
Static Analysis of
Accessed Regions in

Recursive Data Structures

Stephen Chong
Radu Rugina

Cornell University

SAS'03 - June 2003 Static Analysis of Accessed Regions

What This Talk is About
n Problem: Precise characterization of regions accessed

by statements and procedures
n For recursive programs with destructive updates
n Fine-grained notion of regions: substructures within

recursive data structures.
• E.g. sublists within lists, sub trees within trees

n How we do it:
n Context sensitive interprocedural analysis algorithm
n Precise shape information
n Region access information

n Uses:
n Parallelization, Program Understanding, Correctness

SAS'03 - June 2003 Static Analysis of Accessed Regions

n Sorts a sublist in place (i.e. with
destructive updates)

Quicksort Example

first

… …5 2 8 6 3

last

SAS'03 - June 2003 Static Analysis of Accessed Regions

n Sorts a sublist in place (i.e. with
destructive updates)

Quicksort Example

first

… …5 2 8 6 3

last

Sort these elements

SAS'03 - June 2003 Static Analysis of Accessed Regions

n Chooses a pivot value
n Partitions list into sublists destructively

Quicksort Example

first

… …5 2 8 6 3

last

Sort these elements

first

… …3 2 5 8 6

last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

first

… …5 2 8 6 3

last

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

first

… …5 2 8 6 3

lastmid

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

first

… …5 2 8 6 3

lastmid crtprev

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

first

… …5 2 8 6 3

lastmid crtprev

mid.val > crt.val ? Yes!

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

first

… …5

2

8 6 3

lastmid

crt

prev

mid.val > crt.val ? Yes!

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

first

… …5

2

8 6 3

lastmid

crt

prev

mid.val > crt.val ? Yes!

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

first

… …2 5 8 6 3

last

mid.val > crt.val ? Yes!

crt mid prev

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

first

… …2 5 8 6 3

lastcrtmid prev

crt = prev->next

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

first

… …2 5 8 6 3

lastcrtmid prev

mid.val > crt.val ? No!

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

first

… …2 5 8 6 3

lastcrtmid

crt = prev->next

prev

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

first

… …3 2 5 8 6

lastmid

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Recursing

first

… …2 3 5 6 8

lastmid

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Accessed Regions

first

… …2 3 5 6 8

last

Modified these locations

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Accessed Regions

first

… …2 3 5 6 8

last

Recursive call modified
these locations

Recursive call modified
these locations

first

… …2 3 5 6 8

last

Modified these locations

mid

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Quicksort Example

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Quicksort Example

Base cases

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Quicksort Example

List partitioning

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Quicksort Example

Recursive calls

Static Analysis of Accessed Regions

Quicksort Example
void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Goal: Automatically
determine that the
procedure accesses only
the sublist between first
and last.

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Quicksort Example: Abstraction

α

first

β

last

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Quicksort Example: Abstraction

α

first

β

last

first last

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Quicksort Example: Abstraction

α

first

β

last

Effects: Reads: α
Writes: α

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Quicksort Example: Abstraction

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Quicksort Example: Abstraction

α

prev

α

crt

α

mid

β

last

α

first

α

mid
prev

α

crt

α

first

β

last

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Quicksort Example: Abstraction

α

prev

α

crt

α

mid

β

last

α

first

first lastcrtmid
prev

α

mid
prev

α

crt

α

first

β

last

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Quicksort Example: Abstraction

α

prev

α

crt

α

mid

β

last

α

first

α

mid
prev

α

crt

α

first

β

last

Reads: α
Writes: α

Details of the Analysis

SAS'03 - June 2003 Static Analysis of Accessed Regions

Outline of the Analysis
n Abstraction
n Intraprocedural Analysis
n Shape Analysis
n Region Analysis

n Interprocedural Analysis

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction
n A heap is:
n an (unbounded) number of locations
n Each location may have at most one out-

going pointer
n Stack pointers point to heap locations

n Need a finite abstraction for heaps
n Uses summary nodes to denote regions
n Based on reachability from stack pointers

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

x y z

w

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

n Root locations are immediately pointed
to by stack pointers

x y z

w

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

n A location h is owned by a set of stack
pointers S, if all paths from a stack
pointer to the location h must go
through the root of S

x y z

w

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

n A location h is owned by a set of stack
pointers S, if all paths from a stack
pointer to the location h must go
through the root of S

x y z

w

{x}

{y,z}

{w}

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

n A location h is owned by a set of stack
pointers S, if all paths from a stack
pointer to the location h must go
through the root of S

x y z

w

{x}

{y,z}

{w}

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

n A location h is owned by a set of stack
pointers S, if all paths from a stack
pointer to the location h must go
through the root of S

x y z

w

{x}

{y,z}

{w}

SAS'03 - June 2003 Static Analysis of Accessed Regions

Shape Abstraction Example

x y z

w

{x}

{y,z}

{w}

x y,z

w

nφ

Concrete Heap:

Abstract Heap:

Intraprocedural Shape Analysis

SAS'03 - June 2003 Static Analysis of Accessed Regions

Intraprocedural Shape Analysis
n Shape Analysis is formulated as a dataflow

analysis
n Set of shape graphs computed for each program

point
n A shape graph is a tuple (N, E, C), where:

n N: set of summary nodes
n E ∈ N×N → {0,½,1}: edges with reachability info
n C ∈ N → {0,½,1}: cyclicity info for nodes

n Transfer functions defined for
x=malloc(), x=y->next , x=NULL,
x->next=y , x->next=NULL, x=y

n Merge operation defined for shape graphs

SAS'03 - June 2003 Static Analysis of Accessed Regions

Merge Operation
n (N1, E1, C1) ò (N2, E2, C2) = (N, E, C) where:

n N = N1 ∪ N2

n E(x, y) = E1(x, y) ò3 E2(x, y) if x, y ∈ N1 ∩ N2

n C(x) = C1(x) ò3 C2(x) if x ∈ N1 ∩ N2

n ò3 is the merge operation for logic values:

1½½1

½½½½

½½00

1½0ò3
½

0 1

SAS'03 - June 2003 Static Analysis of Accessed Regions

Materialization and Summarization

n Standard shape analysis techniques
[Sagiv et al., POPL’96]

n Materialization: creating a new
summary node from a summary node
n a result of traversing a self-edge
n E.g. y=x->next

n Summarization: combining summary
nodes together
n a result of nullifying a stack pointer
n E.g. x=NULL

SAS'03 - June 2003 Static Analysis of Accessed Regions

Materialization

y = x->next

x x y

⇒

SAS'03 - June 2003 Static Analysis of Accessed Regions

Summarization

x = NULL

x y t

⇒
ty

SAS'03 - June 2003 Static Analysis of Accessed Regions

Summarization

x = NULL

⇒

n Harder case:

x

y

t
z

y

t
z

nφ

SAS'03 - June 2003 Static Analysis of Accessed Regions

Summarization

x = NULL

x

⇒

n Even harder case:

y

t
z

y

t
z

nφ

Intraprocedural Region Analysis

SAS'03 - June 2003 Static Analysis of Accessed Regions

Regions
n Extend shape abstraction to analyze which

regions a procedure accesses.
n Summarize effects of procedures and express

results in terms of regions

n Problem: summary nodes may represent
different heap locations at different program
points
n A heap location may be owned by different stack

pointers at different program points

SAS'03 - June 2003 Static Analysis of Accessed Regions

Regions: Problem

yx
x y

SAS'03 - June 2003 Static Analysis of Accessed Regions

Regions: Problem

yx

y = y->next

x y

SAS'03 - June 2003 Static Analysis of Accessed Regions

Regions: Problem

yx

y = y->next

yx

⇓
x y

x y

⇓

SAS'03 - June 2003 Static Analysis of Accessed Regions

Regions: Problem

yx

y = y->next ⇓
x y

⇓

yx
x y

SAS'03 - June 2003 Static Analysis of Accessed Regions

Regions: Problem

yx

y = y->next

yx

⇓
x y

x y

⇓

SAS'03 - June 2003 Static Analysis of Accessed Regions

Regions: Solution
n Use labels on summary nodes to

indicate the regions they represent.

α

x

β

y

y = y->next

α,β

x

β

y

⇓ ⇓
yx

yx

SAS'03 - June 2003 Static Analysis of Accessed Regions

Region Analysis
n Fresh region labels are assigned at the

start of a procedure, and used
throughout the analysis of procedure
⇒Region labels on shape graphs refer to

regions at the beginning of the procedure

n Transfer functions defined for region
labels
n Interesting cases are materialization and

summarization

SAS'03 - June 2003 Static Analysis of Accessed Regions

Region Analysis
n Materialization

n Summarization

y = x->next

α

x

α

x

α

y

⇒

x = NULL

β

x

α,β

y

⇒α

y

SAS'03 - June 2003 Static Analysis of Accessed Regions

n Can use the region information to track which
regions are read and written by a procedure
n Write regions:

• x->next=NULL, x->next=y
• Add the region(s) for the x node to the write set

n Read regions:
• y=x->next
• Add the region(s) for x node to the read set

n E.g.

Region Accesses

α

z

β

x

y = x->next⇒ Read: β

SAS'03 - June 2003 Static Analysis of Accessed Regions

n Transfer functions defined for all
statements (including materialization
and summarization cases)

n Theoretical results:
n Termination

• Transfer functions monotonic over a finite
height lattice

n Soundness
• Transfer functions sound with respect to our

abstraction function

Formal Treatment

Interprocedural Analysis

SAS'03 - June 2003 Static Analysis of Accessed Regions

Interprocedural Analysis
n Performs context-sensitive

interprocedural analysis
n Can handle recursive procedures
n At each call site:

1. Map current analysis information into
name space of invoked procedure

2. Analyze procedure for the calling context
3. Unmap results

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Example

α

mid

α

prev

α

first

β

last
crt

Static Analysis of Accessed Regions

Example: Mapping

α

mid

α

prev

α

first

β

last
crt

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

first last

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Example: Mapping

α αα β

first last

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Example: Mapping

α,β

last

α

first

Static Analysis of Accessed Regions

Example: Mapping

β’α’

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

first last

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Example: Mapping

β’α’

first last

α

first

α

mid

α

prev

β

last
crt

Static Analysis of Accessed Regions

Example: Mapping

β’α’

first last

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Example: Analysis

β’α’

first last

β’α’

first last

⇓ Read={α’}
Write={α’}

Static Analysis of Accessed Regions

Example: Unmapping
void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

β’α’

first last

Read={α’}
Write={α’}

Static Analysis of Accessed Regions

Read={α’}
Write={α’}

Example: Unmapping
void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

β’α’

first last

α

first

α

mid

α

prev

β

last
crt

Static Analysis of Accessed Regions

Example: Unmapping
void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

αα’

first mid

α

prev

β

last
crt

α

first Read={α’}
Write={α’}

Static Analysis of Accessed Regions

Example: Unmapping
void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

αα

first mid

α

prev

β

last
crt

Read={α}
Write={α}

SAS'03 - June 2003 Static Analysis of Accessed Regions

Extensions
n Multiple Selectors

n Extend analysis to deal with more than a single
selector name:
• Annotate edges with selector sets
• Add cyclicity and sharedness info for selector sets

n Refining the nφ node
n nφ currently represents all heap locations not

owned by any stack pointers
n Could use different shared nodes sX (X a subset of

stack pointers), that represents all heap locations
reachable from all roots of pointers in X

SAS'03 - June 2003 Static Analysis of Accessed Regions

Analysis Uses
n Parallelization
n Statements accessing disjoint heap regions

can be executed in parallel
n Program Understanding
n The shape graph and region output of the

analysis can aid understanding of the effect
of procedures on heap structures

n Correctness
n Analysis can verify programmer-supplied

specifications

Static Analysis of Accessed Regions

Using Analysis for Correctness
void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Static Analysis of Accessed Regions

Using Analysis for Correctness
void quicksort(list *first, list *last) Reads: α Writes: α {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Static Analysis of Accessed Regions

Using Analysis for Correctness
void quicksort(list *first, list *last) Reads: α Writes: α {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (prev != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Static Analysis of Accessed Regions

Using Analysis for Correctness
void quicksort(list *first, list *last) Reads: α Writes: α {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (prev != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

α

mid

α

prev

β

last
crt

α

first

Static Analysis of Accessed Regions

Using Analysis for Correctness
void quicksort(list *first, list *last) Reads: α Writes: α {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (prev != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

α

mid

α

prev

β

last
crt

α

first

Read={α, β}
Write={α, β}!

Related Work

SAS'03 - June 2003 Static Analysis of Accessed Regions

Related Work
n Shape Analysis

n [Horwitz,Pfeiffer,Reps, PLDI'89],
[Chase,Wegman,Zadek,PLDI’90],
[Ghiya,Hendren,POPL96],
[Sagiv,Reps,Wilhelm,TOPLAS’98, TOPLAS’02],
With reachability:[Dor,Rodeh,Sagiv,SAS’00]

n Interprocedural:[Rinetzky,Sagiv,CC’01],
[Kuncak,Rinard,POPL02]

n Regions
n Language support: RC[Gay,Aiken,PLDI’98],

Vault[DeLine,Fahndrich,PLDI’01],
Cyclone[Grossman et.al.,PLDI’02]

n Region Inference: [Tofte,Talpin, POPL’94],
[Lattner,Adve MSP’02]

SAS'03 - June 2003 Static Analysis of Accessed Regions

Conclusions
n Analysis of accessed regions in

recursive data structures
n Regions = sublists, subtrees, etc.
n Dataflow analysis formulation
n Interprocedural analysis
n Applies to recursive programs with

destructive heap updates

SAS'03 - June 2003 Static Analysis of Accessed Regions

n Chooses a pivot value
n Partitions list into sublists destructively

Quicksort Example

first

… …5 2 8 6 3

last

first

… …3 2 5 8 6

last

Recursively sort
this sublist

Recursively sort
this sublist

Sort these elements

SAS'03 - June 2003 Static Analysis of Accessed Regions

n Chooses a pivot value
n Partitions list into sublists destructively

Quicksort Example

first

… …5 2 8 6 3

last

Sort these elements

first

… …2 3 5 6 8

last

Recursively sort
this sublist

Recursively sort
this sublist

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Partitioning

first

… …2 5 8 6 3

lastcrtmid prev

mid.val > crt.val ? No!

SAS'03 - June 2003 Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Quicksort Example: Abstraction

α

mid
prev

α

crt

α

first

β

last

α

prev

α

crt

α

mid

β

last

α

first

SAS'03 - June 2003 Static Analysis of Accessed Regions

Quicksort Example: Abstraction
void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

α

mid

α

prev

α

first

β

last
crt

SAS'03 - June 2003 Static Analysis of Accessed Regions

void quicksort(list *first, list *last) {
list *mid, *crt, *prev;
mid = prev = first->next;
if (mid == last) return;
crt = prev->next;
if (crt == last) return;

while (crt != last) {
if (crt->val > mid->val) {

prev = crt;
} else {

prev->next = crt->next;
crt->next = first->next;
first->next = crt;

}
crt = prev->next;

}
quicksort(first, mid);
quicksort(mid, last);

}

Quicksort Example: Abstraction

α

mid

α

prevfirst

β

last
crt

first lastprevmid

α

SAS'03 - June 2003 Static Analysis of Accessed Regions

n Traversing a may-edge makes it a
must-edge
n E.g.

n In any execution where z=x->next
succeeds, then the root of z is definitely
reachable from the root of x

Traversing May-Edges

x y

z = x->next

⇒
x y,z

SAS'03 - June 2003 Static Analysis of Accessed Regions

Related Work
n Effect Systems
n FX-87[Gifford,Jouvelot,Lucassen, POPL88],
n Broadway[Guyer,Lin,LCPC’00,SAS’03],
n Array accesses[Rugina,Rinard,CC’01],
n Cyclone[Morrisett et. al.,USENIX’02],
n Roles[Kuncak,Rinard, POPL’02]

