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Abstract puts are provided (as final values of program variables) af-
ter program termination. Accordingly, these security condi-
Interactive programs allow users to engage in input and tions aim to protect the secrecy only of initial values.
output throughout execution. The ubiquity of such pro-  Many real-world programs aiieteractive sending out-
grams motivates the development of models for reasoningput to and receiving input from their external environment
about their information-flow security, yet no such models throughout execution. Examples of such programs include
seem to exist for imperative programming languages. Fur- web servers, GUI applications, and some command-line ap-
ther, existing language-based security conditions foundedplications. The batch-job model is unable to capture the
on noninteractive models permit insecure information flows pehavior of interactive programs because of dependencies
in interactive imperative programs. This paper formulates between inputs and outputs. For example, a program imple-
new strategy-based information-flow security conditions for menting a challenge/response protocol must first output a
a simple imperative programming language that includes challenge to the user and then accept the user’s response as
input and output operators. The semantics of the lan- input; clearly, the user cannot supply the response as the ini-
guage enables a fine-grained approach to the resolution tial value of a program variable. In contrast, the interactive
of nondeterministic choices. The security conditions lever- model generalizes the batch-job model: any batch-job pro-
age this approach to prohibit refinement attacks while still gram can be simulated by an interactive program that reads
permitting observable nondeterminism. Extending the lan- the initial values of all relevant variables, executes the corre-
guage with probabilistic choice yields a corresponding def- sponding batch-job program, and finally outputs the values
inition of probabilistic noninterference. A soundness theo- of all variables.
rem demonstrates the feasibility of statically enforcing the  Gjyen the prevalence of interactive programs, it is im-
security conditions via a simple type system. These re-portant to be able to reason about their security properties.
sults constitute a step toward understanding and enforcing Traditionally, researchers have reasoned about information
information-flow security in real-world programming lan-  flow in interactive systems by encoding them as state ma-
guages, which include similar input and output operators.  chines (e.g., Mantel [19] and McLean [22, 23]) or as con-
current processes (e.g., Focardi and Gorrieri [6]) and apply-
ing trace-based information-flow security conditions. But
1 Introduction since implementors usually createperative programsanot
Secure programs should maintain the secrecy of Conﬁ_abstrac_t models, a need e_xists for tools that enab!e direct
dential information. For sequential imperative program- reasoning about the security of SPCh programs. This paper
ming languages, this principle has led to a variety of addresses_that negd by develop.mg a_model _for reasoning
information-flow security conditions which assume that all a_lbOUt the information-flow Sec‘%”ty of interactive impera-
confidential information is supplied as the initial values of tive programs. Our model achieves a clea_n separation of
a set of program variables.  This assumption reflects anyser ber_]awor from program COde. by empl(_)yua@r_strate_-
idealizedbatch-jobmodel of input and output, whereby all gies which despnbe how agents interact with their environ-
inputs are obtained (as initial values of program variables) ment. Strategps are closely related to Processes described
from users before the program begins execution, and all out" @ language like CCS. [25] or csp [1.7.]' We. give novgl
strategy-based semantic security conditions similar to Wit-
This work was supported in part by NSF under grants CTC-0208535 and thold and Johnson'’s definition ebndeducibility on strate-

0430161, by ONR under grant NO0014-01-10-511, by the DoD Multidis- : ; : ol ;
ciplinary University Research Initiative (MURI) program administered by gies{39], which ensure that confidential information cannot

the ONR under grants N0O0014-01-1-0795 and N00014-04-1-0725, and byflow from high-confidentiality users to low-confidentiality
AFOSR under grants F49620-02-1-0101 and FA9550-05-1-0055. users. We also leverage previous work on static analysis




techniques by adapting the type system of Volpano, Smith,However, several papers, starting with Wittbold and John-
and Irvine [38] to an interactive setting. son [39], have described systems in which high users can
Our language and security conditions synthesize two transmit information to low users even though low users
branches of information-flow security research, in that we learn nothing about the high inputs. This is demonstrated
leverage the trace-based definitions that have been proposebly ProgramP; below, an insecure one-time pad imple-
for interactive systems to provide novel security conditions mentation described by Wittbold and Johnson. Command
for imperative programs. Furthermore, our interactive pro- input x from C reads a value from a channel naméd
gramming language can be viewed as a specification lan-and stores it in variable; similarly, output e to C outputs
guage for interactive systems that more closely approxi- the value of expression on a channel named. Assume
mates the implementation of real programs than the abstracthat low users may use only chandglthat high users may
system models that have previously been used. use channeH, and that no users may observe the values
Nondeterminism arises in real-world systems for a num- of program variables. Infix operat§mondeterministically
ber of reasons, including concurrency and probabilistic ran- chooses to execute one of its two operands.
domization. It is therefore an important consideration when
reasoning about imperative programs. Nondeterminism is
orthogonal to interactivity, but the interplay between in-
formation flow and nondeterminism is often quite subtle.
We examine two kinds of nondeterministic choices: those
which we assume are made probabilistically, and those

which we are unable or unwilling to assign probabilities. |f nondeterminism is resolved in a way that is unpredictable
We refer to the former aprobabilistic choice and to the {5 the low user, he will be unable to determine the inputs on
latter asnondeterministic choice Following Halpern and  :hanneld: for any output orZ, the input onH could have
Tuttle [15], we factor out nondeterministic choice so that peen either 0 or 1. Yet the high user can still communicate
we can reason about it in isolation from probabilistic choice. 4, arbitrary confidential bit to channelL at each iteration

By explicitly representing the resolution of nondeterminis- of the loop by choosing xor z as input onA .

tic choice in the language semantics, we adapt our security - The confidential information is never directly acquired

tion of nondeterministic choice results in insecure informa- yariable nor an input supplied on a channel. As Wittbold
tion flows. Finally, we give a security condition, based on gnq johnson observe, maintaining the secrecy of all high

Py : while (true) do
z:=0[] z:=1;
output xto H;
input y from H;
output z xor (y mod 2)to L

Gray and Syverson’s definition pfobabilistic noninterfer-  jnpyts (and even the initial values of program variables) is
ence[11], that rules out probabilistic information flows in  therefore insufficient to preserve the secrecy of confidential
randomized interactive programs. information.

In Section 2 we develop our system model and intro- |, programp,, the high user is able to communicate ar-

duce mathematical structures for reasoning about the beyjyrary confidential information by selecting his next input
havior and observations of users. We proceed to instanti-as 3 function of outputs he has previously received. This
ate the model on a simple language of while-programs in g ggests that if we want to prevent confidential information
Section 3 and to give an operational semantics and securitytrom flowing to low users, we should protect the secrecy of
condition for the language. We then incorporate languagehe function that high users employ to select inputs. Follow-
features for nondeterministic choice (Section 4) and proba-jng wittbold and Johnson’s terminology, we call this func-
bilistic choice (Section 5) and adapt our security conditions tjony a user strategy In the remainder of this section we

accordingly. In Section 6 we demonstrate the feasibility of geyelop the mathematical structures needed to define user
statically enforcing our security condition by presenting a srategies formally.

sound type system. Section 7 discusses related work, and
Section 8 concludes. 2.1 Types, Users, and Channels

. We assume a sel of security types with ordering re-
2 User Strategies lation < and use metavariable to range over security

It might seem at first that information-flow security for types. For simplicity, we assume thaequals{ L, H } with
interactive programs can be obtained by adopting the samel. < H. (Our results generalize to partial orders of secu-
approach used for batch-job programs, that is, by prevent-rity types.) Security typd. represents low confidentiality,
ing low-confidentiality users from learning anything about and H represents high confidentiality. The orderiggn-
high-confidentiality inputs. (Hereafter we use the more dicates the relative restrictiveness of security types: high-
concise terms “high” and “low” when describing the con- confidentiality information is more restricted in its use than
fidentiality level associated with inputs, users, and so on.) low-confidentiality information.



Usersare agents (including humans and programs) that of the events that occur on the channel. Because events on
interact with executing programs. We associate with eacha channel include both inputs and outputs, this function de-
user a security type indicating the highest level of confiden- pends on both the user’s observations and previous actions.
tial information that the user is permitted to read. Conserva- Formally, a user strategy for a channel with security type
tively, we assume that users of the same security type mayr is a function of typeTr (Ev(r)) — Z. Let UserStrat
collaborate while attempting to subvert the security of a pro- be the set of all user strategies. (Note that, to simulate the
gram. We can thus simplify our security analyses by rea- batch-job model, the initial inputs provided by users can be
soning about exactly two users, one representing the pooledepresented by a constant strategy that selects inputs with-
knowledge of low users and another representing the pooledut regard for past inputs or outputs. Also, high user strate-

knowledge of high users.
We also assume the existencechinnelswith blocking
input and nonblocking output. Although input is blocking,

we assume that all inputs prompted for are eventually sup-

plied. Each channel is associated with a security ty@nd

gies can be extended to depend on observation of the low
channel, as described at the end of Section 3.)

As an example, we present a strategy that a high user
could employ to transmit an arbitrary stream of hits; . . .
to the low user in Prograr®; . This user strategy, ensures

only users of that type are permitted to use the channel. Forthat if ¥ was the previous output of, then the next input
simplicity, we assume that there are exactly two channels,on H is the bitwise exclusive-or dfandz;. Note that every
L andH. We also assume that the values that are input andsecond event on channlis an input evenin(H, v).
output on channels are integers. These are not fundamental

restrictions; our results could be extended to allow multiple

channels of each type, to allow high users to observe low g((ay, ..

channels, and to allow more general data types.

2.2 Traces

An eventis the transmission of an input or output on a
channel. Denote the input of valueon the channel of type
T asin(r,v) and the output ob on 7 as out(r,v). Let
Ev(7) be the set of all events that could occur on channel

U {in(1,v), out(r,v)}.

vEZ

Ev(r)

Let Ev be the set of all events:

J Ev(r).

TeL

A

Ev

We use metavariable to range over events iav.

A traceis afinite list of events. Givelv C Ev, anevent
trace onFE is a finite, possibly empty ligto, . . ., o, ) such
thata; € E for all i. The empty trace is writtef). The
set of all traces orF is denotedTr (E), and we abbreviate
the set of all trace3r (Ev) asTr. Trace equality is defined
pointwise, and the concatenation of two tracemndt’ is
denoted™t'. A tracet’ extendgracet if there exists a trace
t” such thatt’ = "t”. Therestriction oft to E, denoted
t | E, is the trace that results from removing all events not
contained inE from t. We writet [ 7 as shorthand for
tEv(7). A low traceis the low restrictiont | L of a trace!.

2.3 User Strategies
As demonstrated by Program, the input supplied by

z;Xorb if a,, = out(H,b)
Q) = andn =2i — 1
0 otherwise

A joint strategyis a collection of user strategies, one for
each channel. Formally, a joint strategyis a function of
type L — UserStrat, that is, a function from security types
to user strategies. L&trat be the set of all joint strategies.

3 Noninterference for Interactive Programs

While-programs, extended with commands for input and
output, constitute our core interactive programming lan-
guage. The syntax of this language is:

(expressions) e:=n | = | ey @ ey

(commands) c:=skip | x:=¢€ | co;c1 |
input « from 7 | output eto 7 |
if e then cq else ¢; | while edo ¢

Metavariabler ranges ove¥ar, the set of all program vari-
ables. Variables take values#h the set of integers. Literal
valuesn also range over integers. Binary operatorde-
notes any total binary operation on the integers.

3.1 Operational Semantics

The execution of a program modifies the values of vari-
ables and produces events on channelstatedetermines
the values of variables. Formally, a state is a function of
typeVar — Z. Leto range over states. gonfigurationis
a 4-tuple(c, o, t,w) representing a system about to execute
¢ with states and joint strategw. Tracet is the history of

a user may depend on past events observed by that user. Tevents produced by the system so far. /luatange over con-

capture this dependence we employser strategywhich

figurations. Terminal configurations, which have no com-

determines the input for a particular channel as a functionmands remaining to execute, have the fdekip , o, ¢, w).



(ASSIGN)

(z:=e,0,t,w) — (skip, o[z := o(e)], t,w)

(SEQ-2) (IN)

(co,0,t,w) — (cf, 0’1, w)

(SEQ-1)

(Sklp 36,0, tv w) - (Cv g, t7 UJ)

w(r)(t]7) =v

(CO; C1, U7t7w) - (C/Oa 6170'/,t/,(.())

(OuT)
ole) =wv

(input x from 7,0,t,w) — (skip, o[z := v|, " (in(1,v)),w)

(IF-1)
o(e) #0

(output eto 7,0,t,w) — (skip, o, t™ (out(1,v)),w)

(IF-2)
o(e) =0

(if e then ¢ else ¢y, 0,t,w) — (cp,0,t,w)

(WHILE)

(if e then ¢ else ¢y, 0,t,w) — (c1,0,t,w)

(while edo ¢,0,t,w) —

(if e then (c; while e do c) else skip , 0, t,w)

Figure 1. Operational semantics

The operational semantics for our language is a small-

step relation— on configurations. Membership in the re-
lation is denoted

(c,0,t,w) — (', o', ', w),

meaning that execution of commandan take a single step
to command’, while updating the state fromto o’. Trace

t' extendst with any events that were produced during the
step. Note that joint strategyis unchanged when a config-

uration takes a step; we include it in the configuration only

to simplify notation and presentation.
The inductive rules defining relation— are given in

Figure 1. The rules for commands other than input and

output are all standard. In Rules&IGN, o(e) denotes the
value of expression in states, and state update[z := v]
changes the value of variableto v in . Rule IN uses the
joint strategyw to determine the next input event and ap-
pends it to the current trace, and rule@Osimply appends
the output event to the current trace.

Let —* be the reflexive transitive closure ef-. Intu-
itively, if

(c,o,t,w) —* (', 0’ t' W),

then configuration (¢, 0,t,w) can reach configuration
(c,o',t',w) in zero or more steps. Configuration emits
t, denotedm ~~ t, when there exists a configuration
(¢c,0,t,w) such thatm —* (c,0,t,w). Note that emit-
ted events may include both inputs and outputs.

3.2 A Strategy-Based Security Condition

users may take as they interact with the system, protecting
the secrecy of high strategies ensures that the actions taken
by high users cannot affect (or “interfere with”) the obser-
vations of low users. The security condition can be seen as
an instance ohondeducibility on strategieas defined by
Wittbold and Johnson [39] or as an instance of definitions
of secrecy given by Halpern and O'Neill [13, 14].

Informally, a program is secure if, for every initial state
o, any trace of events seen on chanheé$ consistent with
every possible user strategy for chanigl This ensures
that low users cannot learn any information, including in-
puts, that high users attempt to convey—even if low users
know the program text.

Definition 1 (Noninterference). A command ¢ satisfies
noninterferencexactly when:

Forallm = (¢, 0,(),w) andm’ = (¢, o, {),w’)
such thatv(L) = (L),

and for allt such thatn ~ t,

there exists & suchthat [L = ¢ | L andm’ ~ t'.

According to this condition, the high strategyH ) in m
can be replaced by any other high strategy without affecting
the low traces emitted. Although the condition assumes that
programs begin with an empty trace of prior events, it can be
generalized to account for arbitrary traces [27]. Some addi-
tional implications of this security condition are discussed
below.

Initial variable values. The security condition does not
protect the secrecy of the initial values of variables. More

We now develop a security condition which ensures that concretely, the programutput x to L is considered secure

users with access only to chanrleldo not learn anything

for anyxz € Var, whereas the prograiput z from H;

about the strategies employed by users interacting withoutput x to L is obviously considered insecure. The defini-
channelH. Since strategies encode the possible actions thattion thus reflects our intuition that high users interact with



the system only via input and output events on the high4 Nondeterministic Programs

channel and havg no gontrol over the initialization of .vgr.i- We distinguish two kinds of nondeterminism that ap-
ables. Systems in which the high user controls the initial hor in programsprobabilistic choiceandnondeterministic
values of some or all variables can be modeled by prependice |ntuitively, probabilistic choice represents explicit
ing commands that read inputs from the high user and as-,se of randomization, whereas nondeterministic choice rep-
sign them to variables. resents program behavior that is underspecified (perhaps
due to unpredictable factors such as the scheduler in a
concurrent setting). Following the approach of previous
work [15, 36], we factor out the latter kind of nondetermin-

Variable typings. It is not necessary to assign security
types to program variables in order to determine whether

a program is secure. (A program with no high inputs, for | . o ;
ysm by assuming that all nondeterministic choices are made

example, is secure regardless of its variables or their types.)>"". -
Accordingly, our security condition makes no reference to @S if they were specified before the program began execu-

the security types of variables. This distinguishes our work tion- (The implications of this approach are discussed at
from most batch-job conditions, where variable typings are the end of the section.) This allows reasoning about nonde-

fundamental. We do, however, employ variable typings for terministic choice and probabilistic choice in isolation, and
the static analysis te::hnique p,resented in Section 6. our definitions of noninterference reflect the resulting sepa-

ration of concerns. In this section we extend our model to
Timing sensitivity. Our observational model issyn- include nondeterministic choice. We return to probabilistic
chronous users do not observe the time when events oc- choice in Section 5.

cur or the time that passes while a program is blocking on

an input command. The security condition is thus timing- 4.1 Refiners

insensitive. We could incorporate timing sensitivity intothe  \yie extend the language of Section 3 with nondetermin-
model by assuming that users observe a “tick” event at eachstic choice:

execution step or by tagging events with the time at which

they occur; strategies could then make use of this additional c u= ... |lelra

temporal information. Each nondeterministic choice is annotated with a security

Termination sensitivity. We make the standard assump- type 7 that is used in the operational semantics. The need

tion that users are unable to observe the nontermination ofO" the annotation is explained below; we remark, however,
a program. Nonetheless, our security condition is termina- that the type system described in Section 6 could be used to

tion-sensitive when low events follow commands that may infer annotations automatically, so that programmers need

not terminate. Consider the following program: not specify them. _ o _
To factor out the resolution of nondeterminism, we in-

Py input x from H; troduce infinite lists of binary v_alues call_eefinem_ent lists

if (z = 0) then {while (true) do skip } else skip ; Denote the set of all such refinement listsRefList. In-
output 1to L formally, when a nondeterministic choice is encountered
during execution, the head element of a refinement list is

A high user can cause this program to transmit the value 1removed and used to resolve the choice. The program exe-
to a low user. Since this would allow the low user to infer cutes the left command of the nondeterministic choice if the

something about the high strategy, this program is insecureelement is 0 and the right command if the element is 1. Re-
according to our security condition. finement lists are an operational analog of Milnen'scle

We do not assume that users are able to observe the terdomaing24] for denotational semantics. ' .
mination of a program directly, but it would be easy to make Non_determlnlstlc chqlces should not cause insecure in-
termination observable by adding a distinguished termina-formation flows, even if low users can predict how the

tion event that is broadcast on all channels when executionchoices will be made. While it might seem that using a sin-
reaches a terminal configuration. gle refinement list would suffice to ensure that no insecure

information flows arise as a result of the resolution of non-
Observation of channels We have assumed that high users deterministic choice, the following program demonstrates
cannot observe the low channel, but this restriction can bethat this is not the case:
removed in several ways. For example, it is straightforward
to amend the operational semantics to echo low events to
high channels by adding an additional high output event
(prepended with a label to distinguish it from a regular high
output events) to the trace every time a low input or output If the refinement lis{1,0, .. .) is used to execute this pro-
event occurs. gram, the output on channglwill equal the input on chan-

input x from H;
if (z = 0)then {skip [z skip } else skip ;
output Oto L [z output 1to L



(SEQ-2) (CHOICE)
(C()v g, fo,t»w) — (063 O—/vw/at/aw) head(¢(7)) =1
(00;0170',’1)[},15700) — (66;61,0/7w/,t/,W) (CO UT Claa7w7taw) — (CZ‘,O',’IZJ[T = tazl(z/}(T))},t,w)

Figure 2. Operational semantics for nondeterministic choice

nel H. An insecure information flow arises because the secret in the following program depends on how the nonde-
same refinement list is used to make both low and high terministic choice is resolved:
choices. To eliminate this flow, we identify the security type
of a choice based on its annotation and require that different
lists be used to resolve choices at each type. This ensures
that the number of choices made at a given security levelif the choice is made independently of the current state of
cannot become a covert channel. (Note that this require-the program, say by tossing a coin, the program is secure.
ment lends itself to natural implementation techniques. For But if the choice is made as a function of the program
example, if choices are made by using a stream of pseudomay leak information about the high input.
random numbers, then different streams should be used to To ensure that a program is resistant to refinement at-
resolve high and low choices. OrJfrepresents scheduler tacks, we insist that, for all possible resolutions of nonde-
choices, then the scheduler should resolve choices at eackerminism, the program does not leak any confidential in-
security type independently.) formation. Our model allows this quantification to be ex-

A refineris a functiony : £ — RefList that associates pressed cleanly, since refiners encapsulate the resolution of
a refinement list with each security type. LRef denote nondeterministic choice. We adapt the security condition
the set of all refiners. Denote the standard list operationsof Section 3.2 to ensure that, for any refinement of the pro-
of reading the first element of a list and removing the first gram, users with access only to chanhelo not learn any-
element of a list agiead and tail, respectively. Given a  thing about the strategies employed by users of chaHnel
refinery, the valuehead(1)(7)) is used to resolve the next
choice annotated with type

Ps: input x from H;
output Oto L || output 1to L

Definition 2 (Noninterference Under Refinement). A
command ¢ satisfies noninterference under refinement

4.2 Operational Semantics exactly when:

Using refiners, we extend the operational semantics of ~ Forallm = (¢, 0,4, (),w) andm’ = (¢, 0, ¢, ), )

Section 3 to account for nondeterministic choice. A com- such thatu(L) = w'(L),

mandc is now executed with respect to a refingrin ad- and for allt SU/Ch thatm ~ ¢, / o

dition to a states, tracet, and joint strategy,. We thus there exists & suchthat [ L = ' | L andm' ~ t'.
modify configurations to be S-tuples, o, ¢, ¢,w); termi-  gome implications of this definition are discussed below.

nal configurations now have the forfskip , o, ¢, t, w). o . ) N
All of the operational rules from Figure 1 are adapted LOW-observable nondeterminism.This security condition

in the obvious way to handle the new configurations. The rules out refinement attacks but allows programs that appear
only interesting change isE®-2, which is restated in Fig- nondeterministic to a low user. For example, Program

ure 2. Nondeterministic choice is evaluated by the new (With [ replaced by],) satisfies noninterference under re-
rule CHOICE, which uses refinet) to resolve the choice finement, yet repeated executions may reveal different pro-
and specifies how the refiner changes as a result. Refinefram behavior to the low user.

Y[1 = tail(y(7))] is the refiner) with the refinement list  |nitial refinement lists. The security condition does not

for 7 replaced bytail (y(7)). require the secrecy of the initial refinement list #6r More
Note that a refiner factors out all nondeterminism in the concretely, the program

program: once a refiner, state, and joint strategy have been

fixed, execution is completely determined. output 0to L [ output 1to L

. .. L is considered secure even though it reveals information
4.3 A Security Condition for Nondeterministic about the first value ofy(H). The definition thus reflects
Programs our intuition that high users interact with the system only
A well-known problem arises with nondeterministic pro- via input and output events on the high channel, which gives
grams: they are vulnerable tefinement attacksn which them no control over refinement lists. The definition of non-
a seemingly secure program can be refined to an insecurénterference under refinement could be adapted to systems
program. For example, whether the input frdihis kept where high users may exert control over refinement lists.



(PrOB-1) (PrOB-2)

P 1—p
(CO pH 01,0,1/)775,&1) L’(CO>0—7'¢)7taw) (C()pﬂ 01707f%t w) I (Clao—wvt w)
Figure 3. Operational semantics for probabilistic choice
Expressivity of refiners. Our model can represent only terference but leak confidential information with high prob-

those refinements that appear as if they were made beforability. As an example, consider the following program:
the program began execution. Refinements that may de-

pend upon dynamic factors, such as the values of variables Py : input z from H;

or the current program counter, cannot be represented. Our if z mod 2 = 0 then

model therefore capturesmpiler-time nondeterminishut output 0to L gg9[ output 1to L
notruntime nondeterminisifd 6]. We leave development of else

more sophisticated refiners as future work. output 0to L g.01[ output 1to L

A If we regard probabilistic choicg] as identical to nondeter-

> Probabilistic Programs ministic choice] ,, then this program satisfies noninterfer-
Probabilistic choice can be seen as refinement of arbi-ence under refinement. Yet with high probability, the pro-

trary nondeterministic choice. Now that we have shown gram leaks the parity of the high input to chaniel

how refiners can be used to factor out the nondeterminis-  Toward preventing sucprobabilistic information flows

tic choices to which we are unable or unwilling to assign observe that if a low traceis likely to be emitted with one

probabilities, we can model probabilistic choice explicitly.  high user strategy and unlikely with another, then the low
We begin by extending the nondeterministic language of user learns something about the high strategy by observing

Section 4 with probabilistic choice: the occurrence af We thus conclude that our security con-
dition should require that the probability with which low
¢ w= o ayla traces are emitted be independent of the strategy employed

on the high channel, that is, that low-equivalent configu-
rations should produce particular low traces with the same
probability. This intuition is consistent with security con-
ditions given by Gray and Syverson [11] and Halpern and
O'Neill [14].

More formally, let&,, (t) represent the event that config-
51 Operational Semantics grationm emits low trace. Suppose that we had g.probabil—

ity u., on such events. Then our security condition should

To incorporate probability in the operational semantics require, for all configurations: andm’ that are equivalent
we extend the small-step relatien— of previous sections except for the choice of h|gh strategy, and all low trates
to include a label for probability. We denote membership in that .., (£, (t)) = fim (Em (t)). The remainder of this sec-

Informally, probabilistic choice, ,[ ¢; executes command
co With probabilityp and command; with probability1 —

p. The probability annotatiop must be a real number such
that0 < p < 1. We assume that probabilistic choices are
made independently of one another.

the new relation by tion is devoted to defining,,, and&,, ().
by, We begin with two additional intuitions. First, since
m——m, probabilistic choices are made independently, the probabil-

meaning that configuratiom steps with probabilityp to ity of anexecution sequence

configurationm’. Configurations remain unchanged from Po p1 Pr_1
the nondeterministic language of Section 4. The new op- Mo —— M1 == ... = Mn
erational rules defining this relation are given in Figure 3.
To facilitate backwards-compatibility with the operational
rules of previous sections, we interpret— m’ as short-

is equal to the product of the probabilitipsof the individ-
ual steps. Second, a configurationcould emit the same
tracet along multiple sequences, so the probability that
hand form —— m'. The operational rules previously given emitst should be the sum of the probabilities associated
in Figures 1 and 2 thus remain unchanged. with those sequences.
o ] - Based on these intuitions, we now construct probability

5.2 A Probabilistic Security Condition measureu,, by adapting a standard approach for reason-

It is well-known that probabilistic programs may be se- ing about probabilities on trees [12]. For any configuration
cure with respect to nonprobabilistic definitions of nonin- m, relation—- gives rise to a rooted directqutobability



tree whose vertices are labeled with configurations, edges We can now defin€,,,(¢). Given a security type and
are labeled with probabilities, and rootss. Denote the  a tracet, let [¢], be the equivalence class of traces that are

probability tree form by 7,,, and the set of vertices &, equal tot when restricted to:

by V,,. A pathin the tree is a sequence of vertices, starting

with the root, where each successive pair of vertices is an ., & {feTr|t'|r=tI7}

edge. Given a vertey, let tr(v) be the trace of events in

the configuration with which is labeled. We say thatap-  Finally, let&,,(¢) be the set of rays on which there is some

pears atv whentr(v) = t but tr(v') # ¢ for all ancestors ~ vertexv such thatir(v) [ L = ¢ | L
v’ of v. Let ap(t) be the set of vertices wheteappears. In A
accordance with the intuitions described aboverlet) be Em(t) = Ru([t]r)-
the product of the probabilities on the pathuto . i
A ray is an infinite path or a finite path whose terminal 1€ S€€m(t) isinA,,. By Theorem 1., (€, (?)) is equal
node has no descendants, Rays therefore represent maxim’f} the sum of values(v) for verticesv such thatr (v) [ L =

/ /
execution sequences. L&Y, denote the set of rays @f,,. tILandtr(v)[ L #t[L for a”Y ancestoo O.f v .
Let R, (v) be the set of rays that go through vertex We are now ready to formalize our security condition.

Definition 3 (Probabilistic Noninterference). A com-

mand ¢ satisfies probabilistic noninterferenceexactly
Let A,, be thes-algebra onR,, generated by sets of when:

rays going through particular vertices, that is, by the set

{R,,(v) | v € V,,}.t The following result yields a prob-

ability measure on sets of rays. It is a consequence of ele-

mentary results in probability theory, and we omit the proof.

Rn(v) £ {reR,|visonr}.

Forallm = (¢,0,9,{),w) andm’ = (¢, 0,9, (), o)

such thato(L) = w'(L),

and for allt € Tr (Ev(L)),

we haveﬂm(gm (t)) = Nm’(gm’ (t))

Theorem 1. For any configuratiom:, there exists a unique

probability measurg.,, on A,,, such that for alb € V,, we Returning to ProgramP, at the start of this section,

havei, (R (v)) = 7(v). it is easy to check that the probability of the low trace

(out(L,0)) is 0.99 when the high strategy is to input an

Now that we have constructed,,, we must show how  even number, and.01 when the high strategy is to input an

to use it to obtain the probability of a set of traces in terms odd number. Clearly, the program does not satisfy proba-
of the probability of a corresponding set of rays. For a set pilistic noninterference.

T of traces, letk,,(T') be the set of rays on which atrace  |f we interpret the nondeterministic choice in Program
in T appears. Letm,,(T) = {t € T | m ~ t} betheset  p, as, ;| (a fair coin toss), the program does not satisfy
of traces irll” emitted bym, and note that probabilistic noninterference. However, if the outputHo
is removed, the resulting program
R,(T) % U U Rn),
teemy, (T) vEap(t) while (true) do

z:=0 5] z:=1;
input y from H;
output x xor (y mod 2)to L

because a trace appears on asréfyand only if it appears at

avertexv onr. The setR,,(T") is measurable with respect
to A,, because botlem,,(T) andV,, are countable sets.
Given a trace, the sef{ R,,(v) | v € ap(t)} is a partition

) does satisfy noninterference. The probability of low outputs
of the set of rays on whichappears. It follows that

is independent of the high strategy, which can no longer

(R ({1 — R, (v exploit knowledge of the value of one-time pad
pm (B ({21)) _ L (Uveapft) ((v))) User strategies as defined thus far are deterministic.
o veap(t) / m However, our approach to reasoning about probability ap-
2veap(t) T(V); plies to randomized user strategies as well as to randomized

programs, so it would be straightforward to adapt our model

that is, that the probability that emitst is equal to the sum s :
to handle randomized strategies.

of the valuesr(v) for verticesv wheret appears, as desired.

1A o-algebra on a seX is a nonempty collection of subsets &fthat
containsX and is closed under complements and countable unions [2]. 6 A Sound Type SyStem

(The o has no connection to states, although we alsasuas a metavari- i : .
able that ranges over states.)cAalgebra generated by a $&bf subsets The prOblem of CharaCtenzmg programs that SatISfy non

of X is defined as the intersection of aftalgebras onX, including2X, interference is, fo_r many deﬁnitif)nS.Of noninte.rference,. in-
that contairC. tractable. For definitions appearing in the previous sections,



(T-L1T) (T-VAR) (T-OpP) (T-AssIGN) (T-SKIP)
I(z)=r1 F'ke:7 I'ke 7 P(z)=7 TkFe:7T
'tn:7 r-aoz:r 't e@e : 7 't2z:=e: 7cmd I' - skip : 7cmd
(T-1F) (T-SEQ)
're:7 "kc¢:7cmd T'F ¢; : 7ecmd I'e:7emd T'F ¢; : 7ecmd
I' - if ethen ¢pelse ¢; : 7cmd I' - co;eq : 7emd
(T-WHILE) (T-CHOICE) (T-ProOB)
I''e: L T Fc¢:7cmd I'Fc:7cmd T'F ¢; : 7cmd I'c:7cmd T'F ¢; : 7cmd
I - while edoc : Lcmd 'te¢lren : Temd ' ¢opl 1 : Temd
(T-IN) (T-0OuT) (T-SuBTYPE)
Px)=7 <7 'Fe:r I'Fop: ko Ko <Ky
I' + input x from 7 : 7 cmd I' + output eto 7 : 7cmd 'kp: kK
(ST-BASE) (ST-REFL) (ST-CwD)
RG!
L<H k<K 71 cmd< 19 cmd

Figure 4. Typing rules

there is a straightforward reduction from the halting prob- fixed with “T”) and subtyping rules (prefixed with “ST").
lem to the noninterference problem. It follows that no deci- Typing rules can be used to infer the type of an expression
sion procedure for certifying the information-flow security or command directly. Subtyping rules allow a low-typed ex-
of programs can be both sound and complete with respect tqpression to be treated as a high-typed expression and a high-
our definitions of noninterference. The goal of this section typed command to be treated as a low-typed command. (It
is to demonstrate that static analysis techniques can be use safe, for example, to store a low-typed expression in a

to identify secure programs.

high variable, or to output data to a high user in the body of

We use a type system based on that of Volpano, Smith,2 00p with a low-typed guard.)

and Irvine [38]. It is interesting to note that a type-system

Most of the rules in this type system are standard. Rules

designed to enforce batch-job noninterference conditions I-IN and T-QUT are both similar to T-AsiGn T-IN en-

also enforces our interactive conditions, including prob-

sures that values read from thehannel are stored in vari-

abilistic noninterference, even though the type system is@bles whose type is bounded below bywhereas T-OT

oblivious to the subtleties of probability, interactivity, and

ensures that only-typed expressions are output on the

user strategies. We believe that other type systems for infor-channel. Rules T-Goice and T-Frog are similar to T-
mation flow (e.g., [3, 18, 33, 35]) can also be easily adapted SEQ. €xcept that T-@OICE also checks that the typing
for our interactive model, and thus that advances in preci- 'S consistent with the syntactic type annotation. Rule T-

sion and expressiveness can be applied to our work.

The type system consists of a set of axioms and inferenc
rules for derivingyping judgmentsf the formI" - p : x,
meaning that phragehas phrase type under variable typ-
ing I'. A phraseis either an expression or a command.
A phrase types either a security type or a command
type 7 cmd wherer € L. A variable typingis a func-
tionT : Var — £ mapping from variables to security types.
Informally, a command has typer cmdwhenr is a lower-
bound on the effects thatmay have, that is, when the types
(underl") of any variables that updates are bounded below
by 7, and any input or output thatperforms is on channels
whose security type is bounded belowhy

WHILE forbids high-guarded loops, ensuring that loop ter-
mination does not depend on the high user’s strategy. This
eprohibits insecure programs such Bg (in Section 3.2).
We believe this rule could be relaxed using techniques de-
scribed by Boudol and Castellani [3] and Smith [35].

The following theorem states that this type system
soundly enforces noninterference. Recall that our secu-
rity conditions do not depend on the security types of vari-
ables. Noninterference is enforced provided there exists
some variable typing under which the program is well-
typed? The proof appears in the companion technical re-
port [27].

2Because the security types of variables can be inferred, programmers

Axioms and inference rules for the type system are given need not specify them. In a (trivially secure) program with no high inputs,

in Figure 4. There are two types of rules: typing rules (pre-

for example, all variables can be assigned type



Theorem 2 (Soundness)For any command, if there ex- lar to that of Mantel and Sabelfeld [20], who demonstrate
ists a variable typind" and a security type- such that  a connection between security predicates taken from the
I' - ¢ : 7cmd then MAKS framework of Mantel [19] and bisimulation-based
definitions of security for a concurrent imperative language
(a) if c does not contain nondeterministic or probabilistic gue to Sabelfeld and Sands [32]. However, Mantel and

choice, ther: satisfies noninterference; _ Sabelfeld do not consider interactive programs.
(b) if ¢ does not contain probabilistic choice, thesatis- Our probabilistic noninterference condition can be inter-
fies noninterference under refinement; and preted as precluding programs that allow low users to make
(c) c satisfies probabilistic noninterference. observations that improve the accuracy of theiiefsabout
high behavior, that is, their beliefs about which high strat-
7 Related Work egy is used. Halpern and O’Neill [14] prove a result which

implies that our probabilistic security condition suffices to
programs began with the work of Denning [5]. Many sub- ensure _that lO.W Users cannot improve the_ accuracy Of. their
S ) ; . subjective beliefs about high behavior by interacting with a
sequent papers define information-flow security for various o : .
program. Our probabilistic security condition also ensures

sequential imperative languages, but nearly all of these pa- . . :
ers assume a batch-iob model of computation Thereforethat the quantity of information flow due to a secure pro-
'?hey attempt to ensur]e the secrecy of Eigh-typé d program,.gram is exactly zero bits in the belief-based quantitative

variables rather than of the behavior of high users who in- information-flow model of Clarkson, Myers, and Schnei-

; der [4].
teract with the system. Sec_e Sabelfgld and Myers_ [31] for a The bisimulation-based security condition of Sabelfeld
survey of language-based information-flow security.

Another line of work considers end-to-end information- and Sands [32] can be viewed as a relaxation of the batch-
f tri t'l p W det aers i i Ith t ' id job model. However, as Mantel and Sabelfeld [20] point
rlow restrictions for nondeterministic systems that provioe out, bisimulation-based definitions are difficult to relate to
input and output functionality for users. Definitions of

. . trace-based conditions when a nondeterministic choice op-
qo_nmterference E?X'St both f_or abstr_act systems (such erator is present in the language. The following program
fm'tf stateG machlnes()j tl\r;lat mcludellcr)]pu'\t/l acr;d"out%utzolp- for example, satisfies both noninterference under refine-
:/lral_lons (2309hl/|Jent e}nlg ese(??er [ t], 3 u qggd [ . J ment and probabilistic noninterference (for suitable inter-

cLean [23], Mantel [19]), and for systems described using pretations of thg operator), but it is not secure with respect
process algebras such as CCS, thealculus, and related

formalisms (Focardi and Gorrieri [6], Ryan and Schnei- to a bisimulation-based definition of security:

Definitions of information-flow security for imperative

der [29], Zdancewic and Myers [40]). input z from H:

Definitions of noninterference based on process algebras if (z=0)
typically require that the observations made by a public user output 0to L
are the same regardless of which high processes (if any) {output 1to L || output 2to L}
are interacting with the system. These definitions are thus else
similar in spirit to our definitions of noninterference. In- {output 0to L; output 1to L} |
deed, there is a close connection between strategies and pro- {output 0to L; output 2to L}

cesses: both can be viewed as description of how an agent

will behave in an interactive setting. A formal comparison Bisimulation-based security conditions implicitly assume
with process-based definitions (such as [8]) may uncoverthat users can observe internal choices made by a program.
further connections between process-based system modelé/hen users observe only inputs and outputs on channels,
and imperative programs. our observational model is more appropriate.

Wittbold and Johnson [39] give the first strategy-based  Interactivity between users and a program is similar
definition of information-flow security, and Gray and Syver- to message-passing between threads. Sabelfeld and Man-
son [11] give a strategy-based definition of probabilistic tel [30] present a multi-threaded imperative language with
noninterference. Halpern and O’Neill [14] generalize the explicit send, blocking receive, and non-blocking receive
definitions of Gray and Syverson to account for richer operators for communication between processes. They de-
system models and more general notions of uncertainty.scribe a bisimulation-based security condition and a type
Our definitions of noninterference, which are instances of system to enforce it. However, it is not clear how to model
Halpern and O’Neill's definitions of secrecy, are the first user behavior in their setting. Users cannot be modeled as
strategy-based security conditions for an imperative pro- processes since user behavior is unknown, and their security
gramming language of which we are aware. Our work can condition applies only if the entire program is known.
thus be viewed as a unification of two distinct strands of the  Almeida Matos, Boudol, and Castellani [1] state a
information-flow literature. In this sense our work is simi- bisimulation-based security condition faeactive pro-
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grams which allow limited communication between pro- security conditions: noninterference under refinement and
cesses, and they give a sound type system to enforce th@robabilistic noninterference. We prove that a type system
condition. In their language, programs react to the presenceconservatively enforces these security conditions.
and absence of named broadcast signals and can emit sig- This work is a step toward understanding and enforcing
nals to other programs in a “local area.” It is possible to im- information-flow security in real-world programs. Many
plement our higher-level channels and events within a local programs interact with users, and the behavior of these
area, using their lower-level reactivity operators. However, users will often be dependent on previous inputs and out-
it is unclear how to use reactivity to model interactions with puts. Also, many programs, especially servers, are intended
unknown users who are not part of a local area. to run indefinitely rather than to perform some computa-
Focardi and Rossi [7] study the security of processes intion and then halt. Our model of interactivity is thus more
dynamic contextsvhere the environment, including high suitable for analyzing real-world systems than the batch-job
processes, can change throughout execution. This is simmodel. In addition, our imperative language approximates
ilar to how high user strategies describe changing inputsthe implementation of real-world interactive programs more
throughout execution. However, user strategies dependclosely than abstract system models such asthalculus.
upon the history of the computation, whereas dynamic con-This paper thereby contributes to understanding the security

texts do not, so it is unclear how to encode a user strategyproperties of programs written in languages with informa-

using dynamic contexts.

tion flow control, such as Jif [26] or Flow Caml [34], that

Previous work dealing with the susceptibility of possi- support user input and output.

bilistic noninterference to refinement attacks takes one of

two approaches to specifying how nondeterministic choice Acknowledgments

is resolved. One approach is to assume that choices are
made according to fixed probability distributions, as we do
in Section 5. Volpano and Smith [37], for example, de-

threads to execute according to a uniform probability dis-
tribution. A second approach is to insist that programs be
observationally deterministifor low users. McLean [22]
and Roscoe [28] both advocate observational determinism
as an appropriate security condition for nondeterministic
systems, and Zdancewic and Myers [40] give a security con-
dition based on observational determinism for a concurrent
language based on the join calculus [9].

Observational determinism implies noninterference un-
der refinement and thus immunity to refinement attacks.
In settings where the resolution of nondeterministic choice
may depend on confidential information, we conjecture that
observational determinism and noninterference under re-
finement are equivalent. However, when the resolution of
some choices is independent of confidential information,
observational determinism is a stronger condition: any pro-
gram that is observationally deterministic satisfies noninter-
ference under refinement, but the converse does not hold.

8 Conclusion

This paper examines information flow in a simple imper-
ative language that includes primitives for communication
with program users. In this setting, it is not the initial val-
ues of variables or the inputs from high users that must be
kept secret, but rather the high users’ strategies. We present
a trace-based noninterference condition which ensures that

low users do not learn anything about the strategies em-[10]

ployed by high users. Incorporating nondeterministic and
probabilistic choice in the language leads to corresponding
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