗),Γi, timei, termi, block i

From the typing rules (Static-Join) and (Static-Seq), we obtain that

Γ , lmdst, pc·`, br ·(time∗, term∗, block∗,Γ ∗), time, term, block ′ ` comi; join : `i, pc, br ,Γ ∗, time∗, term∗, block∗

This concludes this case.
Case Static-Stop Not applicable, because there are no semantic transitions from stop.
Case Static-Join Immediate from the typing rule.
Case Static-Loop-Algorithmic We have that com = while e do c od, in this case com′ = more e do c od, and the only

matching monitoring rule is (M-Enter). That is,

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,enter(e,com)
perm

〈Γ , lmdst, pc·`∗, br ·(time∗, term∗, block∗,Γ ∗), time, term, block〉

and
Γ , lmdst, pc, br , time, term, block ` while e do c od : `sb, pcsb, br sb,Γsb, timesb, termsb, block sb

where *-environments are obtained from running the static bounds oracle:

(`∗, time∗, term∗, block∗,Γ ∗) = SB(while e do c od,Γ , lmdst, pc, time, term, block)

By Definition 8 (Static bounds operator), it must be that

Γ , lmdst, pc, br , time, term, block ` while e do c od : `∗, pc, br ,Γ ∗, time∗, term∗, block∗

By Lemma 12 (Static bound typing rules are deterministic), we have that
• `sb = `∗

• pcsb = pc∗

• br sb = br
∗

• Γsb = Γ ∗

• timesb = time∗

• termsb = term∗

• block sb = block∗
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Then we are done by matching the premises of the rule (Static-More) with the premises of the rule (Static-Loop).
Case Static-More We have that com = more e do c od. There are two possible semantic and monitor transitions.

1) (M-More). In this case we continue executing the loop. In this case, com′ = c; more e do c od.

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,more(e,com)
perm 〈Γ , lmdst, pc, br , time, term, block〉

and
Γ , lmdst, pc, br , time, term, block ` more e do c od : `sb, pcsb, br sb,Γsb, timesb, termsb, block sb

For clarity, we fold the reasoning about the timing, termination, and blocking environments below, into the reasoning
about the typing environment. We have that there is an n such that

Γ . . . ` c : . . .Γ ′′0 . . .

Γ ′′0 t Γ . . . ` c : . . .Γ ′′1 . . .

Γ ′′1 t Γ . . . ` c : . . .Γ ′′2 . . .

. . .

Γ ′′n−1 t Γ . . . ` c : . . .Γ ′′n . . .

Γ ′′n t Γ . . . ` c : . . .Γ ′′n+1 . . .

where Γ ′′n−1 t Γ = Γ ′′n t Γ and Γ ′′n t Γ v Γsb, where Γsb is the typing environment on the top of the branching
environment stack br . Note also that, by Lemma 13 (Monotonicity of typing for surface commands), it holds that
Γ ′′i v Γ ′′i+1, for 0 ≤ i ≤ n− 1, and by Lemma 12 (Static bound typing rules are deterministic), Γ ′′n = Γ ′′n+1.

Consider command c; more e do c od. Because c ∈ S, it does not change the branching or pc environments. By
Lemma 12 (Static bound typing rules are deterministic), we have that

Γ , lmdst, pc, br , time, term, block ` c : `′′0 , pc, br ,Γ ′′0 , term ′′0 , term ′′0 , block ′′0

We want to show that

Γ ′′0 , lmdst, pc, br , time ′′0 , term ′′0 , block ′′0 ` more e do c od : `sb, pcsb, br sb,Γsb, timesb, termsb, block sb

Using Lemma 13 (Monotonicity of typing for surface commands) we have:

Γ ′′0 t Γ . . . ` c : . . .Γ ′′1 . . . =⇒ Γ ′′0 . . . ` c : . . .∆′′0 . . . such that ∆′′0 v Γ ′′1

From this, using that Γ ′′0 v Γ ′′1 , we obtain that

Γ ′′1 t Γ . . . ` c : . . .Γ ′′2 . . . =⇒ ∆′′0 t Γ ′′0 . . . ` c : . . .∆′′1 . . . such that ∆′′1 v Γ ′′2

Subsequently, for all i ≥ 1, we have

Γ ′′i t Γ . . . ` c : . . .Γ ′′i+1 . . . =⇒ ∆′′i−1 t Γ ′′0 . . . ` c : . . .∆′′i . . . such that ∆′′i v Γ ′′i+1

We observe that the sequence ∆′′0 ,∆
′′
1 , . . . ,∆

′′
i , . . . is monotonically increasing, and is bound from above by Γ ′′n .

Then, there must exist k such that ∆′′k = ∆′′k+1, and correspondingly, it must be that

Γ ′′0 . . . ` c : . . .∆′′0 . . .

∆′′0 t Γ ′′0 . . . ` c : . . .∆′′1 . . .

. . .

∆′′k−1 t Γ ′′0 . . . ` c : . . .∆′′k . . .

∆′′k t Γ ′′0 . . . ` c : . . .∆′′k+1 . . .

where ∆′′k−1 t Γ ′′0 = ∆′′k t Γ ′′0 . Moreover, from ∆′′k v Γ ′′n and Γ ′′0 v Γ ′′n , we obtain that and ∆′′k t Γ ′′0 v Γ ′′n . Hence,
∆′′k t Γ ′′0 v Γsb. The same reasoning follows for the timing, termination, and branching environments. This shows that
we satisfy all the premises of (Static-More). Then we are done by (Static-Seq).

2) (M-Leave). In this case, we leave the loop, and com′ = stop. Then we are done by inspecting the rule (Static-Stop).
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Lemma 15. Given pool ∈ PSt , i ∈ pre(pool), σ ∈ Σ, mem ∈ Mem , τ ∈ Tr , gmon ∈ GMon , and pool′ ∈ PSt ,
mem′ ∈ Mem , τ ′ ∈ Tr , gmon ′ ∈ GMon and Γ ′, lmdst′, pc′, br

′
, time ′, term ′, and block ′ such that

• pool(i) = [com,mc,mdst] where mc = 〈Γ , lmdst, pc, br , time, term, block〉
• 〈〈pool,mem, τ, gmon〉〉�∗σ 〈〈pool

′,mem′, τ ′, gmon ′〉〉
• pool′(i) = [stop, 〈Γ ′, lmdst′, pc′, br

′
, time ′, term ′, block ′〉,mdst′]

• Γ , lmdst, pc, br , time, term, block ` com : `sb,Γsb, timesb, termsb, block sb

we have:
• Either `sb = ⊥ or ( time ′ v timesb and term ′ v termsb and block ′ v block sb and pre(Γ ′) = pre(Γsb) and ∀x ∈

Var . Γ ′〈x〉 v Γsb〈x〉)

Proof: By induction on the number of local steps. Base cases include all the transitions where the final configuration is
reached in one step, and the result of the lemma is obtained by analyzing the associated monitor transitions. For the inductive
cases, we use Lemma 14 to relate the static bounds of the given command with the bounds obtained through the induction
hypothesis.

Lemma 16. Given com = while e do com1 od, pool ∈ PSt , i ∈ pre(pool), σ ∈ Σ, mem ∈ Mem , τ ∈ Tr , gmon ∈ GMon ,
and pool′ ∈ PSt , mem′ ∈ Mem , τ ′ ∈ Tr , gmon ′ ∈ GMon , and Γ ′, lmdst′, pc′, br

′
, time ′, term ′, and block ′ such that

• pool(i) = [while e do com1 od,mc,mdst] where mc = 〈Γ , lmdst, pc, br , time, term, block〉
• 〈〈pool,mem, τ, gmon〉〉�∗σ 〈〈pool

′,mem′, τ ′, gmon ′〉〉
• pool′(i) = [more e do com1 od, 〈Γ ′, lmdst′, pc′, br

′
, time ′, term ′, block ′〉,mdst′]

• Γ , lmdst, pc, br , time, term, block ` com : `sb,Γsb, timesb, termsb, block sb

we have all of the following:
• Γ ′〈e〉 t time ′ v `sb.
• Either `sb = ⊥ or ( time ′ v timesb and term ′ v termsb and block ′ v block sb and pre(Γ ′) = pre(Γsb) and ∀x ∈

Var . Γ ′〈x〉 v Γsb〈x〉)

Proof: By induction on the number of local steps using Lemma 14, similar to Lemma 15.

Lemma 17. Given pool ∈ PSt , i ∈ pre(pool), σ ∈ Σ, mem ∈ Mem , τ ∈ Tr , gmon ∈ GMon such that
• Γ , lmdst, pc, br , time, term, block ` com : `sb,Γsb, timesb, termsb, block sb

• pool(i) = [com,mc,mdst] where mc = 〈Γ , lmdst, pc, br , time, term, block〉
• execution of pool(i) diverges.
• com ∈ S

we have:
• (tpc) v termsb.

Proof: By induction on the typing derivation.

Lemma 18. Given pool ∈ PSt , i ∈ pre(pool), σ ∈ Σ, mem ∈ Mem , τ ∈ Tr , gmon ∈ GMon such that
• Γ , lmdst, pc, br , time, term, block ` com : `sb,Γsb, timesb, termsb, block sb

• pool(i) = [com,mc,mdst] where mc = 〈Γ , lmdst, pc, br , time, term, block〉
• execution of pool(i) blocks.
• com ∈ S

we have:
• (tpc) v block sb.

Proof: By induction on the typing derivation.

Lemma 19. Given pool ∈ PSt , i ∈ pre(pool), σ ∈ Σ, mem ∈ Mem , τ ∈ Tr , gmon ∈ GMon such that
• Γ , lmdst, pc, br , time, term, block ` com : `sb,Γsb, timesb, termsb, block sb

• pool(i) = [com,mc,mdst] where mc = 〈Γ , lmdst, pc, br , time, term, block〉
• execution of pool(i) may fail to terminate normally because either pool(i) diverges or the monitor for pool(i) blocks
we have:
• `sb v termsb or `sb v block sb

Proof: We consider possible divergence and blocking behaviors separately.
Execution of com diverges. We proceed by induction on the typing derivation

Γ , lmdst, pc, br , time, term, block ` com : `sb,Γsb, timesb, termsb, block sb
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Cases (Static-Skip, Static-Assign, Static-Input, Static-Output, Static-Seq, Static-Stop, Static-Join, Static-More). In
all of these cases, `sb = ⊥, and we are done trivially.

Case (Static-Branch) Follows from Lemma 17, because `sb is pushed on the pc-stack when typing either branches.
Case (Static-Loop-Algorithmic) Immediate from the typing rule.

Execution of com is blocked by the monitor. Similar to the previous case, using Lemma 18.

Theorem 14 (Soundness of static bounds function). Given program com, environment Γ , mode state lmdst, program counter
stack pc, and levels time, term and block , if SB(com,Γ , lmdst, pc, time, term, block) = (`sb, timesb, termsb, block sb,Γsb)
then (`sb, timesb, termsb, block sb,Γsb) is a conservative approximation of the timing, termination, blocking, and floating behavior
for com, Γ , lmdst, pc, br , time , term , and block .

Proof: We proceed by analyzing the cases in Definition 8.
1) com is if e then com1 else com2 fi such that (tpc)tΓ 〈e〉 t time = ⊥. We have that `sb = ⊥, timesb = ⊥, termsb = ⊥,

block sb = ⊥, and Γsb = Γ .
We examine all of the requirements imposed by Definition 2. Requirement (1) is trivial. Requirements (2) and (3) follow
by assumption. Requirements (4) - (6) are trivial. Requirement (7) follows from the assumption in the current case.
Requirement (8) is not applicable.

2) com is while e do com od such that ∀x ∈ e. x ∈ NonFloatVar and (tpc) t Γ 〈e〉 t time = ⊥.
Similar to the above, with the only difference that Requirement (7) is not applicable, and Requirement (8) follows from
the assumption in the current case.

3) None of the above applies. We examine all of the requirements imposed by Definition 2.
• Requirements (1) – (3) follow from Definition 8 and Lemma 9.
• Requirements (4) and (8) follow from Lemma 15 and 16 respectively.
• Requirement (5) follows from Lemma 19.
• Requirement (6) follows from analysis of the rules in Figures 10–12, and observing that they contain no judgment for

the barrier command.
• Requirement (7) is straightforward by analyzing rule (Static-Branch).
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