
Programming with Flow-Limited Authorization:
Coarser is Better

Mathias V. Pedersen
Department of Computer Science

Aarhus University
mvp@cs.au.dk

Stephen Chong
Harvard School of Engineering and Applied Sciences

Cambridge, Massachusetts
chong@seas.harvard.edu

Abstract—Applications that handle sensitive information need to
express and reason about the trust relationships between security
principals. Such reasoning is difficult because the trust relation-
ships are dynamic, and must thus be reasoned about at runtime
when discovering and reasoning about trust relationships might
inadvertently reveal confidential information and be subject to
manipulation by untrusted principals.

The Flow-Limited Authorization Model (FLAM) by Arden et al.
exactly meets these needs. However, previous attempts to use
FLAM in a programming language have not reaped the full
benefits of the model.

We present Flamio, an instantiation of FLAM in a language with
coarse-grained dynamic information-flow control (IFC) which
naturally lends itself to dynamic enforcement techniques. In our
implementation of Flamio, the FLAM proof search rules for
deriving trust relationships are implemented as regular Flamio
computations: the IFC requirements for FLAM proof rules are
a natural fit with coarse-grained information-flow mechanisms.
Flamio even supports remote procedure calls, and thus seamlessly
supports FLAM’s distributed proof search.

We have implemented Flamio as a Haskell library, and proved
that a calculus based on Flamio enforces a noninterference-based
security guarantee. We have implemented several case studies,
demonstrating the expressiveness and usefulness of Flamio in
distributed settings, as well as our novel approach to control
label creep during proof search.

I. INTRODUCTION

Most modern systems require some form of authorization to
control access to data. Such authorization mechanisms tend to
be complex and hard to get right, even though the correctness
of such components is vital for the security of the system and
its users [2]. The behavior of such systems is often dynamic,
with access control continually changing on a per-user basis.
Thus, the authorization mechanisms used in these systems also
need to be dynamic and able to securely control changes to
user privileges [2] at runtime. Furthermore, the mere exis-
tence of a trust relationship between two principals may leak
confidential information to an attacker if the trust relationship
was established based on the result of a confidential com-
putation. Dually, if attackers can provide trust relationships
that influence otherwise high-integrity computations, they may
be able to influence access control decisions inappropriately.
These issues are especially ubiquitous in distributed systems,
where nodes may not agree on the trust relationship among
principals.

The Flow-Limited Authorization Model (FLAM) [1] is an ex-
pressive security model designed for rigorous reasoning about
dynamic changes to authorization policies in a distributed
setting, where nodes can forward trust checking requests to
other nodes in the system. FLAM also guarantees that no
confidential information is leaked to an attacker through the
trust checking mechanism and that security principals cannot
inappropriately influence the trust relationships. This makes
FLAM ideal for highly dynamic security policies involving
many principals with intricate trust relationships. However,
currently, no programming language that builds on top of
FLAM reaps the full benefit of the authorization logic.

In this paper we introduce Flamio, which takes a coarse-
grained approach to information-flow control (IFC). Fine-
grained IFC (as seen in information-flow aware languages
like FlowCaml [3] and Jif [4]) labels individual values with
security labels. By contrast, coarse-grained IFC does not label
individual values, but instead labels the computational context
in which the program is running with a single label. Coarse-
grained IFC lends itself naturally to dynamic enforcement
techniques as demonstrated by its success in both operating
systems [5]–[8] and programming languages [9]–[12].

We show that FLAM’s rules for proving trust relationships
have a straightforward encoding in the coarse-grained IFC
setting of Flamio, which is inspired by the work on Labeled
IO (LIO) [9]. As evidence of the straightforward encoding, we
implement Flamio as a Haskell library [13] that encapsulates
FLAM’s proof search for trust relationships in an information-
flow aware computational context, which ensures that the proof
search itself does not leak confidential information to, and
cannot be inappropriately influenced by, attackers. Leveraging
FLAM’s decentralized authorization model, Flamio supports
distributed proof search of trust relationships, where nodes
can forward trust checking to other nodes in the system. To
demonstrate the usefulness of distributed proof search of trust
relationships in a setting with dynamic security policies we
present three case studies involving distributed computations
with confidential information and mutually distrusting princi-
pals that must cooperate to perform their tasks.

The case studies also demonstrate a novel technique for
mitigating the problem of label creep during proof search.

mailto:mvp@cs.au.dk
mailto:chong@seas.harvard.edu

Label creep refers to the label of the computational con-
text creeping up the information-flow lattice as the program
executes. Previous work [9] mitigates label creep using the
toLabeled construct. However, we cannot use this technique
to mitigate label creep during search for proofs of trust rela-
tionships. We present a technique that gives the programmer
fine-grained control over the way proofs of trust are derived,
and how the proofs can affect the label on the computational
context, providing the programmer with the ability to control
label creep during proof search.

We also present a calculus for Flamio, which formally proves
that Flamio enforces a noninterference-based [14] security
guarantee that attackers cannot leak or corrupt information,
despite the incorporation of FLAM as an expressive, dynamic
mechanism to state and reason about trust relationships.

This paper makes the following contributions.

• We show how the FLAM principal lattice integrates
cleanly into a language with coarse-grained dynamic
information-flow control and distributed trust checking.

• We present a formal model of Flamio and prove that the
language guarantees noninterference.

• We present an implementation of Flamio as a Haskell
library, along with an efficient implementation of the
FLAM authorization logic to decide trust relationships.

• We describe a novel approach to avoid the problem of
label creep during proof search.

• We present several examples of distributed information-
flow problems all of which can easily be modeled using
Flamio.

The rest of the paper is structured as follows. Section II
introduces the necessary concepts from FLAM and LIO,
and Section III demonstrates how Flamio combines FLAM
and LIO through several examples. Section IV describes the
formal calculus for Flamio and how the FLAM judgment for
deciding trust relations is modeled in a coarse-grained setting.
Section V defines the attacker model we consider in this
work and presents the formal security guarantees offered by
Flamio. Section VI discusses the implementation in Haskell
and presents three case studies demonstrating the use of
Flamio. Section VII presents related work and Section VIII
concludes.

II. BACKGROUND ON FLAM AND LIO

Before discussing how FLAM and LIO fit together, we briefly
introduce each separately. We first highlight the essential parts
of FLAM necessary for this work; more details can be found
in Arden et al. [1]. Similarly, we highlight the essential parts
of LIO, and additional details can be found in Stefan et al.
[9].

A. The FLAM principal lattice

Figure 1 describes the syntax of FLAM principals. The gram-
mar is parametric in a set N of names representing principals
like Alice and Bob. Given a principal p, FLAM can talk about

n ∈ N
p ::= ⊥ | > | n | p ∧ p | p ∨ p | p→ | p← | p : p

Fig. 1: Syntax of FLAM

the confidentiality and integrity of p using basis projections
p→ and p← respectively. The principal p→ represents the
authority to learn anything that p can learn, and p← represents
the authority to modify anything that p can modify. Given
principals p and q, FLAM can also represent the authority
of both p and q as p ∧ q or the authority of either p or q
as p ∨ q. This forms a lattice (P,<) with a partial order <
(pronounced acts for), that represents trust: if p < q principal
p is allowed to act on behalf of q, i.e., q trusts p to act on its
behalf. Principals ⊥ and > represent the least and most trusted
principals respectively, and operations ∧ and ∨ are the lattice
join and meet operations respectively. The principals in P are
given by the grammar in Figure 1.1 Besides basis projections
→ and ←, FLAM also defines ownership projections o : p
representing the same authority as the principal p, but where
the owner o controls which principals o : p trusts. For example,
the delegation Acme : Bob < Acme implies that Bob can
act for Acme, but it is not the case that Alice can act for
Acme : Bob, even if Alice acts for Bob. We will use ownership
extensively in the example presented in Section VI-B.
a) An information-flow ordering: An important distinction
between FLAM and other authorization models is that FLAM
unifies trust and information-flow into a single concept. That
is, in FLAM, principals denote both entities with security
concerns and information-flow labels that can be used to re-
strict the propagation of information in a system. The acts-for
ordering describes trust relationships between principals, and
is used to define an information-flow ordering that describes
the permitted propagation of information. Specifically, FLAM
defines the operations

p v q $ q→ ∧ p← < p→ ∧ q← (1)
p t q $ (p ∧ q)→ ∧ (p ∨ q)← (2)
p u q $ (p ∨ q)→ ∧ (p ∧ q)← (3)

That is, p v q (pronounced p flows to q) if q acts for the
confidentiality of p, and p acts for the integrity of q. So if
p v q, information labeled with principal p can safely be
relabeled to principal q, as q is at least as confidential, and
has no more integrity, than p. The join of p and q, written
pt q is defined as the principal with the authority of both p’s
and q’s confidentiality, and the authority of either p’s or q’s
integrity. The meet of p and q, written pu q is defined dually
as the confidentiality of either p or q, and the integrity of both
p and q. This forms a lattice (P,v) with the partial order
v, where the bottom element ⊥v $ ⊥→ ∧ >← represents
the least confidential and most trusted principal, and the top

1Formally, the principals in the lattice is the equivalence class of P modulo
the relation ≡ where a ≡ b ⇐⇒ a < b and b < a.

element >v $ >→ ∧ ⊥← represents the most confidential and
least trusted principal.2

b) Voice of a principal: Finally, FLAM defines the voice
of a principal p, denoted ∇(p), as the minimum integrity
needed to influence the flow of information labeled p. Using
the voice operator, FLAM defines a speaks for relation [15],
[16] between principals as “principal p speaks for principal
q if p acts for the voice of q”. Formally p speaks for q if
p < ∇(q). Any principal is equivalent to the conjunction of
a confidentiality projection and an integrity projection, i.e.,
∀p. ∃q, r. p ≡ q→ ∧ r←. The voice of a principal p with
normal form q→ ∧ r← is then defined as ∇(p) = q← ∧ r←
[1].

B. Coarse-grained information flow using LIO.

LIO [9] is a Haskell library for dynamic information-flow
control. LIO is parametric in the label model and takes a
coarse-grained approach to information-flow using a floating
label model: instead of attaching a label to each value in the
program, the computational context is protected with a single
label called the current label. Throughout the execution of
the program the current label will “float up” the information-
flow lattice as more confidential (or less trustworthy) in-
formation is brought into the computational context. The
current label restricts what data can be modified, ensuring
that non-confidential side effects do not depend on confidential
information, and dually that trusted effects do not depend on
untrusted information.

The type of LIO computations gives rise to a monad [17] that
encapsulates raising the current label. The monadic structure
of LIO makes programming with it convenient in Haskell.
Specifically, the operation return e embeds a pure expression
e into the LIO computational context, and the operation
e1 �= e2 (pronounced bind) chains together monadic LIO
operations e1 and e2. Throughout the paper, we use Haskell’s
do notation in examples, which can be desugared into the
calculus presented in Section IV.

In addition to the current label, LIO also provides a clear-
ance label, imposing an upper bound on the current label.
The clearance label gives LIO a form of access control by
restricting which data can be observed and modified within a
computational context. For instance, given two labels `clr and
`data such that `data 6v `clr, a computation with clearance label
`clr cannot access information labeled with label `data because
that would require the current label to float up to `data, but `clr
is an upper bound on the current label and `data 6v `clr.
a) Labeled values: In addition to protecting every value in the
computational context by a single label `cur, LIO also allows
computations to associate explicit labels with particular values.
This allows computations to handle data of different labels in
the same context. The type of labeled values of type a is
written in Haskell as Labeled l a, where l is the type of
labels.

2Once again, the elements is equivalence classes of P modulo the relation
≡ defined as a ≡ b ⇐⇒ a v b and b v a.

Labeled values are typically used to incorporate sensitive
information such as usernames and passwords into the com-
putational context. LIO provides three operations for working
with labeled values:

label :: Label l => a -> l -> LIO l (Labeled l a)
unlabel :: Label l => Labeled l a -> LIO l a
labelOf :: Label l => Labeled l a -> l

Here, Label l is a typeclass constraint specifying that the
type l must be an instance of the Label typeclass, meaning
that l must have operations t, u and v. The operation label
takes an expression e and a label `, and labels e with the
label `. When the value of the labeled value is needed, the
operation unlabel must be invoked, which gets back the value
and raises the current label `cur to `curt`, while checking that
the new current label flows to the clearance label `clr of the
computation.

Finally, labelOf extracts the label of a labeled value. This
operation does not return a value in the LIO monad, and
thus no information-flow checks are performed when invoking
labelOf. In other words, the label is protected only by the
current label [9]. This fact is important when we define trust
checking using strategies in Section IV-C.
b) Preventing label creep: As the program executes and
confidential or untrusted information enters the computational
context through unlabel operations, the current label contin-
ues to creep upwards, restricting the possible side effects. To
avoid unnecessary label creep LIO introduces the following
operation:

toLabeled :: Label l => l -> LIO l a ->
LIO l (Labeled l a)

Evaluating toLabeled l e when the current label is `cur will
evaluate e and then reset the current label to `cur. To remain
secure, the result is labeled with the label l. Furthermore, LIO
checks that the evaluation of e never raises the current label
above l.

III. INTRODUCTION TO FLAMIO BY EXAMPLE

In this section we informally introduce Flamio and the con-
cepts needed to combine LIO and FLAM. Section IV will then
formalize the intuitions presented in this section. We proceed
by demonstrating the usefulness of Flamio in the context of
a secure, decentralized banking application, which we also
discuss in Section VI. The intended security policy of the bank
is that a user u can transfer money from an account only if
the owner of the account trusts u.

Flamio incorporates FLAM into LIO by using the FLAM
information-flow lattice (P,v) as the label model of LIO.
As FLAM unifies principals and labels, this allows Flamio to
also reason about trust relationships between principals using
the trust lattice (P,<). Given a named principal n ∈ N
(e.g., Alice or Bob) we call n a node when referring to
the machine that executes code on n’s behalf. We assume
each named principal has a corresponding machine executing

code on its behalf. Initially, the current label of node n
is ⊥→ ∧ n← and its clearance label is n→ ∧ ⊥←.3 The
initial current label states that the node has not observed any
sensitive information and that n← is the most trusted the
node can be. Dually, the clearance label states that n→ is
an upper bound on the confidentiality of the information n
is permitted to observe and that its integrity is permitted to
be affected by any information. We discuss two important
aspects of Flamio: Cross node communication using remote
procedure calls (RPC), and distributed proof search of trust
relationships.

A. Remote Procedure Calls

Nodes in Flamio communicate by remote invocation of func-
tions on different machines, and functions are thus annotated
with the node on which they should be evaluated. That is, the
application (λnp x. e) e′ denotes applying a function λnp x. e
located on machine n to an argument e′, and the returned
value is labeled with principal p. The label serves a purpose
similar to toLabeled, where labeling the value helps mitigate
label creep by delaying the effect of raising the current label
until the value is needed.

Consider a login function for an online banking service. The
function

1 login = λbankbank← u p . if checkCredentials u p
2 then return u else return ⊥

is evaluated on the node bank, and returns a principal labeled
with the integrity of the bank, which represents an access to-
ken. The expression login Alice "password" evaluates to a value
Alice labeled with the principal bank← if Alice’s password
is “password”, and ⊥ labeled with bank← otherwise. As the
principal Alice← (i.e., the current label of node Alice) does not
satisfy Alice← v bank←, Alice cannot grant herself access
because the semantics does not allow her to label values with
the principal bank←. However, Alice can unlabel the returned
access token, as it holds that bank← v Alice→ (i.e., the
clearance label of node Alice). So while Alice cannot forge
new access tokens, she is free to inspect whether the token
grants her access to the bank.

B. Proof search

In many practical scenarios, proving trust relationships of the
form p < q requires distributed knowledge spread across
multiple nodes. In this section, we will see examples of this,
as well as how distributed proof search of trust relationships in
Flamio is implemented. The three most important aspects of
the proof search are using delegations, managing delegations
using strategies and forwarding trust checking to other nodes.
After discussing these concepts, we apply them in the context
of the decentralized banking application. We keep the discus-
sion informal and defer precise formulations of the concepts
until Section IV.

3We follow previous conventions [1] and omit projections of the⊥ principal
in the remainder of the paper.

a) Delegations: A delegation is of the form p < q @ r
(pronounced r says that p acts for q); we call r the label
of the delegation, or say that the delegation is labeled with
principal r, and we call p < q the body of the delegation. The
terminology is the result of delegations being implemented in
Flamio as pairs (p, q) labeled with r, and are subject to similar
runtime checks. Thus both the confidentiality (i.e., who can
observe the presence of the delegation) and the integrity (i.e.,
who influenced the delegation) are captured by r. In particular,
a delegation can be used by a proof search on a node n when
r v n→. This requirement enforces the policy that the label
of the delegation flows to the clearance of node n, meaning
that n can observe the presence of a delegation only if the
delegation’s label flows to n’s clearance label.
b) Strategies: As delegations are implemented as labeled
values, using a delegation in a proof search raises the current
label by the label of the delegation, similar to how LIO
unlabels labeled values. This makes fine-grained control of
how delegations are used important to avoid unnecessary label
creep. One approach to such control could be to always unlabel
all delegations whose label flows to the clearance label of the
node performing the proof search. This would be correct and
secure (because all and only delegations whose label flows
to the node’s clearance label are used in the proof search),
but it may raise the current label unnecessarily (i.e., the proof
search may examine more delegations than it needs to). In
particular, if a delegation is examined, the current label must
be raised, even if the delegation is not ultimately used in the
proof. Thus if a node has a delegation labeled with a very
restrictive label, then all proof searches would be tainted by
that label. An alternative approach would be a proof search
algorithm that unlabels just the right delegations to prove the
query. However, as delegations are labeled values, the body
of the delegation cannot be inspected without unlabeling the
value and raising the current label. So an algorithm has to
decide whether to unlabel a delegation by inspecting only the
label of the delegation and not its body.

For these reasons Flamio uses strategies, which are lists of
principals, to specify which delegations are used in a proof
search, and in which order. For instance, if the delegation
p < q @ r is stored on a node that evaluates the expression
withStrategy [s, r, t] (p < q) the node first searches for dele-
gations with a label that flows to s. Assuming we cannot prove
the query p < q using only these delegations, then delegations
with a label that flows to r are used, and the delegation
p < q@ r can now be used to complete the proof search. This
example demonstrates how programmers can use strategies to
control how Flamio performs fine-grained proof search with
specialized strategies for handling delegations. The choice of
which strategy to use is application specific, but a reasonable
default strategy is [cur, clr], where cur and clr are the current
label and clearance labels of the node respectively. That is,
proof search will first try to find a proof for a delegation query
without raising the current label at all; if that is not successful,
it will then try to use all available delegations.

1 transfer = λbank⊥ tok ufrom uto n . do
2 u <- unlabel tok
3 withStrategy [bank→ ∧ u←from]
4 (if u < ufrom then transfer# ufrom uto n
5 else return ())

Fig. 2: Secure transfer of n dollars from ufrom to uto using
access token tok.

c) Forwarding: In Flamio, nodes can forward trust checks to
other nodes that might have local information (i.e., delega-
tions) about particular trust relationships. Forwarding queries
is straightforward as a query p < q is simply a monadic
expression returning a boolean, and such a query can be
forwarded to other nodes in Flamio using remote procedure
calls. A node n can forward trust checking to a node m
only if n’s current label flows to m→ (i.e., the clearance of
m). This restriction ensures that m is allowed to learn about
the information that caused n to initiate the query; a similar
restriction is used to prevent the invocation of other remote
procedure calls revealing information inappropriately. The
following snippet demonstrates how a leak can be constructed
if we did not perform the check:

1 (λAliceAlice→ _ . do h <- unlabel aliceSecret
2 if h then p < q else return 0) ()

If aliceSecret is labeled with Alice→, the unlabel operation
will raise the current label `cur to `cur t Alice→ tracking the
fact that the computation context contains information at level
at most `cur t Alice→. Upon forwarding the query p < q to
another node m, Alice reveals that aliceSecret contained a
non-zero value. Checking that Alice’s current label flows to
m→ ensures that the forwarding of the query occurs only if
m is allowed to learn this information.

Returning to the secure banking application, consider the
implementation of transfer in Figure 2, which transfers n
dollars from user ufrom to uto using access token tok.

First, the access token tok acquired by login is unlabeled,
revealing the identity of the caller. Then, a check is done
to ensure that the caller can act on behalf of the user from
which money is being transferred. For this example the bank
requires the trust relationship to be observable by the bank,
and having integrity of the principal from which the money
is transferred, which is reflected in the strategy specifying
that only delegations at level bank→ ∧ u←from or below (i.e.,
weaker confidentiality and stronger integrity) are used. Finally,
a primitive function transfer# performs the actual transfer
of money, or if the trust relationship cannot be established,
the function returns a unit value. Figure 3 demonstrates how
Bob can transfer money from Alice if she grants Bob the
appropriate trust. First, Alice adds a delegation specifying that
Bob can act on behalf of Alice and that this information has the
integrity of Alice. Then, Bob performs an RPC to the login

function, which returns an access token. Finally, he transfers

1 (λAlice⊥ _ . do assume Bob < Alice @ Alice←

2 (λBob⊥ _ . do tok <- login Bob "password"
3 transfer tok Alice Bob 50) ()) ()

Fig. 3: Alice grants Bob access to perform transfers on her
behalf.

50 dollars from Alice’s account to his own account. Note that
the use of the strategy [bank→ ∧ u←from] in transfer ensures
not only that the bank uses only delegations it is allowed
to observe, but also that the bank does not use a delegation
provided by an inappropriate principal such as Bob, as Bob
cannot add a delegation labeled with the principal Alice←

(unless Alice first delegates trust to Bob).

IV. A CALCULUS FOR FLAMIO

This section introduces a formalization of the Flamio language.
We first introduce the syntax and semantics of the language
and afterward present the judgment for deriving trust between
principals in the language. Finally, this section presents a
standard type system for Flamio that guarantees basic type
safety.

A. Syntax

Figure 4 shows the syntax of Flamio. The meta-variable v
ranges over values, which include boolean literals, the unit
value, runtime representations of principals, locations and
variables, abstractions λnτ@p x. e (which are parameterized over
the node n on which to evaluate the expression e, and the
principal p representing the label on the value returned from
invoking the abstraction, and τ : the type of e), and products.
We will omit the type annotation on abstractions in examples.
Finally, the language includes lists using nil and :: (pronounced
cons) to express strategies.

Expressions are ranged over by the meta-variable e and include
terms, applications, projections, elimination of booleans and
lists, recursive functions, monadic expressions using return
and �=, allocation, reading and writing of references. Fol-
lowing LIO, the language supports operations for labeling and
unlabeling expressions, and the operation toLabeled for con-
trolling label creep. The operations getLabel and getClearance
returns the current label and clearance of the computational
context respectively, and labelOf returns the label of a labeled
value. The operation withScope e creates a new scope for
delegations. The scoping for delegations have dynamic extent
[18], i.e., the delegations added during the evaluation of e
are visible until evaluation of e finishes. However, unlike
traditional dynamic scoping, the delegation is removed once
the evaluation of e terminates. This helps ensure safe and
correct use of delegations.

Strategies are introduced using the withStrategy estrat e
operation, which introduces a new strategy estrat for the
evaluation of e. Similar to the scoping of delegations, strate-
gies have dynamic extent, and the current strategy can be

v ::= true | false | () | p | a | x | λnτ@p x. e | (e, e) | e :: e

| nil | e@ p | (e)LIO

e ::= v | e e | πi e | if e then e else e | case e of e e | fix e

| return e | e�= e | new e e | ! e | e := e | label e e

| unlabel e | toLabeled e e | getLabel | getClearance

| labelOf e | withScope e | e < e | withStrategy e e

| assume (e < e) @ e | getStrategy | wait(τ)

| toLabeledp q e | resetStrategyp(e) | resetScope∆(e)

τ ::= Bool | Unit | τ → τ | [τ] | τ × τ | Principal | Labeled τ

| LIO τ | Refn τ

Fig. 4: The Flamio language

obtained using getStrategy. Finally, delegations can be added,
and trust relationships can be queried. The shaded regions
describe syntax that is not part of the surface language but
rather constructs used during evaluation. We explain these
constructs as we describe the evaluation rules for expressions
in Section IV-B.

Finally, types are ranged over by the meta-variable τ and
include standard types like the boolean type; the unit type;
as well as function-, list- and product types. Non-standard
types include the type of FLAM principals (Principal), the type
of labeled values (Labeled τ), the type of LIO computations
LIO τ , as well as location-aware reference types Refn τ where
location n refers to the node on which the reference is
allocated.

B. Semantics

The semantics of Flamio is split into two judgments: local re-
duction rules, which evaluate an expression on a specific node;
and global reduction rules, which perform remote procedure
calls (RPCs) and returns. We first present the local reduction
rules.
a) Local semantics: A structured operational semantics de-
fines the local reduction rules with evaluation contexts [19].
We elide the definition of evaluation contexts, as this is mostly
standard for a call-by-name calculus.

We further split the local reduction rules into two categories:
pure reduction and monadic reduction. Pure reduction rules
e −−→ e′ reduce expressions independently of the store and
of which node is evaluating the expression. They are given in
Figure 5. Pure reductions include injecting terms into monadic
contexts, monadically binding terms, recursive applications,
projecting pairs, eliminating booleans and lists and obtaining
the label of a labeled value.

The remaining local reductions all depend either on the store
or on the identity of the node that evaluates the expression.
We denote these as monadic reductions.

E[return v] −−→ E[(v)LIO] E[(v)LIO �= e] −−→ E[e v]

E[fix e] −−→ E[e (fix e)] E[πi (e1, e2)] −−→ E[ei]

E[if b then etrue else efalse] −−→ E[eb]

E[case nil of e1 e2] −−→ E[e1]

E[case (ehd :: etl) of e1 e2] −−→ E[e2 ehd etl]

E[labelOf (e@ p)] −−→ E[p]
e −−→ e′

E[e] −−→ E[e′]

Fig. 5: Pure reductions for Flamio.

Before introducing the monadic small-step local reduction,
we introduce the remaining necessary concepts: first, a store
φ : Loc ⇀ v is a partial mapping from locations to terms,
and we write the empty store as ∅. A local configuration is a
pair 〈φ | e〉 consisting of a store φ and a stack of expressions
e. We use stacks of expressions to handle incoming remote
procedure calls which “interrupts” the current computation to
evaluate the RPC, and write the empty stack of expressions as
•. A global environment Σ : N → σ is a mapping from names
to local environments σ. A local environment (lbl,∆, strat)
contains the current label (lbl), the set of delegations local to
the node (∆) and the current strategy of the node (strat). We
use record notation for these and write σ.lbl, σ.∆ and σ.strat
respectively. We let ∅ denote the initial global environment
satisfying ∅(n) = (⊥→ ∧ n←, nil, nil). That is, the initial
global environment maps each name n to an initial local
environment with a current label ⊥→ ∧ n←, the empty list
of delegations and the empty strategy.

The monadic small-step relation is defined by the judgment
n; Σ ` 〈φ | e〉 −−→ 〈φ′ | e′〉 : σ and is read as “the global
environment is Σ and node n performs a single reduction and
updates its local environment to σ”. Figure 6 and 7 show the
local monadic reduction rules. Many of the rules verify some
trust relationship between principals, written n; Σ ` p < q : `
and is read as “node n proves that p acts for q using
delegations labeled up to `”. We discuss this judgment in
Section IV-C.

Rule E-LIFT-PURE lifts pure reductions to monadic reduc-
tions. Only the expression at the top of the expression stack
can reduce. Rule E-APP applies a function to an argument and
labels the resulting value with the given principal p. Labeling
the result of function applications allows us to combine local
function application and RPC into the same typing rule,
which simplifies the calculus and its proofs. However, it is
straightforward to have different syntactic constructions for
local and remote function application.

Rules E-NEW, E-READ, E-WRITE, E-LABEL and E-

UNLABEL are all equivalent to the ones presented in LIO
[9], but now also take into account the possible information-
flows arising via deriving trust relationships [1]. Rule E-
TOLABELED-1 saves the current label Σ(n).lbl, and evaluates
e using the E-CTX rule. Once e has evaluated to a value
E-TOLABELED-2 restores the current label and labels the
value with the given label q. This presentation of toLabeled is
different from the original formulation of LIO [9] and avoids
interleaving small-step and big-step operations.

Rules E-ACTS-FOR-TRUE and E-ACTS-FOR-FALSE query
the trust relationship between two given principals using the
trust judgment, which we explain in Section IV-C. The result
depends on which delegations are in scope, and on the current
strategy. A new scope for delegations is created using E-
WITH-SCOPE which evaluates an expression e in a new scope,
and once e has reduced to a value, rule E-RESET-SCOPE
eliminates the scope. Similarly, rule E-WITH-STRATEGY in-
troduces a new strategy and evaluates an expression in the
scope of the new strategy. Once the expression has reduced
to a value, rule E-RESET-STRATEGY resets the strategy back
to its previous value. Finally, E-ASSUME adds a new dele-
gation. The rule uses the operator ∇ defined in Section II to
ensure that the computational context has sufficient integrity
to delegate trust on behalf of q.

Figure 8 demonstrates the usefulness of delegation scoping
with dynamic extent: On line 2, Alice invokes a function on
Bob’s node that, on line 5, grants another function (given as an
argument) the authority to read Bob’s confidential information.
In addition, on line 9, Bob enforces the policy that the function
is only called once. Due to the use of withScope on line 4, the
additional authority is given only to the function passed as an
argument and only when it is invoked at that point. Any other
function cannot read Bob’s confidential information.
b) Global semantics: A global configuration is a triple
Ln,Σ, SM consisting of a stack of nodes n ∈ N ∗ representing
the RPC call-stack, a global environment Σ, and a mapping S
from nodes to local configurations. Figure 9 presents the re-
duction rules for global configurations. Rule G-STEP-LOCAL
lifts a local reduction to a global reduction, and rules G-
STEP-APP and G-STEP-RET handle remote procedure calls
and returns respectively. When node n sends an RPC to node
m, we call n the source node and m the target node. The global
reduction rule is written as Ln,Σ, SM =⇒ Ln′,Σ′, S′M and can
be read as “the first node in n updates the environment Σ to
Σ′, updates the local configurations S to S′, and modifies the
call-stack to n′”. We write the reflexive, transitive closure of
=⇒ as =⇒∗.

We now explain how to express RPC. Rule G-STEP-APP
transfers control to the target node, and the computation is
wrapped in a toLabeled construct at the top of the execution
stack on the target node to prevent the evaluation of the
expression from raising the current label. The rule ensures
that m’s new current label `n t `m, flows to m’s clearance
label m→. This check ensures that the clearance always upper

E-LIFT-PURE
e −−→ e′

n; Σ ` 〈φ | e〉 −−→ 〈φ | e′〉 : Σ(n)

E-CTX
n; Σ ` 〈φ | e〉 −−→ 〈φ′ | e′〉 : σ

n; Σ ` 〈φ | E[e]〉 −−→ 〈φ′ | E[e′]〉 : σ

E-GET-LABEL
` = Σ(n).lbl

n; Σ ` 〈φ | getLabel〉 −−→ 〈φ | return `〉 : Σ(n)

E-GET-CLEARANCE

n; Σ ` 〈φ | getClearance〉 −−→ 〈φ | return n→〉 : Σ(n)

E-APP
n; Σ ` Σ(n).lbl v p v n→ : `
e′ = e1[e2/x]�= λnτ x. x@ p
n; Σ ` Σ(n).lbl t ` v n→

σ = Σ(n) [lbl 7→ Σ(n).lbl t `]
n; Σ ` 〈φ | (λnτ@p x. e1) e2〉 −−→ 〈φ | e′〉 : σ

E-NEW
a /∈ dom(φ) n; Σ ` Σ(n).lbl v p v n→ : `

n; Σ ` Σ(n).lbl t ` v n→ φ′ = φ [a 7→ e@ p]
σ = Σ(n) [lbl 7→ Σ(n).lbl t `]

n; Σ ` 〈φ | new p e〉 −−→ 〈φ′ | return a〉 : σ

E-READ
φ(a) = e@ p n; Σ ` Σ(n).lbl t p v n→ : `

n; Σ ` Σ(n).lbl t p t ` v n→
σ = Σ(n) [lbl 7→ Σ(n).lbl t p t `]

n; Σ ` 〈φ | ! a〉 −−→ 〈φ | return e〉 : σ

E-WRITE
φ(a) = e@ p n; Σ ` Σ(n).lbl v p v n→ : `
n; Σ ` Σ(n).lbl t ` v n→ φ′ = φ [a 7→ e′ @ p]

σ = Σ(n) [lbl 7→ Σ(n).lbl t `]
n; Σ ` 〈φ | a := e′〉 −−→ 〈φ′ | return ()〉 : σ

Fig. 6: Monadic reductions for Flamio.

bounds the current label. Finally, the evaluation on the source
node is suspended using expression wait(τ), which waits for a
value of type τ . Second, Rule G-STEP-RET returns control to
a suspended source node when the top of the execution stack
on the target node has reduced to a term.

Note that although computation is distributed, the semantics
is deterministic: only one expression is reducible at any point.
Determinism excludes internal timing leaks and other attacks
usually found in concurrent systems [20], [21], while still
allowing multiple nodes to share computation.

E-LABEL
n; Σ ` Σ(n).lbl v p v n→ : `
n; Σ ` Σ(n).lbl t ` v n→

σ = Σ(n) [Σ(n).lbl 7→ Σ(n).lbl t `]
n; Σ ` 〈φ | label p e〉 −−→ 〈φ | return (e@ p)〉 : σ

E-UNLABEL
n; Σ ` Σ(n).lbl t p v n→ : `
n; Σ ` Σ(n).lbl t p t ` v n→

σ = Σ(n) [lbl 7→ Σ(n).lbl t p t `]
n; Σ ` 〈φ | unlabel (e@ p)〉 −−→ 〈φ | return e〉 : σ

E-TOLABELED-1
q = Σ(n).lbl e′ = toLabeledq p e

n; Σ ` 〈φ | toLabeled p e〉 −−→ 〈φ | e′〉 : Σ(n)

E-TOLABELED-2
σ = Σ(n) [lbl 7→ p]

n; Σ ` 〈φ | toLabeledp q v〉 −−→ 〈φ | label q v〉 : σ

E-ACTS-FOR-TRUE
n; Σ ` p < q : ` n; Σ ` Σ(n).lbl t ` v n→

σ = Σ(n) [lbl 7→ Σ(n).lbl t `]
n; Σ ` 〈φ | p < q〉 −−→ 〈φ | return true〉 : σ

E-ACTS-FOR-FALSE

n; Σ ` p < q : fail ` = n→ u
⊔

s∈Σ(n).strat

s

σ = Σ(n) [lbl 7→ Σ(n).lbl t `]
n; Σ ` 〈φ | p < q〉 −−→ 〈φ | return false〉 : σ

E-WITH-SCOPE
e′ = resetScopeΣ(n).∆(e)

n; Σ ` 〈φ | withScope e〉 −−→ 〈φ | e′〉 : Σ(n)

E-RESET-SCOPE
σ = Σ(n) [∆ 7→ ∆′]

n; Σ ` 〈φ | resetScope∆′(v)〉 −−→ 〈φ | v〉 : σ

E-WITH-STRATEGY
e′ = resetStrategyΣ.strat(e) σ = Σ(n) [strat 7→ ~p]

n; Σ ` 〈φ | withStrategy ~p e〉 −−→ 〈φ | e′〉 : σ

E-RESET-STRATEGY
σ = Σ(n) [strat 7→ ~p]

n; Σ ` 〈φ | resetStrategy~p(v)〉 −−→ 〈φ | v〉 : σ

E-ASSUME
n; Σ ` Σ(n).lbl v r : `1 n; Σ ` Σ(n).lbl < ∇(q) : `2

n; Σ ` Σ(n).lbl t `1 t `2 v n→
σ = Σ(n) [∆ 7→ (p, q) @ r :: Σ.∆), lbl 7→ Σ(n).lbl t `1 t `2]

n; Σ ` 〈φ | assume (p < q) @ r〉 −−→ 〈φ | return ()〉 : σ

Fig. 7: Monadic reductions for Flamio (cont).

1 (λAlice⊥ _ . [...]
2 let g = (λBob⊥ f . do
3 bref := new Bob← true
4 withScope (do
5 assume Alice→ < Bob→ @ Bob←

6 return (λAliceAlice← x . do
7 b <- !bref
8 bref := false
9 if b then f x else false)))

10 aliceCode
11 in g bobSecret) ()

Fig. 8: Bob grants a function, supplied by Alice, authority to
read Bob’s confidential information once.

G-STEP-LOCAL
n; Σ ` S(n) −−→ s : σ

Ln · n,Σ, SM =⇒ Ln · n,Σ [n 7→ σ] , S [n 7→ s]M

G-STEP-APP
`n = Σ(n).lbl `m = Σ(m).lbl S(m) = 〈φm | em〉

m; Σ ` `n t `m v m→ S(n) = 〈φn | E[(λmτ@p x. en) e′n]〉
s′n = 〈φn | E[wait(τ)]〉 σ′m = Σ(m) [lbl 7→ `n t `m]

s′m = 〈φm | (toLabeled`m p (en[e′n/x])); em〉
Ln · n,Σ, SM =⇒ Lm · n · n,Σ [m 7→ σ′m] , S [n 7→ s′n,m 7→ s′m]M

G-STEP-RET
S(n) = 〈φn | E[wait(τ)]〉 S(m) = 〈φm | v; em〉

s′n = 〈φn | E[v]〉 s′m = 〈φm | em〉
Lm · n · n,Σ, SM =⇒ Ln · n,Σ, S [n 7→ s′n,m 7→ s′m]M

Fig. 9: Semantics of global steps

C. Deriving trust relationship in Flamio

Flamio allows, in the style of FLAM, the trust relationship
between principals to be changed and queried dynamically
throughout the evaluation of a program. We show how the
ideas from FLAM on how to provide guarantees of confiden-
tiality and integrity can be incorporated into the floating-label
model of LIO.

Rule ACTS-FOR in Figure 10 formalizes the top-level judg-

ACTS-FOR-CONS-1
H;n; Σ `sun→ p < q : `

H;n; Σ `s::ss p < q : `

ACTS-FOR-CONS-2
H;n; Σ `sun→ p < q : fail
H;n; Σ `ss p < q : `?

H;n; Σ `s::ss p < q : `?

ACTS-FOR-NIL

C `nil p < q : fail

ACTS-FOR
ss = Σ(n).strat

H;n; Σ `ss p < q : `

H;n; Σ ` p < q : `

Fig. 10: Top-level judgment for proving authorization queries
in Flamio. The meta-variable C abbreviates H;n; Σ.

BOT

C `s p < ⊥ : ⊥v
TOP

C `s > < p : ⊥v
REFL

C `s p < p : ⊥v

ASSUMP
(p < q) ∈ H
C `s p < q : ⊥v

PROJ
C `s p < q : `

C `s pπ < qπ : `

PROJR
C `s p < pπ : ⊥v

OWN-1
C `s o < o′ : `1
C `s p < p′ : `2

C `s o : p < o′ : p′ : `1 t `2

OWN-2
C `s o < o′ : `1

C `s p < o′ : p′ : `2

C `s o : p < o′ : p′ : `1 t `2

CONJ-L
j ∈ {1, 2}

C `s pj < p : `

C `s p1 ∧ p2 < p : `

CONJ-R
C `s p < p1 : `1
C `s p < p2 : `2

C `s p < p1 ∧ p2 : `1 t `2

DISJ-L
C `s p1 < p : `1
C `s p2 < p : `2

C `s p1 ∨ p2 < p : `1 t `2

DISJ-R
j ∈ {1, 2}

C `s p < pj : `

C `s p < p1 ∨ p2 : `

TRANS
C `s p < q : `1
C `s q < r : `2

C `s p < r : `1 t `2

DEL
p < q @ ` ∈ Σ(n).∆

H, p < q;n; Σ `s ` v s : `′

H, p < q;n; Σ `s `′ v s : ⊥v

H;n; Σ `s p < q : `

FWD
`n = Σ(n).lbl σm = Σ(m) [lbl 7→ `n t `m]

`m = Σ(m).lbl H;n; Σ `s `n t `m v m→ : `1
H;m; Σ [m 7→ σm] `s p < q : `2

H;n; Σ `s p < q : `1 t `2

Fig. 11: Acts for judgment of Flamio. The meta-variable C
abbreviates H;n; Σ.

ment for deriving trust, which iterates through the strategy
principals in the current strategy and attempts to prove the
trust relationship at each strategy principal in the list. We
write `? to mean either a label `, or a failure value fail
meaning that the trust relationship could not be established.
Rule ACTS-FOR-CONS-1 states that, if we can prove the
trust relationship limiting our use of delegations to those
bounded above by strategy principal s then the query succeeds.
Rule ACTS-FOR-CONS-2 states that, if we cannot prove the
trust relationship using delegations bounded above by strategy
principal s (C `sun→ p < q : fail), then the search continues
with the tail ss of the strategy. In both rules the strategy
principal s is attenuated with the clearance of the node (n→)
to ensure that the node does not attempt to use delegations
above its clearance label. Finally, in Rule ACTS-FOR-NIL, if
we have tried all strategy principals and have not proved the
trust relationship, when the proof search fails.

Figure 11 shows how the judgment H;n; Σ `s p < q : `
derives trust relationships between principals using the strategy
principal s. The judgment means that node n proves that that
q trusts p in the global environment Σ using delegations with
labels that are upper bounded by `, and assuming that r acts
for s for all (r, s) ∈ H. We call H the assumptions of the
query, and write r < s for the assumption (r, s). We write
n; Σ `s p < q : ` to mean ∅;n; Σ `s p < q : `. That
is, the judgment holds with no assumptions. We also write
H;n; Σ `s p < q to mean ∃` . H;n; Σ `s p < q : `.
Finally, guided by (1) we write H;n; Σ `s p v q : ` to
mean H;n; Σ `s q→ ∧ p← < p→ ∧ q← : ` and use similar
abbreviations as above.

Many rules translate directly from FLAM, except for using
delegations and querying remote nodes for trust relationships.
This discrepancy is because the upper bound on the label
of usable delegations in FLAM is given as “input” to the
judgment, while in Flamio the upper bound is an “output”
of the judgment.4 This relieves the programmer from having
to manually annotate trust queries (and operations that per-
form trust queries) with explicit upper bounds for delegation
labels.

Rule ASSUMP states that any assumptions can be used to
derive trust without raising the current label any further. This
use of assumptions is an instance of a checked endorsement
[23], [24], and is discussed later in this section. Rules OWN-1
and OWN-2 derives trust between ownership projections.
First, OWN-1 shows that trust between principals imply trust
between owned principals, and OWN-2 states that, if an
ownership projection o′ : p′ trusts a principal p and owner o′

trusts o then another ownership principal o : p also trusts o′ : p′.
Rule FWD expresses how a node n can query another node m
for a trust relationship, but only if n allows the information
that caused n to contact m to be learned by m (i.e., `n v m→,
which is implied by the premise `nt`m v m→). Furthermore,
when forwarding a query, node m must raise its current label
to `n t `m to propagate the sensitivity of the computational
context of node n. Finally, when node n forwards the query
to m, the strategy principal used by n is also used by m
as otherwise, local reasoning about trust relationship queries
would be impossible without knowing the strategies of every
node in the system.

Finally, rule DEL expresses how delegations are used to derive
trust. First, a delegation that proves the trust relationship
must be present (p < q @ ` ∈ Σ(n).∆), then, the label on
the delegation must flow to the strategy principal s that is
currently bounding how much the current label can be raised
(H, p < q;n; Σ ` ` v s : `′). However, the fact that ` is
bounded by s could also be used to leak information, so `′

should also be bounded by s. This checking could potentially
continue ad infinitum, so we apply a pragmatic approach and

4That the upper bound on the delegation labels is an “input” to the judgment
can be seen in the Fλ calculus [22] where delegation labels appear in the
surface syntax of expressions.

require this check not to use any delegations labeled higher
than ⊥v. Section VI motivates this decision, which shows
several interesting examples that can all be implemented using
this simplified checking mechanism.

When checking if a delegation can be used in the rule
DEL, the assumptions H is extended to include the trust
relationship that is being checked. This usage of assumptions
is a form of checked endorsement which was also noted to
be a useful extension to the Jif programming language [23].
To see the effect of this style of reasoning, consider the
query n; Σ ` p v q : ` where Σ(n) = (n←,∆, [q]) and
∆ = {(q→ ∧ p← < p→ ∧ q←) @ p}. This query is equivalent
to n; Σ ` q→ ∧ p← < p→ ∧ q← : `, so applying DEL the goal
reduces to proving p v q;n; Σ ` p v q : `′ for some `′, which
(ignoring the assumption) is the exact same query we started
out with! However, we now have the assumption p v q, and
the goal follows by applying ASSUMP. If no assumption was
added when checking that the label on the delegation p v q@p
flows to the strategy principal q, this trust relationship could
not be proven in any finite derivation. While this situation
might appear artificial, Section VI presents a use case where
this problem arises naturally.

For technical reasons we assume that the delegation p < q@ `
in Σ(n).∆ is picked in some deterministic way (e.g., it
is the first delegation in Σ(n).∆ that satisfies the other
premises).

We end this section with an example of a query that morally
should hold, but which cannot be justified using our prag-
matic trust judgment. Given the following four delegation
sets:

∆1 = {a < b@⊥v}
∆2 = {a < b@ c, c v `@⊥v}
∆3 = {a < b@ c, c v `@ d, d v `@⊥v}
∆4 = {a < b@ c, c v `@ d, d v `@ e, e v `@⊥v}

and the environments Σi(n) = (n←,∆i, [`]), the query
n; Σ ` a < b : ` holds for i ∈ {1, 2, 3}, but does not hold for
i = 4. To see why, consider proving the query using DEL. We
must prove that

a < b@ c ∈ ∆4 (4)
{a < b};n; Σ4 `` c v ` : d (5)
{a < b};n; Σ4 `` d v ` : ⊥v (6)

Condition (4) holds by definition of ∆4, and (5) holds by
applying DEL. But (6) does not hold: we can only show
{a < b};n; Σ4 ` d v ` : e and {a < b};n; Σ4 ` e v ` : ⊥v,
but this does not imply (6). That is, Flamio cannot prove that
the label on the information “the label on the required dele-
gation flows to the current strategy principal” is ⊥v. We have
not found a realistic scenario where this presents a problem,
and we leave lifting this restriction as future work.

D. A type system for Flamio.

Since Flamio controls information-flows via dynamic checks,
the type system for Flamio is straightforward. We write
n; Γ ` e : τ when expression e can be given type τ in a
global type environment Γ : N → (Var] Loc ⇀ τ) on node
n. Note that the typing environment maps both variables and
locations to types. Figure 12 shows excerpts of this judgment.
Rule T-ABS states that a function has a function type and that,
the typing environment for node m is used when checking the
type of the body, where m is the target node. Rule T-LAB
states that labeled expressions have labeled types. Rules T-
RETURN and T-BIND are standard typing rules for monadic
expressions. Rule T-TO-LABELED states that an expression
toLabeled e1 e2 is well-typed when e1 is a principal, and that
the expression has type Labeled τ if e2 has type τ . We say a
location a belongs to node n if a ∈ dom(Γn). Rule T-NEW
states that when a reference is allocated on a node n the type
of the location returned belongs to n, and T-READ states that
a reference can only be read on a node to which the location
belongs. Finally, T-WAIT states that the type attached to a
waiting expression is the type of the expression.

Given a global typing environment Γ we write n; Γ ` φ if, for
all a such that φ(a) = e@ p and Γn(a) = Refn τ it holds that
n; Γ ` e : τ . We write n; Γ ` 〈φ | e〉 : τ if e = e1 · · · en
and n; Γ ` φ and n; Γ ` ei : τi for i = 1, . . . , n and
τ = τ1 . . . τn. We lift this definition to global configurations
and write Γ `m Ln,Σ, SM : τ if for all n′ ∈ N there exists
a type τ ′ such that n′; Γ ` Sn′ : τ ′, and furthermore, when
n′ = m we have τ ′ = τ .

V. SECURITY GUARANTEES

In this section, we define the attacker model and show the
security guarantees given by Flamio. Specifically, we show
that Flamio executions satisfy termination-insensitive nonin-
terference (TINI) [25]. Formally, an attacker is some principal
A. Note that this principal might be a conjunction of named
principals n1 ∧ · · · ∧ nk representing a set of k colluding
principals. In the sections that follow, we denote a N -indexed
set of memories as a function Φ : N → (Loc ⇀ v).

A. Trace semantics

We express the attacker model in terms of a trace semantics,
in which certain operations in the language emit events which
may or may not be observable byA. The grammar for events is
given in Figure 13. A non-empty event (α,Σ, n) contains the
type of the event α, the current environment when the event
was emitted Σ, and the node n that emitted the event. The
types of events include: write events write(a, e), emitted when
a node writes an expression e to reference a; allocation events
new(a, e), emitted when a node allocates a new reference a,
initialized to e; call events call(e,m), emitted when a node
invokes an RPC e on node m; and return events ret(v,m),
emitted when a node finishes an RPC, returning value v to
the caller node m. In addition, we have release events release,
explained below. Finally, the empty event ε is emitted by

T-PRINCIPAL

n; Γ ` p : Principal

T-VAR
Γn(x) = τ

n; Γ ` x : τ

T-REF
Γn(a) = Refn τ

n; Γ ` a : Refn τ

T-ABS
m; Γ, x : τ1 ` e : LIO τ2
τ = τ1 → LIO (Labeled τ2)

n; Γ ` λmτ2@p x. e : τ

T-LAB
n; Γ ` e2 : τ

n; Γ ` e1 : Principal

n; Γ ` e2 @ e1 : Labeled τ

T-RETURN
n; Γ ` e : τ

n; Γ ` return e : LIO τ

T-BIND
n; Γ ` e1 : LIO τ1

n; Γ ` e2 : τ1 → LIO τ2

n; Γ ` e1 �= e2 : LIO τ2

T-TO-LABELED
n; Γ ` e1 : Principal
n; Γ ` e2 : LIO τ

τ ′ = LIO (Labeled τ)

n; Γ ` toLabeled e1 e2 : τ ′

T-READ
n; Γ ` e : Refn τ

n; Γ ` ! e : LIO τ

T-NEW
n; Γ ` e1 : Principal

n; Γ ` e2 : τ
τ ′ = LIO (Refn τ)

n; Γ ` new e1 e2 : τ ′

T-WAIT
τ ′ = LIO (Labeled τ)

n; Γ ` wait(τ) : τ ′

Fig. 12: Typing judgment for Flamio.

ev ::= (α,Σ, n) | ε
α ::= write(a, e) | new(a, e) | call(e, n)

| ret(v, n) | release(p, q, r)

Fig. 13: The syntax of events.

operations that do not emit some other event. We call a
sequence of events a trace. We write the concatenation of
traces as t1 · t2 and we write the empty trace as ε.
a) Release events: Flamio is a very expressive language that
permits downgrading, i.e., intentionally relaxing information-
flow restrictions on data [4]. To define noninterference, we
are concerned only with executions that do not downgrade
information to A (or, more precisely, from p to q where
p 6v A and q v A). We expect generalizations of noninterfer-
ence, like robust declassification [26], [27] and nonmalleable
information-flow [28] to hold for Flamio, but in this work we
consider only the case where no node downgrades information
to A. To capture this intuition, we introduce the notion of a
bad release event. Intuitively, when no bad release events are
emitted nothing is being downgraded to A.
b) Bad release events: We call downgrading of confidentiality
labels declassification, and downgrading of integrity labels
endorsement. As Flamio permits both declassification and
endorsement using delegations, a bad event should capture

E-WRITE-EV
[. . .] ev = (write(a, e′),Σ, n)

n; Σ ` 〈φ | E[a := e′]〉 ev−−→ 〈φ′ | E[return ()]〉 : σ

G-STEP-RET-EV
S(n) = 〈φn | E[wait(τ)]〉 S(m) = 〈φm | v; em〉

ev = (ret(v, n),Σ,m)

Lm · n · n,Σ, SM ev
=⇒ Ln · n,Σ, S [n 7→ s′n,m 7→ s′m]M

G-STEP-LOCAL-EV

n; Σ ` S(n)
ev−−→ s : σ

Ln · n,Σ, SM ev
=⇒ Ln · n,Σ [n 7→ σ] , S [n 7→ s]M

E-ASSUME-EV
[. . .] ev = (release(p, q, r),Σ, n)

n; Σ ` 〈φ | E[assume (p < q) @ r]〉 ev−−→ 〈φ | E[return ()]〉 : σ

Fig. 14: Augmented semantics emitting events.

both cases. We call a release event ev = (release(p, q, r),Σ, n)
bad, written A ` bad(ev), if n; Σ ` r v A and one of the
following conditions hold:

1) n; Σ ` p v A→ and n; Σ ` q 6v A→
2) n; Σ ` A← v p and n; Σ ` A← 6v q

The condition n; Σ ` r v A captures that a release event
can be bad only if A can observe the delegation. Condition 1
captures bad declassifications: the new delegation gives A the
authority to observe values labeled as q since A can already
observe values labeled as p. Similarly, condition 2 captures
bad endorsements: the new delegation gives A the authority
to write values labeled as q since A can already write values
labeled as p.
c) Examples of bad release events: The release event
ev = (release(A,Alice→,⊥v),Σ, n) generated by the local
step

n; Σ ` 〈φ | assume (A < Alice→) @ ⊥v〉 ev−−→ 〈φ | e〉 : σ

(i.e., a declassification from Alice→ to A) is bad since
n; Σ ` ⊥v v A (i.e., A can observe the delegation),
n; Σ ` A v A→ (i.e., it is a declassification to a principal
that A can observe), and n; Σ ` Alice→ 6v A→ (i.e., it is a
declassification from a principal that A previously could not
observe). The release event ev = (release(A,Bob←,⊥v),Σ, n)
generated by the local step

n; Σ ` 〈φ | assume (A < Bob←) @ ⊥v〉 ev−−→ 〈φ | ()〉 : σ

(i.e., an endorsement from A to Bob←) is bad since
n; Σ ` ⊥v v A (i.e., A can observe the delegation),
n; Σ ` A← v A (i.e., it is an endorsement from a principal
that A can modify), and n; Σ ` A← 6v Bob← (i.e., it is
an endorsement to a principal that A previously could not
modify).

Finally, the release event ev = (release(A,Charlie,⊥v),Σ, n)
is bad as it corresponds to both a declassification and an en-
dorsement, as both condition 1 and condition 2 holds.

When a release event is not bad, we say that it is good, and
we extend the definition of good release events to traces: a
trace t is good, written A ` good(t), if t does not contain any
bad release events. Our noninterference result, presented at the
end of this section, is quantified over good traces only, and
we leave the problem of extending this result to more relaxed
notions of noninterference as future work.
d) A-equivalence: Given a trace t the A-observable trace of
t is the trace t � A, defined as

ε � A = ε

((α,Σ, n) · t) � A =

{
(α,Σ, n) · (t � A) n; Σ ` Σ(n).lbl v A
t � A otherwise

We augment the semantics from Section IV with events.
Figure 14 shows an excerpt of the augmented semantics (we
use [. . .] to elide the premises presented in Section IV). Except
for the emitted event these rules correspond exactly to the rules
in Figures 6, 7 and 9. We write Ln,Σ, SM t

=⇒∗ when there exists
a configuration Ln′,Σ′, S′M such that Ln,Σ, SM t

=⇒∗Ln′,Σ′, S′M
and S′(n) = 〈φn | •〉 for all n. We also write Ln,Σ, SMA t

′

===⇒∗

when Ln,Σ, SM t
=⇒∗ and t′ = t � A.

We define an A-equivalence relation that makes explicit which
traces and memories an attacker A can distinguish. As they
both contain expressions, we define an A-equivalence on
expressions, and Figure 15 shows an excerpt of this judgment.
Intuitively, two expressions e1 and e2 are considered A-
equivalent if the current label on each context does not flow
to A, or if the label on each context flows to A and e1 and
e2 are equal “up to labeled values with a label that does not
flow to A”. Figure 15 formalizes this intuition: rule EQ-HIGH
states that two expressions are A-equivalent in environments
where the current label does not flow to A, and the remaining
rules state that two expressions are A-equivalent if the current
label of each environment flows to A, and the expressions are
equal up to labeled values that A cannot observe.

For most cases C ` e1 'θA e2 recursively inspects the
subexpressions of each expression, but a few cases need
special care: to relate dynamically allocated locations we use
a partial bijection [29], [30] θ : Loc ⇀ Loc in EQ-ADDR. The
most important rules are EQ-LABELED-1 (that makes explicit
the notion that an attacker cannot distinguish two terms labeled
with a principal which does not flow toA), and EQ-LABELED-
2 (that states that A can “look inside” terms labeled with
principals that flow to A). When θ is not important we write
n; Σ1; Σ2 ` e1 'A e2 to mean n; Σ1; Σ2 ` e1 'θA e2 for
some bijection θ.

The A-equivalence relation on expressions induces an A-
equivalence relation on events, and A-equivalence of traces
are defined as pairwise A-equivalence of the events in the

EQ-HIGH

i = 1, 2
n; Σi ` Σi(n).lbl 6v A
n; Σ1; Σ2 ` e1 'θA e2

EQ-ADDR

θ(a1) = a2

n; Σi ` Σi(n).lbl v A i = 1, 2

n; Σ1; Σ2 ` a1 'θA a2

EQ-LABELED-1
n; Σi ` pi 6v A n; Σi ` Σi(n).lbl v A i = 1, 2

n; Σ1; Σ2 ` e1 @ p1 'θA e2 @ p2

EQ-LABELED-2
n; Σi ` q v A n; Σi ` Σi(n).lbl v A i = 1, 2

n; Σ1; Σ2 ` e1 'θA e2

n; Σ1; Σ2 ` e1 @ q 'θA e2 @ q

Fig. 15: A-equivalence for terms and expressions.

STORE-EQ-EMPTY

C ` ∅ 'θA ∅

STORE-EQ-LOW

θ(a1) = a2 C ` e1 'θA e2

Ci ` q v A i = 1, 2

C ` φ1 'θA φ2

φ′i = φi [ai 7→ (ei @ q)]

C ` φ′1 'θA φ′2

STORE-EQ-HIGH-1
C1 ` q 6v A
C ` φ1 'θA φ2

C ` φ1 [a 7→ e@ q] 'θA φ2

STORE-EQ-HIGH-2
C2 ` q 6v A
C ` φ1 'θA φ2

C ` φ1 'θA φ2 [a 7→ e@ q]

Fig. 16: A-equivalence for memories. The meta-variable C
abbreviates n; Σ1; Σ2, and Ci = n; Σi.

trace. We write t1 'θA t2 for A-equivalence on traces, and
t1 'A t2 to mean t1 'θA t2 for some bijection θ.

Finally, Figure 16 shows A-equivalence on memories. Rule
STORE-EQ-EMPTY states that two empty memories are A-
equivalent, and rule STORE-EQ-LOW states that extending
two memories with A-equivalent expressions preserves A-
equivalence. Lastly, rules STORE-EQ-HIGH-1 and STORE-
EQ-HIGH-2 states that both memories can be extended with
terms labeled with a principal that does not flow to A without
the attacker being able to distinguish the memories. We
extend the notion of A-equivalence on memories toN -indexed
sets of memories and write m; Σ1; Σ2 ` Φ 'θA Ψ when
∀n ∈ N . m; Σ1; Σ2 ` Φ(n) 'θA Ψ(n).

To simplify the statement of our end-to-end security guarantee
note that, for any n,m ∈ N we have n;∅;∅ ` φ 'A ψ if
and only if m;∅;∅ ` φ 'A ψ. Thus, we write φ 'A ψ to
mean n;∅;∅ ` φ 'A ψ for some n.
e) Attacker knowledge: We present our noninterference result
using the notion of attacker knowledge [25], [31]. The attacker
knowledge is the set of initial memories that could lead to a
given observable trace, and a larger knowledge set corresponds

to more uncertainty about the initial memory. Formally, at-
tacker knowledge, given a trace t produced by expression e,
is the set knA(e, t).

knA(e, t) =
{

Ψ
∣∣∣ Ln,∅, SMA t

′

===⇒∗ ∧ t 'A t′
}

where S(m) = 〈Ψ(n) | JeKn(m)〉 and

JeKn(m) =

{
e if n = m

• otherwise

ensures that expression e is initially evaluated on node n, and
the remaining nodes start with an empty list of expressions. As
is standard for termination-insensitive noninterference (TINI),
the policy [14] is defined as all A-equivalent terminating
memories, which we denote by k↓nA (Φ, e).

k↓nA (Φ, e) = {Ψ |Φ 'A Ψ ∧ Ln,∅, SM=⇒∗ }

where S(m) = 〈Ψ(n) | JeKn(m)〉. TINI can now be stated
for Flamio as a guarantee that two traces, generated by
two evaluations of a well-typed expression e starting with
A-equivalent memories Φ and Ψ, are A-equivalent. Using
attacker knowledge, we can succinctly write this as the in-
clusion of k↓nA (Φ, e) in knA(e, t): all A-equivalent terminating
memories generate A-observable traces.

Theorem 5.1 (Noninterference): Let e satisfy n; Γ ` e : τ .
If Ln,∅, SMA t==⇒∗ for S(m) = 〈Φ(m) | JeKn(m)〉 such that
A ` good(t) then knA(e, t) ⊇ k↓nA (Φ, e).

The technical report [32] contains a complete proof of Theo-
rem 5.1. The theorem shows that we have securely integrated
FLAM into an LIO-like setting with a floating label, where
proofs of trust relationships do not inappropriately reveal
confidential information, nor are they inappropriately affected
by untrusted information.

VI. IMPLEMENTATION AND CASE STUDIES

We have implemented Flamio as a monadic library in Haskell
[13]. The code is approximately 2,100 lines of code in total,
and uses FLAM’s efficient query resolution algorithm for
authorization queries [1]. Proof search for trust relationships is
implemented as computations in the Flamio monad, ensuring
that delegations are not used inappropriately. The case studies
demonstrate how application-specific search strategies are used
to prevent label creep during proof search.

Along with the efficient query resolution algorithm, we cache
query results to avoid repeated network communication.5 To
simplify the implementation, we differ from the calculus in
the following ways:

1) An RPC does not send the function that should be called
across the network. Instead, the receiver of the RPC has
a table mapping identifiers to functions, and the caller
sends this identifier along with the list of arguments.

5We do not consider side channel attacks introduced by caching queries,
such as external timing attacks, in this work.

2) Since query results obtained via network communication
are cached on a per-query basis, no two identical queries
are sent to the same node.

First, 1) does not lead to loss of expressivity: as shown by
Cooper and Wadler [33], a program in a calculus similar to
that of Section IV can be translated by performing defunction-
alization to a Haskell program (which can then use the Flamio
implementation).

Second, 2) significantly reduces network communication but
means that the implementation is unsound if the trust rela-
tionship between principals changes during query resolution.
Orthogonal work on query isolation [34] can provide transac-
tional behavior for distributed systems like Flamio.

Using this implementation, we have constructed three use
cases for Flamio consisting of roughly 500 lines of code. The
first use case is a distributed bank, which was already pre-
sented in Section III. The banking example shows how users
can perform remote procedure calls to handle transactions
across accounts between different users. A user u can authorize
user u′ to transfer money on behalf of u by adding a delegation
u′ < u @ bank→ ∧ u← locally on u’s node. This delegation
is read as “u trusts u′, and this information is confidential to
bank and has the integrity of u”. When bank wishes to prove
the trust relationship between u and u′ to authorize a transfer
of money, a proof search is issued, and using the FWD rule, is
forwarded to node u. Node u then proves the trust relationship
using the local delegation u′ < u@ bank→ ∧ u←.

In addition to the banking example, we construct a secure
social jukebox service where people schedule music during
social gatherings. The third use case is a secure database con-
taining confidential information about government agencies.
The third example also demonstrates how the ASSUMP rule
prevents infinite derivation trees in authorization queries, and
how such queries can show up in practical use cases.

A. Secure social jukebox service

Suppose a group of principals N is gathered at a party and
want to vote on which songs should be played at the party, but
do not want their votes leaked to unauthorized principals, nor
do they want unauthorized principals to vote on their behalf.
For instance, if Alice votes for “Taylor Swift - Shake It Off”,
she wants to ensure that only principals she trusts can learn
her vote for this song. Furthermore, only principals that Alice
trusts should be able to vote for a song on her behalf.

We assume a distinguished principal J ∈ N (for jukebox)
representing a node on which two functions exist:

get : LIO (String × [Labeled String])

put : String × [Labeled String]→ LIO Unit

Function get returns a pair (s, lss) containing the current song
being played s, and a list of labeled strings lss such that
s′@p ∈ lss represents that p voted for s′. So if Alice wants to
vote for “Taylor Swift - Shake It Off”, she appends a labeled

1 (λAliceAlice← _ . do
2 assume J→ < Alice→ @ (⊥→ ∧ Alice←)
3 ls <- label Alice "Taylor Swift - Shake It Off"
4 (curSong, votedSongs) <- get
5 put (curSong, ls :: votedSongs)) ()

Fig. 17: Alice places a secret vote for Taylor Swift.

string "Taylor Swift - Shake It Off" @ Alice using put.
By labeling her vote with the principal Alice, she knows that
only principals p such that Alice→ flows to p→ can learn her
vote (i.e., by E-UNLABEL it must be the case that Alice flows
to p→). Furthermore, since the integrity of the label on the
vote is Alice←, she knows that any vote of the form s@ Alice
for some song s must be placed by a principal p such that
Alice← trusts p← (i.e., by E-LABEL it must be the case that
p’s current label flows to Alice).

Figure 17 shows an example of Alice voting for “Shake it
Off” by Taylor Swift. First, Alice adds a delegation that allows
J to read Alice’s labeled vote. She then labels her vote and
inserts it into the list of labeled songs. When J then unlabels
the labeled song title, a proof search will be issued checking
J← tAlice flows to J→, which is equivalent to checking that
Alice→ trusts Alice→ ∧ (J ∨ Alice)←. This trust relationship
holds by the delegation that Alice placed in Figure 17.

B. Government agency records

As a final example demonstrating the usefulness of Flamio,
we show how confidential delegations can be used to keep
government agency records. Suppose the CIA hires a subset
of N as agents. This information should visible only to other
CIA agents, not to the general public. Furthermore, only the
CIA should be able to hire agents.

We implement an enforcement mechanism for this security
policy as follows: when CIA ∈ N hires an agent n ∈ N ,
two delegations are created: first, trust is delegated from CIA
to CIA :n. By the properties of ownership projections [1], this
delegation can be read as “CIA trusts n, but CIA controls which
principals can act for n”.6 To satisfy the security policy, this
delegation should be visible only to other agents, and CIA
should be able to trust that any such delegation could have
been placed only by the CIA. This directly translates into the
label (CIA : AgentDB)→ ∧ CIA← on the delegation.

Second, any agent n should be able to check if a given
principal m is an agent. To achieve this, (CIA : AgentDB)→

delegates trust to n→, meaning that n can learn in-
formation labeled as CIA : AgentDB. To satisfy the se-
curity policy, this delegation should also be labeled as
(CIA : AgentDB)→ ∧ CIA←.

Figure 18 shows how Alice can verify that Bob is also a secret
agent. On line 4, Alice and Bob are both hired as secret agents
using the function hire defined on lines 1-3.

6The use of ownership principals prevent delegation loopholes [1].

1 let hire = λCIACIA← n . do
2 assume CIA : n < CIA @ (CIA :AgentDB)→ ∧ CIA←

3 assume n→ < (CIA :AgentDB)→ @ (CIA :AgentDB)→ ∧ CIA←

4 in (λCIACIA← _ . do hire Alice; hire Bob) ()
5 [...]
6 (λAliceAlice← _ . withStrategy [Alice→ ∧ CIA←] (do
7 isAgent <- CIA:Bob < CIA
8 if isAgent then [...] else [...])) ()

Fig. 18: Alice verifies that Bob is a secret agent for the CIA.

At some point, Alice meets Bob “in the field” and wants to
verify his claim that he is a secret agent. In order for Alice to
verify this claim she checks if the principal CIA delegates
to CIA : Bob. Using the strategy [Alice→ ∧ CIA←], Alice
states that she is only interested in using delegations that have
confidentiality at most Alice, and any delegation must have
been placed by a principal that CIA trusts.

For Alice to prove this trust relationship she uses the FWD
rule and delegates the proof search to CIA. By FWD, she must
check that Alice← (i.e., the current label of Alice) flows to
CIA→ (i.e., the clearance label of CIA), which holds by BOT.
Applying DEL, CIA must now check that (CIA : AgentDB)→

trusts Alice→. Applying DEL again, this reduces to showing
that (CIA : AgentDB)→ trusts Alice→ under the assumption
that (CIA : AgentDB)→ trusts Alice→, and so the trust rela-
tionship is established using ASSUMP.

Notice that without the ASSUMP rule, we would not be able to
prove that (CIA : AgentDB)→ trusts Alice→ (or, equivalently,
that CIA : AgentDB can learn information labeled as Alice):
we would keep applying DEL without a way of terminating
the derivation. But, intuitively, this relationship should hold
as we have a delegation of trust from (CIA : AgentDB)→ to
Alice→. Rule ASSUMP allows the proof search to assume
the delegation when proving that it is secure to use the
delegation, effectively expressing that “it is secure to use the
delegation because the delegation says so”: a form of checked
endorsement [23], [24].

VII. RELATED WORK

A. FLAM

The FLAM technical report [22] presents a security-typed
language Fλ in which policies are FLAM principals. Much
like Flamio, Fλ can delegate trust during evaluation and
allows querying of trust relationships. However, the decision
of whether or not to allow downgrading (i.e., adding new trust
relationships) must be performed statically using a relatively
simple type system. By contrast, in Flamio all decisions about
whether to allow downgrading are done during evaluation,
meaning that Flamio can potentially allow more downgrading
and remain secure. As Fλ is a language with fine-grained IFC
the programmer is also burdened with more label annotations
than would be expected in similar Flamio programs.

FLAC [35] is a calculus for flow-limited authorization that
allows static reasoning about mechanisms such as commitment
schemes or bearer credentials that require dynamic autho-
rization. FLAC builds a sophisticated type system on top
of FLAM that provides noninterference and robust declassi-
fication guarantees. Although FLAC offers many high-level
features to build practical authorization mechanisms, it uses
a limited subset of FLAM, e.g., it does not have distributed
trust checking (corresponding to FLAM’s FWD rule).

Hyperflow [36] is a new processor architecture for non-
malleable timing-sensitive IFC that uses FLAM principals
encoded as bit vectors as the label model. This encoding offers
efficient computation of joins, meets, and projections. Hyper-
flow extends the RISC-V processor with IFC instructions and
limits how information flows through registers and memory
pages. The hardware is programmed in a new hardware-
description language, ChiselFlow, embedded in Scala. Much
like Flamio, each process in a Hyperflow processor contains a
current label and a clearance label, but unlike our model, Hy-
perflow requires the programmer to raise the current label ex-
plicitly. This decision avoids the possible side-channel caused
by raising the current label depending on sensitive information
(a channel that we close in Flamio), at the cost of putting the
burden of raising the label on the programmer.

B. LIO and coarse-grained information-flow

Coarse-grained IFC has traditionally been applied mostly in
operating system security [5], [8] by associating a single label
with a process. LIO [9] implements coarse-grained IFC as a
monadic Haskell library using a current label that can float up
to the computation’s clearance label, similar to Flamio.

Recent work [30], [37] on the expressiveness of fine-grained
versus coarse-grained IFC shows that they have the same
expressive power. Rajani and Garg [30] encourage the use of
coarse-grained IFC as it places less annotation burden on the
programmer. Based on our experience with Flamio, we agree
with this observation.

C. RPCs and distributed computation

Our semantics for remote procedure calls is inspired by the
Location-aware Simple Abstract Machine (LSAM) [38]. A
global LSAM configuration is a set of local LSAM config-
urations indexed by names, and remote procedure calls are
performed by suspending the computation and transferring
control to another local LSAM configuration. Whereas LSAM
considers a first-order language (useful as a target language
for compiling other languages for distributed computation),
our semantics handles higher-order functions in the style of
the source language in [33], and LSAM would be a natural
compilation target for our work.

Much work has been devoted to information-flow program-
ming languages for distributed systems. Both SIF [39] and
Swift [23] are based on Jif [4], and target web applications
by tracking confidentiality and integrity of data sent between
a server and a client. Fabric [34] extends Jif with remote

procedure calls and transactions, and enforces security by
using a combination of static and dynamic enforcement mech-
anisms. Fabric and Flamio share many features: Both have
trust orderings on principals that can be queried and modified
at runtime, and remote nodes communicate via RPC. On the
other hand, Fabric and Flamio differ in many ways: Fabric is
a language with fine-grained IFC, while Flamio is a coarse-
grained system build as a library directly on top of LIO, which
in itself is a library in Haskell.

Fabric prevents information leakage from read channels (i.e.,
if node n accesses data on node m depending on informa-
tion confidential to n, node m learns about n’s confidential
information) using access labels, but unlike Flamio does
not protect against read channels arising from authorization
queries [1].

VIII. CONCLUSION

This paper demonstrates the usefulness of the FLAM autho-
rization logic for a language with coarse-grained dynamic
information-flow control, in the style of the floating label
model of LIO. The paper shows that the two systems can be
combined to obtain a provably strong noninterference result
for a language with distributed computation and decentralized
trust. The language has been implemented as a monadic library
in Haskell, and the usability of the system has been validated
via three use cases involving secure, distributed access to
shared resources.

IX. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for insightful comments.
We also thank Owen Arden, Anitha Gollamudi and Pablo
Buiras for discussions regarding FLAC, FLAM, and LIO.
The first author thanks the programming languages group
at Harvard University for the inspiring environment during
his visit. This material is based upon work supported by the
National Science Foundation under Grant No. CNS-1524052.
This material is also supported by the Aarhus University
Research Foundation (AUFF).

REFERENCES

[1] O. Arden, J. Liu, and A. C. Myers, “Flow-Limited Authorization”, in
Proceedings of the 2015 IEEE 28th Computer Security Foundations
Symposium, IEEE Computer Society, 2015,

[2] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn, “A Role-based Access
Control Model and Reference Implementation Within a Corporate
Intranet”, ACM Transactions on Information and System Security,
Feb. 1999.

[3] F. Pottier and V. Simonet, “Information Flow Inference for ML”, ACM
Transactions on Programming Languages and Systems, Jan. 2003.

[4] A. C. Myers, “JFlow: Practical Mostly-static Information Flow Con-
trol”, in Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ACM, 1999,

[5] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazieres, “Mak-
ing Information Flow Explicit in HiStar”, in Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementa-
tion, USENIX Association, 2006,

[6] N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres, “Securing Dis-
tributed Systems with Information Flow Control”, in Proceedings
of the 5th USENIX Symposium on Networked Systems Design and
Implementation, USENIX Association, 2008,

[7] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazieres, F. Kaashoek, and R. Morris, “Labels and
Event Processes in the Asbestos Operating System”, in Proceedings
of the Twentieth ACM Symposium on Operating Systems Principles,
ACM, 2005,

[8] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information Flow Control for Standard OS Abstrac-
tions”, in Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles, ACM, 2007,

[9] D. Stefan, D. Mazieres, J. C. Mitchell, and A. Russo, “Flexible
Dynamic Information Flow Control in the Presence of Exceptions”,
Journal of Functional Programming, 2017.

[10] P. Buiras, D. Vytiniotis, and A. Russo, “HLIO: Mixing Static and
Dynamic Typing for Information-flow Control in Haskell”, in Pro-
ceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ACM, 2015,

[11] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D.
Mazieres, “Addressing Covert Termination and Timing Channels in
Concurrent Information Flow Systems”, in Proceedings of the 17th
ACM SIGPLAN International Conference on Functional Program-
ming, ACM, 2012,

[12] P. Buiras and B. van Delft, “Dynamic Enforcement of Dynamic
Policies”, in Proceedings of the 10th ACM Workshop on Programming
Languages and Analysis for Security, ACM, 2015,

[13] M. Pedersen and S. Chong, Flamio implementation in Haskell, https:
//www.dropbox.com/s/zxy991pjeepl8nn/FLAMinLIO.zip, 2018.

[14] J. A. Goguen and J. Meseguer, “Security Policies and Security
Models”, in 1982 IEEE Symposium on Security and Privacy, Apr.
1982,

[15] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication
in Distributed Systems: Theory and Practice”, ACM Transactions on
Computer Systems, Nov. 1992.

[16] M. Abadi, “Access Control in a Core Calculus of Dependency”, in
Proceedings of the Eleventh ACM SIGPLAN International Conference
on Functional Programming, Portland, Oregon, USA: ACM, 2006,

[17] P. Wadler, “Monads for Functional Programming”, in Advanced Func-
tional Programming, First International Spring School on Advanced
Functional Programming Techniques-Tutorial Text, Springer-Verlag,
1995,

[18] S. Moore, C. Dimoulas, R. B. Findler, M. Flatt, and S. Chong, “Exten-
sible Access Control with Authorization Contracts”, in Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, ACM,
2016,

[19] M. Felleisen, “The Theory and Practice of First-class Prompts”,
in Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ACM, 1988,

[20] G. Smith and D. Volpano, “Secure Information Flow in a Multi-
threaded Imperative Language”, in Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, ACM, 1998,

[21] S. Muller and S. Chong, “Towards a Practical Secure Concurrent
Language”, in Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications,
ACM, 2012,

[22] O. Arden, J. Liu, and A. C. Myers, “Flow-limited authorization:
Technical Report”, Cornell University Computing and Information
Science, Tech. Rep., May 2015.

[23] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and
X. Zheng, “Secure Web Applications via Automatic Partitioning”, in
Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles, ACM, 2007,

[24] A. Askarov and A. C. Myers, “Attacker Control and Impact for
Confidentiality and Integrity”, Logical Methods in Computer Science,
2011.

[25] A. Askarov and A. Sabelfeld, “Gradual Release: Unifying Declas-
sification, Encryption and Key Release Policies”, in 2007 IEEE
Symposium on Security and Privacy, May 2007,

[26] S. Zdancewic and A. C. Myers, “Robust Declassification”, in Proceed-
ings of the 14th IEEE Workshop on Computer Security Foundations,
IEEE Computer Society, 2001,

[27] A. C. Myers, A. Sabelfeld, and S. Zdancewic, “Enforcing Robust
Declassification”, in Proceedings of the 17th IEEE Workshop on
Computer Security Foundations, IEEE Computer Society, 2004,

[28] E. Cecchetti, A. C. Myers, and O. Arden, “Nonmalleable Information
Flow Control”, in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ACM, 2017,

[29] A. Banerjee and D. A. Naumann, “Secure Information Flow and
Pointer Confinement in a Java-like Language”, in Proceedings of
the 15th IEEE Workshop on Computer Security Foundations, IEEE
Computer Society, 2002,

[30] V. Rajani and D. Garg, “Types for Information Flow Control: Labeling
Granularity and Semantic Models”, in 2018 IEEE 31st Computer
Security Foundations Symposium, IEEE, Jul. 2018.

[31] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands, “Termination-
Insensitive Noninterference Leaks More Than Just a Bit”, in Pro-
ceedings of the 13th European Symposium on Research in Computer
Security: Computer Security, Springer-Verlag, 2008,

[32] M. Pedersen and S. Chong, “Programming with Flow-Limited Au-
thorization: Coarser is Better (Technical Report)”, Tech. Rep., 2018.

[33] E. E. Cooper and P. Wadler, “The RPC calculus”, in Proceedings of
the 11th ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, ACM, 2009,

[34] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers,
“Fabric: A Platform for Secure Distributed Computation and Storage”,
in Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, ACM, 2009,

[35] O. Arden and A. C. Myers, “A Calculus for Flow-Limited Authoriza-
tion”, in 2016 IEEE 29th Computer Security Foundations Symposium,
Jun. 2016,

[36] A. Ferraiuolo, M. Zhao, A. C. Myers, and G. E. Suh, “Hyperflow: A
Processor Architecture for Nonmalleable, Timing-Safe Information-
Flow Security”, in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, Oct. 2018.

[37] M. Vassena, A. Russo, D. Garg, V. Rajani, and D. Stefan, “From Fine-
to Coarse-Grained Dynamic Information Flow Control and Back”,
Proceedings of the ACM on Programming Languages, Jan. 2019.

[38] K. Narita and S. Nishizaki, “A Parallel Abstract Machine for the
RPC Calculus”, in Informatics Engineering and Information Science,
A. Abd Manaf, S. Sahibuddin, R. Ahmad, S. Mohd Daud, and E. El-
Qawasmeh, Eds., Springer Berlin Heidelberg, 2011,

[39] S. Chong, K. Vikram, and A. C. Myers, “SIF: Enforcing Confi-
dentiality and Integrity in Web Applications”, in Proceedings of
16th USENIX Security Symposium on USENIX Security Symposium,
Boston, MA: USENIX Association, 2007,

https://www.dropbox.com/s/zxy991pjeepl8nn/FLAMinLIO.zip
https://www.dropbox.com/s/zxy991pjeepl8nn/FLAMinLIO.zip

	Introduction
	Background on FLAM and LIO
	The FLAM principal lattice
	Coarse-grained information flow using LIO.

	Introduction to Flamio by Example
	Remote Procedure Calls
	Proof search

	A calculus for Flamio
	Syntax
	Semantics
	Deriving trust relationship in Flamio
	A type system for Flamio.

	Security guarantees
	Trace semantics

	Implementation and case studies
	Secure social jukebox service
	Government agency records

	Related work
	FLAM
	LIO and coarse-grained information-flow
	RPCs and distributed computation

	Conclusion
	Acknowledgements

