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Abstract

Interactive programs allow users to engage in input and
output throughout execution. The ubiquity of such pro-
grams motivates the development of models for reasoning
about their information-flow security, yet no such models
seem to exist for imperative programming languages. Fur-
ther, existing language-based security conditions founded
on noninteractive models permit insecure information flows
in interactive imperative programs. This paper formulates
new strategy-based information-flow security conditions for
a simple imperative programming language that includes
input and output operators. The semantics of the lan-
guage enables a fine-grained approach to the resolution
of nondeterministic choices. The security conditions lever-
age this approach to prohibit refinement attacks while still
permitting observable nondeterminism. Extending the lan-
guage with probabilistic choice yields a corresponding def-
inition of probabilistic noninterference. A soundness theo-
rem demonstrates the feasibility of statically enforcing the
security conditions via a simple type system. These re-
sults constitute a step toward understanding and enforcing
information-flow security in real-world programming lan-
guages, which include similar input and output operators.

1 Introduction
Secure programs should maintain the secrecy of confi-

dential information. For sequential imperative program-
ming languages, this principle has led to a variety of
information-flow security conditions which assume that all
confidential information is supplied as the initial values of
a set of program variables. This assumption reflects an
idealizedbatch-jobmodel of input and output, whereby all
inputs are obtained (as initial values of program variables)
from users before the program begins execution, and all out-
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puts are provided (as final values of program variables) af-
ter program termination. Accordingly, these security condi-
tions aim to protect the secrecy only of initial values.

Many real-world programs areinteractive, sending out-
put to and receiving input from their external environment
throughout execution. Examples of such programs include
web servers, GUI applications, and some command-line ap-
plications. The batch-job model is unable to capture the
behavior of interactive programs because of dependencies
between inputs and outputs. For example, a program imple-
menting a challenge/response protocol must first output a
challenge to the user and then accept the user’s response as
input; clearly, the user cannot supply the response as the ini-
tial value of a program variable. In contrast, the interactive
model generalizes the batch-job model: any batch-job pro-
gram can be simulated by an interactive program that reads
the initial values of all relevant variables, executes the corre-
sponding batch-job program, and finally outputs the values
of all variables.

Given the prevalence of interactive programs, it is im-
portant to be able to reason about their security properties.
Traditionally, researchers have reasoned about information
flow in interactive systems by encoding them as state ma-
chines (e.g., Mantel [19] and McLean [22, 23]) or as con-
current processes (e.g., Focardi and Gorrieri [6]) and apply-
ing trace-based information-flow security conditions. But
since implementors usually createimperative programs, not
abstract models, a need exists for tools that enable direct
reasoning about the security of such programs. This paper
addresses that need by developing a model for reasoning
about the information-flow security of interactive impera-
tive programs. Our model achieves a clean separation of
user behavior from program code by employinguser strate-
gies, which describe how agents interact with their environ-
ment. Strategies are closely related to processes described
in a language like CCS [25] or CSP [17]. We give novel
strategy-based semantic security conditions similar to Wit-
tbold and Johnson’s definition ofnondeducibility on strate-
gies[39], which ensure that confidential information cannot
flow from high-confidentiality users to low-confidentiality
users. We also leverage previous work on static analysis



techniques by adapting the type system of Volpano, Smith,
and Irvine [38] to an interactive setting.

Our language and security conditions synthesize two
branches of information-flow security research, in that we
leverage the trace-based definitions that have been proposed
for interactive systems to provide novel security conditions
for imperative programs. Furthermore, our interactive pro-
gramming language can be viewed as a specification lan-
guage for interactive systems that more closely approxi-
mates the implementation of real programs than the abstract
system models that have previously been used.

Nondeterminism arises in real-world systems for a num-
ber of reasons, including concurrency and probabilistic ran-
domization. It is therefore an important consideration when
reasoning about imperative programs. Nondeterminism is
orthogonal to interactivity, but the interplay between in-
formation flow and nondeterminism is often quite subtle.
We examine two kinds of nondeterministic choices: those
which we assume are made probabilistically, and those
which we are unable or unwilling to assign probabilities.
We refer to the former asprobabilistic choice, and to the
latter asnondeterministic choice. Following Halpern and
Tuttle [15], we factor out nondeterministic choice so that
we can reason about it in isolation from probabilistic choice.
By explicitly representing the resolution of nondeterminis-
tic choice in the language semantics, we adapt our security
condition to rule outrefinement attacksin which the resolu-
tion of nondeterministic choice results in insecure informa-
tion flows. Finally, we give a security condition, based on
Gray and Syverson’s definition ofprobabilistic noninterfer-
ence[11], that rules out probabilistic information flows in
randomized interactive programs.

In Section 2 we develop our system model and intro-
duce mathematical structures for reasoning about the be-
havior and observations of users. We proceed to instanti-
ate the model on a simple language of while-programs in
Section 3 and to give an operational semantics and security
condition for the language. We then incorporate language
features for nondeterministic choice (Section 4) and proba-
bilistic choice (Section 5) and adapt our security conditions
accordingly. In Section 6 we demonstrate the feasibility of
statically enforcing our security condition by presenting a
sound type system. Section 7 discusses related work, and
Section 8 concludes.

2 User Strategies
It might seem at first that information-flow security for

interactive programs can be obtained by adopting the same
approach used for batch-job programs, that is, by prevent-
ing low-confidentiality users from learning anything about
high-confidentiality inputs. (Hereafter we use the more
concise terms “high” and “low” when describing the con-
fidentiality level associated with inputs, users, and so on.)

However, several papers, starting with Wittbold and John-
son [39], have described systems in which high users can
transmit information to low users even though low users
learn nothing about the high inputs. This is demonstrated
by ProgramP1 below, an insecure one-time pad imple-
mentation described by Wittbold and Johnson. Command
input x from C reads a value from a channel namedC
and stores it in variablex; similarly, output e to C outputs
the value of expressione on a channel namedC. Assume
that low users may use only channelL, that high users may
use channelH, and that no users may observe the values
of program variables. Infix operator8 nondeterministically
chooses to execute one of its two operands.

P1 : while (true ) do
x := 0 8 x := 1;
output x to H;
input y from H;
output x xor (y mod 2) to L

If nondeterminism is resolved in a way that is unpredictable
to the low user, he will be unable to determine the inputs on
channelH: for any output onL, the input onH could have
been either 0 or 1. Yet the high user can still communicate
an arbitrary confidential bitz to channelL at each iteration
of the loop by choosingz xor x as input onH.

The confidential informationz is never directly acquired
by the program: it is neither the initial value of a program
variable nor an input supplied on a channel. As Wittbold
and Johnson observe, maintaining the secrecy of all high
inputs (and even the initial values of program variables) is
therefore insufficient to preserve the secrecy of confidential
information.

In ProgramP1, the high user is able to communicate ar-
bitrary confidential information by selecting his next input
as a function of outputs he has previously received. This
suggests that if we want to prevent confidential information
from flowing to low users, we should protect the secrecy of
the function that high users employ to select inputs. Follow-
ing Wittbold and Johnson’s terminology, we call this func-
tion a user strategy. In the remainder of this section we
develop the mathematical structures needed to define user
strategies formally.

2.1 Types, Users, and Channels

We assume a setL of security types with ordering re-
lation ≤ and use metavariableτ to range over security
types. For simplicity, we assume thatL equals{L,H} with
L ≤ H. (Our results generalize to partial orders of secu-
rity types.) Security typeL represents low confidentiality,
andH represents high confidentiality. The ordering≤ in-
dicates the relative restrictiveness of security types: high-
confidentiality information is more restricted in its use than
low-confidentiality information.
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Usersare agents (including humans and programs) that
interact with executing programs. We associate with each
user a security type indicating the highest level of confiden-
tial information that the user is permitted to read. Conserva-
tively, we assume that users of the same security type may
collaborate while attempting to subvert the security of a pro-
gram. We can thus simplify our security analyses by rea-
soning about exactly two users, one representing the pooled
knowledge of low users and another representing the pooled
knowledge of high users.

We also assume the existence ofchannelswith blocking
input and nonblocking output. Although input is blocking,
we assume that all inputs prompted for are eventually sup-
plied. Each channel is associated with a security typeτ , and
only users of that type are permitted to use the channel. For
simplicity, we assume that there are exactly two channels,
L andH. We also assume that the values that are input and
output on channels are integers. These are not fundamental
restrictions; our results could be extended to allow multiple
channels of each type, to allow high users to observe low
channels, and to allow more general data types.

2.2 Traces

An eventis the transmission of an input or output on a
channel. Denote the input of valuev on the channel of type
τ as in(τ, v) and the output ofv on τ as out(τ, v). Let
Ev(τ) be the set of all events that could occur on channelτ :

Ev(τ) ,
⋃
v∈Z

{in(τ, v), out(τ, v)}.

Let Ev be the set of all events:

Ev ,
⋃
τ∈L

Ev(τ).

We use metavariableα to range over events inEv.
A trace is a finite list of events. GivenE ⊆ Ev, anevent

trace onE is a finite, possibly empty list〈α1, . . . , αn〉 such
thatαi ∈ E for all i. The empty trace is written〈〉. The
set of all traces onE is denotedTr (E), and we abbreviate
the set of all tracesTr (Ev) asTr . Trace equality is defined
pointwise, and the concatenation of two tracest and t′ is
denotedtˆt′. A tracet′ extendstracet if there exists a trace
t′′ such thatt′ = tˆt′′. The restriction of t to E, denoted
t �E, is the trace that results from removing all events not
contained inE from t. We write t � τ as shorthand for
t�Ev(τ). A low traceis the low restrictiont�L of a tracet.

2.3 User Strategies

As demonstrated by ProgramP1, the input supplied by
a user may depend on past events observed by that user. To
capture this dependence we employ auser strategy, which
determines the input for a particular channel as a function

of the events that occur on the channel. Because events on
a channel include both inputs and outputs, this function de-
pends on both the user’s observations and previous actions.
Formally, a user strategy for a channel with security type
τ is a function of typeTr (Ev(τ)) → Z. Let UserStrat
be the set of all user strategies. (Note that, to simulate the
batch-job model, the initial inputs provided by users can be
represented by a constant strategy that selects inputs with-
out regard for past inputs or outputs. Also, high user strate-
gies can be extended to depend on observation of the low
channel, as described at the end of Section 3.)

As an example, we present a strategy that a high user
could employ to transmit an arbitrary stream of bitsz1z2 . . .
to the low user in ProgramP1. This user strategy,g, ensures
that if b was the previous output onH, then the next input
onH is the bitwise exclusive-or ofb andzi. Note that every
second event on channelH is an input eventin(H, v).

g(〈α1, . . . , αn〉) =

 zi xor b if αn = out(H, b)
andn = 2i− 1

0 otherwise

A joint strategyis a collection of user strategies, one for
each channel. Formally, a joint strategyω is a function of
typeL → UserStrat, that is, a function from security types
to user strategies. LetStrat be the set of all joint strategies.

3 Noninterference for Interactive Programs
While-programs, extended with commands for input and

output, constitute our core interactive programming lan-
guage. The syntax of this language is:

(expressions) e ::= n | x | e0 ⊕ e1
(commands) c ::= skip | x := e | c0; c1 |

input x from τ | output e to τ |
if e then c0 else c1 | while e do c

Metavariablex ranges overVar , the set of all program vari-
ables. Variables take values inZ, the set of integers. Literal
valuesn also range over integers. Binary operator⊕ de-
notes any total binary operation on the integers.

3.1 Operational Semantics

The execution of a program modifies the values of vari-
ables and produces events on channels. Astatedetermines
the values of variables. Formally, a state is a function of
typeVar → Z. Letσ range over states. Aconfigurationis
a 4-tuple(c, σ, t, ω) representing a system about to execute
c with stateσ and joint strategyω. Tracet is the history of
events produced by the system so far. Letm range over con-
figurations. Terminal configurations, which have no com-
mands remaining to execute, have the form(skip , σ, t, ω).
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(ASSIGN)

(x := e, σ, t, ω) −→ (skip , σ[x := σ(e)], t, ω)

(SEQ-1)

(skip ; c, σ, t, ω) −→ (c, σ, t, ω)

(SEQ-2)
(c0, σ, t, ω) −→ (c′0, σ

′, t′, ω)

(c0; c1, σ, t, ω) −→ (c′0; c1, σ
′, t′, ω)

(IN)
ω(τ)(t�τ) = v

(input x from τ, σ, t, ω) −→ (skip , σ[x := v], tˆ〈in(τ, v)〉, ω)

(OUT)
σ(e) = v

(output e to τ, σ, t, ω) −→ (skip , σ, tˆ〈out(τ, v)〉, ω)

(IF-1)
σ(e) 6= 0

(if e then c0 else c1, σ, t, ω) −→ (c0, σ, t, ω)

(IF-2)
σ(e) = 0

(if e then c0 else c1, σ, t, ω) −→ (c1, σ, t, ω)

(WHILE)

(while e do c, σ, t, ω) −→
(if e then (c; while e do c) else skip , σ, t, ω)

Figure 1. Operational semantics

The operational semantics for our language is a small-
step relation−→ on configurations. Membership in the re-
lation is denoted

(c, σ, t, ω) −→ (c′, σ′, t′, ω),

meaning that execution of commandc can take a single step
to commandc′, while updating the state fromσ toσ′. Trace
t′ extendst with any events that were produced during the
step. Note that joint strategyω is unchanged when a config-
uration takes a step; we include it in the configuration only
to simplify notation and presentation.

The inductive rules defining relation−→ are given in
Figure 1. The rules for commands other than input and
output are all standard. In Rule ASSIGN, σ(e) denotes the
value of expressione in stateσ, and state updateσ[x := v]
changes the value of variablex to v in σ. Rule IN uses the
joint strategyω to determine the next input event and ap-
pends it to the current trace, and rule OUT simply appends
the output event to the current trace.

Let−→∗ be the reflexive transitive closure of−→. Intu-
itively, if

(c, σ, t, ω) −→∗ (c′, σ′, t′, ω),

then configuration(c, σ, t, ω) can reach configuration
(c′, σ′, t′, ω) in zero or more steps. Configurationm emits
t, denotedm  t, when there exists a configuration
(c, σ, t, ω) such thatm −→∗ (c, σ, t, ω). Note that emit-
ted events may include both inputs and outputs.

3.2 A Strategy-Based Security Condition

We now develop a security condition which ensures that
users with access only to channelL do not learn anything
about the strategies employed by users interacting with
channelH. Since strategies encode the possible actions that

users may take as they interact with the system, protecting
the secrecy of high strategies ensures that the actions taken
by high users cannot affect (or “interfere with”) the obser-
vations of low users. The security condition can be seen as
an instance ofnondeducibility on strategiesas defined by
Wittbold and Johnson [39] or as an instance of definitions
of secrecy given by Halpern and O’Neill [13, 14].

Informally, a program is secure if, for every initial state
σ, any trace of events seen on channelL is consistent with
every possible user strategy for channelH. This ensures
that low users cannot learn any information, including in-
puts, that high users attempt to convey—even if low users
know the program text.

Definition 1 (Noninterference). A command c satisfies
noninterferenceexactly when:

For allm = (c, σ, 〈〉, ω) andm′ = (c, σ, 〈〉, ω′)
such thatω(L) = ω′(L),

and for allt such thatm t,
there exists at′ such thatt�L = t′ �L andm′  t′.

According to this condition, the high strategyω(H) inm
can be replaced by any other high strategy without affecting
the low traces emitted. Although the condition assumes that
programs begin with an empty trace of prior events, it can be
generalized to account for arbitrary traces [27]. Some addi-
tional implications of this security condition are discussed
below.

Initial variable values. The security condition does not
protect the secrecy of the initial values of variables. More
concretely, the programoutput x to L is considered secure
for any x ∈ Var , whereas the programinput x from H;
output x to L is obviously considered insecure. The defini-
tion thus reflects our intuition that high users interact with
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the system only via input and output events on the high
channel and have no control over the initialization of vari-
ables. Systems in which the high user controls the initial
values of some or all variables can be modeled by prepend-
ing commands that read inputs from the high user and as-
sign them to variables.

Variable typings. It is not necessary to assign security
types to program variables in order to determine whether
a program is secure. (A program with no high inputs, for
example, is secure regardless of its variables or their types.)
Accordingly, our security condition makes no reference to
the security types of variables. This distinguishes our work
from most batch-job conditions, where variable typings are
fundamental. We do, however, employ variable typings for
the static analysis technique presented in Section 6.

Timing sensitivity. Our observational model isasyn-
chronous: users do not observe the time when events oc-
cur or the time that passes while a program is blocking on
an input command. The security condition is thus timing-
insensitive. We could incorporate timing sensitivity into the
model by assuming that users observe a “tick” event at each
execution step or by tagging events with the time at which
they occur; strategies could then make use of this additional
temporal information.

Termination sensitivity. We make the standard assump-
tion that users are unable to observe the nontermination of
a program. Nonetheless, our security condition is termina-
tion-sensitive when low events follow commands that may
not terminate. Consider the following program:

P2 : input x from H;
if (x = 0) then {while (true ) do skip } else skip ;
output 1 to L

A high user can cause this program to transmit the value 1
to a low user. Since this would allow the low user to infer
something about the high strategy, this program is insecure
according to our security condition.

We do not assume that users are able to observe the ter-
mination of a program directly, but it would be easy to make
termination observable by adding a distinguished termina-
tion event that is broadcast on all channels when execution
reaches a terminal configuration.

Observation of channels.We have assumed that high users
cannot observe the low channel, but this restriction can be
removed in several ways. For example, it is straightforward
to amend the operational semantics to echo low events to
high channels by adding an additional high output event
(prepended with a label to distinguish it from a regular high
output events) to the trace every time a low input or output
event occurs.

4 Nondeterministic Programs
We distinguish two kinds of nondeterminism that ap-

pear in programs:probabilistic choiceandnondeterministic
choice. Intuitively, probabilistic choice represents explicit
use of randomization, whereas nondeterministic choice rep-
resents program behavior that is underspecified (perhaps
due to unpredictable factors such as the scheduler in a
concurrent setting). Following the approach of previous
work [15, 36], we factor out the latter kind of nondetermin-
ism by assuming that all nondeterministic choices are made
as if they were specified before the program began execu-
tion. (The implications of this approach are discussed at
the end of the section.) This allows reasoning about nonde-
terministic choice and probabilistic choice in isolation, and
our definitions of noninterference reflect the resulting sepa-
ration of concerns. In this section we extend our model to
include nondeterministic choice. We return to probabilistic
choice in Section 5.

4.1 Refiners

We extend the language of Section 3 with nondetermin-
istic choice:

c ::= . . . | c0 8τ c1

Each nondeterministic choice is annotated with a security
type τ that is used in the operational semantics. The need
for the annotation is explained below; we remark, however,
that the type system described in Section 6 could be used to
infer annotations automatically, so that programmers need
not specify them.

To factor out the resolution of nondeterminism, we in-
troduce infinite lists of binary values calledrefinement lists.
Denote the set of all such refinement lists asRefList. In-
formally, when a nondeterministic choice is encountered
during execution, the head element of a refinement list is
removed and used to resolve the choice. The program exe-
cutes the left command of the nondeterministic choice if the
element is 0 and the right command if the element is 1. Re-
finement lists are an operational analog of Milner’soracle
domains[24] for denotational semantics.

Nondeterministic choices should not cause insecure in-
formation flows, even if low users can predict how the
choices will be made. While it might seem that using a sin-
gle refinement list would suffice to ensure that no insecure
information flows arise as a result of the resolution of non-
deterministic choice, the following program demonstrates
that this is not the case:

input x from H;
if (x = 0) then {skip 8H skip } else skip ;
output 0 to L 8L output 1 to L

If the refinement list〈1, 0, . . .〉 is used to execute this pro-
gram, the output on channelL will equal the input on chan-
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(SEQ-2)
(c0, σ, ψ, t, ω) −→ (c′0, σ

′, ψ′, t′, ω)

(c0; c1, σ, ψ, t, ω) −→ (c′0; c1, σ
′, ψ′, t′, ω)

(CHOICE)
head(ψ(τ)) = i

(c0 8τ c1, σ, ψ, t, ω) −→ (ci, σ, ψ[τ := tail(ψ(τ))], t, ω)

Figure 2. Operational semantics for nondeterministic choice

nel H. An insecure information flow arises because the
same refinement list is used to make both low and high
choices. To eliminate this flow, we identify the security type
of a choice based on its annotation and require that different
lists be used to resolve choices at each type. This ensures
that the number of choices made at a given security level
cannot become a covert channel. (Note that this require-
ment lends itself to natural implementation techniques. For
example, if choices are made by using a stream of pseudo-
random numbers, then different streams should be used to
resolve high and low choices. Or if8 represents scheduler
choices, then the scheduler should resolve choices at each
security type independently.)

A refiner is a functionψ : L → RefList that associates
a refinement list with each security type. LetRef denote
the set of all refiners. Denote the standard list operations
of reading the first element of a list and removing the first
element of a list ashead and tail , respectively. Given a
refinerψ, the valuehead(ψ(τ)) is used to resolve the next
choice annotated with typeτ .

4.2 Operational Semantics

Using refiners, we extend the operational semantics of
Section 3 to account for nondeterministic choice. A com-
mandc is now executed with respect to a refinerψ, in ad-
dition to a stateσ, tracet, and joint strategyω. We thus
modify configurations to be 5-tuples(c, σ, ψ, t, ω); termi-
nal configurations now have the form(skip , σ, ψ, t, ω).

All of the operational rules from Figure 1 are adapted
in the obvious way to handle the new configurations. The
only interesting change is SEQ-2, which is restated in Fig-
ure 2. Nondeterministic choice is evaluated by the new
rule CHOICE, which uses refinerψ to resolve the choice
and specifies how the refiner changes as a result. Refiner
ψ[τ := tail(ψ(τ))] is the refinerψ with the refinement list
for τ replaced bytail(ψ(τ)).

Note that a refiner factors out all nondeterminism in the
program: once a refiner, state, and joint strategy have been
fixed, execution is completely determined.

4.3 A Security Condition for Nondeterministic
Programs

A well-known problem arises with nondeterministic pro-
grams: they are vulnerable torefinement attacks, in which
a seemingly secure program can be refined to an insecure
program. For example, whether the input fromH is kept

secret in the following program depends on how the nonde-
terministic choice is resolved:

P3 : input x from H;
output 0 to L 8 output 1 to L

If the choice is made independently of the current state of
the program, say by tossing a coin, the program is secure.
But if the choice is made as a function ofx, the program
may leak information about the high input.

To ensure that a program is resistant to refinement at-
tacks, we insist that, for all possible resolutions of nonde-
terminism, the program does not leak any confidential in-
formation. Our model allows this quantification to be ex-
pressed cleanly, since refiners encapsulate the resolution of
nondeterministic choice. We adapt the security condition
of Section 3.2 to ensure that, for any refinement of the pro-
gram, users with access only to channelL do not learn any-
thing about the strategies employed by users of channelH.

Definition 2 (Noninterference Under Refinement).A
command c satisfies noninterference under refinement
exactly when:

For allm = (c, σ, ψ, 〈〉, ω) andm′ = (c, σ, ψ, 〈〉, ω′)
such thatω(L) = ω′(L),

and for allt such thatm t,
there exists at′ such thatt�L = t′ �L andm′  t′.

Some implications of this definition are discussed below.

Low-observable nondeterminism.This security condition
rules out refinement attacks but allows programs that appear
nondeterministic to a low user. For example, ProgramP3

(with 8 replaced by8L) satisfies noninterference under re-
finement, yet repeated executions may reveal different pro-
gram behavior to the low user.

Initial refinement lists. The security condition does not
require the secrecy of the initial refinement list forH. More
concretely, the program

output 0 to L 8H output 1 to L

is considered secure even though it reveals information
about the first value ofψ(H). The definition thus reflects
our intuition that high users interact with the system only
via input and output events on the high channel, which gives
them no control over refinement lists. The definition of non-
interference under refinement could be adapted to systems
where high users may exert control over refinement lists.
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(PROB-1)

(c0 p8 c1, σ, ψ, t, ω)
p−→ (c0, σ, ψ, t, ω)

(PROB-2)

(c0 p8 c1, σ, ψ, t, ω)
1−p−→ (c1, σ, ψ, t, ω)

Figure 3. Operational semantics for probabilistic choice

Expressivity of refiners. Our model can represent only
those refinements that appear as if they were made before
the program began execution. Refinements that may de-
pend upon dynamic factors, such as the values of variables
or the current program counter, cannot be represented. Our
model therefore capturescompiler-time nondeterminismbut
not runtime nondeterminism[16]. We leave development of
more sophisticated refiners as future work.

5 Probabilistic Programs
Probabilistic choice can be seen as refinement of arbi-

trary nondeterministic choice. Now that we have shown
how refiners can be used to factor out the nondeterminis-
tic choices to which we are unable or unwilling to assign
probabilities, we can model probabilistic choice explicitly.

We begin by extending the nondeterministic language of
Section 4 with probabilistic choice:

c ::= . . . | c0 p8 c1

Informally, probabilistic choicec0 p8 c1 executes command
c0 with probabilityp and commandc1 with probability1−
p. The probability annotationp must be a real number such
that0 ≤ p ≤ 1. We assume that probabilistic choices are
made independently of one another.

5.1 Operational Semantics

To incorporate probability in the operational semantics
we extend the small-step relation−→ of previous sections
to include a label for probability. We denote membership in
the new relation by

m
p−→ m′,

meaning that configurationm steps with probabilityp to
configurationm′. Configurations remain unchanged from
the nondeterministic language of Section 4. The new op-
erational rules defining this relation are given in Figure 3.
To facilitate backwards-compatibility with the operational
rules of previous sections, we interpretm −→ m′ as short-

hand form
1−→ m′. The operational rules previously given

in Figures 1 and 2 thus remain unchanged.

5.2 A Probabilistic Security Condition

It is well-known that probabilistic programs may be se-
cure with respect to nonprobabilistic definitions of nonin-

terference but leak confidential information with high prob-
ability. As an example, consider the following program:

P4 : input x from H;
if xmod 2 = 0 then

output 0 to L 0.998 output 1 to L
else

output 0 to L 0.018 output 1 to L

If we regard probabilistic choicep8 as identical to nondeter-
ministic choice8L, then this program satisfies noninterfer-
ence under refinement. Yet with high probability, the pro-
gram leaks the parity of the high input to channelL.

Toward preventing suchprobabilistic information flows,
observe that if a low tracet is likely to be emitted with one
high user strategy and unlikely with another, then the low
user learns something about the high strategy by observing
the occurrence oft. We thus conclude that our security con-
dition should require that the probability with which low
traces are emitted be independent of the strategy employed
on the high channel, that is, that low-equivalent configu-
rations should produce particular low traces with the same
probability. This intuition is consistent with security con-
ditions given by Gray and Syverson [11] and Halpern and
O’Neill [14].

More formally, letEm(t) represent the event that config-
urationm emits low tracet. Suppose that we had a probabil-
ity µm on such events. Then our security condition should
require, for all configurationsm andm′ that are equivalent
except for the choice of high strategy, and all low tracest,
thatµm(Em(t)) = µm′(Em′(t)). The remainder of this sec-
tion is devoted to definingµm andEm(t).

We begin with two additional intuitions. First, since
probabilistic choices are made independently, the probabil-
ity of anexecution sequence

m0
p0−→ m1

p1−→ . . .
pn−1−→ mn

is equal to the product of the probabilitiespi of the individ-
ual steps. Second, a configurationm could emit the same
tracet along multiple sequences, so the probability thatm
emits t should be the sum of the probabilities associated
with those sequences.

Based on these intuitions, we now construct probability
measureµm by adapting a standard approach for reason-
ing about probabilities on trees [12]. For any configuration
m, relation

p−→ gives rise to a rooted directedprobability
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tree whose vertices are labeled with configurations, edges
are labeled with probabilities, and root ism. Denote the
probability tree form by Tm and the set of vertices ofTm

by Vm. A path in the tree is a sequence of vertices, starting
with the root, where each successive pair of vertices is an
edge. Given a vertexv, let tr(v) be the trace of events in
the configuration with whichv is labeled. We say thatt ap-
pears atv whentr(v) = t but tr(v′) 6= t for all ancestors
v′ of v. Let ap(t) be the set of vertices wheret appears. In
accordance with the intuitions described above, letπ(v) be
the product of the probabilities on the path tov.

A ray is an infinite path or a finite path whose terminal
node has no descendants, Rays therefore represent maximal
execution sequences. LetRm denote the set of rays ofTm.
LetRm(v) be the set of rays that go through vertexv:

Rm(v) , {r ∈ Rm | v is onr}.

Let Am be theσ-algebra onRm generated by sets of
rays going through particular vertices, that is, by the set
{Rm(v) | v ∈ Vm}.1 The following result yields a prob-
ability measure on sets of rays. It is a consequence of ele-
mentary results in probability theory, and we omit the proof.

Theorem 1. For any configurationm, there exists a unique
probability measureµm onAm such that for allv ∈ Vm we
haveµm(Rm(v)) = π(v).

Now that we have constructedµm, we must show how
to use it to obtain the probability of a set of traces in terms
of the probability of a corresponding set of rays. For a set
T of traces, letRm(T ) be the set of rays on which a trace
in T appears. Letemm(T ) = {t ∈ T | m  t} be the set
of traces inT emitted bym, and note that

Rm(T ) ,
⋃

t∈emm(T )

⋃
v∈ap(t)

Rm(v),

because a trace appears on a rayr if and only if it appears at
a vertexv on r. The setRm(T ) is measurable with respect
to Am because bothemm(T ) andVm are countable sets.
Given a tracet, the set{Rm(v) | v ∈ ap(t)} is a partition
of the set of rays on whicht appears. It follows that

µm(Rm({t})) = µm(
⋃

v∈ap(t)Rm(v))
=

∑
v∈ap(t) µm(Rm(v))

=
∑

v∈ap(t) π(v),

that is, that the probability thatm emitst is equal to the sum
of the valuesπ(v) for verticesv wheret appears, as desired.

1A σ-algebra on a setX is a nonempty collection of subsets ofX that
containsX and is closed under complements and countable unions [2].
(Theσ has no connection to states, although we also useσ as a metavari-
able that ranges over states.) Aσ-algebra generated by a setC of subsets
of X is defined as the intersection of allσ-algebras onX, including2X ,
that containC.

We can now defineEm(t). Given a security typeτ and
a tracet, let [t]τ be the equivalence class of traces that are
equal tot when restricted toτ :

[t]τ , {t′ ∈ Tr | t′ �τ = t�τ}.

Finally, letEm(t) be the set of rays on which there is some
vertexv such thattr(v)�L = t�L:

Em(t) , Rm([t]L).

The setEm(t) is inAm. By Theorem 1,µm(Em(t)) is equal
to the sum of valuesπ(v) for verticesv such thattr(v)�L =
t�L andtr(v′)�L 6= t�L for any ancestorv′ of v.

We are now ready to formalize our security condition.

Definition 3 (Probabilistic Noninterference). A com-
mand c satisfies probabilistic noninterferenceexactly
when:

For allm = (c, σ, ψ, 〈〉, ω) andm′ = (c, σ, ψ, 〈〉, ω′)
such thatω(L) = ω′(L),

and for allt ∈ Tr (Ev(L)),
we haveµm(Em(t)) = µm′(Em′(t)).

Returning to ProgramP4 at the start of this section,
it is easy to check that the probability of the low trace
〈out(L, 0)〉 is 0.99 when the high strategy is to input an
even number, and0.01 when the high strategy is to input an
odd number. Clearly, the program does not satisfy proba-
bilistic noninterference.

If we interpret the nondeterministic choice in Program
P1 as 0.58 (a fair coin toss), the program does not satisfy
probabilistic noninterference. However, if the output toH
is removed, the resulting program

while (true ) do
x := 0 0.58 x := 1;
input y from H;
output x xor (y mod 2) to L

does satisfy noninterference. The probability of low outputs
is independent of the high strategy, which can no longer
exploit knowledge of the value of one-time padx.

User strategies as defined thus far are deterministic.
However, our approach to reasoning about probability ap-
plies to randomized user strategies as well as to randomized
programs, so it would be straightforward to adapt our model
to handle randomized strategies.

6 A Sound Type System
The problem of characterizing programs that satisfy non-

interference is, for many definitions of noninterference, in-
tractable. For definitions appearing in the previous sections,
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(T-L IT)

Γ ` n : τ

(T-VAR)
Γ(x) = τ

Γ ` x : τ

(T-OP)
Γ ` e0 : τ Γ ` e1 : τ

Γ ` e0 ⊕ e1 : τ

(T-ASSIGN)
Γ(x) = τ Γ ` e : τ

Γ ` x := e : τ cmd

(T-SKIP)

Γ ` skip : τ cmd

(T-IF)
Γ ` e : τ Γ ` c0 : τ cmd Γ ` c1 : τ cmd

Γ ` if e then c0 else c1 : τ cmd

(T-SEQ)
Γ ` c0 : τ cmd Γ ` c1 : τ cmd

Γ ` c0; c1 : τ cmd

(T-WHILE)
Γ ` e : L Γ ` c : τ cmd

Γ ` while e do c : L cmd

(T-CHOICE)
Γ ` c0 : τ cmd Γ ` c1 : τ cmd

Γ ` c0 8τ c1 : τ cmd

(T-PROB)
Γ ` c0 : τ cmd Γ ` c1 : τ cmd

Γ ` c0 p8 c1 : τ cmd

(T-IN)
Γ(x) = τ ′ τ ≤ τ ′

Γ ` input x from τ : τ cmd

(T-OUT)
Γ ` e : τ

Γ ` output e to τ : τ cmd

(T-SUBTYPE)
Γ ` p : κ0 κ0 ≤ κ1

Γ ` p : κ1

(ST-BASE)

L ≤ H

(ST-REFL)

κ ≤ κ

(ST-CMD)
τ0 ≤ τ1

τ1 cmd≤ τ0 cmd

Figure 4. Typing rules

there is a straightforward reduction from the halting prob-
lem to the noninterference problem. It follows that no deci-
sion procedure for certifying the information-flow security
of programs can be both sound and complete with respect to
our definitions of noninterference. The goal of this section
is to demonstrate that static analysis techniques can be used
to identify secure programs.

We use a type system based on that of Volpano, Smith,
and Irvine [38]. It is interesting to note that a type-system
designed to enforce batch-job noninterference conditions
also enforces our interactive conditions, including prob-
abilistic noninterference, even though the type system is
oblivious to the subtleties of probability, interactivity, and
user strategies. We believe that other type systems for infor-
mation flow (e.g., [3, 18, 33, 35]) can also be easily adapted
for our interactive model, and thus that advances in preci-
sion and expressiveness can be applied to our work.

The type system consists of a set of axioms and inference
rules for derivingtyping judgmentsof the formΓ ` p : κ,
meaning that phrasep has phrase typeκ under variable typ-
ing Γ. A phrase is either an expression or a command.
A phrase typeis either a security typeτ or a command
type τ cmd, whereτ ∈ L. A variable typingis a func-
tion Γ : Var → Lmapping from variables to security types.
Informally, a commandc has typeτ cmdwhenτ is a lower-
bound on the effects thatcmay have, that is, when the types
(underΓ) of any variables thatc updates are bounded below
by τ , and any input or output thatc performs is on channels
whose security type is bounded below byτ .

Axioms and inference rules for the type system are given
in Figure 4. There are two types of rules: typing rules (pre-

fixed with “T”) and subtyping rules (prefixed with “ST”).
Typing rules can be used to infer the type of an expression
or command directly. Subtyping rules allow a low-typed ex-
pression to be treated as a high-typed expression and a high-
typed command to be treated as a low-typed command. (It
is safe, for example, to store a low-typed expression in a
high variable, or to output data to a high user in the body of
a loop with a low-typed guard.)

Most of the rules in this type system are standard. Rules
T-IN and T-OUT are both similar to T-ASSIGN: T-IN en-
sures that values read from theτ channel are stored in vari-
ables whose type is bounded below byτ , whereas T-OUT

ensures that onlyτ -typed expressions are output on theτ
channel. Rules T-CHOICE and T-PROB are similar to T-
SEQ, except that T-CHOICE also checks that the typing
is consistent with the syntactic type annotation. Rule T-
WHILE forbids high-guarded loops, ensuring that loop ter-
mination does not depend on the high user’s strategy. This
prohibits insecure programs such asP2 (in Section 3.2).
We believe this rule could be relaxed using techniques de-
scribed by Boudol and Castellani [3] and Smith [35].

The following theorem states that this type system
soundly enforces noninterference. Recall that our secu-
rity conditions do not depend on the security types of vari-
ables. Noninterference is enforced provided there exists
some variable typing under which the program is well-
typed.2 The proof appears in the companion technical re-
port [27].

2Because the security types of variables can be inferred, programmers
need not specify them. In a (trivially secure) program with no high inputs,
for example, all variables can be assigned typeL.
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Theorem 2 (Soundness).For any commandc, if there ex-
ists a variable typingΓ and a security typeτ such that
Γ ` c : τ cmd, then

(a) if c does not contain nondeterministic or probabilistic
choice, thenc satisfies noninterference;

(b) if c does not contain probabilistic choice, thenc satis-
fies noninterference under refinement; and

(c) c satisfies probabilistic noninterference.

7 Related Work
Definitions of information-flow security for imperative

programs began with the work of Denning [5]. Many sub-
sequent papers define information-flow security for various
sequential imperative languages, but nearly all of these pa-
pers assume a batch-job model of computation. Therefore,
they attempt to ensure the secrecy of high-typed program
variables rather than of the behavior of high users who in-
teract with the system. See Sabelfeld and Myers [31] for a
survey of language-based information-flow security.

Another line of work considers end-to-end information-
flow restrictions for nondeterministic systems that provide
input and output functionality for users. Definitions of
noninterference exist both for abstract systems (such as
finite state machines) that include input and output op-
erations (Goguen and Meseguer [10], McCullough [21],
McLean [23], Mantel [19]), and for systems described using
process algebras such as CCS, theπ-calculus, and related
formalisms (Focardi and Gorrieri [6], Ryan and Schnei-
der [29], Zdancewic and Myers [40]).

Definitions of noninterference based on process algebras
typically require that the observations made by a public user
are the same regardless of which high processes (if any)
are interacting with the system. These definitions are thus
similar in spirit to our definitions of noninterference. In-
deed, there is a close connection between strategies and pro-
cesses: both can be viewed as description of how an agent
will behave in an interactive setting. A formal comparison
with process-based definitions (such as [8]) may uncover
further connections between process-based system models
and imperative programs.

Wittbold and Johnson [39] give the first strategy-based
definition of information-flow security, and Gray and Syver-
son [11] give a strategy-based definition of probabilistic
noninterference. Halpern and O’Neill [14] generalize the
definitions of Gray and Syverson to account for richer
system models and more general notions of uncertainty.
Our definitions of noninterference, which are instances of
Halpern and O’Neill’s definitions of secrecy, are the first
strategy-based security conditions for an imperative pro-
gramming language of which we are aware. Our work can
thus be viewed as a unification of two distinct strands of the
information-flow literature. In this sense our work is simi-

lar to that of Mantel and Sabelfeld [20], who demonstrate
a connection between security predicates taken from the
MAKS framework of Mantel [19] and bisimulation-based
definitions of security for a concurrent imperative language
due to Sabelfeld and Sands [32]. However, Mantel and
Sabelfeld do not consider interactive programs.

Our probabilistic noninterference condition can be inter-
preted as precluding programs that allow low users to make
observations that improve the accuracy of theirbeliefsabout
high behavior, that is, their beliefs about which high strat-
egy is used. Halpern and O’Neill [14] prove a result which
implies that our probabilistic security condition suffices to
ensure that low users cannot improve the accuracy of their
subjective beliefs about high behavior by interacting with a
program. Our probabilistic security condition also ensures
that the quantity of information flow due to a secure pro-
gram is exactly zero bits in the belief-based quantitative
information-flow model of Clarkson, Myers, and Schnei-
der [4].

The bisimulation-based security condition of Sabelfeld
and Sands [32] can be viewed as a relaxation of the batch-
job model. However, as Mantel and Sabelfeld [20] point
out, bisimulation-based definitions are difficult to relate to
trace-based conditions when a nondeterministic choice op-
erator is present in the language. The following program,
for example, satisfies both noninterference under refine-
ment and probabilistic noninterference (for suitable inter-
pretations of the8 operator), but it is not secure with respect
to a bisimulation-based definition of security:

input x from H;
if (x = 0)

output 0 to L;
{output 1 to L 8 output 2 to L}

else
{output 0 to L; output 1 to L} 8
{output 0 to L; output 2 to L}

Bisimulation-based security conditions implicitly assume
that users can observe internal choices made by a program.
When users observe only inputs and outputs on channels,
our observational model is more appropriate.

Interactivity between users and a program is similar
to message-passing between threads. Sabelfeld and Man-
tel [30] present a multi-threaded imperative language with
explicit send, blocking receive, and non-blocking receive
operators for communication between processes. They de-
scribe a bisimulation-based security condition and a type
system to enforce it. However, it is not clear how to model
user behavior in their setting. Users cannot be modeled as
processes since user behavior is unknown, and their security
condition applies only if the entire program is known.

Almeida Matos, Boudol, and Castellani [1] state a
bisimulation-based security condition forreactive pro-
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grams, which allow limited communication between pro-
cesses, and they give a sound type system to enforce the
condition. In their language, programs react to the presence
and absence of named broadcast signals and can emit sig-
nals to other programs in a “local area.” It is possible to im-
plement our higher-level channels and events within a local
area, using their lower-level reactivity operators. However,
it is unclear how to use reactivity to model interactions with
unknown users who are not part of a local area.

Focardi and Rossi [7] study the security of processes in
dynamic contextswhere the environment, including high
processes, can change throughout execution. This is sim-
ilar to how high user strategies describe changing inputs
throughout execution. However, user strategies depend
upon the history of the computation, whereas dynamic con-
texts do not, so it is unclear how to encode a user strategy
using dynamic contexts.

Previous work dealing with the susceptibility of possi-
bilistic noninterference to refinement attacks takes one of
two approaches to specifying how nondeterministic choice
is resolved. One approach is to assume that choices are
made according to fixed probability distributions, as we do
in Section 5. Volpano and Smith [37], for example, de-
scribe a scheduler for a multithreaded language that chooses
threads to execute according to a uniform probability dis-
tribution. A second approach is to insist that programs be
observationally deterministicfor low users. McLean [22]
and Roscoe [28] both advocate observational determinism
as an appropriate security condition for nondeterministic
systems, and Zdancewic and Myers [40] give a security con-
dition based on observational determinism for a concurrent
language based on the join calculus [9].

Observational determinism implies noninterference un-
der refinement and thus immunity to refinement attacks.
In settings where the resolution of nondeterministic choice
may depend on confidential information, we conjecture that
observational determinism and noninterference under re-
finement are equivalent. However, when the resolution of
some choices is independent of confidential information,
observational determinism is a stronger condition: any pro-
gram that is observationally deterministic satisfies noninter-
ference under refinement, but the converse does not hold.

8 Conclusion
This paper examines information flow in a simple imper-

ative language that includes primitives for communication
with program users. In this setting, it is not the initial val-
ues of variables or the inputs from high users that must be
kept secret, but rather the high users’ strategies. We present
a trace-based noninterference condition which ensures that
low users do not learn anything about the strategies em-
ployed by high users. Incorporating nondeterministic and
probabilistic choice in the language leads to corresponding

security conditions: noninterference under refinement and
probabilistic noninterference. We prove that a type system
conservatively enforces these security conditions.

This work is a step toward understanding and enforcing
information-flow security in real-world programs. Many
programs interact with users, and the behavior of these
users will often be dependent on previous inputs and out-
puts. Also, many programs, especially servers, are intended
to run indefinitely rather than to perform some computa-
tion and then halt. Our model of interactivity is thus more
suitable for analyzing real-world systems than the batch-job
model. In addition, our imperative language approximates
the implementation of real-world interactive programs more
closely than abstract system models such as theπ-calculus.
This paper thereby contributes to understanding the security
properties of programs written in languages with informa-
tion flow control, such as Jif [26] or Flow Caml [34], that
support user input and output.
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