
Required Information Release

Stephen Chong
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138, USA

chong@seas.harvard.edu

Abstract—Many computer systems have a functional re-
quirement to release information. Such requirements are an
important part of a system’s information security requirements.
Current information-flow control techniques are able to reason
about permitted information flows, but not required informa-
tion flows.

In this paper, we introduce and explore the specification
and enforcement of required information release in a language-
based setting. We define semantic security conditions that
express both what information a program is required to release,
and how an observer is able to learn this information. We
also consider the relationship between permitted and required
information release, and define bounded release, which pro-
vides upper- and lower-bounds on the information a program
releases. We show that both required information release and
bounded release can be enforced using a security-type system.

Keywords-Information flow, declassification, information re-
lease, algorithmic knowledge.

I. INTRODUCTION

Information-flow control holds the promise of strong, end-
to-end, application-specific information security [1]. To date,
most research on information-flow control has focused on
what flows are permitted or prohibited in a system. For
example, noninterference [2] prohibits confidential inputs
flowing to public outputs.

Many computer systems release (or declassify) confi-
dential information as part of their intended functionality,
and as such, violate noninterference. Much work in recent
years has considered weakening noninterference to permit
some flow of confidential inputs to public outputs (e.g.,
Li and Zdancewic [3], Chong and Myers [4], Clark et al.
[5], Sabelfeld and Sands [6], van der Meyden [7], Swamy
and Hicks [8], Banerjee et al. [9]).

However, many systems have more than just permission
to release information; they have an obligation to release
information. In this work, we introduce and explore the spec-
ification and enforcement of required information release, or
simply, required release.

Examples abound of systems with an obligation to release
information. The Sarbanes-Oxley Act of 2002 is a United
States federal law that was enacted after a series of corporate
accounting scandals, and requires publicly held companies to
report details of their finances to a government agency. Thus,

financial systems of such companies are required to release
sensitive financial information to the government agency.
Pharmaceutical companies in many countries are required
to report all results of clinical trials of new drugs to a
government agency (such as the Food and Drug Administra-
tion) to receive approval. Computer systems that support the
conduct of clinical trials must release all trial results, and
not withhold negative results. In general, transparency of
organizations and processes requires the release of sensitive
information. Other systems that are required to release
information include the following.
• Sealed bid auctions: at the end of the auction, the

winning bid (and, depending on the auction, the winner’s
identity) is required to be released.
• Information purchase: once a customer has paid for

information (such as electronic media), the information
is required to be available for download.
• Games: legal game-play often requires release of a

player’s secret information, such as the cards in a
player’s hand, or the location of battleships on a player’s
board.
• Course management system: when a professor indicates

that exam results are available, the system is required to
allow students view their grades.
• Credit card sales: the receipt for a credit card purchase

is required to show the final four digits of the customer’s
credit card number.

In the examples above, the required release of information
is an important aspect of each system’s information security.
To gain assurance in the systems’ correct implementation, it
is necessary both to specify the required release (and other
information security requirements) and to verify that the
implementation satisfies the specification.

However, the specification of required release is subtle.
What does it mean for a program to satisfy the required
release of information? How do we know if a program is
successfully and correctly releasing information? It does not
suffice for the output of a program to simply depend upon,
or be influenced by, the information required for release.
Surprisingly, even if the output contains the information
required for release, the program may not satisfy the required
release of information. We use epistemic logic, and algorith-
mic knowledge [10] in particular, to guide our definition of

1From CSF 2010

required information release. Required information release
must specify not just what information is to be released, but
also how that information is to be learned by its intended
recipient.

Required release is a functional requirement on a system:
the output of a program must allow an observer to learn
certain information. Required release makes explicit what
information the observer learns, and how the observer ob-
tains this knowledge. Noninterference [2] and most other
information flow security conditions are not functional re-
quirements.

However, required release is an information flow security
condition; it describes a mandatory flow of information to
an observer. By contrast, most existing work in information
flow considers permitted flows of information. In terms of
dependence, permitted information flow conditions restrict
how the output is permitted to depend on the inputs. For
example, noninterference requires that public outputs do
not depend on private inputs—if a private input changes,
the public output should not change. Required information
release mandates that outputs must depend on inputs in a
way that allows an observer to learn certain information—
if an input changes, the output must change to allow an
observer to learn the specified information.

Required release interacts with permitted information
flows in more interesting ways than other functional require-
ments: if a system is required to release information, then the
system must also be permitted to release it. Indeed, required
information release and permitted information release can
be combined to specify both upper and lower bounds on the
information that a system releases. We do so by defining
bounded release, a security condition that combines required
release and delimited release [11], and thus specifies both
what information a program is required to release, and what
information it is allowed to release.

For some systems, bounds on information release should
be tight. For example, a company producing reports in
accordance with the Sarbanes-Oxley Act typically wishes to
release no more information than is required by law; thus,
the information that their financial system is permitted to
release should be identical to the information it is required
to release. In other systems, the bounds are not tight, such
as in a poker game where some players are permitted, but
not required, to reveal their cards at the end of a hand.

The remainder of the paper is structured as follows.
Section II uses the example of a simple credit card sales
system to examine what it means for a system to satisfy
required information release. Section III presents an inter-
active imperative language that we use in Section IV to
formally define required release. We also define bounded
release, a security condition that specifies what information
a program is required and permitted to release. We show
in Section V that required release and bounded release can

be soundly enforced in an interactive language by a type
system. Section VI discusses related work, and Section VII
concludes.

II. WHAT IS REQUIRED RELEASE?

Consider, as a running example, a (grossly simplified)
credit card sales system that takes a credit card number as
input from high confidentiality channel H , and is required
to release the last four digits to low confidentiality channel
L (representing, for example, the printer, or an audit log).
What does it mean for this system to satisfy the required
release of the last four digits?

Noninterference [2] is a strong information security condi-
tion that requires that public outputs reveal no information
about confidential inputs. Any system that releases confi-
dential information violates noninterference; the credit card
sales system, which must release the last four digits of the
confidential credit card number to a publicly observable
printer, violates noninterference. However, just because a
system violates noninterference does not mean it satisfies
the required information release.

Consider the following attempt to implement the credit
card sales system.

P1 : input cc from H;
if (ccmod 10, 000) < 5, 000 then

output 0 to L
else

output 1 to L

The program inputs the credit card number from channel
H , and then outputs either 0 or 1 to channel L. The output
observed on channel L is influenced by the last four digits of
the confidential input, and thus the program does not satisfy
noninterference. However, the program fails to satisfy the
required information release, as an observer of channel L
does not learn the credit card number’s last four digits.

Surprisingly, even if a system outputs the information
required for release, it may fail to satisfy the required
information release. This is demonstrated in the following
program, which is another attempt to implement the credit
card sales system.

P2 : input cc from H;
i := 0;
while i < (ccmod 10, 000) do

output i to L;
i := i+ 1;

output (ccmod 10, 000) to L;
i := i+ 1;
while i < 10, 000 do

output i to L;
i := i+ 1

The command output (ccmod 10, 000) to L in program
P2 above explicitly outputs the credit card’s last four digits.

2

However, every execution of the program outputs all integers
from 0 to 9,999 in order. An observer of channel L always
sees the same output, regardless of the credit card’s last four
digits, and so the observer learns nothing.

These examples show that it is insufficient for observable
output to be merely correlated with the information required
for release, or even for the output to contain that information.
The key insight is that to satisfy required release, the output
must allow an observer to know what information was
required for release.

In models of knowledge based on possible world seman-
tics [12, 13], an agent has implicit knowledge (or, simply,
knowledge) of fact φ if in all possible worlds consistent
with the agent’s observations, φ is satisfied. In the credit
card system, an observer of channel L knows the last four
digits of the credit card if all credit cards that could have
produced the observed output end in the same four digits.
Programs P1 and P2 do not allow an observer of channel L
to know the last four digits.

Standard logical approaches to knowledge suffer from the
problem of logical omniscience: an agent knows all logical
consequences of its knowledge. The following attempt to
implement the credit card system demonstrates this prob-
lem. The program chooses two large primes, outputs their
product, and the result of XOR-ing the smaller prime with
the last four digits of the credit card number (padded with
random bits to be the same length as the prime).

P3 : input cc from H;
p := generateLargePrime();
q := generateLargePrime();
output p× q to L;
if p < q then t := p else t := q;
output t xor pad(ccmod 10, 000) to L

A logically omniscient observer of the program’s output
knows what the last four digits of the credit card number
are. However, determining this requires factoring a large
number, which is beyond the abilities of humans and current
computer systems to perform in reasonable time.

Algorithmic knowledge [10] was introduced to address the
problem of logical omniscience, and we can use algorithmic
knowledge to reason whether a system satisfies required
release.

An agent has algorithmic knowledge, or explicit knowl-
edge, of fact φ if the agent has an algorithm that responds
“Yes” when given input φ and the agent’s observations.
The agent’s knowledge algorithm is sound if whenever it
responds “Yes” then the agent has implicit knowledge of
φ, and if the knowledge algorithm responds “No” then the
agent does not have implicit knowledge of φ.

Rich classes of knowledge algorithms have been studied
that can conservatively overestimate the computational abil-
ity of agents without giving the agents logical omniscience
(e.g., Ramanujam [14], Pucella [15]). However, we are

interested in simple algorithms. Such algorithms may be
described in user manuals, specified by a government agency
or auditor, or may be inferred from self-explanatory output.
In all cases, the aim is to make it easy for an observer to
learn the released information. In this setting, the observer
is not the adversary, and it is acceptable (even desirable) to
underestimate the observer’s computational abilities, much
as an instruction manual aims to be usable by as wide
an audience as possible. For some programs (such as P3),
there may be sound knowledge algorithms that are beyond
the ability of any observer to execute in reasonable time;
such programs do not allow the observer to easily learn the
released information, and are thus of no interest to us. For
required release, we are concerned with the existence of
sufficiently simple sound knowledge algorithms.

The following program does release the last four digits of
the credit card number to channel L.

P4 : input cc from H;
output “Last 4 credit card digits: ” to L;
output (ccmod 10, 000) to L

Moreover, there is a simple sound knowledge algorithm
to provide explicit knowledge for an observer of channel
L: given fact φ ≡ (cc mod 10, 000) = n, respond “Yes”
if and only if the second output is n. Because there is a
simple sound algorithm, an observer can gain explicit (and
implicit) knowledge of the last four credit card digits, and
so the program satisfies the required information release.

To specify required release, we must specify not only what
information is to be released, but also how that information
is to be learned. We formalize this intuition by defining
required information release in terms of a simple interactive
programming language.

III. LANGUAGE

In this section we present a simple interactive imperative
programming language due to O’Neill et al. [16]. We use
an interactive language as it is more general than the batch
model traditionally used to reason about language-based
information flow, and it can more accurately model real
world programs that interact with their external environment,
such as server processes, and programs with user interfaces.

We assume set L of security levels, ordered by a reflexive
transitive relation v that indicates the relative restrictiveness
of the levels. In this paper, our examples use the two element
set L = {L,H} where L v H . Security level L represents
low confidentiality, and security level H represents high
confidentiality. More expressive security levels are possi-
ble (e.g., Myers and Liskov [17], Chen and Chong [18]).
Metavariable ` ranges over security levels.

A. Users, channels, and strategies

Users interact with executing programs. We assume that
security levels characterize users: the security level of a user
indicates the most restrictive level of information the user

3

is permitted to read. We assume that users with the same
security level can freely collaborate, and so, without loss of
generality, assume only a single user at each level.

Users communicate with executing programs via chan-
nels. We assume input on channels is blocking, and output
is non-blocking. We assume that there is a single channel for
each user, which, given the assumption of a single user for
each security level, implies a single channel for each security
level. We thus identify channels with security levels. An
event is the transmission of an input or output on a channel.
Event in(`, v) denotes the input of value v on channel `, and
event out(`, v) denotes the output of value v on channel `.
For simplicity we restrict values to integers.

We use Evin and Evout to denote, respectively, the set
of all input and output events. We use Ev(`) to denote the
set of all events that could occur on channel `, and Ev to
denote the set of all events.

Evin ,
⋃

`∈L,v∈Z{in(`, v)}

Evout ,
⋃

`∈L,v∈Z{out(`, v)}

Ev(`) ,
⋃

v∈Z{in(`, v), out(`, v)}

Ev ,
⋃

`∈L Ev(`)

Given E ⊆ Ev, an event trace on E is a finite or infinite
sequence t = 〈α0, α1, . . .〉 such that αi ∈ E for all i such
that 0 ≤ i < |t|, where |t| is the length of t. For infinite
traces t, we define |t| =∞. The ith element of event trace
t is denoted t(i), for i such that 0 ≤ i < |t|. The empty
trace is denoted 〈〉. We write tˆt′ for the concatenation of
finite trace t and trace t′. For traces t and t′, we say that t
extends t′, written t � t′, when t′ is a prefix of t. Note that
if t is an infinite trace, then t is the only trace that extends
it. The set of all traces on E is denoted Tr(E).

The restriction of trace t to E, written t �E, is the trace
obtained by removing from t all events not contained in E.
We write t�` as shorthand for t�Ev(`).

User strategies express the behavior of users by describ-
ing how users interact with a program. Given trace t, a
user of a channel with security level ` observes the event
trace t � Ev(`); a user’s observations may influence their
subsequent interaction with the program. Formally, a user
strategy for a channel with security level ` is a function of
type Tr(Ev(`)) → Z, and expresses what input a user will
provide given their previous observations.

Let UserStrat be the set of all user strategies. A joint
strategy is a collection of user strategies, one for each
channel. Formally, a joint strategy ω is a function of type
L → UserStrat, that is, a function from security levels to
user strategies. Let Strat be the set of all joint strategies.

User strategies are sensitive information. In general, we
want to ensure that lower security users do not learn about
strategies employed by higher security users: user ` should
not learn anything about the strategy of user `′, where `′ 6v `.
However, information release will violate this, revealing

some information about the strategies of higher security
users. In Section IV we will discuss security requirements,
and formally define semantic security conditions.

B. Syntax and semantics
We use a simple imperative language, extended with input,

output, and declassification commands. The syntax of this
language is:

(expressions) e ::= n | x | e0 ⊕ e1
(commands) c ::= skip | x := e | c0; c1 |

if e then c0 else c1 |
while e do c |
input x from ` |
output e to ` |
x := declassify(e to `)

Metavariable x ranges over Var, the set of all program
variables. Variables take integer values, and literal values
n also range over integers. Metavariable ⊕ ranges over total
binary operations on the integers. A state σ maps variables
to values, and so is a function of type Var → Z. A
configuration is a 4-tuple (c, σ, t, ω) representing a system
about to execute c with state σ and joint strategy ω. Finite
trace t is the history of events produced by the system so
far. Terminal configurations have the form (skip, σ, t, ω).
Metavariable m ranges over configurations.

We define a small-step operational semantics for our
language, using the relation −→ over configurations. If
(c, σ, t, ω) −→ (c′, σ′, t′, ω) then execution of command
c can take a single step to command c′, while updating
the state from σ to σ′. Trace t′ extends t with any events
that were produced during the step. Joint strategy ω is
unchanged when a configuration takes a step, and is included
in configurations to simplify notation and presentation.

Figure 1 presents inference rules for the operational se-
mantics. We use σ(e) to denote the evaluation of expression
e where each variable x is replaced with the integer σ(x).
Input command input x from ` takes the next input value v
as defined by the user strategy for `, assigns it to variable
x, and updates the trace with input event in(`, v). Similarly,
output command output e to ` evaluates e to v, and updates
the trace with output event out(`, v). Declassification x :=
declassify(e to `) is semantically equivalent to assignment
x := e; the declassify annotation and security level ` are
used in the type system, described in Section V.

We use −→∗ to denote the reflexive transitive closure
of −→. For finite trace t, we say configuration m emits t,
written m t, if there is some configuration (c, σ, t, ω)
such that m −→∗ (c, σ, t, ω). For infinite trace t, m emits t
if m emits all finite prefixes of t. Note that emitted events
may include both input and output events.

IV. SECURITY DEFINITIONS

In this section we define the security conditions weak
required release and strong required release, which for-

4

OS-ASSIGN

(x := e, σ, t, ω) −→ (skip, σ[x 7→ σ(e)], t, ω)

OS-SEQ-1

(skip; c, σ, t, ω) −→ (c, σ, t, ω)

OS-SEQ-2
(c0, σ, t, ω) −→ (c′0, σ

′, t′, ω)

(c0; c1, σ, t, ω) −→ (c′0; c1, σ
′, t′, ω)

OS-IN

ω(`)(t�`) = v

(input x from `, σ, t, ω) −→ (skip, σ[x 7→ v], tˆ〈in(`, v)〉, ω)

OS-OUT

σ(e) = v

(output e to `, σ, t, ω) −→ (skip, σ, tˆ〈out(`, v)〉, ω)

OS-IF-1
σ(e) 6= 0

(if e then c0 else c1, σ, t, ω) −→ (c0, σ, t, ω)

OS-IF-2
σ(e) = 0

(if e then c0 else c1, σ, t, ω) −→ (c1, σ, t, ω)

OS-WHILE

(while e do c, σ, t, ω) −→ (if e then (c; while e do c) else skip, σ, t, ω)

OS-DECLASSIFY

(x := declassify(e to `), σ, t, ω) −→ (skip, σ[x 7→ σ(e)], t, ω)

Figure 1. Operational semantics

mally express what it means for a program to satisfy the
required release of information. We also present the security
conditions noninterference [2] and delimited release [11].
Noninterference requires that a program does not release
any confidential information. Delimited release weakens
noninterference by specifying what confidential information
a program is allowed to release. We combine delimited
release and required release to define bounds on what a
program is permitted and required to release.

A. Required release

To formally define required release, we must be able to
express what information is to be released, and how that
information is to be learned by an observer. We introduce
input expressions and output expressions to express each of
these respectively. Input expressions are expressions over
input values supplied on channels; output expressions are
expressions over values output on a single channel.

The syntax for input and output expressions is:

(input expressions) f ::= n | f0 ⊕ f1 | in`[i]
(output expressions) g ::= n | g0 ⊕ g1 | out[i]

Input expression in`[i] refers to the ith input event on
channel `, for i ∈ N. Input expressions may also contain
integer constants and binary operations. Input expressions
are evaluated against a trace. The judgment t �in f ⇓ v
means that with trace t, input expression f evaluates to
value v. Evaluation rules for input expressions are given
in Figure 2. If t does not have an ith input event on channel

`, then in`[i] evaluates to ⊥, that is, t �in in`[i] ⇓ ⊥. We
assume that any binary operator ⊕ defined is total over Z⊥
and strict, meaning that for all m,n ∈ Z⊥, m⊕n is defined,
and if m or n is ⊥, then m⊕ n = ⊥.

Output expressions are also evaluated against a trace. The
judgment t �`out g ⇓ v means that output expression g
evaluates to value v using trace t restricted to channel `
events. Output expression out[i] refers to the ith output event
on channel `, for i ∈ N. Figure 2 also presents the evaluation
rules for output expressions. Similar to input expressions,
if there is no ith output event on channel `, then out[i]
evaluates to ⊥.

Intuitively, user ` learns input expression f from com-
mand c using output expression g, if in every execution that
g evaluates to an integer value (using the output provided
to `), then f evaluates to the same integer. Thus, input
expression f indicates what information the user is to learn,
and output expression g indicates how the user learns it—g
provides a sound knowledge algorithm. This leads us to our
first definition of required release.

Command c satisfies weak required release of input
expression f to user ` using output expression g if for any
trace t that can be emitted by executing c, if t provides
enough output to ` to evaluate g, then f and g evaluate to
the same value.

Definition 1 (Weak required release). Command c satisfies
weak required release of input expression f to user ` using
output expression g exactly when:

5

t �in n ⇓ n

t �in f0 ⇓ v0
t �in f1 ⇓ v1

t �in f0 ⊕ f1 ⇓ v
v = v0 ⊕ v1

t′ = t�(Ev(`) ∩ Evin)

t′(i) = in(`, v)

t �in in`[i] ⇓ v

t′ = t�(Ev(`) ∩ Evin)

¬(0 ≤ i < |t′|)
t �in in`[i] ⇓ ⊥

t �`out n ⇓ n

t �`out g0 ⇓ v0
t �`out g1 ⇓ v1

t �`out g0 ⊕ g1 ⇓ v
v = v0 ⊕ v1

t′ = t�(Ev(`) ∩ Evout)
t′(i) = out(`, v)

t �`out out[i] ⇓ v

t′ = t�(Ev(`) ∩ Evout)
¬(0 ≤ i < |t′|)
t �`out out[i] ⇓ ⊥

Figure 2. Evaluation rules for input and output expressions

For all configurations m = (c, σ, 〈〉, ω)
and for all traces t such that m t,

if t �`out g ⇓ v and v 6= ⊥ then t �in f ⇓ v.

Program P4 satisfies weak required release of
inH [0] mod 10, 000 to L using out[1]: the second output to
L is the last four digits of the first H input (the credit card
number). By contrast, programs P1 and P2 do not satisfy
weak required release of inH [0] mod 10, 000 to L for any
output expression.

Weak required release is “weak” in that there is no
requirement that command c provide sufficient output to
` for g to evaluate to an integer value. For example, the
program skip satisfies weak required release of any input
expression to L using output expression out[0], since no
output is ever given to L, and output expression out[0] never
evaluates to an integer value.

We can strengthen weak required release to ensure that
command c always eventually provides sufficient output to
` for g to evaluate to an integer value. Command c satisfies
strong required release of input expression f to user ` using
output expression g if for any trace t that can be emitted by
executing c, there is a trace t′ that extends t, can be emitted
by executing c, and provides sufficient output to ` to evaluate
g, and f and g evaluate to the same value.1

Definition 2 (Strong required release). Command c satisfies
strong required release of input expression f to user ` using
output expression g exactly when:

For all configurations m = (c, σ, 〈〉, ω)
and for all traces t such that m t,

there exists trace t′ such that t′ � t, m t′, and
t′ �`out g ⇓ v and t′ �in f ⇓ v for some v 6= ⊥.

Strong required release is strictly stronger than weak re-
quired release: if command c satisfies strong required release
of f to ` using g, then it satisfies weak required release of
f to ` using g. Indeed, weak required release is a form
of partial correctness, whereas strong required release is a

1Since the language is deterministic, this definition suffices to ensure that
enough output is always eventually produced; the definition would need to
be modified for non-deterministic and probabilistic languages.

total correctness condition. The following program satisfies
weak required release, but not strong required release of
inH [0]mod10, 000 to L using out[1], because in some cases
it will never produce sufficient output to L. (For presentation
purposes, we assume that constant strings, such as “Last 4
credit card digits: ” can be converted to appropriate constant
integer values, and output to channels.)

P5 : input cc from H;
output “Last 4 credit card digits: ” to L;
if ccmod 10 = 0 then (while 1 do skip) else skip;
output (ccmod 10, 000) to L

Program P4 satisfies strong required release of
inH [0] mod 10, 000 to L using out[1], because it always
produces appropriate output to channel L.

Connection to explicit knowledge: If a program satisfies
(weak or strong) required release of input expression f to
user ` using output expression g, then output expression
g provides a sound knowledge algorithm for ` to learn
the value of f . The knowledge algorithm takes as input a
formula φ and the sequence of events that ` has observed.
The knowledge algorithm is straightforward:

If φ ≡ f = n and t �`out g ⇓ n then respond “Yes”.
Otherwise, respond “?”.

Note that the algorithm never responds “No”, and if
the algorithm responds “Yes”, then, because the program
satisfies required release of f to ` using g, t �`out g ⇓ n
implies f = n. Thus, the knowledge algorithm is sound.

Strong and weak required release are both parameterized
by output expression g. As discussed in Section II, the output
expression g may be specified by the consumer of the output
(such as an auditor or government agency), an instruction
manual, or may be described by the program’s output (as
in Program P4, where the text “Last 4 credit card digits”
is output just before the last four credit card digits). In
practice, there may be additional requirements on the form
of the output function, such as a limit on the number of
steps required to evaluate it (analagous to requiring that the
instructions for a task be no more than two pages).

6

Integrity, availability, and properties: Although re-
quired information release is primarily concerned with the
confidentiality of information, it is also related to the in-
tegrity and availability of information. Weak information
release is an integrity requirement: if the output expression
evaluates to an integer value, it must equal the evalua-
tion of the input expression. Strong information release
contains an availability requirement: the output expression
must eventually evaluate to an integer value. Information
security requirements are not always easily separable into
confidentiality, integrity, and availability requirements.

Weak and strong required release can be defined as
properties: predicates over single execution traces. Weak
required release is a safety property, and strong required
release is neither safety nor liveness [19]. Recent work by
Clarkson and Schneider [20] expresses some information-
flow conditions as hyperproperties: predicates of sets of
traces. They note that all information-flow conditions they
considered were hyperproperties and not properties. Al-
though weak and strong required release are properties,
they are clearly constitute part of a systems information
flow requirements, so some information-flow conditions
of interest are properties. Indeed, in Section IV-C below,
we discuss the relationship between required release and
delimited release, an information flow security condition for
permitted information release that is a hyperproperty and not
a property.

B. Noninterference

Noninterference [2] is a well-known semantic security
condition that requires that public observations reveal no
secrets. Applied to the interactive setting used here, nonin-
terference ensures that user ` does not gain any knowledge
about the strategy employed by any user `′ such that `′ 6v `.
That is, the strategy of any such user `′ does not interfere
with the trace observed by user `.

More precisely, a program satisfies noninterference if, for
all security levels `, and all configurations m and m′ that
agree on the user strategies of all users `′ such that `′ v `,
the traces emitted by m and m′ are indistinguishable to
user `. Two traces t and t′ are indistinguishable to user
`, written t ≈` t′ if t � ` extends t′ � `, or vice-versa.
This notion of trace indistinguishability is suitable given the
observational model, which does not allow a user to directly
distinguish a terminated program from a program in a non-
terminating loop, or from a program that may eventually
produce additional output.

Definition 3 (Noninterference). A command c satisfies
noninterference exactly when for all levels ` ∈ L:

For all m = (c, σ, 〈〉, ω) and m′ = (c, σ, 〈〉, ω′)
such that ω(`′) = ω′(`′) for all `′ v `,

and for all traces t, t′ such that m t and m′ t′,
we have t ≈` t

′.

Note that both weak and strong required release of f to `
violate noninterference if the input expression f contains an
input expression in`′ [i] such that `′ 6v ` (and the evaluation
of f depends nontrivially on in`′ [i]). For example, any
program that satisfies (weak or strong) required release of
inH [0] mod 10, 000 to L (such as program P4) must violate
noninterference, since H 6v L, and L learns something about
the strategy of H , to wit, the last four digits of the credit
card number that H entered.

C. Delimited and bounded release

Noninterference is a very restrictive security condition.
Many real-world programs must violate noninterference in
order to satisfy functional requirements that require or allow
the release of information.

The security condition delimited release [11] weakens
noninterference by specifying what information a program
is permitted to release.

An escape hatch is a pair (f, `) of input expression f ,
and security level `. Intuitively, given escape hatch (f, `),
a program is permitted to release information f to security
level `.2 Thus, given escape hatches (f0, `0), . . . , (fk, `k),
user ` is permitted to learn the evaluation of fi for any
escape hatch (fi, `i) such that `i v `, in addition to the user
strategies of any user `′ such that `′ v `.

A program satisfies delimited release by escape hatches
(f0, `0), . . . , (fk, `k) if, for any security level ` and config-
urations m and m′ that have the same user strategy for any
user `′ such that `′ v `, if m and m′ respectively emit traces
t and t′ that agree on the evaluation of all escape hatches that
may release information to level `, then the traces emitted
by m and m′ are indistinguishable to user `. Formally, we
say that traces t and t′ agree up to ` on escape hatches
(f0, `0), . . . , (fk, `k) if for all i ∈ 0..k such that `i v `, we
have t �in fi ⇓ vi and t′ �in fi ⇓ vi for some vi 6= ⊥.

Definition 4 (Delimited release). Command c satisfies
delimited release by escape hatches (f0, `0), . . . , (fk, `k)
exactly when for all levels ` ∈ L:

For all m = (c, σ, 〈〉, ω) and m′ = (c, σ, 〈〉, ω′)
such that ω(`′) = ω′(`′) for all `′ v `,

and for all traces t, t′ such that m t and m′ t′,
if t and t′ agree up to ` on

escape hatches (f0, `0), . . . , (fk, `k),
then t ≈` t

′.

Delimited release generalizes noninterference: if com-
mand c satisfies delimited release by an empty set of escape
hatches, then c satisfies noninterference.

Both delimited release and required release are concerned
with information flow, and with the knowledge an observer

2Sabelfeld and Myers [11] specify escape hatches as declassification
expressions declassify(e to `), and expressions in escape hatches refer to
initial values of variables.

7

acquires. Required release specifies what information, at
a minimum, a program must release. It specifies what an
observer must be able to (explicitly) know, and can be
viewed as specifying “lower bounds” on what information
a program releases. By contrast, delimited release specifies
what an observer is permitted to (implicitly) know, and
can be seen as specifying “upper bounds”, the maximum
information a program is permitted to release. We can
combine the security conditions of delimited release and
required release to obtain both upper and lower bounds on
a program’s information release.

By analogy with escape hatches (which can be defined
as openings in the roof of a building, and specify the
upper bounds on information release), we use escape chutes
(passages down which things may pass) to define the lower
bounds of information release. An escape chute is a tuple
(f, `, g) of input expression f , security level `, and output
expression g. We define bounded release by combining
delimited release by escape hatches, and required release
by escape chutes.

Definition 5 (Bounded release). Command c satisfies weak
(strong) bounded release by escape chutes

(f0, `0, g0), . . . , (fk, `k, gk)

and escape hatches

(f ′0, `
′
0), . . . , (f ′n, `

′
n)

exactly when
1. for all i ∈ 0..k, c satisfies weak (strong) required release

of fi to `i using gi; and
2. c satisfies delimited release by escape hatches (f ′0, `

′
0),

. . . , (f ′n, `
′
n)

Program P4 satisfies strong bounded release by es-
cape chute (inH [0] mod 10, 000, L, out[1]) and escape
hatch (inH [0] mod 10, 000, L). Thus, bounded release
tells us not only that P4 releases the input expression
inH [0]mod10, 000, but also that this is the only information
released by P4.

The following program has different upper and lower
bounds. It satisfies strong bounded release by escape
chute (inH [0] mod 10, 000, L, out[1]) and escape hatches
(inH [0] mod 10, 000, L) and (inH [0] div 1015, L). It always
releases the last four digits of the credit card number (via
output expression out[1]) and it may in addition release
information about the first digit of the (16 digit) credit card
number.

P6 : input cc from H;
x := declassify(ccmod 10, 000 to L);
output “Last 4 credit card digits: ” to L;
output x to L;
y := declassify(cc div 1015 to L);
if y = 4 then output “Visa” to L else skip

There is a consistency property between the escape
hatches and escape chutes. Since escape chutes are the
“lower bounds” of information release, they must contain
no more information than the escape hatches, the “upper
bounds” of information release. More precisely, if t and t′

are traces that can be produced by a command satisfying
bounded release, and t and t′ agree on all input and output
events on all channels up to some level `, and agree on the
value of all escape hatches that declassify to ` or below,
then for each escape chute at level ` or below, either t and
t′ agree on the value of the escape chute, or t and t′ do not
have sufficient input events to evaluate the escape chute. We
say that traces t and t′ agree on escape chute (fi, `i, gi) if
t �in fi ⇓ vi and t′ �in fi ⇓ vi for some vi 6= ⊥.

Property 1 (Consistency). If command c satisfies
(weak or strong) bounded release by escape chutes
(f0, `0, g0), . . . , (fk, `k, gk) and escape hatches
(f ′0, `

′
0), . . . , (f ′n, `

′
n) then

for all ` ∈ L, and for all configurations m = (c, σ, 〈〉, ω)
and m′ = (c, σ, 〈〉, ω′), and for all traces t, t′ such that
m t and m′ t′,

if t and t′ agree up to ` on
escape hatches (f ′0, `

′
0), . . . , (f ′n, `

′
n), and

for all `′ v ` we have t�`′ = t′ �`′

then for all i ∈ 0..k such that `i v `,
either t �in fi ⇓ ⊥, or t′ �in fi ⇓ ⊥, or
t and t′ agree on escape chute (fi, `i, gi).

Proof: (Sketch) Given ` and t and t′ such that t and t′

agree up to ` on escape hatches (f ′0, `
′
0), . . . , (f ′n, `

′
n), and

t � `′ = t′ � `′ for all `′ v `, then we can construct joint
user strategies ω and ω′ such that m t and m′ t′, and
ω(`′) = ω′(`′) for all `′ v `.

For any escape chute (fi, `i, gi) such that `i v `, suppose
t0 �

`i
out gi ⇓ vi and t′0 �

`i
out gi ⇓ v′i for some vi, v′i 6= ⊥.

By delimited release, t ≈`i t
′, and so, t and t′ agree on the

values of all output expressions required to evaluate gi to an
integer value. Therefore, vi = v′i. By bounded release, the
evaluation of fi in t and t′ also equal vi, and so and t and
t′ agree on escape chute (fi, `i, gi).

V. ENFORCEMENT

In this section we show that weak bounded release can be
soundly enforced with a security type system. Weak bounded
release is the conjunction of weak required release, and
delimited release. Since weak required release is a safety
property, clearly other enforcement mechanisms could also
be used to enforce it, including dynamic mechanisms such
as execution monitors. However, due to the similarity of
escape chutes and escape hatches, a type system to enforce
delimited release can easily be adapted to enforce weak
bounded release as well.

Our type system conservatively tracks both the security
level of information as it flows through a program, and what

8

T-ASSIGN
pc v ` Γ(e) v `

Γ′ = Γ[x 7→ `] ∆′ = ∆[x 7→ ∆(e)]

pc,Γ;C,∆,E, H ` x := e . Γ′;C,∆′,E, H

T-SEQ
pc,Γ;C,∆,E, H ` c0 . Γ′;C ′,∆′,E′, H ′

pc,Γ′;C ′,∆′,E′, H ′ ` c1 . Γ′′;C ′′,∆′′,E′′, H ′′

pc,Γ;C,∆,E, H ` c0; c1 . Γ′′;C ′′,∆′′,E′′, H ′′

T-IN
pc v ` Γ′ = Γ[x 7→ `]

C ′ = incin(C, `) ∆′ = recordInput(∆, x, C, `)

pc,Γ;C,∆,E, H ` input x from ` . Γ′;C ′,∆′,E, H

T-OUT
pc v ` Γ(e) v ` C ′ = incout(C, `)

E′ = recordOutput(E, C, `,∆(e))

pc,Γ;C,∆,E, H ` output e to ` . Γ;C ′,∆,E′, H

T-IF
pc v pc′ Γ(e) v pc′ i = 0, 1

pc′,Γ;C,∆,E, H ` ci . Γ′;C ′,∆′,E′, H ′

pc,Γ;C,∆,E, H ` if e then c0 else c1 . Γ′;C ′,∆′,E′, H ′

T-WHILE
pc v pc′ Γ(e) v pc′

pc′,Γ;C,∆,E, H ` c . Γ;C,∆,E, H

pc,Γ;C,∆,E, H ` while e do c . Γ;C,∆,E, H

T-DECLASSIFY

pc v `′ ` v `′ Γ′ = Γ[x 7→ `′]

∆′ = ∆[x 7→ ∆(e)] H ′ = H ∪ {(∆(e), `)}
pc,Γ;C,∆,E, H ` x := declassify(e to `) . Γ′;C,∆′,E, H ′

T-SUB
Γ0 v Γ1 Γ′1 v Γ′0 pc0 v pc1

C0 � C1 C ′1 � C ′0 ∆0 � ∆1 ∆′1 � ∆′0
E0 � E1 E′1 � E′0 H0 ⊆ H1 H ′1 ⊆ H ′0

pc1,Γ1;C1,∆1,E1, H1 ` c . Γ′1;C ′1,∆
′
1,E
′
1, H

′
1

pc0,Γ0;C0,∆0,E0, H0 ` c . Γ′0;C ′0,∆
′
0,E
′
0, H

′
0

T-SKIP

pc,Γ;C,∆,E, H ` skip . Γ;C,∆,E, H recordInput(∆, x, C, `) =

{
∆[x 7→ ⊥] if C(`) = (⊥, j)
∆[x 7→ in`[i]] if C(`) = (i, j), i 6= ⊥

recordOutput(E, C, `, f) =

{
E if C(`) = (i,⊥)

E[(`, j) 7→ f] if C(`) = (i, j), j 6= ⊥

incin(C, `) =

{
C if C(`) = (⊥, j)
C[` 7→ (i+ 1, j)] if C(`) = (i, j), i 6= ⊥

incout(C, `) =

{
C if C(`) = (i,⊥)

C[` 7→ (i, j + 1)] if C(`) = (i, j), j 6= ⊥

Figure 3. Typing rules

input expressions have been output and declassified. This
allows us to ensure that (i) confidential information is never
output to non-confidential channels; (ii) only appropriate
escape hatches are declassified; and (iii) appropriate escape
chutes are output to the correct channel in the correct order.

For command c, type judgments have the form

pc,Γ;C,∆,E, H ` c . Γ′;C ′,∆′,E′, H ′

where entities to the left of the turnstile (`) indicate the
context before the execution of c, and primed versions on
the right hand side of the judgment indicate how the contexts
change as a result of the execution of c.

Security level typing context Γ maps variables to security
levels, and indicates an upper bound on the information
stored in each variable. Program counter level pc is an upper
bound on the information that may cause command c to be
executed, and is used to track implicit information flows [21].
Typing context Γ and program counter level pc are standard
in security type systems. Our type system is flow-sensitive,
as it allows command c to modify Γ, and is based on the
flow-sensitive security type system of Hunt and Sands [22].

The remaining entities in the context (C, ∆, E, and H)
are used to track what input expressions have been output
and declassified. Specifically, we conservatively track how

9

many input and output events have been produced on each
channel, what input expression (if any) is stored in each
variable, what input expressions (if any) have been output,
and what input expressions have been declassified.
• C : L → Z⊥×Z⊥ counts the input and output events that

have occurred on each channel. If C(`) = (i, j), then the
program has received i input events from channel `, and
produced j output events to channel `. If i = ⊥, then an
unknown number of input events have been received on
channel `, and similarly, if j = ⊥, an unknown number
of output events have been produced.
• ∆ : Var → InputExp⊥ indicates what input expres-

sion is stored in each variable. For any variable x, if
∆(x) = f then the value stored in x is equivalent to
input expression f . If ∆(x) = ⊥ then nothing is known
about the value stored in x.
• E : L × Z → InputExp⊥ indicates which input

expressions have been output to channels.3 If E(`, i) = f
then the ith value output on channel ` was equal to
the evaluation of input expression f . If E(`, i) = ⊥
then either the ith output to channel ` has not yet been
produced, or nothing is known about the ith output to
channel `.
• H : ℘(InputExp × L) is a set of escape hatches that

may have been declassified.
Figure 3 presents inference rules for the typing judgment.

Given a function h, we write h[a 7→ b] for the function that
evaluates to b on input a, and otherwise behaves like h. We
use Γ(e) to denote an upper bound of all levels Γ(x) for
variables x occurring in e; if L is a join semi-lattice, then
this is the join of all Γ(x) for x in e. We extend function ∆
to a homomorphism on program expressions, and write ∆(e)
for the result of applying the homomorphism to expression
e.

In the typing rules, security level context Γ and program
counter level pc do not interact with other parts of the
context, and by themselves form a standard flow-sensitive
information-flow security-type system, similar to that of
Hunt and Sands [22]. In the following discussion of the
typing rules, we focus on the type system’s novel aspects.

For assignment x := e, T-ASSIGN updates input expres-
sion context ∆ for x to ∆(e), which is either ⊥ or an input
expression equal to e at this program point. The typing rule
T-DECLASSIFY for declassification x := declassify(e to `)
is similar to assignment, but escape hatch (∆(e), `) is added
to declassification effect H . Note that the rule implicitly
requires ∆(e) 6= ⊥ since H must contain escape hatches.
Rule T-SEQ simply threads the context through a sequence
of commands. A skip command has no effect on the context,
shown in rule T-SKIP.

Command input x from ` assigns the next input from
channel ` to variable x. Rule T-IN updates input expression

3“E” is the uppercase “ε”, the Greek letter epsilon.

substOutExp(E, `, n) = n
substOutExp(E, `, g0 ⊕ g1) = substOutExp(E, `, g0) ⊕

substOutExp(E, `, g1)
substOutExp(E, `,out[i]) = E(`, i)

Figure 4. substOutExp(E, `, g)

context ∆ using helper function recordInput(∆, x, C, `),
which updates ∆(x) either to ⊥ if the number of input
events on channel ` is not known, or to input expression
in`[i], where i is the number of input events received on
channel `. If known, the number of input events on channel
` is incremented using the helper function incin(C, `).

Command output e to ` outputs expression e to channel
`. Using helper function recordOutput(E, C, `, f), rule T-
OUT records that the jth output on channel ` is equal to
input expression ∆(e), where j is the number of output
events produced on channel `, and increments the number
of output events produced on channel ` with helper function
incout(C, `). If the number of output events produced on
channel ` is unknown (i.e., j = ⊥), then no update to E or
C is made.

The subsumption rule T-SUB allows the context to be
weakened, or made less precise. It uses the flat ordering �:
for any lifted set S⊥, and for any a, b ∈ S⊥, a � b iff
a = b or b = ⊥. We extend the � relation in the obvious
way to pairs, and to a pointwise relation over functions. For
example, ∆0 � ∆1 iff for all x ∈ Var, ∆0(x) � ∆1(x).
Similarly, we extend the binary relation v over L to a
pointwise relation over functions with codomain L.

The rules for if and while commands (T-IF and T-WHILE
respectively) type check their sub-commands with a program
counter level bounded below by pc and Γ(e), since e controls
the execution of the sub-commands. Rule T-WHILE requires
that context is unchanged by the execution of the while
command; for any channel `, this means either that the loop
body performs no input or output on `, or that the context
cannot precisely track the number on inputs or outputs
received on channel `, i.e., C(`) = (i, j) and ⊥ ∈ {i, j}.
Similarly for an if command, the context will lose track of
the number on inputs or outputs received on channel ` unless
both branches always perform the same number of inputs
and outputs on `.

The type system can easily be converted into an algo-
rithmic type system, using the same technique as Hunt and
Sands [22]. If the security levels L and binary relation
v form a join-semi lattice, then type checking and type
inference with the algorithmic type system is decidable in
time polynomial in the size of the program.

If command c is well-typed, then it satisfies both weak
required release, and delimited release. Theorem 1 below
states this claim formally. To state Theorem 1 concisely, we
first introduce a helper function and additional notation.

Helper function substOutExp(E, `, g) takes output con-

10

text E, security level `, and output expression g, and
substitutes any occurrence of out[i] with input expression
E(`, i), that is, the input expression that E claims was the
ith output on channel `. For example, if E((L, 2)) = inH [1],
then substOutExp(E, L, 42 + out[2]) = 42 + inH [1]. Rules
for substOutExp(E, `, g) are given in Figure 4.

We assume there is a notion of equivalence between input
expressions, denoted by ≡. We require that if f0 ≡ f1, then
for all traces t and v ∈ Z⊥, t �in f0 ⇓ v iff t �in f1 ⇓
v. The equivalence relation could be syntactic identity, or
syntactic identity up to commutativity and associativity of
operators, or, (depending on the operators in the language)
a deeper semantic equivalence.

Finally, for any set S and v ∈ S, we use v as shorthand
for a constant function that always returns v. For example,
(0, 0) is a function that always returns the pair (0, 0).

Theorem 1. If pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H
for some Γ0 and pc, then

1. c satisfies weak required release of input expres-
sion f to user ` using output expression g if
substOutExp(E, `, g) ≡ f .

2. c satisfies delimited release by escape hatches (f0, `0),
. . . , (fk, `k) if for all (f, `) ∈ H there exists i ∈ 0..k
such that f ≡ fi and `i v `.

A proof of Theorem 1 appears in the companion technical
report [23].

If command c is well-typed, then because it satisfies both
weak required release, and delimited release, it satisfies weak
bounded release.

Corollary 1. Command c satisfies weak bounded release
by escape chutes (f0, `0, g0), . . . , (fk, `k, gk) and escape
hatches (f ′0, `

′
0), . . . , (f ′n, `

′
n) if

pc,Γ0; (0, 0),⊥,⊥, ∅ ` c . Γ;C,∆,E, H

for some Γ0 and pc, and substOutExp(E, `, gi) ≡ fi for all
i ∈ 0..k and for all (f, `) ∈ H there exists i ∈ 0..n such
that f ≡ f ′i and `′i v `.

Proof: Immediate from Theorem 1.
Although program P4 satisfies bounded release, it does

not type-check: it attempts to release information from H to
L but does not have any declassify annotations. Program P6

does type-check. The judgment

L,L; (0, 0),⊥,⊥, ∅ ` P6 . Γ;C,∆,E, H

holds for
Γ = L[cc 7→ H,x 7→ L, y 7→ L]

C = (0, 0)[H 7→ (1, 0), L 7→ (0,⊥)]

∆ = ⊥[cc 7→ inH [0], x 7→ inH [0] mod 10, 000,

y 7→ inH [0] div 1015]

E = ⊥[(L, 0) 7→ “...”, (L, 1) 7→ inH [0] mod 10, 000]

H = {(inH [0] mod 10, 000, L), (inH [0] div 1015, L)}.

Thus, by Corollary 1, P6 satisfies weak bounded release
by escape chute (inH [0] mod 10, 000, L,out[1]) and escape
hatches (inH [0] mod 10, 000, L) and (inH [0] div 1015, L).

A more sophisticated static analysis (or a more restric-
tive language) could enforce strong required release, by
reasoning about the termination of loops, and the eventual
production of outputs.

VI. RELATED WORK

Much recent work has considered information release.
Sabelfeld and Sands [6] present a survey of work on (per-
mitted) information release, and introduce four aspects of
declassification: who, what, where and when. These aspects
are also relevant to required information release. This work
is primarily concerned with what information is required
for release, expressed using input expressions. Strong re-
quired release relates to the when aspect: it mandates that
information is eventually released, whereas weak required
release places no requirements on when (if ever) information
is released.

Sabelfeld and Sands [6] also introduce several prudent
principles of declassification. Of these principles, semantic
consistency is directly applicable to required release, and is
satisfied by weak and strong required release, and bounded
release: semantically equivalent programs satisfy the same
security conditions. The other principles do not seem directly
applicable to required release.

Previous work on specification and enforcement of infor-
mation release focuses on permitted information release. To
the best of our knowledge, this work is the first to address
required information release. Appropriate extensions to the
policies and enforcement mechanisms of previous work may
allow them to reason about required release. The automata
for information release of Swamy and Hicks [8], and the
flowspecs used by Banerjee et al. [9] seem particularly
suitable for extending for required release.

Askarov and Sabelfeld [24] introduce localized delimited
release, which refines delimited release by restricting not
only what information may be released, but where it may
be released (at an appropriate declassify command). The
type system used by Sabelfeld and Myers [11] to enforce
delimited release also enforces localized delimited release,
so we speculate that the type system used in this paper to
enforce bounded release would also enforce an appropriately
defined localized bounded release.

Askarov and Sabelfeld [25] define the semantic security
condition gradual release in terms of attacker knowledge: an
attacker’s knowledge of secrets may become more precise
only at specified declassification events. Gradual release
restricts permitted information release, and as such it suffices
to use implicit knowledge; since we are concerned with
required release, we use algorithmic knowledge to ensure
that knowledge can be obtained with reasonable resources.
The use of algorithmic knowledge leads us to specify how

11

an observer learns released information, in addition to what
information they learn.

Askarov and Sabelfeld [26] present semantic security
conditions that generalize localized delimited release and
gradual release, and consider their enforcement using a com-
bination of static and dynamic techniques in an interactive
language. Since weak required release is a safety property,
it could be enforced using dynamic techniques, such as
execution monitors [27].

O’Neill [28] presents many information flow conditions
in an epistemic framework, but doesn’t consider algorithmic
knowledge or required information release.

As discussed in Section IV-A, required information re-
lease is concerned with the integrity and availability of
information, in addition to its confidentiality. Zheng and
Myers [29] study the end-to-end enforcement of availability
policies, and present a policy framework for specifying con-
fidentiality, integrity, and availability policies. Their policies
are based on the decentralized label model [30], and specify
who may affect the confidentiality, integrity, and availability
of information. By contrast, this work focuses on what
aspects of availability and integrity: what information must
be available, and what it must be equal to.

VII. CONCLUSION

As part of their correct functionality, many systems are
required (not just permitted) to release information. This pa-
per introduces the problem of required information release:
specifying, reasoning about, and enforcing, the information
security of systems that must release information.

We have defined semantic conditions for required infor-
mation release. Inspired by work on algorithmic knowledge,
the semantic conditions must specify both what information
is to be released, and how that information is to be learned
by an observer. Input expressions specify what information
is to be released, and output expressions specify how an
observer learns the information. A program satisfies weak
required release of input expression f to user ` using output
expression g if whenever user ` is able to evaluate g, then
f evaluates to the same value. A program satisfies strong
required release if it satisfies weak required release, and
eventually produces sufficient output for user ` to evaluate
g.

We investigated the relationship between a system’s
required and permitted information release, and defined
bounded release, which combines required release with
delimited release. Bounded release specifies upper and lower
bounds on the information a system releases. For many sys-
tems, these bounds should be tight: the system should release
all and only information it is required to release. We have
shown that (weak) bounded release can be conservatively
enforced by a type system.

Both weak and strong required release are properties:
predicates over single execution traces. Noninterference,

delimited release, and many other information security re-
quirements, are hyperproperties, but not properties. One may
thus be concerned whether required information release is an
information security requirement. We believe that required
information release, while a property, is clearly concerned
with the flow of information in a system: it requires that, at a
minimum, certain information flows to an observer. We have
shown a connection between required information release
and delimited release: whereas required information release
specifies the minimum information flow from high security
inputs to low security outputs that a system must satisfy,
delimited release specifies maximum information flow. Thus,
we believe that required information release is part of a
system’s information security requirements.

There is still much left to understand with respect to
required information release. There are systems with infor-
mation release requirements that cannot be expressed using
the policies presented in this paper. For example, financial
reports of a company should be released to all shareholders,
not a subset; if Alice and Bob are the shareholders, the
system must release reports to Alice if and only if it releases
that information to Bob. In terms of enforcing required
information release, it may be impractical to explicitly
specify the knowledge algorithm by which an observer may
learn the released information; static analyses may allow
the automatic discovery of the knowledge algorithm, thus
reducing the burden of proving a system satisfies required
information release.

To build trustworthy computer systems, it is important
to understand and provably enforce a system’s information
security requirements. By introducing the concept of re-
quired information release, and providing mechanisms to
specify and enforce these requirements, this work brings us
closer to the goal of strong, end-to-end, application-specific
information security.

ACKNOWLEDGMENTS

We thank Andrew Myers for very useful discussions and
feedback about this work. We also thank Michael Clarkson,
Allan Friedman, Tyler Moore, Kevin O’Neill, Fred Schnei-
der, and Jeff Vaughan for interesting and helpful discussions
related to this work, and the anonymous reviewers for their
useful comments.

REFERENCES

[1] A. Sabelfeld and A. Myers, “Language-based
information-flow security,” IEEE Journal on Selected
Areas in Communications, vol. 21, no. 1, pp. 5–19,
Jan. 2003.

[2] J. A. Goguen and J. Meseguer, “Security policies
and security models,” in Proceedings of the IEEE
Symposium on Security and Privacy. IEEE Computer
Society, Apr. 1982, pp. 11–20.

12

[3] P. Li and S. Zdancewic, “Downgrading policies and
relaxed noninterference,” in Conference Record of the
Thirty-Second Annual ACM Symposium on Principles
of Programming Languages. ACM Press, Jan. 2005.

[4] S. Chong and A. C. Myers, “Security policies for
downgrading,” in Proceedings of the 11th ACM Con-
ference on Computer and Communications Security.
ACM Press, Oct. 2004.

[5] D. Clark, S. Hunt, and P. Malacaria, “Quantified in-
terference for a while language,” Electronic Notes in
Theoretical Computer Science, vol. 112, pp. 149–166,
Jan. 2005.

[6] A. Sabelfeld and D. Sands, “Dimensions and principles
of declassification,” in Proceedings of the 18th IEEE
Computer Security Foundations Workshop, Jun. 2005,
pp. 255–269.

[7] R. van der Meyden, “What, indeed, is intransitive
noninterference?” in Proceedings of the 12th Euro-
pean Symposium On Research In Computer Security,
ser. Lecture Notes in Computer Science, vol. 4734.
Springer, Sep. 2007, pp. 235–250.

[8] N. Swamy and M. Hicks, “Verified enforcement of
automaton-based information release policies,” in Pro-
ceedings of the 2008 Workshop on Programming Lan-
guages and Analysis for Security. ACM Press, Jun.
2008.

[9] A. Banerjee, D. A. Naumann, and S. Rosenberg, “Ex-
pressive declassification policies and modular static
enforcement,” in Proceedings of the IEEE Symposium
on Security and Privacy. IEEE Computer Society,
May 2008.

[10] J. Y. Halpern, Y. Moses, and M. Y. Vardi, “Algorithmic
knowledge,” in Proceedings of the 5th Conference on
Theoretical Aspects of Reasoning about Knowledge,
Mar. 1994, pp. 255–266.

[11] A. Sabelfeld and A. C. Myers, “A model for delimited
release,” in Proceedings of the 2003 International
Symposium on Software Security, ser. Lecture Notes in
Computer Science, no. 3233. Springer-Verlag, 2004,
pp. 174–191.

[12] J. Hintikka, Knowledge and Belief. Cornell University
Press, 1962.

[13] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi,
Reasoning about Knowledge. Cambridge, MA: MIT
Press, 1995.

[14] R. Ramanujam, “View-based explicit knowledge,” An-
nals of Pure and Applied Logic, vol. 96, pp. 343–368,
1999.

[15] R. Pucella, “Deductive algorithmic knowledge,” Jour-
nal of Logic and Computation, vol. 16, no. 2, pp. 287–
309, 2006.

[16] K. R. O’Neill, M. R. Clarkson, and S. Chong,
“Information-flow security for interactive programs,”
in Proceedings of the 19th IEEE Computer Security

Foundations Workshop. IEEE Computer Society, Jun.
2006.

[17] A. C. Myers and B. Liskov, “Complete, safe informa-
tion flow with decentralized labels,” in Proceedings of
the IEEE Symposium on Security and Privacy. IEEE
Computer Society, May 1998, pp. 186–197.

[18] H. Chen and S. Chong, “Owned policies for infor-
mation security,” in Proceedings of the 17th IEEE
Computer Security Foundations Workshop. IEEE
Computer Society, Jun. 2004.

[19] B. Alpern and F. B. Schneider, “Defining liveness,”
Information Processing Letters, vol. 21, no. 4, pp. 181–
185, Oct. 1985.

[20] M. R. Clarkson and F. B. Schneider, “Hyperproperties,”
in Proceedings of the 21st IEEE Computer Security
Foundations Symposium, Jul. 2008.

[21] D. E. Denning and P. J. Denning, “Certification of pro-
grams for secure information flow,” Communications of
the ACM, vol. 20, no. 7, pp. 504–513, Jul. 1977.

[22] S. Hunt and D. Sands, “On flow-sensitive security
types,” in Conference Record of the Thirty-Third An-
nual ACM Symposium on Principles of Programming
Languages. ACM Press, Jan. 2006, pp. 79–90.

[23] S. Chong, “Required information release,” Harvard
Computer Science, Tech. Rep. TR-04-10, Apr. 2010.

[24] A. Askarov and A. Sabelfeld, “Localized delimited
release: combining the what and where dimensions
of information release,” in Proceedings of the 2007
Workshop on Programming Languages and Analysis
for Security. ACM Press, 2007, pp. 53–60.

[25] ——, “Gradual release: Unifying declassification, en-
cryption and key release policies,” in Proceedings of
the IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2007, pp. 207–221.

[26] ——, “Tight enforcement of information-release poli-
cies for dynamic languages,” in Proceedings of the
22nd IEEE Computer Security Foundations Sympo-
sium, 2009.

[27] F. B. Schneider, “Enforceable security policies,” ACM
Transactions on Information and System Security,
vol. 3, no. 1, pp. 30–50, 2000.

[28] K. R. O’Neill, “Security and anonymity in interactive
systems,” Ph.D. dissertation, Cornell University, Aug.
2006.

[29] L. Zheng and A. C. Myers, “End-to-end availability
policies and noninterference,” in Proceedings of the
Proceedings of the 18th IEEE Computer Security Foun-
dations Workshop, Jun. 2005, pp. 272–286.

[30] A. C. Myers and B. Liskov, “Protecting privacy using
the decentralized label model,” ACM Transactions on
Software Engineering and Methodology, vol. 9, no. 4,
pp. 410–442, Oct. 2000.

13

