Static Analysis of
Accessed Regions In
Recursive Data Structures

Stephen Chong
Radu Rugina

Cornell University

What This Talk 1s About

m Problem: Precise characterization of regions accessed
by statements and procedures
m For recursive programs with destructive updates

m Fine-grained notion of regions: substructures within
recursive data structures.

e E.g. sublists within lists, sub trees within trees
m How we do iIt:

m Context sensitive interprocedural analysis algorithm
m Precise shape information
m Region access information

m Uses:
m Parallelization, Program Understanding, Correctness

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example

m Sorts a sublist in place (i.e. with
destructive updates)

v —p o—>5 e o8 oG >3 | o>

first last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example

m Sorts a sublist in place (i.e. with
destructive updates)

v —p o5 e 8 g >3 (e o>

I Sort these elements I

first last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example

m Chooses a pivot value
m Partitions list into sublists destructively

v —p o5 e 8 g >3 (e o>
I Sort these elements I
first last
—> >3 > e—=>F > ea>g (o> *~—>
first last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

first last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

v —p o—>5 e o8 oG >3 | o>
first mid last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

—» o—>5 e o8 oG >3 | o>
first mid prev crt last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

—» o—>5 e o8 oG >3 | o>
first mid prev crt last

mid.val > crt.val ? Yes!

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

2 °

con —p ° 5 ° I 8 0——»6 0——»3 o> o -

A |

first mid prev last

mid.val > crt.val ? Yes!

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

2 °
con —p ° 5 ° 8 0——»6 0——»3 o> o -
IR |
first mid prev last

mid.val > crt.val ? Yes!

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

v —p o> o5 e 8 g >3 (e o>
first crt mid prev last

mid.val > crt.val ? Yes!

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

—» o> o5 e 8 g >3 (e o>
first mid prev crt last

crt = prev->next

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

—» o> o5 e 8 g >3 (e o>
first mid prev crt last

mid.val > crt.val ? No!

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

v —p o> o5 e 8 g >3 (e o>
first mid prev crt last

crt = prev->next

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

| | |

first mid last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Recursing

| | |

first mid last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Accessed Regions

v —p o> >3 o5 g > (e o>

I Modified these locations I

first last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Accessed Regions

v —p o> >3 o5 g > (e o>
I Modified these locations I
first last
e o2 >3 5 >G5 e>8 e *—p
Recursive call modified Recursive call modified
these locations these locations

first mid last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
IT (crt == last) return;

while (crt I= last) {
iIT (crt->val > mid->val) {
prev = crt;
} else {
prev->next = crt->next;
crt->next = First->next;
first->next = crt;

}

crt = prev->next;

}
quicksort(first, mid);

quicksort(mid, last);
¥ Static Analysis of Accessed Regions

Quicksort Example

void quicksort(list *first, list *last) {

list *mid, *crt, *prev;
mid = prev = first->next;
iIf (mid == last) return;
crt = prev->next;

IT (crt == last) return;

while (crt I= last) {
iIT (crt->val > mid->val) {
prev = crt;
} else {
prev->next = crt->next;
crt->next = First->next;
first->next = crt;

}

crt = prev->next;
}
quicksort(first, mid);
quicksort(mid, last);

}

Base cases

Static Analysis of Accessed Regions

Quicksort Example

void quicksort(list *first, list *last) {

list *mid, *crt, *prev;
mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
IT (crt == last) return;

while (crt I= last) {
iIT (crt->val > mid->val) {
prev = crt;
} else {
prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}

crt = prev->next;

1

quicksort(first, mid);
quicksort(mid, last);
}

List partitioning

Static Analysis of Accessed Regions

Quicksort Example

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
IT (crt == last) return;

while (crt I= last) {
iIT (crt->val > mid->val) {
prev = crt;
} else {
prev->next = crt->next;
crt->next = First->next;
first->next = crt;

}
crt = prev->next;
}
quicksort(first, mid); Recursive calls

quicksort(mid, last);
.
}' Static Analysis of Accessed Regions

Quicksort Example

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;

Goal: Automatically

iIT (mid == last) return; _
crt = prev->next; determine that the
It (crt == last) return; procedure accesses only

while (crt 1= last) { the sublist between first

if (crt->val > mid->val) { and last.
prev = crt;
} else {
prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}

crt = prev->next;

}
quicksort(first, mid);

quicksort(mid, last);

¥ Static Analysis of Accessed Regions

Quicksort Example: Abstraction

.void quicksort(list *first, list *last) {

list *mid, *crt, *prev;
mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
IT (crt == last) return;

while (crt I= last) {
iIT (crt->val > mid->val) {
prev = crt;
} else {
prev->next = crt->next;
crt->next = First->next;
first->next = crt;

}

crt = prev->next;
}
quicksort(first, mid);
quicksort(mid, last);

}

3%

first last

Static Analysis of Accessed Regions

Quicksort Example: Abstraction

.void quicksort(list *first, list *last) {

list *mid, *crt, *prev; a 17\
mid = prev = first->next;
iIT (mid == last) return;

crt = prev->next;
iIf (crt == last) return; first last

while (crt I= last) {
iIT (crt->val > mid->val) {

prev = crt; o S A S S e N
} else { T
prev->next = crt->next; T
crt->next = first->next; first last
first->next = crt;
}
crt = prev->next;

}
quicksort(first, mid);

quicksort(mid, last);
+ Static Analysis of Accessed Regions

Quicksort Example: Abstraction

list *last) {

.void quicksort(list *first,

}

list *mid, *crt, *prev;
mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
iIT (crt == last) return;

while (crt I= last) {
iIT (crt->val > mid->val) {
prev = crt;
} else {
prev->next = crt->next;
crt->next = First->next;
first->next = crt;

}

crt = prev->next;

}
quicksort(first, mid);

quicksort(mid, last);

/@'_>l©;\
1 1
first last

Effects: Reads: a
Writes: a

Static Analysis of Accessed Regions

Quicksort Example: Abstraction

void quicksort(list *first,
list *mid, *crt, *prev;
mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
IT (crt == last) return;

while (crt I= last) {

list *last) {

iIT (crt->val > mid->val) {

prev = crt;

I’ } else {

prev->next = crt->next;
crt->next = First->next;

First->next = crt;

}

crt = prev->next;
}
quicksort(first, mid);
quicksort(mid, last);

}

Static Analysis of Accessed Regions

Quicksort Example: Abstraction

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;

7\ 7\ 7\ 7\
mid = prev = first->next;
it et e (2 e aa o)

Crt = prev->next;

iIT (crt == last) return; _ _
first mid prev crt last
while (crt != last) { an a a
iIT (crt->val > mid->val) {
prev = crt;
. } else {
prev->next = crt->next; _ _
crt->next = first->next; first mid crt last
first->next = crt; prev
}
crt = prev->next;

}
quicksort(first, mid);

quicksort(mid, last);
+ Static Analysis of Accessed Regions

Quicksort Example: Abstraction

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;

7\ 7\ 7\ 7\
mid = prev = first->next;
s i et (2 sa (e el !

Crt = prev->next;

IT (crt == last) return;
first mid prev crt last
while (crt = last) { an a a
iIT (crt->val > mid->val) {
prev = crt;
¥} else {
. prev->next = crt->next;
crt->next = First->next; first mid crt last
first->next = crt; prev
irt = prev->next; 0 g I g N g I I g O . IO

} I T 1

quicksort(first, mid);

quicksort(mid, last); first g?('eo\'/ crt last
+ Static Analysis of Accessed Regions

Quicksort Example: Abstraction

void quicksort(list *first, list *last) {
list *mid, *crt, *prev; N - R R
mid = prev = first->next;
iIT (mid == last) return; e e e e G
Crt = prev->next; T T
IT (crt == last) return;

first mid prev crt last
while (crt = last) { an a a
iIT (crt->val > mid->val) {
prev = crt;
. } else {
prev->next = crt->next; _ _
crt->next = First->next; first mid crt last
first->next = crt; prev
} Reads: a
crt = prev->next; - .
P Writes: a

}
quicksort(first, mid);

quicksort(mid, last);
+ Static Analysis of Accessed Regions

Detalls of the Analysis

Outline of the Analysis

m Abstraction

m Intraprocedural Analysis
m Shape Analysis
= Region Analysis

m Interprocedural Analysis

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction

m A heap is:
® an (unbounded) number of locations
m Each location may have at most one out-
going pointer
m Stack pointers point to heap locations
m Need a finite abstraction for heaps
m Uses summary nodes to denote regions
m Based on reachability from stack pointers

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

W —> P { &
oD o> o o> L o

: s
y z

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

W —> P { &
(o o> o o> L o

: s
y z

X

m Root locations are immediately pointed
to by stack pointers

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

o) o) = o) L P

: Na
y Z

X

m A location h is owned by a set of stack
pointers S, If all paths from a stack
pointer to the location h must go
through the root of S

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

m A location h is owned by a set of stack
pointers S, If all paths from a stack
pointer to the location h must go
through the root of S

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

m A location h is owned by a set of stack
pointers S, If all paths from a stack
pointer to the location h must go
through the root of S

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

m A location h is owned by a set of stack
pointers S, If all paths from a stack
pointer to the location h must go
through the root of S

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

Concrete Heap:

Abstract Heap: 4'6\

X
SAS'03 - June 2003 Static Analysis of Accessed Regions

Intraprocedural Shape Analysis

Intraprocedural Shape Analysis

m Shape Analysis is formulated as a dataflow
analysis
m Set of shape graphs computed for each program
point
m A shape graph is a tuple (N, E, C), where:
m N: set of summary nodes
m EI N'N® {0%1}: edges with reachability info
m Cl N® {01} : cyclicity info for nodes

m Transfer functions defined for
x=malloc(), Xx=y->next , X=NULL,
X->next=y , X->next=NULL, x=y

m Merge operation defined for shape graphs

SAS'03 - June 2003 Static Analysis of Accessed Regions

Merge Operation
m (N,E;,C)U (N, E,, C,) = (N, E,C) where:

m N= N, UN,
B E(xY) = E(%Y) U Ex(x,y) ifxyT NpNN,
= C(X) = C,(X) L, C,(X) if xI N,NN,

m | ;IS the merge operation for logic values:

LI, o || 1

Yo

0 0 | 12 | 1% /\

o liz | 2 | V2 o 1
1122 | 1

SAS'03 - June 2003 Static Analysis of Accessed Regions

Materialization and Summarization

m Standard shape analysis techniques
[Sagiv et al., POPL’96]

m Materialization: creating a new
summary node from a summary node
m a result of traversing a self-edge
m E.g. y=X->next

® Summarization: combining summary
nodes together
m a result of nullifying a stack pointer
m E.g. x=NULL

SAS'03 - June 2003 Static Analysis of Accessed Regions

Materialization

a y = x->next a
I T
X X y

SAS'03 - June 2003 Static Analysis of Accessed Regions

Summarization

X = NULL
el P P
f f f ! f

y X t

) T

SAS'03 - June 2003 Static Analysis of Accessed Regions

Summarization

m Harder case:

x = NuLL Y

i .

SAS'03 - June 2003 Static Analysis of Accessed Regions

Summarization

m Even harder case:

Y X = NULL y*@/ \\\
p 1l
Yoa b G R

SAS'03 - June 2003 Static Analysis of Accessed Regions

Intraprocedural Region Analysis

Regions

m Extend shape abstraction to analyze which
regions a procedure accesses.

m Summarize effects of procedures and express
results in terms of regions

m Problem: summary nodes may represent
different heap locations at different program
points
= A heap location may be owned by different stack

pointers at different program points

SAS'03 - June 2003 Static Analysis of Accessed Regions

Regions: Problem

./ \\ ./ \\
o> o> o> o> ° \’\ '; @
! ! T T
X y

SAS'03 - June 2003 Static Analysis of Accessed Regions

Regions: Problem

./ \\ ./ \\
o> o> o> o> ° \’\ '; @
! ! T T
X y

y = y->next

SAS'03 - June 2003 Static Analysis of Accessed Regions

Regions: Problem

T o T N @’b

P o
y = y->next B B

T e T S @’b

| y o

SAS'03 - June 2003 Static Analysis of Accessed Regions

Regions: Problem

T o T e ©_>©

C] ro
y = y->next B B

T e T S ©_>®

| y o

SAS'03 - June 2003 Static Analysis of Accessed Regions

Regions: Problem

! o ! e ©_>©

L] o
y = y->next B B

! e ! T ©_>®

| y i

SAS'03 - June 2003 Static Analysis of Accessed Regions

Regions: Solution

m Use labels on summary nodes to
Indicate the regions they represent

o>

._

_>

._

_>

._

La

!

X

y = y->next

o>

._

X

SAS'O3 - June 2003

3
l

| H?t ax H@ 3

3
l

Static Analysis of Accessed Regions

Region Analysis

m Fresh region labels are assigned at the
start of a procedure, and used
throughout the analysis of procedure
=Region labels on shape graphs refer to

regions at the beginning of the procedure

m Transfer functions defined for region

labels

m Interesting cases are materialization and
summarization

SAS'03 - June 2003 Static Analysis of Accessed Regions

Region Analysis

m Materialization

7 y = X->next
X - -
B Summarization
X = NULL
Y X

SAS'O3 - June 2003

o8

><—>

7N\
i

T
y

Static Analysis of Accessed Regions

Region Accesses

m Can use the region information to track which
regions are read and written by a procedure

= \Write regions:
e xX->next=NULL, X->next=y
e Add the region(s) for the x node to the write set

m Read regions:
e y=X->next
e Add the region(s) for x node to the read set

mE_Q.

N\ N\

y =pX->next
I:) Read: b

Z X

SAS'03 - June 2003 Static Analysis of Accessed Regions

Formal Treatment

m Transfer functions defined for all
statements (including materialization
and summarization cases)

m Theoretical results:

m Termination

e Transfer functions monotonic over a finite
height lattice

m Soundness

e Transfer functions sound with respect to our
abstraction function

SAS'03 - June 2003 Static Analysis of Accessed Regions

Interprocedural Analysis

Interprocedural Analysis

m Performs context-sensitive
Interprocedural analysis

m Can handle recursive procedures

m At each call site:

1. Map current analysis information into
name space of invoked procedure

2. Analyze procedure for the calling context
3. Unmap results

SAS'03 - June 2003 Static Analysis of Accessed Regions

Example

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;

/7y a0 17\
iIT (mid == last) return;
crt = prev->next; @-}@—}@—}@
r ! !

IT (crt == last) return;
while (crt I= last) { first mid prev last
iIT (crt->val > mid->val) { crt
prev = crt;
} else {

prev->next = crt->next;
crt->next = First->next;
First->next = crt;

}

crt = prev->next;

s
quicksort(first, mid);

quicksort(mid, last);
¥ Static Analysis of Accessed Regions

Example: Mapping

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;

’7\ a0 1\
iIT (mid == last) return;
crt = prev->next; @-}@—}@—}@
r ! !

IT (crt == last) return;
while (crt I= last) { first mid prev last
iIT (crt->val > mid->val) { first last crt
prev = crt;
} else {

prev->next = crt->next;
crt->next = First->next;
First->next = crt;

}

crt = prev->next;

s
quicksort(first, mid);

quicksort(mid, last);
¥ Static Analysis of Accessed Regions

Example: Mapping

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;

! _ /7y a 17\
iIT (mid == last) return;
crt = prev->next; @—}

IT (crt == last) return;

while (crt = last) {
if (crt->val > mid->val) { first last
prev = crt;
¥} else {
prev->next = crt->next;
crt->next = First->next;
First->next = crt;

}

crt = prev->next;

s
quicksort(first, mid);

quicksort(mid, last);
¥ Static Analysis of Accessed Regions

Example: Mapping

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;

/7y a
iIT (mid == last) return;
Crt = prev->next; @

IT (crt == last) return;

while (crt !'= last) { first last
iIT (crt->val > mid->val) {
prev = crt;
} else {
prev->next = crt->next;
crt->next = First->next;
first->next = crt;

}

crt = prev->next;

s
quicksort(first, mid);

quicksort(mid, last);
¥ Static Analysis of Accessed Regions

Example: Mapping

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;

mid = prev = First->next; e a0
iIT (mid == last) return;

Crt = prev->next; 6 @
IT (crt == last) return; T T
while (crt !'= last) { first last

iIT (crt->val > mid->val) {
prev = crt;

} else {
prev->next = crt->next;
crt->next = first->next;
First->next = crt;

}

crt = prev->next;

s
quicksort(first, mid);

quicksort(mid, last);
¥ Static Analysis of Accessed Regions

Example: Mapping

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next; A N

iIT (mid == last) return;
Crt = prev->next; 6 @
IT (crt == last) return; T T

while (crt !'= last) { irst last

iIT (crt->val > mid->va
prev = crt;

} else {
prev->next = crt->nex:
crt->next = first->next;

First->next = crt;

mid prev last
crt

}

crt = prev->next;

s
quicksort(first, mid);
quicksort(mid, last);

¥ Static Analysis of Accessed Regions

Example: Mapping

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;

mid = prev = First->next; e a0
iIT (mid == last) return;

Crt = prev->next; 6 @
IT (crt == last) return; T T
while (crt !'= last) { first last

iIT (crt->val > mid->val) {
prev = crt;

} else {
prev->next = crt->next;
crt->next = first->next;
First->next = crt;

}

crt = prev->next;

s
quicksort(first, mid);

quicksort(mid, last);
¥ Static Analysis of Accessed Regions

Example: Analysis

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;

mid = prev = first->next; e a0
iIT (mid == last) return;
crt = prev->next;
iIT (crt == last) return; T T
while (crt != last) { first last
iIT (crt->val > mid->val) { Read={a’}
prev = crt; B Write={a’}
} else {
prev->next = crt->next; y y
crt->next = first->next;
first->next = crt;
} (R
crt = prev->next; first last
+

quicksort(first, mid);
quicksort(mid, last);

¥ Static Analysis of Accessed Regions

Example: Unmapping

void quicksort(list *first,

list *mid, *crt, *prev;

mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
iIT (crt == last) return;

while (crt I= last) {
iIT (crt->val > mid->val) {
prev = crt;
} else {
prev->next = crt->next;

crt->next = First->next;

First->next = crt;

}

crt = prev->next;

}
quicksort(first, mid);

list *last) {

Read={a’}
Write={a’}

first last

quicksort(mid, last);

Static Analysis of Accessed Regions

Example: Unmapping

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
IT (crt == last) return;

while (crt I= last) {
iIT (crt->val > mid->va
prev = crt;

mid prev last
crt

¥} else {
prev->next = crt->next; y y
crt->next = First->next;
first->next = crt;

} t t

crt = prev->next; first last

}
quicksort(first, mid);
quicksort(mid, last);

¥ Static Analysis of Accessed Regions

Example: Unmapping

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
IT (crt == last) return;

while (crt I= last) {

iIT (crt->val > mid->veé Read={a’}
prev = crt; Write={a’}

} else { =
prev->next = crt->next; y y y
crt->next = First->next; @_>@_>®
first->next = crt;

} t ! !

crt = prev->next; first mid prev last

ks crt

. quicksort(first, mid);
quicksort(mid, last);

¥ Static Analysis of Accessed Regions

Example: Unmapping

void quicksort(list *first,

list *mid, *crt, *prev;

mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
iIT (crt == last) return;

while (crt I= last) {
iIT (crt->val > mid->val) {
prev = crt;
} else {
prev->next = crt->next;

crt->next = First->next;

First->next = crt;

}

crt = prev->next;

}
quicksort(first, mid);

list *last) {

Read={a}
Write={a}
r ! !
first mid prev last
crt

quicksort(mid, last);

Static Analysis of Accessed Regions

Extensions

m Multiple Selectors

m Extend analysis to deal with more than a single
selector name:
e Annotate edges with selector sets
e Add cyclicity and sharedness info for selector sets

m Refining the n; node

m N, currently represents all heap locations not
owned by any stack pointers

m Could use different shared nodes s, (X a subset of
stack pointers), that represents all heap locations
reachable from all roots of pointers in X

SAS'03 - June 2003 Static Analysis of Accessed Regions

Analysis Uses

m Parallelization

m Statements accessing disjoint heap regions
can be executed in parallel

m Program Understanding

m The shape graph and region output of the
analysis can aid understanding of the effect
of procedures on heap structures

m Correctness

m Analysis can verify programmer-supplied
specifications

SAS'03 - June 2003 Static Analysis of Accessed Regions

Using Analysis for Correctness

void quicksort(list *first,
list *mid, *crt, *prev;
mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
IT (crt == last) return;

while (crt = last) {

list *last) {

iIT (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = First->next;

First->next = crt;

}

crt = prev->next;
}
quicksort(first, mid);
quicksort(mid, last);

}

Static Analysis of Accessed Regions

Using Analysis for Correctness

void quicksort(list *first,

}

list *mid, *crt, *prev;

mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
IT (crt == last) return;

while (crt = last) {
iIT (crt->val > mid->val) {
prev = crt;
} else {
prev->next = crt->next;

crt->next = First->next;

First->next = crt;

}

crt = prev->next;
}
quicksort(first, mid);
quicksort(mid, last);

list *last) Reads: a Writes: a {

Static Analysis of Accessed Regions

Using Analysis for Correctness

void quicksort(list *first,

}

list *mid, *crt, *prev;

mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
IT (crt == last) return;

while (prev != last) {
iIT (crt->val > mid->val) {
prev = crt;
} else {
prev->next = crt->next;

crt->next = First->next;

First->next = crt;

}

crt = prev->next;
}
quicksort(first, mid);
quicksort(mid, last);

list *last) Reads: a Writes: a {

Static Analysis of Accessed Regions

Using Analysis for Correctness

void quicksort(list *first, list *last) Reads: a Writes: a {

list *mid, *crt, *prev; /7y /-y / 0\
mid = prev = first->next;
iIT (mid == last) return; e e e G

cCrt = prev->next;

IT (crt == last) return; _ _
first mid prev last

crt

. while (prev 1= last) {
iIT (crt->val > mid->val) {
prev = crt;

} else {
prev->next = crt->next;
crt->next = First->next;
First->next = crt;

}

crt = prev->next;
+
quicksort(first, mid);
quicksort(mid, last);
¥ Static Analysis of Accessed Regions

Using Analysis for Correctness

void quicksort(list *first,
list *mid, *crt, *prev;
mid = prev = first->next;

iIT (mid == last) return;
Crt = prev->next;
IT (crt == last) return;

while (prev != last) {

list *last) Reads: a Writes: a {

ORoKoRs

iIT (crt->val > mid->val) {

prev = crt;

} else {

prev->next = crt->next;
crt->next = First->next;

first mid prev last
crt

Read={a, b} I

Write={a, b}«

first->next = crt;
}
crt =
+
quicksort(first, mid);
quicksort(mid, last);

}

prev->next;

Static Analysis of Accessed Regions

Related Work

Related Work

m Shape Analysis

s [Horwitz,Pfeiffer,Reps, PLDI'89],
Chase,Wegman,Zadek,PLDI'90],

Ghiya,Hendren,POPL96],
[Sagiv,Reps,Wilhelm, TOPLAS’98, TOPLAS’02],
With reachability:[Dor,Rodeh,Sagiv,SAS’00]

m Interprocedural:[Rinetzky,Sagiv,CC’01],
[Kuncak,Rinard,POPLO2]

m Regions
m Language support: RC[Gay,Aiken,PLDI’'98],
Vault[DeLine,Fahndrich,PLDI’01],
Cyclone[Grossman et.al.,PLDI’'02]

m Region Inference: [Tofte,Talpin, POPL’94],
[Latthner,Adve MSP’02]

SAS'03 - June 2003 Static Analysis of Accessed Regions

Conclusions

m Analysis of accessed regions in
recursive data structures

m Regions = sublists, subtrees, etc.
m Dataflow analysis formulation
m Interprocedural analysis

m Applies to recursive programs with
destructive heap updates

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example

m Chooses a pivot value
m Partitions list into sublists destructively

v —p o5 e 8 g >3 (e o>

I Sort these elements I

e >3 *>»2 [*—>5F 8 e>G *—p

Recursively sort Recursively sort
this sublist this sublist

first last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example

m Chooses a pivot value
m Partitions list into sublists destructively

v —p o5 e 8 g >3 (e o>

I Sort these elements I

e o2 >3 5 G e>8 e *—p

Recursively sort Recursively sort
this sublist this sublist

first last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

—» o> o5 e 8 g >3 (e o>
first mid prev crt last

mid.val > crt.val ? No!

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Abstraction

void quicksort(list *first, list *last) {

list *mid, *crt, *prev;
mid = prev = first->next; @.}@}@.}@
iIT (mid == last) return;
Crt = prev->next;

iIT (crt == last) return; fwst nﬂd crt Iast
prev

. whille (crt I= last) {
iIT (crt->val > mid->val) {
prev = crt;

1 else { “\ “\ “\ “\
prev->next = (_:rt—>next; @-}@-}@—}@—}@
o 1 1

crt->next = First->next;
First->next = crt;

}

Ccrt = prev->next;
+
quicksort(first, mid);
quicksort(mid, last);
%AS'OS - June 2003 Static Analysis of Accessed Regions

first mid prev crt last

Quicksort Example: Abstraction

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;

- _ f:) a /7y R
mid = prev = first->next;

iIT (mid == last) return; @»@@;@
Crt = prev->next; T T T T

IT (crt == last) return;
first mid prev last
while (crt != last) { crt
iIT (crt->val > mid->val) {
prev = crt;
} else {
prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}

crt = prev->next;

+
. quicksort(first, mid);
quicksort(mid, last);
%AS'OS - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Abstraction

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;

- _ f:) a /7y R
mid = prev = first->next;

iIT (mid == last) return; @»@@;@
Crt = prev->next; T T T T

IT (crt == last) return;
first mid prev last
while (crt != last) { crt
iIT (crt->val > mid->val) {
prev = crt; o S A S N e =

} else { T T T T

prev->next = crt->next;
crt->next = first->next; first mid prev last
first->next = crt;

}

crt = prev->next;

+
. quicksort(first, mid);
quicksort(mid, last);
%AS'OS - June 2003 Static Analysis of Accessed Regions

Traversing May-Edges

m Traversing a may-edge makes it a
must-edge

mE.Q.
Q_Q Z:E;next <T> <T>
X y X y,Z

m In any execution where z=x->next
succeeds, then the root of z is definitely
reachable from the root of X

SAS'03 - June 2003 Static Analysis of Accessed Regions

Related Work

m Effect Systems
m FX-87[Gifford,Jouvelot,Lucassen, POPL88],
= Broadway[Guyer,Lin,LCPC’00,SAS’03],
m Array accesses|[Rugina,Rinard,CC’01],
m Cyclone[Morrisett et. al.,USENIX’02],
m Roles[Kuncak,Rinard, POPL’02]

SAS'03 - June 2003 Static Analysis of Accessed Regions

