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Abstract
We demonstrate that a practical concurrent language can be
extended in a natural way with information security mech-
anisms that provably enforce strong information security
guarantees. We extend the X10 concurrent programming lan-
guage with coarse-grained information-flow control. Central
to X10 concurrency abstractions is the notion of a place: a
container for data and computation. We associate a security
level with each place, and restrict each place to store only
data appropriate for that security level. When places interact
only with other places at the same security level, then our
security mechanisms impose no restrictions. When places
of differing security levels interact, our information security
analysis prevents potentially dangerous information flows,
including information flow through covert scheduling chan-
nels. The X10 concurrency mechanisms simplify reasoning
about information flow in concurrent programs.

We present a static analysis that enforces a noninterfer-
ence-based extensional information security condition in a
calculus that captures the key aspects of X10’s place ab-
straction and async-finish parallelism. We extend this secu-
rity analysis to support many of X10’s language features, and
have implemented a prototype compiler for the resulting lan-
guage.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Concurrent
programming structures; D.4.6 [Operating Systems]: Secu-
rity and Protection—Information flow controls

Keywords Language-based security; information-flow con-
trol; X10.

1. Introduction
Enforcement of strong information security guarantees for
concurrent programs poses both a challenge and an oppor-
tunity. The challenge is that, given current hardware trends
towards increased parallelism, and the large number of com-
puter systems that handle data of varying sensitivity, it is
increasingly important to reason about and enforce informa-

∗ This technical report is an extended version of the paper of the same
title that appeared in OOPSLA’12. This technical report provides additional
proof details.

tion security guarantees in the presence of concurrency. Al-
though progress has been made towards this end, there are
not yet practical enforcement mechanisms and usable im-
plementations. The opportunity is to adapt new and existing
language abstractions for concurrency to reason precisely
about information security in concurrent programs. Infor-
mation security, like concurrency, is intimately connected to
notions of dependency [1]. As such, there is potential for
synergy between language mechanisms for concurrency, and
enforcement mechanisms for information security in concur-
rent programs.

The X10 programming language [10] is an object-oriented
language with abstractions to support fine-grained concur-
rency. Central to X10 concurrency abstractions is the notion
of a place. A place is a computational unit that contains
computation and data. For example, each core of a single
machine or each machine within a distributed system might
be represented by a different place. Data held at a place,
and computation running at a place, are said to be “local”
to the place. Places are first-class in X10. Multiple threads
of execution, which in X10 are known as activities, may
execute concurrently within a place. Activities at the same
place share memory, and an activity may only access data
at the place where it is located. Places may communicate
using message passing, but X10 is designed to discourage
excessive communication between places, since this reduces
concurrency.

We extend X10 language abstractions for concurrency
with information security mechanisms, and call the resulting
language SX10 (for Secure X10). Specifically, in SX10 each
place is associated with a security level, and a (completely
static) security analysis ensures that each place stores only
data appropriate for that security level. Thus, all computa-
tion within a place is on data at the same security level. In the
case where places communicate only with other places at the
same security level, then our security mechanisms do not im-
pose any restrictions on programs. Communication between
places with different security levels may pose security con-
cerns, but because message-passing communication is used
between places, it is relatively simple to restrict such com-
munication: the security analysis ensures that data may be
sent to another place only when the security level of the des-
tination is sufficiently high. Interaction between places may
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influence the scheduling of activities at a place, leading to
potential covert information channels; our security analysis
tracks and controls these covert channels.

We believe that this coarse-grained approach to provid-
ing information security in concurrent programs is simple,
practical, and useful. All data at a place is at the same se-
curity level, which both provides simplicity of reasoning for
the programmer, and allows a high degree of concurrency
within a place without compromising security.

There are many highly concurrent systems that compute
with data of varying sensitivity that fit naturally into such a
model. The following are some examples.

• Machine learning A service such as Pandora processes
a large amount of public data, which is then used to
make recommendations to individual users based on their
private usage data. All public data is at the same security
level and processing it is highly parallel; data from many
users are processed in parallel.
• Social networks Users specify that some posts are visi-

ble to all other users, and some are visible only to friends.
Many users may use the system concurrently.
• Shopping carts An online shopping cart collects infor-

mation about items ordered, which may appear in low-
security logs, and credit card information, which must
remain secure. Many customers may use the system con-
currently.

Motivating example Reasoning about information secu-
rity in the presence of concurrency can be subtle. Consider
Program 1, which exhibits a timing channel.

1 at Low {
2 async {
3 // Activity 1
4 if (hi > 0) longComputation();
5 output ‘‘pos’’;
6 }
7 // Activity 2
8 mediumComputation(); output ‘‘nonpos’’;
9 }

Program 1.

Assume that memory location hi contains high-security
(e.g., secret) data. Instruction at Low s indicates that s is ex-
ecuted at a place called Low, which we assume is allowed to
handle only low-security data. Outputs at place Low should
not reveal high-security information. Instruction async s cre-
ates a new activity to execute statement s, and the current
activity continues with the following statement. Thus, the
if statement and subsequent output of the string ‘‘pos’’ ex-
ecute concurrently with the output ‘‘nonpos’’ statement. If
high-security memory location hi is positive, then Activity
1 outputs ‘‘pos’’ after a long time; otherwise it outputs ‘‘pos’’

immediately. Activity 2 computes for a medium amount of
time, and outputs ‘‘nonpos’’. It is likely that the order of
outputs will reveal secret information, and the program is
thus insecure. This is an example of an internal timing chan-
nel [47], where the order of publicly observable events de-
pends upon high-security information.

Program 1 is not an SX10 program: low-security place
Low is not allowed to hold high-security data, such as that
stored in memory location hi. Suppose, however, that High

is a place that is permitted to hold secret information. Then
Program 2 is a SX10 program and exhibits a similar timing
channel. (It is correctly rejected by our security analysis.)

1 at Low {
2 async {
3 // Activity 1
4 at High { // activity 1 moves to High
5 if (hi > 0) longComputation();
6 }
7 // activity 1 moves back to Low
8 output ‘‘pos’’;
9 }

10 // Activity 2
11 mediumComputation(); output ‘‘nonpos’’;
12 }

Program 2.

In this example, Activity 1 moves to place High in order to
perform computation on high-security data, before returning
to place Low to perform the output of the string ‘‘pos’’.

We assume that the scheduling of activities at each place
depends only on the activities at that place, an assumption
that holds in the X10 2.2 runtime [14]. Nonetheless, in Pro-
gram 2, the scheduling of Activity 2 at place Low depends on
whether Activity 1 is running at Low, which in turn depends
on how long the computation at place High takes. Thus, the
scheduling of output ‘‘pos’’ and output ‘‘nonpos’’ may be in-
fluenced by high-security data. Our security analysis detects
this potential information flow, and rejects the program.

Program 2 is inherently nondeterministic: it could per-
form the two outputs in either order. The scheduler re-
solves the nondeterminism, but in doing so, may reveal high-
security information—a form of refinement attack [38]. One
way to prevent such refinement attacks is to require that any
observable behavior be deterministic [6, 48]. Our security
analysis requires such observational determinism when the
resolution of nondeterminism may reveal high-security in-
formation.

It is, however, possible to allow some observable nonde-
terminism within a secure concurrent program. Intuitively,
if the resolution of the nondeterminism does not depend
on high-security information, then observable nondetermin-
ism is secure [30]. If place P does not communicate with
any other places, then, since scheduling is performed per-
place, resolution of nondeterminism at P will not reveal
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high-security information. In some cases it is also possible
to allow nondeterminism at place P even if P interacts with
places of higher security levels. Consider Program 3: Activ-
ity 1 executes at place Low concurrently with Activity 2’s ex-
ecution at place High. The finish s instruction executes state-
ment s, and waits until s and all activities spawned by s have
terminated before continuing execution. Thus, Activity 3 and
Activity 4 execute concurrently at place Low after Activi-
ties 1 and 2 have finished. Although the order of output ‘‘B’’

and output ‘‘C’’ is nondeterministic, resolution of this non-
determinism is not influenced by how long the high-security
computation takes, and so does not reveal high-security in-
formation.

1 at Low {
2 finish {
3 async {
4 // Activity 1
5 output ‘‘A’’;
6 }
7 // Activity 2
8 at High {
9 if (hi > 0) longComputation();

10 }
11 }
12 async {
13 // Activity 3
14 output ‘‘B’’;
15 }
16 // Activity 4
17 output ‘‘C’’;
18 }

Program 3.

Contributions The key contribution of this paper is to
demonstrate that practical and useful concurrency mecha-
nisms can be extended in a natural way with information se-
curity mechanisms that provably enforce strong information
security guarantees. We enforce coarse-grained information-
flow control [38], requiring that every place can store only
data at a single security level. If places interact only with
other places at the same security level, then our security
mechanisms do not restrict concurrency nor require deter-
minism for security. When places of differing security in-
teract, our information security analysis prevents potentially
dangerous information flows by using X10’s concurrency
mechanisms to reason both about data sent between places,
and about how the scheduling of activities at a place may
depend on high-security information.

In Section 2 we present a calculus, based on Feather-
weight X10 [22], that captures key aspects of the X10 place
abstraction, and its async-finish parallelism. We define a
knowledge-based noninterference semantic security condi-
tion [2, 12] for this calculus in Section 3, and present a se-
curity analysis that provably enforces it. The language SX10

is the result of extending this analysis to handle many of the
language features of X10. We have implemented a prototype
compiler for SX10 by modifying the X10 compiler, and this
is described in Section 4. We discuss related work in Sec-
tion 5 and conclude in Section 6.

2. FSX10: a secure parallel calculus
In this section, we introduce the calculus FSX10, based
on Featherweight X10 [22]. Like Featherweight X10, this
calculus captures X10’s async-finish parallelism, but adds
places and interaction with the external environment via
input and output instructions.

2.1 Syntax
The abstract syntax of FSX10 is presented in Figure 1. A
place P is a container for data and activities. In FSX10, as
in X10, every memory location r and every activity is asso-
ciated with a place. In FSX10, however, places are simply
identifiers and are not first-class values. Function Place(·)
describes how memory locations are mapped to places:
memory location r is held at place Place(r), and only code
executing at that place is allowed to access the location.

For simplicity, we restrict values in the calculus to inte-
gers. Expressions e consist of integer constants v, variables
x, memory reads !r (where r is a memory location), and total
binary operations over expressions e1⊕e2.

Statements s are sequences of instructions. Every instruc-
tion is labeled with a program point. For example, a store
instruction r :=p e has program point p. For convenience
we write sp to indicate that program point p is the program
point of the first instruction of statement s. When the pro-
gram point of an instruction is irrelevant, we omit it.

Instructions include no-ops (skip), selection (if e then s
else s), and iteration (while e do s). Instruction r := e eval-
uates expression e and updates memory location r with the
result. Instruction let x = e in s evaluates expression e to a
value, and uses that value in place of variable x in the evalua-
tion of statement s. Once defined, variable x is immutable. A
variable defined at place P may be used at a different place
P ′, which can be thought of as P sending the value of the
variable to P ′.

Instruction async s creates a new activity that starts exe-
cuting statement s, and the current activity continues exe-
cuting the next instruction. Instruction at P s executes state-
ment s at place P . Note that at P s does not create a new
activity: execution of the next instruction waits until s has
terminated. That is, given the statement at P s; r := 42; skip,
the assignment of 42 to memory location r will not occur
until after statement s has finished execution. Instruction
backat Ps does not appear in source programs, but is used by
the operational semantics to track when control will return
back to place P as a result of finishing an at P ′ s′ instruc-
tion. Finally, instruction finish s will block until statement s,
and all activities created by s, have terminated.
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Metavariables
P ranges over places
p ranges over program points
v ranges over integer constants
x ranges over program variables
r ranges over memory locations
⊕ ranges over total binary integer functions

Expressions
e ::= v Integer constant

| x Variable
| !r Memory read
| e⊕e Binary operation

Statements
s ::= skipp No-op

| i; s Sequence

Instructions
i ::= skipp No-op

| r :=p e Memory write
| ifp e then s else s Conditional
| whilep e do s Iteration
| letp x = e in s Let
| outputp e Output
| inputp r Input
| asyncp s Asynchronous
| atp P s At
| finishp s Finish
| backatp P Back at

Trees
T ::= 〈P, s〉 Activity

| T ||T Parallel
| T . 〈P, s〉 Join
| X Done

Figure 1. FSX10 syntax

FSX10 programs can communicate with the external en-
vironment via input and output instructions. We assume,
without loss of generality, that every place has a single com-
munication channel. Instruction output e, when executed at
place P , will evaluate expression e to a value, and output that
value on P ’s channel. Similarly, instruction input r, when
executed at P , will input a value from P ’s channel, and store
the result in location r. We assume that there is always data
available for input on a channel, and thus input instructions
are non-blocking.

Concurrently executing activities in FSX10 are repre-
sented using trees. Tree 〈P, s〉 is an activity at place P exe-
cuting statement s. Tree T1 ||T2 represents trees T1 and T2

executing concurrently. TreeX indicates a terminated activ-
ity, and tree T .〈P, s〉 indicates that activity 〈P, s〉 is blocked
until all activities in T have terminated.

2.2 Events, traces, and input strategies
As a program executes, it generates input and output events.
Input event i(v, P ) is generated when an input instruction
accepts value v from P ’s channel. Output event o(v, P ) is
generated when an output instruction outputs value v on P ’s
channel.

A trace t is a (possibly empty) sequence of input, output
and location assignment events. Other events are not tracked.
We write ε for the empty trace. We write t�P for the subse-
quence of events of t that occur at place P . More formally,
we have

ε�P = ε

(t · α)�P =

{
(t�P ) · α if Place(α) = P

t�P otherwise

where function Place(α) is the place at which α occurred:

Place(i(v ,P)) = P

Place(o(v ,P)) = P.

We model input from the external environment with input
strategies [30]. Input strategy ω is a function from places and
traces to values, such that given trace t, value ω(P, t�P ) is
the next value to input on the channel for P . Note that the
choice of the next value that will be input on a channel can
depend on the previous outputs of the channel. In Section 3,
where we consider the security of FSX10 programs, we will
be concerned with ensuring that low-security attackers are
unable to learn about the inputs to high-security places.

2.3 Scheduling
Since program execution, and information security, depends
on scheduling, we model the scheduler in FSX10. We explic-
itly refine the nondeterminism inherent in scheduling using
refiners [30] to represent the decisions made by the sched-
uler. Essentially, all nondeterminism in program execution
is encapsulated in a refiner; once a refiner has been chosen,
program execution is deterministic.

In X10, a place represents a distinct computational node
with a distinct scheduler [14]. In accordance with this model,
we assume that scheduling decisions are made on a per-place
basis, and the choice of which activity to run at a given place
depends only on the set of activities currently executing at
that place.

We model these assumptions by representing a refiner
R as a pair (Ps, Sch), where Ps is a stream of places
indicating the order in which places take steps, and Sch is a
function from places to streams chs of scheduling functions.
A scheduling function ch takes a set of program points
(representing the set of activities currently executing at the
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PLACE

Sch(P ) = chs · ch PointsRunning(T, P ) 6= ∅
ch(PointsRunning(T, P )) = p (H; ω; t; T )

p
_ (H ′; ω; t′; T ′)

(H;ω; (P · Ps, Sch); t;T )→ (H ′;ω; (Ps, Sch[P → chs]); t′;T ′)

IDLEPLACE

PointsRunning(T, P ) = ∅
(H;ω; (P · Ps, Sch); t;T )→ (H;ω; (Ps, Sch); t;T )

PointsRunning(X, P ) = ∅

PointsRunning(〈P ′, sp〉, P ) =

{
{p} if P ′ = P

∅ if P ′ 6= P

PointsRunning(T1 ||T2, P ) = PointsRunning(T1, P ) ∪ PointsRunning(T2, P )

PointsRunning(T . 〈P ′, s〉, P ) = PointsRunning(T, P )

Figure 2. Program semantics (H;ω;R; t;T )→ (H ′;ω;R′; t′;T ′)

place), and returns an element of that set (representing which
of the activities should be scheduled). We write P · Ps for a
stream with first element P and remaining elements Ps.

Thus, if the refiner is (P ·Ps, Sch), then place P will take
a step next, and if Sch(P ) = ch · chs (where ch is the first
element of the stream of scheduling function, and chs is the
remainder of the stream), then scheduling function ch will
be used to determine which of the current activities at P will
be scheduled. Note that each time a place takes a step, it may
use a different scheduling function. However, the sequence
of scheduling functions at a given place must be decided in
advance, and may not depend on the history of computation
at the place.

The use of a stream of scheduling functions per place al-
lows our model to capture many realistic scheduling algo-
rithms, such as round robin, shortest remaining time, and
fixed priority. Scheduling algorithms that depend on the his-
tory of computation at a place (such as the work-stealing
scheduling algorithm used in the X10 runtime [14, 15]) can-
not be directly represented in this model. However, we be-
lieve the security guarantees still hold for the X10 runtime;
we further discuss the security of the X10 scheduler in Sec-
tion 4.

2.4 Operational semantics
A program configuration is a 5-tuple (H;ω;R; t;T ). Heap
H maps locations r to values, and is updated as the program
executes. Input strategy ω is used to determine values in-
put on channels; the input strategy does not change during
execution, but we include it in the program configuration
for notational convenience. Refiner R is used to determine
scheduling, and is updated during execution. Trace t is the
trace (of input, output, and location assignment events) pro-
duced so far by the program’s execution. Tree T is the tree
of currently executing activities.

The small-step operational semantics relation

(H;ω;R; t;T )→ (H ′;ω;R′; t′;T ′)

CONST

P ;H; v ⇓ v

READ

H(r) = v Place(r) = P

P ;H; !r ⇓ v

OP

P ;H; e1 ⇓ v1 P ;H; e2 ⇓ v2
P ;H; e1⊕e2 ⇓ v1⊕v2

Figure 4. Expression semantics P ;H; e ⇓ v

describes how a program configuration changes as a result
of execution. Due to the use of refiners, the operational
semantics is deterministic. Inference rules for this relation
are given in Figure 2.

Rule PLACE uses the refiner to select a place P to exe-
cute, and to select a scheduling function ch to schedule an
activity at P . Set PointsRunning(T, P ) is the set of program
points of running activities located at P (also defined in Fig-
ure 2), which is given to scheduling function ch to select
an activity. Rule IDLEPLACE handles the case where the re-
finer has selected place P to execute, but P does not have
any currently running activities. Judgment

(H; ω; t; T )
p
_ (H ′; ω; t′; T ′)

is used to indicate that tree configuration (H; ω; t; T ) exe-
cutes the instruction at program point p to produce tree con-
figuration (H ′; ω; t′; T ′). Tree configurations are similar to
program configurations, but omit the refiner, since the refiner
is used only to determine which activity to execute.

Inference rules for (H; ω; t; T )
p
_ (H ′; ω; t′; T ′) are

given in Figure 3. Rules PARALEFT, PARARIGHT, PAR-
ALEFTDONE, PARARIGHTDONE, JOIN, and JOINDONE
navigate through the tree structure to find the appropriate
activity to execute. Rule SKIP1 reduces a skip statement to a
terminated activity X. The remaining rules execute a single
instruction.

Several of the rules for evaluating instructions evaluate
expressions to values, using judgment P ;H; e ⇓ v, which
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PARALEFT

(H; ω; t; T1)
p
_ (H ′; ω; t′; T ′1) T ′1 6= X

(H; ω; t; T1 ||T2)
p
_ (H ′; ω; t′; T ′1 ||T2)

PARARIGHT

(H; ω; t; T2)
p
_ (H ′; ω; t′; T ′2) T ′2 6= X

(H; ω; t; T1 ||T2)
p
_ (H ′; ω; t′; T1 ||T ′2)

PARALEFTDONE

(H; ω; t; T1)
p
_ (H ′; ω; t′; X)

(H; ω; t; T1 ||T2)
p
_ (H ′; ω; t′; T2)

PARARIGHTDONE

(H; ω; t; T2)
p
_ (H ′; ω; t′; X)

(H; ω; t; T1 ||T2)
p
_ (H ′; ω; t′; T1)

JOIN

(H; ω; t; T )
p
_ (H ′; ω; t′; T ′) T ′ 6= X

(H; ω; t; T . 〈P, s〉)
p
_ (H ′; ω; t′; T ′ . 〈P, s〉)

JOINDONE

(H; ω; t; T )
p
_ (H ′; ω; t′; X)

(H; ω; t; T . 〈P, s〉)
p
_ (H ′; ω; t′; 〈P, s〉)

SKIP1

(H; ω; t; 〈P, skipp〉)
p
_ (H; ω; t; X)

SKIP2

(H; ω; t; 〈P, skipp; s〉)
p
_ (H; ω; t; 〈P, s〉)

WRITE

P ;H; e ⇓ v Place(r) = P

(H; ω; t; 〈P, r :=p e; s〉)
p
_ (H[r 7→ v]; ω; t; 〈P, s〉)

LET

P ;H; e ⇓ v s′1 = s1{v/x}
(H; ω; t; 〈P, letp x = e in s1; s2〉)

p
_ (H; ω; t; 〈P, s′1•s2〉)

ASYNC

(H; ω; t; 〈P, asyncp s1; s2〉)
p
_ (H; ω; t; 〈P, s1〉 || 〈P, s2〉)

FINISH

(H; ω; t; 〈P, finishp s1; s2〉)
p
_ (H; ω; t; 〈P, s1〉 . 〈P, s2〉)

AT

(H; ω; t; 〈P1, atp P2 s1; s2〉)
p
_ (H; ω; t; 〈P2, s1•(backat P1; s2)〉)

BACKAT

(H; ω; t; 〈P2, backatp P1; s〉)
p
_ (H; ω; t; 〈P1, s〉)

OUTPUT

P ;H; e ⇓ v
(H; ω; t; 〈P, outputp e; s〉)

p
_ (H; ω; t · o(v, P ); 〈P, s〉)

INPUT

Place(r) = P ω(P, t�P ) = v

(H; ω; t; 〈P, inputp r; s〉)
p
_ (H[r 7→ v]; ω; t · i(v, P ); 〈P, s〉)

IF1
P ;H; e ⇓ v v 6= 0

(H; ω; t; 〈P, ifp e then s1 else s2; s3〉)
p
_ (H; ω; t; 〈P, s1•s3〉)

IF2
P ;H; e ⇓ v v = 0

(H; ω; t; 〈P, ifp e then s1 else s2; s3〉)
p
_ (H; ω; t; 〈P, s2•s3〉)

WHILE

(H; ω; t; 〈P, (whilep e do s1); s2〉)
p
_ (H; ω; t; 〈P, (if e then (s1•while e do s1; skip) else skip); s2〉)

Figure 3. Tree and statement semantics (H; ω; t; T )
p
_ (H ′; ω; t′; T ′)
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is defined in Figure 4. Evaluation of expressions is standard,
with the exception of memory read !r, which requires that
memory location r is held at place P , the current place of
the activity performing the read.

Rule SKIP2 handles the instruction skip—it is a no-op.
Rule WRITE executes write instruction r :=p e by evaluat-
ing expression e to a value v and updating the heap to map
location r to v. Note that location r must be stored at the
place at which the activity is executing: Place(r) = P .

Rule LET executes let instruction let x = e in s by eval-
uating expression e to value v, and substituting uses of
variable x in s with v using capture-avoiding substitution
s{v/x}. The rule uses the operation • to “stitch together”
two statements into a single statement. This operation is de-
fined recursively as follows.

(i; s1)•s2 = i; (s1•s2)

skip•s2 = s2

Instruction async s1 creates a new activity to execute s1,
and the current activity continues with the next statement.
Thus, rule ASYNC executes the activity 〈P, async s1; s2〉 by
reducing it to the tree 〈P, s1〉 || 〈P, s2〉.

Statement finish s1; s2 executes s1, and waits until all
activities spawned by s1 have terminated before executing
s2. Rule FINISH transforms activity 〈P, finish s1; s2〉 to the
tree 〈P, s1〉 . 〈P, s2〉.

Statement at P s1; s2 executes statement s1 at place P ,
and then executes s2 at the original place. Rule AT thus
transforms activity 〈P ′, at P s1; s2〉 to an activity at place P :
〈P, s1•(backat P ′; s2)〉. We insert the instruction backat P ′

to let us know both that execution of s2 will be at place P ′,
and that the movement of the activity to P ′ is the result of
returning from a previous at instruction. Rule BACKAT for
statement backat P ′ simply changes the place of the activity
back to place P ′.

Rule OUTPUT evaluates output instruction output e by
evaluating e to value v, and appending event o(v, P ) to the
program’s trace, where P is the current place of the activ-
ity. Similarly, rule INPUT evaluates input instruction input r
by inputting value v from P ’s communication channel, up-
dating the heap to map location r to v, and appending event
i(v, P ) to the program’s trace. The value to input is deter-
mined by input strategy ω, and is equal to ω(P, t�P ), where
P is the current place of the activity, and t�P is the program’s
trace so far restricted to events occurring at place P .

Rules IF1 and IF2 handle the conditional instruction
if e then s1 else s2 by reducing it to s1 if e evaluates to a non-
zero value, and reducing it to s2 otherwise. Rule WHILE
handles a while e do s1 instruction by unrolling it into a con-
ditional instruction.

2.5 Program execution
A program is an activity 〈P, s〉, that is, a statement s that
is intended to start execution at place P . Program execution

depends on an input strategy ω and a refiner R. The initial
configuration of a program is (Hinit;ω;R; ε; 〈P, s〉), where
Hinit is a distinguished heap and ε is the empty trace.

For program 〈P, s〉, input strategy ω, and refiner R, we
write

(〈P, s〉, ω,R) emits t

to indicate that program execution can produce trace t. That
is, there is some heap H ′, refiner R′ and tree T ′ such that

(Hinit;ω;R; ε; 〈P, s〉)→∗ (H ′;ω;R′; t;T ′)

where→∗ is the reflexive transitive closure of the small-step
relation→.

3. Security
We are interested in enforcing strong information security
in concurrent programs. Towards that end, in this section,
we define a noninterference-based [12] definition of security
for FSX10, and present a type system that enforces security
while allowing many useful and highly concurrent programs.

3.1 Defining security
Intuitively, we want to ensure that a consumer of low-
security information from a FSX10 program does not learn
anything about high-security information. In our setting,
consumers of low-security information are entities that can
observe the communication channel of low-security places,
and the high-security information that needs to be protected
are the values input at high-security places.

We assume that there is a set of security levels L with
a partial order v that describes relative restrictiveness of
the security levels. We further assume that every place P is
associated with a security level, denoted L(P ). Intuitively,
place P will be allowed to store and handle only data of
security level L(P ) and lower, and to send values to, and
invoke code on, only places P ′ such that L(P ) v L(P ′).

For a given security level ` ∈ L, a low-security place
is any place P such that the level of the place is less than
or equal to `, that is, L(P ) v `. All other places are high-
security places, i.e., P is a high-security place if L(P ) 6v `.

We define a semantic security condition based on at-
tacker knowledge [2]. An attacker observes the communi-
cation channels of low-security places. The knowledge of an
attacker is the set of input strategies that are consistent with
the attacker’s observations: the smaller the set, the more ac-
curate the attacker’s knowledge. The semantic security con-
dition will require that at all times, the attacker’s knowledge
includes all possible input strategies for high-security places.
That is, all possible input strategies for high-security places
are consistent with the attacker’s observations. For ease of
presentation, we will use a slightly weaker semantic secu-
rity condition, a progress-insensitive condition [3] that also
allows the attacker to learn not only the input strategies for
low security places, but also whether low-security output is
produced.
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Trace equivalence Given an attacker with security level
` ∈ L (i.e., who can observe communication channels of
places P such that L(P ) v `), two executions of a program
look the same to the attacker if the trace of inputs and outputs
at low-security places are the same in both executions. We
define this formally via `-equivalence of traces.

Definition 1 (`-equivalence of traces). Let ` ∈ L. Traces
t0 and t1 are `-equivalent, written t0 ∼` t1, if t0�` = t1�`,
where

ε�` = ε

(t · α)�` =

{
(t�`) · α if L(Place(α)) v `
t�` otherwise

Attacker knowledge For a given execution of a program,
starting from program configuration (Hinit;ω;R; ε; 〈P, s〉),
that produces trace t, the knowledge of an attacker with
security level `, written k(〈P, s〉, R, t, `), is the set of input
strategies that could have produced a trace that is equivalent
to what the attacker observed.

Definition 2 (Attacker knowledge). For any ` ∈ L, program
〈P, s〉, trace t, and refiner R, the attacker’s knowledge is:

k(〈P, s〉, R, t, `) =

{ω | ∃t′. (〈P, s〉, ω,R) emits t′ ∧ t ∼` t
′}

We define what information an attacker with security
level ` is permitted to learn about input strategies by defining
`-equivalence of input strategies. Intuitively, if two strategies
are `-equivalent, then they provide the exact same inputs for
all low-security places, and an attacker with security level `
should not be able to distinguish them.

Definition 3 (`-equivalence of input strategies). Let ` ∈ L.
Input strategies ω0 and ω1 are `-equivalent, written ω0 ∼`

ω1, if for all places P such that L(P ) v `, and for all traces
t, we have ω0(P, t�P ) = ω1(P, t�P ).

Relation ∼` is an equivalence relation, and we write [ω]`
for the equivalence class of ω under the relation ∼`.

Given a program configuration (Hinit;ω;R; ε; 〈P, s〉)
that produces trace t, progress knowledge [3] is the set of
input strategies that could have produced a trace that is `-
equivalent to t, and could produce at least one more ob-
servable event. We will use progress knowledge as a lower
bound on the allowed knowledge of an attacker. That is, we
will explicitly allow the attacker to learn whether a program
will produce another observable event. This means that the
attacker may be permitted to learn the termination behavior
of statements that depend on high-security information.

Definition 4 (Progress knowledge). For any ` ∈ L, program
〈P, s〉, trace t, and refiner R, progress knowledge is:

k+(〈P, s〉, R, t, `) =

{ω | ∃t′, α. (〈P, s〉, ω,R) emits (t′ · α)

∧ t ∼` t
′ ∧ L(Place(α)) v `}

Our security condition requires that, for all attackers, and
all executions, for each event the attacker can observe, the
attacker learns no more than the input strategy for low-
security places, and the fact that another event was produced.

Definition 5 (Security). Program 〈P, s〉 is secure if for all
` ∈ L, traces t · α, refiners R, and input strategies ω such
that

(〈P, s〉, ω,R) emits (t · α)

we have

k(〈P, s〉, R, t · α, `) ⊇ [ω]` ∩ k+(〈P, s〉, R, t, `).

Recall that the attacker’s knowledge is set of input strate-
gies that are consistent with the attacker’s observations: a
smaller set means more precise knowledge. Security requires
that there are lower bounds to the precision of the attacker’s
knowledge. That is, there is information that the attacker is
not permitted to learn. Thus, security requires that attacker’s
knowledge is a superset of the knowledge it is permitted to
learn.

According to this definition of security, Program 2 from
the Introduction is insecure (assuming that memory location
hi is initialized from an input from place High), since there
exists a refiner and a strategy that will produce a trace that
allows an observer of low-security outputs to learn some-
thing about the high-security input strategy. Indeed, our def-
inition of security rules out internal timing channels [47],
in which the order of low-security events (here, input, out-
put, and accesses to memory locations) depends upon high-
security information. Program 3 does not exhibit an internal
timing channel, and is secure.

This definition of security is progress insensitive [3], as it
permits the attacker to learn that program execution makes
progress, and produces another observable output. This def-
inition can be strengthened in a straightforward way to a
progress sensitive security condition. While the type sys-
tem of Section 3.2 enforces progress insensitive security, it
can be modified using standard techniques (to conservatively
reason about termination of loops) to enforce progress sen-
sitive security [28]. We refrain from doing so to simplify the
presentation of the type system.

3.2 Enforcing security
We enforce security using a security type system. The type
system ensures that each place P stores and handles only
data input from places P ′ such that L(P ′) v L(P ). How-
ever, as noted in the Introduction, it is possible for the
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scheduling of activities at place P to be influenced by in-
put from a place P ′ such that L(P ′) 6v L(P ). Our type
system tracks and controls information flow through this
covert channel through program point contexts.

A program point context ∆ is a function from program
points to security levels such that ∆(p) is an upper bound on
the level of information that may influence the scheduling
of program point p. More precisely, it is an upper bound
on information that may affect the presence or absence of
activities that may run concurrently with p at the same place.

Each program point is statically associated with a place,
and we write Place(p) for the place at which program point
p will execute. Intuitively, since program point p is executed
at place Place(p), and Place(p) handles data at security
level L(Place(p)), we would expect that ∆(p) is at least as
restrictive as L(Place(p)). Indeed, the type system ensures
for all p that L(Place(p)) v ∆(p).

It is often the case that L(Place(p)) is also an upper
bound of ∆(p). That is, the scheduling of p does not de-
pend on any high-security information. However, if p may
happen immediately after a computation at a high-security
place finishes (as with the output ”pos” instruction in Pro-
gram 2), or in parallel with another program point at the
same place whose scheduling depends on high-security in-
formation, then it is possible that ∆(p) 6v L(Place(p)). In
that case, in order to ensure that the scheduling decision at
place Place(p) does not leak high-security information, we
require observational determinism [48] at Place(p) during
the scheduling of p. That is, for each memory location stored
at Place(p), there are no data races on that location, and the
order of input and output at Place(p) is determined.

Finally, variable context Γ maps program variables to the
place at which the variable was created. The type system
uses the variable context to ensure that if variable x was
declared at place P , then x is used only at places P ′ such
that L(P ) v L(P ′).

May-happen-in-parallel analysis The type system relies
on the results of a may-happen-in-parallel analysis, such
as the one presented by Lee and Palsberg for Feather-
weight X10 [22]. The async-finish parallelism of X10 is
amenable to a precise may-happen-in-parallel analysis. We
write MHPP(p) for the set of program points that may hap-
pen in parallel with program point p at the same place (i.e.,
at Place(p)).

Typing expressions Judgment p; Γ; ∆ ` e indicates that
expression e, occurring at program point p is well typed un-
der variable context Γ and program point context ∆. Infer-
ence rules for this judgment are given in Figure 5. Constants
v are always well typed, and the use of variable x is well
typed if the level of the place at which x is defined (L(Γ(x)))
is less than or equal to the level of the place at which x is
used (L(Place(p))). Expression e1⊕e2 is well typed if both
e1 and e2 are well typed.

noWrite(r, p) = ∀p′ ∈ MHPP(p). instruction at
p′ does not write to r

noReadWrite(r, p) = noWrite(r, p) ∧
∀p′ ∈ MHPP(p). instruction at
p′ does not read r.

noIO(p) = ∀p′ ∈ MHPP(p). instruction at p′

does not perform input or output.

Figure 6. Predicate definitions

There are two different rules for reading memory loca-
tion r. The first rule, rule T-READNONDET, handles the
case where the scheduling of the expression’s execution at
place Place(p) is influenced by information at most at level
L(Place(p)). In that case, there are no restrictions on when
the read may occur: it may occur concurrently with activities
at the same place that write to the location since the resolu-
tion of the data race will not be a covert information channel.
(The existence of a data race may, however, be undesirable
in terms of program functionality.)

The second rule, rule T-READDET, applies when the
scheduling of the expression may be influenced by informa-
tion that is not allowed to flow to level L(Place(p)). In that
case, the read is required to be observationally deterministic:
predicate noWrite(r, p) must hold, implying that the read of
memory location r at program point p must not execute con-
currently with any statement that may write to r. Predicate
noWrite(r, p) is defined in Figure 6.

Typing statements Judgment Γ; ∆ ` s : ` indicates that
statement s is well typed in variable context Γ and program
point context ∆, and that security level ` is an upper bound
on the security level of information that may influence the
scheduling of the last program point of s. Inference rules for
the judgment are given in Figure 7.

Every inference rule for a statement sp includes the
premise ∀p′ ∈ MHPA(p). ∆(p′) v ∆(p). Intuitively, the
set MHPA(p) is the set of program points that may influ-
ence the presence or absence of activities running in parallel
with p at the same place. Assuming that Place(p) = P ,
MHPA(p) contains the program points of backat P instruc-
tions that may happen in parallel with p, and the set of pro-
gram points immediately following an atp

′
P ′ s′ instruction,

where Place(p′) = P and p′ may happen in parallel with
p. The set MHPA(p) is a subset of the program points that
may happen in parallel with p, and can easily be computed
from the results of a may-happen-in-parallel analysis. Given
this definition, the premise above requires that ∆(p), the up-
per bound on the scheduling of s, is at least as restrictive as
the scheduling of any program point that may influence the
presence or absence of activities running in parallel with p
at the same place.
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T-CONST

p; Γ; ∆ ` v

T-VAR

L(Γ(x)) v L(Place(p))

p; Γ; ∆ ` x

T-OP

p; Γ; ∆ ` e1
p; Γ; ∆ ` e2

p; Γ; ∆ ` e1⊕e2

T-READNONDET

∆(p) v L(Place(p))

p; Γ; ∆ `!r

T-READDET

∆(p) 6v L(Place(p))

noWrite(r, p)

p; Γ; ∆ `!r

Figure 5. Expression typing judgment p; Γ; ∆ ` e

T-SKIP1
∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` skipp : ∆(p)

T-SKIP2
Γ; ∆ ` s : ` ∆(p) v ∆(p1)

∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` skipp; sp1 : `

T-LET

p; Γ; ∆ ` e Γ[x 7→ Place(p)]; ∆ ` s1 : `1
Γ; ∆ ` s2 : `2 ∆(p) v ∆(p1) `1 v ∆(p2)

∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` letp x = e in sp11 ; sp22 : `2

T-ASYNC

Γ; ∆ ` s1 : `1 Γ; ∆ ` s2 : `2 ∆(p) v ∆(p1)

∆(p) v ∆(p2) ∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` asyncp sp11 ; sp22 : `2

T-FINISH

Γ; ∆ ` s1 : `1 Γ; ∆ ` s2 : `2 ∆(p) v ∆(p1) L(Place(p2)) v ∆(p2)

∀p′ ∈ MHPP(p). ∆(p′) v ∆(p2) ∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` finishp sp11 ; sp22 : `2

T-AT

Γ; ∆ ` s1 : `1 Γ; ∆ ` s2 : `2 ∆(p) v L(P )

L(P ) v ∆(p1) `1 v ∆(p2) ∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` atp P sp11 ; sp22 : `2

T-BACKAT

Γ; ∆ ` s : ` ∆(p) v ∆(p1)

∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` backatp P ; sp1 : `

T-WRITENONDET

∆(p) v L(Place(p))
Γ; ∆ ` s : ` p; Γ; ∆ ` e ∆(p) v ∆(p1)

∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` r :=p e; sp1 : `

T-WRITEDET

∆(p) 6v L(Place(p)) noReadWrite(r, p)
Γ; ∆ ` s : ` p; Γ; ∆ ` e ∆(p) v ∆(p1)

∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` r :=p e; sp1 : `

T-OUTPUTNONDET

∆(p) v L(Place(p))
Γ; ∆ ` s : ` p; Γ; ∆ ` e ∆(p) v ∆(p1)

∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` outputp e; sp1 : `

T-OUTPUTDET

∆(p) 6v L(Place(p)) noIO(p)
Γ; ∆ ` s : ` p; Γ; ∆ ` e ∆(p) v ∆(p1)

∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` outputp e; sp1 : `

T-INPUTNONDET

∆(p) v L(Place(p)) Γ; ∆ ` s : `

∆(p) v ∆(p1) ∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` inputp r; sp1 : `

T-INPUTDET

∆(p) 6v L(Place(p)) noReadWrite(r, p) noIO(p)

Γ; ∆ ` s : ` ∆(p) v ∆(p1) ∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` inputp r; sp1 : `

T-IF

Γ; ∆ ` s1 : `1 Γ; ∆ ` s2 : `2 Γ; ∆ ` s3 : `3
p; Γ; ∆ ` e ∆(p) v ∆(p1) ∆(p) v ∆(p2)

`1 v ∆(p3) `2 v ∆(p3) ∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` ifp e then sp11 else sp22 ; sp33 : `3

T-WHILE

Γ; ∆ ` s1 : `1 Γ; ∆ ` s2 : `2 p1; Γ; ∆ ` e
∆(p) v ∆(p1) `1 v ∆(p) `1 v ∆(p2)

∀p′ ∈ MHPA(p). ∆(p′) v ∆(p)

Γ; ∆ ` whilep e do sp11 ; sp22 : `2

Figure 7. Statement typing judgment Γ; ∆ ` s : `
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Also, almost all inference rules for statements ensure that
if program point p executes after p′ (for example, because
they are in sequence), then ∆(p′) v ∆(p). The intuition
here is that if information at level ∆(p′) may influence the
scheduling of p′, and p follows in sequence after p′, then
information at level ∆(p′) may influence the scheduling of
p. For example, the typing rule for ifp e then sp1

1 else sp2

2 ; sp3

3

requires that ∆(p) v ∆(p1) and ∆(p) v ∆(p2), since the
execution of s1 and s2 will occur only after the evaluation
of the conditional guard. Similarly, since the execution of s3
will follow the execution of either s1 or s2, the rule requires
that `1 v ∆(p3) and `2 v ∆(p3), where `1 and `2 are upper
bounds of the scheduling of the last program points of s1 and
s2 respectively.

We discuss only the inference rules that have premises in
addition to those common to all rules.

Statement letp x = e in sp1

1 ; sp2

2 declares a variable x, and
allows x to be used in the scope of statement s1. Rule T-LET
thus allows s1 to be typed with a variable context that maps
variable x to the place at which it was defined: Place(p).

Statement finishp sp1

1 ; sp2

2 executes statement s1, and
waits until all activities spawned by s1 have finished before
executing s2. Rule T-FINISH requires that ∆(p) v ∆(p1)
(since p1 is executed after p) but notably does not require
either ∆(p) v ∆(p2) or `1 v ∆(p2), despite the fact that p2
is executed after p and p1. The intuition is that because the
scheduling behavior at place P = Place(p) depends only
on the current activities at P , by the time that p2 is sched-
uled, program points p and p1 (and all activities spawned
by s1) have finished execution, and do not influence the
scheduling of p2. In Program 3 in the Introduction, this rea-
soning is what permits us to conclude that the scheduling of
output ‘‘B’’ and output ‘‘C’’ do not depend on high-security
computation.

1 at Low {
2 async {
3 // Activity 1
4 mediumComputation(); output ‘‘nonpos’’;
5 }
6 finish {
7 // Activity 2
8 at High {
9 if (hi > 0) longComputation();

10 }
11 }
12 // Activity 3
13 output ‘‘pos’’;
14 }

Program 4.

However, it may be possible that scheduling of activi-
ties spawned by s1 indirectly influences the scheduling of
p2. Consider Program 4, which contains a finish s1; s2 state-
ment where s2 = output ‘‘pos’’, and s1 invokes compu-

tation at high-security place High. There is an additional
activity that executes concurrently with the finish statement:
mediumComputation(); output ‘‘nonpos’’. The scheduling of
this activity relative to s2 will depend on the high-security
computation. Indeed, this program is equivalent to Pro-
gram 2, and both are insecure. Thus, typing rule T-FINISH
requires that ∆(p2) is at least as restrictive as ∆(p′) for any
program point p′ that may execute in parallel with p at the
same place. This ensures that insecure Program 4, and others
like it, are rejected by the type system.

Statement atp P sp1

1 ; sp2

2 executes s1 at place P , and then
executes s2 back at place Place(p). Rule T-AT requires that
the upper bound on the scheduling of the at instruction is
permitted to flow to the level of place P (∆(p) v L(P )).
Thus the type system restricts the creation of an activity at
place P to reveal only information that is allowed to flow to
levelL(P ). Also, because statement sp1

1 is executing at place
P , information at level L(P ) will influence the scheduling
of p1: L(P ) v ∆(p1). Finally, because statement sp2

2 is
executed only after s1, the scheduling of p2 depends on when
the last statement of s1 is scheduled: `1 v ∆(p2) where `1 is
an upper bound on the scheduling of the last program point
of s1.

Similar to the typing rules for reading memory loca-
tions, there are two rules for writing memory locations: T-
WRITENONDET and T-WRITEDET. As with the rules for
reading memory, the first is for the case where the schedul-
ing of the write is not influenced by high-security informa-
tion, and there are thus no restrictions on when the write
may occur. Rule T-WRITEDET applies when the schedul-
ing of the write may be influenced by high-security informa-
tion, and requires observational determinism via the predi-
cate noReadWrite(r, p), defined in Figure 6, which ensures
that no reads or writes to the same memory location may
happen in parallel.

The rules for input and output are similar to the rules for
reading and writing memory locations: if the scheduling of
input or output may depend on high-security information,
the input or output must be observationally deterministic,
which is achieved for output by requiring that there is no
other input or output at that place that may happen in parallel
(see predicate noIO(p), defined in Figure 6). Since an input
instruction writes to a memory location r, rule T-INPUTDET
requires both that no input or output may happen at the place
in parallel, and that no reads or writes to r may happen in
parallel.

Typing trees Judgment Γ; ∆ ` T means that tree T is
well typed in variable context Γ and program point context
∆. Inference rules for the judgment are given in Figure 8.
The rules require that all activities in the tree are well typed.
Also, the rule for tree T .〈P, sp〉, T-JOIN, requires that ∆(p)
is at least as restrictive as ∆(p′) for any program point p′ that
may execute in parallel with p at place P , for similar reasons
to the typing rule for finish statements, T-FINISH.

11 2012/8/8



T-ACTIVITY

Γ; ∆ ` s : ` L(P ) v ∆(p)

Γ; ∆ ` 〈P, sp〉

T-PARA

Γ; ∆ ` T1 Γ; ∆ ` T2

Γ; ∆ ` T1‖T2

T-JOIN

Γ; ∆ ` T Γ; ∆ ` 〈P, sp〉
∀p′ ∈ MHPP(p). ∆(p′) v ∆(p)

Γ; ∆ ` T . 〈P, sp〉

T-DONE

Γ; ∆ ` X

Figure 8. Tree typing judgment Γ; ∆ ` T

Soundness of type system The type system enforces secu-
rity. That is, if a program is well typed, then it is secure.

Theorem 1. If 〈P, s〉 is a program such that Γ; ∆ ` 〈P, s〉
for some variable context Γ and program point context ∆,
then 〈P, s〉 is secure according to Definition 5.

We present a brief sketch of the proof here. A more
detailed proof appears in Appendix A.

Outline of Proof. The proof uses a technique similar to that
of Terauchi [44]. We first introduce the concept of an erased
configuration. A configuration m erases to a configuration
m′ at security level ` if m′, when executed, performs no
computation at places with security level higher than ` but
m and m′ otherwise agree. Erased programs are defined
similarly, with erased configurations containing erased pro-
grams.

Suppose we have a well-typed program 〈P, s〉, some se-
curity level `, and two `-equivalent input strategies ω1 and
ω2. First, we erase the program 〈P, s〉 to program 〈P, s′〉
at level ` and consider side-by-side executions of these two
programs with the same input strategy. Suppose the original
program with input strategy ω1 produces trace t1. Then the
erased program with input strategy ω1 can produce a trace t′1
that is `-equivalent. Similarly, if the original program with
input strategy ω2 produces trace t2, then the erased pro-
gram with input strategy ω2 can produce a trace t′2 that is
`-equivalent.

Second, we consider the executions of the erased program
with strategy ω1 and strategy ω2 that produced traces t′1
and t′2 respectively. Since the erased program performs no
computation at high-security places, either t′1 is a prefix of
t′2, or vice versa. Combining this with the previous result,
if (〈P, s〉, ω1, R) emits t1 and (〈P, s〉, ω2, R) emits t2, then
either the low-security events of t1 are a prefix of the low-
security events of t2, or vice versa.

Knowledge-based security can then be shown as follows.
Let ω be an input strategy, R a refiner, and ` a security level.
Suppose that (〈P, s〉, ω,R) emits t · α. Let ω′ be another
input strategy such that ω ∼` ω

′ and (〈P, s〉, ω′, R) emits t′ ·
α′ such that t ∼` t′ and L(Place(α′)) v `. The above
result implies that either α = α′ or L(Place(α)) 6v `. In
either case, t · α ∼` t

′ · α′, and so the inclusion required by
Definition 5 is proven.

4. SX10 prototype implementation
We have extended the principles of the security analysis of
Section 3 to handle many of the language features of X10.
The resulting language, called SX10, is a subset of X10. We
have implemented a prototype compiler for SX10 by extend-
ing the open-source X10 compiler (version 2.1.2), which is
implemented using the Polyglot extensible compiler frame-
work [29], and is included in the X10 distribution. Our exten-
sion comprises approximately 8,500 lines of non-comment
non-blank lines of Java code.

We do not modify the X10 run-time system: SX10 pro-
grams run using the standard X10 run-time system. We thus
do not provide a performance comparison of SX10 with X10
or with other secure concurrent systems. Such a performance
comparison is not directly useful, as it would evaluate the ef-
ficiency of the X10 runtime, not our enforcement technique,
which is entirely static.

In this section, we describe how we extend the analysis to
handle additional language features of X10 and present some
example SX10 programs.

May-happen-in-parallel analysis We have implemented
the may-happen-in-parallel (MHP) analysis of Lee and Pals-
berg [22] for SX10, which is a straightforward exercise.
However, for additional precision in our security analysis,
we implemented a place-sensitive MHP analysis. In our cal-
culus FSX10, for every program point it is possible to stat-
ically determine which place the program point would ex-
ecute on. In SX10, however, code for a given class may be
executed at more than one place, since objects of the same
class may reside at different places. Thus, if an activity at
place P is executing code from program point p, our place-
sensitive MHP analysis conservatively approximates the set
MHP(p, P ) such that if (p′, P ′) ∈ MHP(p, P ) then an ac-
tivity at place P ′ may concurrently be executing code from
program point p′.

Places We assume that all places are statically known,
and that a security level is associated with each place. A
configuration file specifies the set of security levels L, the
ordering v over the levels, and maps places to levels. Our
prototype implementation does not currently support first-
class places. If places are computed dynamically, then the
choice of the place at which to execute a computation could
be a covert channel, and would thus require the security
analysis to track and control information flow through this
channel. In this respect, first-class places are similar to first-
class security levels (e.g., [13, 49]), and the security analysis
could be extended to handle first-class places using similar
techniques, such as dependent type systems.

As in FSX10, we restrict at statements to allow place P
to invoke code on place P ′ only if L(P ) v L(P ′).

In addition to at statements, X10 has at expressions:
at P e evaluates expression e at place P . We allow at

expressions, but only from place P to place P ′ where
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L(P ) = L(P ′). If the security level of the places differed,
then either data would be sent from a high-security place
to a low-security place, or a high-security place would in-
voke code on a low-security place. Either way, a potentially
dangerous information flow occurs, and must be ruled out.

Concurrency mechanisms The X10 async and finish state-
ments are restricted similarly to their counterparts in FSX10.
X10 provides additional synchronization mechanisms, in-
cluding clocks (a form of synchronization barrier), futures,
and atomic blocks. Our prototype implementation does not
currently support these additional mechanisms. However,
they can be incorporated in a straightforward manner by ex-
tending the MHP analysis to reason about them. Once the
MHP analysis supports these constructs, our security anal-
ysis can be extended to add constraints similar to those for
async and finish statements.

Objects Fields of objects can be mutable locations, and we
enforce restrictions similar to those of other memory loca-
tions: we require determinism on accesses when scheduling
may be influenced by high-security information. If an ob-
ject is sent in a message from one place to another, the X10
runtime will create a copy of the object, thus ensuring that
if an activity at a place attempts to update a field of an ob-
ject, the memory location is local to the place. When objects
are copied to send to another place, we impose restrictions
similar to the use of variables: a copy of an object created at
place P may be sent to place P ′ only if L(P ) v L(P ′).

Control-flow constructs X10 has much richer control-
flow constructs than the calculus FSX10. We support local-
control-flow constructs, such as for loops and switch state-
ments. We support dynamic dispatch of methods, using class
information to conservatively over-approximate the set of
possible callees at a method call site. We do not currently
support exceptions, although they can be incorporated by
extending the MHP analysis. Note that exceptions interact
in an interesting way with the concurrency mechanisms, due
to X10’s rooted exception model [40].

Input and output The security analysis for SX10 restricts
input and output from the system to enforce strong informa-
tion security guarantees. We currently require methods that
perform communication with the external environment to be
explicitly annotated as such, but it is straightforward to infer
where such methods are used, for example, detecting method
calls to objects of classes x10.io.Printer, x10.io.Reader, etc.
(Fields x10.io.Console.OUT and x10.io.Console.IN are in-
stances of Printer and Reader, respectively.)

Arrays Our implementation supports local arrays, since
these are simply objects of the class x10.array.Array[T], and
elements of the array are stored at a single place. We do not
currently support distributed arrays, which store elements
over multiple places. Adding support for distributed arrays
would require support for first-class places.

X10 runtime scheduler The X10 runtime scheduler uses a
work-stealing algorithm to schedule activities within a place.
This requires that threads maintain a double-ended queue
of pending activities, and idle threads may steal activities
from busy threads. Because the state of the queues may be
influenced by which activities were or were not running at
the place in the past, such work-stealing algorithms cannot
be represented in our scheduling model in FSX10, which
requires that scheduling functions do not depend on the
history of computation at a place.

The type system relies on this requirement only in the
rule for a finish s1; s2 statement, which allows the program
point context of the first program point of s2 to be lower than
program point context of the last program point of s1 when
there are no other activities running at the place. However, in
that situation there are no other activities to schedule other
than s1 and activities spawned by s1: activity s2 will not
start execution until it is the only activity at the place. In
that case, the state of the work queues for threads will be
independent of the history of the computation up to that
point. Thus, we expect the security guarantee to transfer to
the actual scheduler used by the X10 runtime.

It is future work to extend the model of schedulers in
FSX10 to include such work-stealing schedulers.

Improvements to Analysis In implementing the SX10
compiler, we add an optimization that allows the type sys-
tem to be more permissive without compromising security.
If statement at P s is executed at place P ′ and no statement
at P ′ is dependent on the termination of s, then the schedul-
ing of activities at P ′ is independent of when s terminates,
and we do not need to increase the program point context of
statements that may happen in parallel. This corresponds to
having a more precise definition of the set MHPA(p).

4.1 Example programs
Distributed Machine Learning Consider a music recom-
mendation service, such as Pandora. Here, a large database
of music information exists: the Music Genome Project.
The service would like to process this data—perhaps run-
ning machine-learning algorithms on it—and then combine
it with data from individual users to produce recommenda-
tions for users. We assume the database of music informa-
tion is public, but the personal data from users is secret, and
should not influence the results observed by other users.

We assume that the processing of the public data can be
performed in parallel. We will process this data at a number
of places pub0 through pubn, all with the same low security
level L. Results from the processing will be sent back to the
coordinator place, and collated into a value called results. We
use the results of the processing of public data to compute
recommendations for each user. We assume that each user
Ui has its own place Pi, with a unique security level Hi such
that L v Hi.
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A sketch of the code for this system appears in Program 5.
Public data is supplied in the array pubData and we assume
that place Pi already holds the data for user Ui.

1 at coordinator {
2 finish {
3 async at pub0 {
4 val res = processPublicData(pubData(0));
5 at coordinator { addResult(res); }
6 }
7 ...
8 async at pubn {
9 val res = processPublicData(pubData(n));

10 at coordinator { addResult(res); }
11 }
12 }
13

14 async { at P0 { processPrivateData(results); } }
15 ...
16 async { at Pn { processPrivateData(results); } }
17 }

Program 5. A distributed machine learning system

Note that no additional synchronization is required to
make this program secure, and the secure program is in fact
allowed to be highly concurrent. The translation of this pro-
gram from X10 to SX10 does, however, require significant
code duplication due to the lack of support for distributed
arrays and first-class places. Natural X10 programming style
would use a loop over places to execute a block of code at
each place, rather than duplicate the code as we do here.

Online Shopping Following Tsai et al. [46], we consider
a server running a shopping website. We assume that the
server is concerned with keeping credit card data secure. Our
example program models a multithreaded server accepting
input from two web forms. On the first form, a user enters the
item number they wish to purchase. This form is submitted
along with the user’s unique customer ID, which persists
through the user’s session. When this form is processed, the
user’s order is both saved on the server and output to a log
for inventory purposes. The user is then presented with the
next form, which requests his or her credit card number. This
form is submitted with the same customer ID, and the credit
card number is sent to an external service for processing.

This example contains two security levels. The customer
ID and order are considered low-security, and the log is con-
sidered low-security output. The customer’s credit card num-
ber is high-security, and so the action of exporting it should
occur at a high place. We would like to ensure that no data
from either the second form or the credit card processing
service can leak to the log. The code for handling one cus-
tomer’s purchase is shown in Program 6.

Simpson’s Rule Our final example program demonstrates
that in programs, or sections of programs, in which all data
is at the same security level, our analysis requires very few
changes to the code for compilation. Thus, when a program

operates on homogenous data, our security analysis does not
significantly impact usability. The code for this example was
taken from the Simpson’s Rule example available on the X10
website1. The original program consists of approximately
200 non-blank non-comment lines of X10 code. Converting
this program to SX10 required modifying seven lines of
code, most of them trivially, and adding ten. The changes
were as follows:

• Five statements producing console output were annotated
as required by SX10.
• The original program uses all available places. Since

SX10 requires static places, Place.MAX PLACES, which
in X10 is set to the number of places, was replaced with
a new (arbitrary) constant, set to four for the purposes
of this example. Identifiers representing these four places
were declared.
• The code to start computation at each place was dupli-

cated, since SX10 does not support loops over places.
This required five additional lines of code.

Note that neither the number of lines modified nor the num-
ber added necessarily scales with the size of the code. Most
required modifications were to input or output statements,
and the number of lines of code added was proportional to
the number of places used, not the size of the program.

Discussion of Example Programs The example programs
demonstrate that it is possible to write realistic, highly con-
current programs in SX10. Note that the first two examples
contain a high degree of nondeterminism. The order in which
blocks of data are processed in Program 5 and the order in
which entries are written to the log and credit card service in
Program 6 are nondeterministic. This is secure because the
resolution of this nondeterminism can in no way reveal high-
security information. As will be discussed in Section 5, some
previous security-type systems for noninterference in con-
current programs would rule out this nondeterminism and
require additional synchronization and overhead.

The third example demonstrates that our analysis does
not significantly prohibit the compilation and execution of
programs that operate on a single security level.

The biggest restriction in SX10 is the lack of first-class
places. As we gain more experience writing SX10 programs,
we will identify and address further challenges to practical
and secure concurrent programming.

5. Related work
This work seeks to provide strong language-based informa-
tion security guarantees for concurrent programs. We discuss
related work, focusing on recent work that controls informa-
tion flow in concurrent settings.

Observational determinism Our security analysis ensures
that if the scheduling of input, output, or memory accesses

1 http://x10-lang.org/
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1 async {
2 at lowform {
3 val custID = Int.parse(Console.IN.readLine().trim());
4 // Input item number (low security)
5 items(custID) = Int.parse(Console.IN.readLine().trim());
6 at log Console.OUT.println(custID + ”\t” + items(custID));
7 at highform {
8 // Input credit card number (high security)
9 val card = Int.parse(Console.IN.readLine().trim());

10 at cc Console.OUT.println(card + ”\t” + costs(items(custID)));
11 }
12 }
13 }

Program 6. An online shopping cart

may leak sensitive information, then the order of such in-
structions must be deterministic. This approach is inspired
by Zdancewic and Myers [48], who propose (following
McLean [27] and Roscoe [32]) that there should be no non-
determinism (including thread scheduling) observable by a
low-security observer. They present a semantic security con-
dition that, for each observable memory location, requires
determinism of the sequence of updates to that location.
Huisman et al. [19] point out that this semantic security con-
dition may reveal more information than intended, and pro-
pose that the sequence of updates to all observable memory
locations should be deterministic. Terauchi [44] presents a
type system that enforces such a semantic security condition
in a shared-memory setting using fractional capabilities.

Mantel et al. [26] present semantic conditions that al-
low composition of concurrent programs. The semantic con-
ditions use assume-guarantee reasoning to ensure that the
composed program is free of data races, and thus is observa-
tionally deterministic.

Requiring observational determinism throughout a pro-
gram is, however, overly restrictive. O’Neill et al. [30] note
that low-observable nondeterminism is acceptable so long as
its resolution depends only on low-observable information.
We thus allow nondeterminism in the scheduling of activities
at a place, provided that the resolution of the nondetermin-
ism cannot leak sensitive information. Our model assumes
that scheduling of activities at a place depends only on the
activities at that place, and our security analysis exploits this
assumption to allow non-determinism where possible.

Recent work on deterministic concurrency (e.g., [7, 45])
highlights functional benefits of determinism, and also al-
lows some nondeterminism when it is safe to do so [8].

Scheduler independence Sabelfeld and Sands [37, 39] ar-
gue that the definition of security in multi-threaded programs
should be scheduler independent, since the scheduler is typi-
cally outside of the language specification, and violations of
scheduler assumptions may lead to vulnerabilities. By con-
trast, Boudol and Castellani [9] present a type system for

schedulers and threads, and show that well-typed schedulers
and threads satisfy a definition of security [4].

Barthe et al. [5] have developed a framework for security
of multi-threaded programs that allows programs to be writ-
ten without knowledge of the scheduler, i.e., in a scheduler-
independent manner. Mechanisms to interact with the sched-
uler and secure timing channels are introduced during com-
pilation, and enable a security-aware scheduler to enforce
strong information security guarantees.

Mantel and Sabelfeld [24] show a scheduler-independent
security property in a multi-threaded while language. Russo
and Sabelfeld [34] suggest a model in which threads may
increase and decrease their security levels and permit-
ted scheduling decisions depend on the security levels of
threads. Mantel and Sudbrock [25] prove a security property
for programs consisting of threads with assigned security
levels when these are run under any scheduler in a class of
robust schedulers. Robust schedulers, such as round-robin
schedulers, have the property that the probability that a par-
ticular low thread will be selected to run from among all
low threads remains the same if high threads are removed.
Our assumptions about scheduling in the X10 runtime im-
ply that schedulers for places are robust, in that scheduling
of activities at a place cannot depend upon the existence or
non-existence of activities at higher-security places.

We do not provide scheduler independence. Our type-
system and security proof assume that scheduling at a place
depends only on the activities currently executing at a place.
While this assumption enables greater concurrency while
preserving security, it perhaps violates an abstraction bound-
ary, as it makes assumptions about the behavior of the X10
runtime that are not necessarily intended as part of the run-
time’s specification.

Dynamic enforcement of concurrent information security
Tsai et al. [46] extend work of Li and Zdancewic [23] and
Russo and Sabelfeld [33] to encode information-flow con-
trol in Haskell with support for concurrency and side-effects.
However, their mechanism relies on co-operative (i.e., non-
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preemptive) scheduling, which may not be suitable for mod-
ern operating systems.

Stefan et al. [43] present a dynamic information-flow con-
trol system that eliminates termination and internal timing
channels, and mitigates external timing channels, without re-
lying on co-operative scheduling. Implemented as a Haskell
library, their technique requires that the security level of a
thread A that waits on a forked thread B must be at least as
restrictive as the information that influences the control flow
of thread B. A similar restriction is true of our static mech-
anism: the security level of a program point p that occurs
after execution of program point p′ is at least as restrictive
as information that influences the scheduling of p′. However,
our static analysis allows us to lower the security level of p
in a particular situation: for a finish s1; s2 statement, the pro-
gram point context of the first program point of s2 can be
lower than program point context of the last program point
of s1 if there are no other activities running at the place. The
dynamic nature of the system of Stefan et al. allow them to
be more precise than our static analysis in certain situations,
highlighting the incomparability of static and dynamic flow-
sensitive security [35].

Le Guernic [21] uses a hybrid execution monitor (which
combines static and dynamic analyses) to enforce a strong
security condition. The enforcement mechanism (similar to
the type system of Smith and Volpano [42]) is restrictive:
while loops cannot have high-security guards, and while
loops are not permitted in branches of if commands with
high-security guards. These restrictions are severe enough
to rule out many useful programs.

Process calculi Focardi et al. [11] establish a link be-
tween language-based security for imperative programs, and
process-algebraic frameworks of security properties. How-
ever, they consider only sequential imperative programs,
and do not explore concurrency. Honda et al. [18] present
a security-type system for the π-calculus (further devel-
oped by Honda and Yoshida [16, 17]) to address internal
timing and progress channels. In their type system, chan-
nels are assigned security levels, and may be given linear
types. Linear channels must statically have a single send
and receive, which enables precise reasoning about syn-
chronization between processes. Non-linear channels may
have non-deterministic behavior, and processes cannot send
low-security outputs after receiving high-security input on a
non-linear channel, as the resolution of the non-determinism
may be a covert channel. Pottier [31] presents a simpler type
system (without linear channel types, and with a simpler
proof) that also prevents low-security outputs after receiving
high-security input.

Kobayashi [20] presents a type system for π-calculus that
allows low-security output after high-security synchroniza-
tion for a variety of synchronization mechanisms. It extends
the idea of linear channels by using types to describe the

channel usage, which permits precise reasoning about the
information flow resulting from synchronization.

Security-type systems Other work concerned with in-
formation security in concurrent systems have also used
security-type systems to enforce strong semantic security
conditions (e.g., [5, 9, 36, 39, 41, 42, 44, 47, 48]). Some
of these previous security-type systems are overly restric-
tive on synchronization between threads, either disallowing
low-security output after synchronization with high-security
threads or activities, or disallowing nondeterminism even
when resolution of the nondeterminism is not influenced by
high-security information.

The key difference in this work is that we integrate
information-security guarantees with modern concurrency
abstractions (i.e., X10 places). In doing so, we reason about
information at coarser granularity than previous work, which
simplifies reasoning about information flow (and thus, we
believe, leads to increased practicality). Our type system
does not track information flow on a per-location basis, but
rather focuses on tracking how interaction with high-security
places affects the scheduling of program points at a place.

6. Conclusion
We have extended the X10 concurrent programming lan-
guage with coarse-grained information-flow control. The re-
sulting language, SX10, provides information security for
concurrent programs. Each place is associated with a secu-
rity level, and may only handle data that is appropriate for
the security level. We believe this language provides a bet-
ter intuition for information flow than previous methods for
controlling information flow, and will allow programmers to
write secure programs more effectively.

The security analysis benefits from X10’s abstractions
for concurrency: potentially dangerous information flows
correspond to interactions between places, which are rela-
tively easy to detect, since communication between places
is by message passing. Interaction between places may re-
sult in the scheduling of activities at a place being influ-
enced by high-security information. Through a may-happen-
in-parallel analysis for X10 [22], our security analysis will
determine when this situation may arise, and requires obser-
vational determinism [48] to hold, which prevents activity
scheduling from being a covert information channel. In the
absence of interaction between places with different secu-
rity levels, our security mechanism places no restrictions on
the concurrent program. While some restrictions on concur-
rency necessarily remain, this allows a large class of useful
programs to be written without burdensome synchronization
between threads for the purposes of security.

This work highlights the opportunity for synergy between
mechanisms for concurrency and mechanisms for informa-
tion security: both rely on reasoning about dependencies
within a program. We believe it is a promising step towards
languages and tools for building secure concurrent systems.
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A. Proof of Security Condition
We begin by proving preservation. That is, if a tree in a configuration is well-typed and that configuration takes a step, the
resulting tree is also well-typed.

Lemma 1 (Preservation). For any ` ∈ L, and configurationsm = (H;ω;R; t;T ),m′ = (H ′;ω;R′; t′;T ′) such that Γ; ∆ ` T ,
if m→ m′, then Γ; ∆ ` T ′.

We first prove the following claim, which states that the composition of two well-typed statements is well-typed and ends
at the ending security level of the second statement.

Claim 1. If Γ; ∆ ` s1 : `1 and Γ; ∆ ` sp2

2 : `2 and `1 v ∆(p2), then Γ; ∆ ` s1•s2 : `2.

Proof. By induction on the length of s1 and the definition of statement composition.

Proof of Lemma 1. By case analysis on the derivation of m→ m′. Interesting cases are:

• ATSTMT Then T = 〈P1, at P2 s1; sp2〉. By inversion of T-AT, Γ; ∆ ` s1 : `1, Γ; ∆ ` s2 : `2 and `1 v ∆(p2). Applying
T-BACKAT, Γ; ∆ ` backat P1; s2 : `2. Composing this with s1 and applying T-ACTIVITY gives Γ; ∆ ` T ′.
• WHILE Then T = 〈P,whilep e do sp1

1 ; sp2

2 〉,
T ′ = 〈P, if e then s1 •(while e do s1); skip else skip; s2〉. By inversion of T-WHILE, Γ; ∆ ` s1 : `1, `1 v ∆(p1) and `1 v
∆(p2). We have Γ; ∆ ` whilep e do sp1

1 ; skip : `1 where ∆(p) = ∆(p1). Composing gives Γ; ∆ ` s1•(whilep e do s1); skip :
`1. We also have Γ; ∆ ` skip : `, where ` v `1 v ∆(p2). Thus, the resulting if statement can be typed with T-IF and
applying T-ACTIVITY gives Γ; ∆ ` T ′.
• LET Then T = 〈P, let x = e in sp1

1 ; sp2

2 〉 and T ′ = 〈P, s1[v/x]•s2〉. By inversion of rule T-LET, Γ; ∆ ` s1 : `1. Substitution
gives Γ; ∆ ` s1[v/x] : ` since rules T-VAR and T-CONST have the same conclusions and T-CONST has no conditions.
Also by inversion, Γ; ∆ ` s2 : `2 and `1 v ∆(p2). Composing statements by the claim and applying T-ACTIVITY gives
Γ; ∆ ` T ′.

We now define erased trees. We say that T erases to T ′ at level ` if T �` T
′. The judgments for this relation are shown in

Figure 9. Some of them require the helper judgments of the form i �` i
′, which act on instructions. Rules E-LOWDONE, E-

JOIN, E-PARA, E-SKIP2 and E-LOW are straightforward. Rules E-SKIP1, E-HIGHSEQ, E-HIGHPARAL and E-HIGHPARAR
remove high parts of a tree. Rule E-AT removes an at statement to a high place. Rule E-HIGH erases high instructions from
a statement until backat or a terminal skip is reached. Rule E-BACKAT stops erasing at a backat to a low place. To ease
bookkeeping in the proof, we annotate X trees with a place, to create the notation XP . The semantic rule SKIP1 is modified as
follows:

SKIP1

(H; ω; t; 〈P, skipp〉)
p
_ (H; ω; t; XP )

At points in a program when, for a place P , either the scheduling of activities at P is affected by high-security information,
or an activity at P is waiting for the termination of high computation, the type system enforces observational determinism.
We first introduce notation to formalize this notion. The function PointsWaiting(T, P ), defined formally in Figure 10,
includes all points in PointsRunning(T, P ), as well as any program points at P that will run immediately following currently
executing computation at another place. Using this notation, observational determinism is enforced at P when for all
p ∈ PointsWaiting(T, P ), we have ∆(p) 6v L(P ).

It will become important later in the proof to be able to reorder the execution of instructions at such points. This can be
done because observational determinism ensures that the order of execution does not affect the order of observable events.
However, when a configuration is erased, we need a method to track what parts of the program allow reordering, since it is
impossible to tell from an erased configuration when the scheduling of threads might depend on high computation. A natural
vehicle for this information is the refiner. We introduce underspecified refiners, which allow nondeterministic choice of the next
instruction to execute. When a configuration is erased, certain scheduling functions in the refiner are replaced with ∗, allowing
instructions that may happen in parallel to be executed in an arbitrary order at points where observational determinism applies
and reordering is thus allowed. To facilitate this, we add a rule to the operational semantics:
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T �` T

E-LOWDONE

L(P ) v `
XP �` XP

E-JOIN

T1 �` T
′
1

T2 �` T
′
2

T1 . T2 �` T
′
1 . T

′
2

E-PARA

T1 �` T
′
1

T2 �` T
′
2

T1 ||T2 �` T
′
1 ||T ′2

E-SKIP1
L(P ) 6v `

〈P, skip〉 �` XP

E-SKIP2
L(P ) v `

〈P, skip〉 �` 〈P, skip〉

E-HIGHSEQ

L(P ) 6v `
XP . T �` T

E-HIGHPARAL
L(P ) 6v `
XP ||T �` T

E-HIGHPARAR
L(P ) 6v `
T ||XP �` T

E-AT

L(P ′) 6v `
〈P, at P ′ s1; s2〉 �` 〈P, s2〉

E-HIGH

〈P, s〉 �` 〈P ′, s′〉
L(P ) 6v `

i 6= backat P ′

〈P, i; s〉 �` 〈P ′, s′〉

E-BACKAT

〈P ′, s〉 �` 〈P ′, s′〉
L(P ) 6v `

〈P, backat P ′; s〉 �` 〈P ′, s′〉
E-LOW

i �` i
′

〈P, s〉 �` 〈P, s′〉
L(P ) v `

i 6= at P ′ s1, P
′ 6v `

〈P, i; s〉 �` 〈P, i′; s′〉

i �` i
′

skip �` skip r := e �` r := e output e �` output e input r �` input r backat P �` backat P

s �` s
′

finish s �` finish s′

s �` s
′

async s �` async s′
s �` s

′

at P s �` at P s′
s �` s

′

let x = e in s �` let x = e in s′
s �` s

′

while e do s �` while e do s′

s1 �` s
′
1 s2 �` s

′
2

if e then s1 else s2 �` if e then s′1 else s′2

Figure 9. Judgments for erasure

PointsWaiting(X, P ) = ∅

PointsWaiting(〈P ′, ip; s〉, P ) =


{p} if P ′ = P

PointsWaiting(〈P ′, s〉, P ) if P ′ 6= P and i 6= backat P ′′

PointsWaiting(〈P ′′, s〉, P ) if P ′ 6= P and i = backat P ′′

PointsWaiting(T1 ||T2, P ) = PointsWaiting(T1, P ) ∪ PointsWaiting(T2, P )

PointsWaiting(T . 〈P ′, s〉, P ) = PointsWaiting(T, P )

Figure 10. Definition of PointsWaiting(T, P )

PLACENONDET

(H; ω; t; T )
p
_ (H ′; ω; t′; T ′)

PointsRunning(T, P ) 6= ∅ Sch(P ) = ∗ · chs Place(p) = P

(H;ω; (P · Ps, Sch); t; 〈P, s〉)→ (H ′;ω; (Ps, Sch[P → chs]); t′;T ′)

The next several definitions present relations between specified and underspecified refiners, and then formalize when
reordering of instructions is allowed in an erased configuration. We first define scheduling lists to be equivalent when
corresponding elements are identical or one is ∗.

Definition 6. LetE0 ·chs0 andE1 ·chs1 be scheduling lists (recall that a scheduler Sch is a function from places to scheduling
lists). These two lists are equivalent, written E0 · chs0 ∼ E1 · chs1, if chs0 ∼ chs1 and
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• E0 = E1,
• E0 = ch and E1 = ∗ or
• E0 = ∗ and E1 = ch.

Refiners are low-equivalent when the place lists are low equivalent and corresponding scheduling lists for each low place
are equivalent.

Definition 7 (Low-equivalence of refiners). For ` ∈ L, refiners R0 = (Ps0, Sch0) and R1 = (Ps1, Sch1) are low-equivalent,
written R0 ∼` R1, if Ps0�LP = Ps1�LP , where LP = {P | L(P ) v `} and for all P ∈ LP , Sch0(P ) ∼ Sch1(P ) (this
relation was defined in Definition 6.)

A refinerR = (Ps, Sch) such that Sch(P ) does not contain ∗ for any place P is referred to as a specified refiner. Otherwise,
R is an underspecified refiner. A specified refiner erases to an underspecified refiner when the underspecified place list is the
restriction of the specified place list to low places and each element of a scheduling list at a low place in the underspecified
refiner either matches the corresponding element in the specified refiner or is ∗.

Definition 8 (Erasure of refiners). For ` ∈ L, refiner R0 = (Ps0, Sch0) erases to refiner R1 = (Ps1, Sch1), written
R0 �` R1, if

• Ps0 = P · Ps′0, where L(P ) v `, Ps1 = P · Ps′1,
Sch0(P ) = ch · chs0, Sch1(P ) = ch · chs1, and
(Ps′0, Sch0[P 7→ chs0]) �` (Ps′1, Sch1[P 7→ chs1])
• Ps0 = P · Ps′0, where L(P ) v `, Ps1 = P · Ps′1,
Sch0(P ) = ch · chs0, Sch1(P ) = ∗ · chs1, and
(Ps′0, Sch0[P 7→ chs0]) �` (Ps′1, Sch1[P 7→ chs1])
• Ps0 = P · Ps′0, where L(P ) 6v ` and (Ps′0, Sch0) �` R1

Note that this implies that if R0 �` R1, then Ps1 contains no place P such that
L(P ) 6v `.

As was stated above, execution may consume a ∗ from an underspecified refiner, and execute an arbitrary instruction, only
if observational determinism was enforced at the corresponding point in the original configuration. We determine whether this
holds by matching steps in an original (non-erased) configuration with the scheduler element they consume. An underspecified
refiner with the property that ∗ is consumed when observational determinism applies is called properly formed.

Definition 9. Let m0 → m1 → ... → mn be a sequence of configurations, where m0 = (H;ω;R; t;T ) is well-typed. Let
Ei be the scheduler element consumed in the step mi → mi+1 and let Ti be the tree for configuration mi. An underspecified
refiner R is properly formed with respect to the sequence of configurations m0 →∗ mn if, for i ∈ [0, n − 1], Ei = ∗ if
and only if ∆(p) 6= L(P ) for all p ∈ PointsWaiting(Ti, P ). Note that the ∆ values used here are preserved from the initial
configuration.

The following lemma, which will be useful throughout the proof, gives conditions under which identical expressions will
evaluate to identical values. Part a states that identical expressions will evaluate to identical values under heaps that are
equivalent for any references which the expression reads. Part b states that identical expressions at a low place will evaluate to
identical values under low-equivalent heaps.

Lemma 2.

(a) Let C be a (possibly empty) set of locations. If H1�C = H2�C , e is part of a well-typed configuration and dereferences only
locations in the set C, and P ;H1; e ⇓ v, then P ;H2; e ⇓ v.

(b) If H1 ∼` H2 for some ` ∈ L such that L(P ) v `, e is part of a well-typed configuration and P ;H1; e ⇓ v, then
P ;H2; e ⇓ v.

Proof. By induction on the derivation of P ;H1; e ⇓ v.

(a) • CONST is trivial.
• REF By inversion, H1(r) = v. By assumption, r ∈ C, so H2(r) = v and P ;H2; !r ⇓ v.
• OP e = e1 ⊕ e2. By inversion, P ;H1; e1 ⇓ v1, P ;H1; e2 ⇓ v2, and v1 ⊕ v2 = v. e1 and e2 dereference only locations

in C, so by induction, P ;H2; e1 ⇓ v1 and P ;H2; e2 ⇓ v2. Applying OP gives P ;H2; e ⇓ v.
(b) is similar, noting that H1 ∼` H2 implies that the condition for part a is met for all locations at low places P .
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The following three lemmas deal with simulating an original configuration against its erasure. We first show that at points
where reordering is not possible and observational determinism does not apply, the original and erased configurations must
agree on the set of instructions currently running.

Lemma 3. If Γ; ∆ ` T , T �` T ′ and ∆(p) v ` for some p ∈ PointsWaiting(T, P ), then PointsRunning(T, P ) =
PointsRunning(T ′, P ).

Proof. Let p ∈ PointsRunning(T, P ).L(P ) v ` sinceL(P ) v ∆(p), so by the definition of erasure, p ∈ PointsRunning(T ′, P ).
Now let p ∈ PointsRunning(T ′, P ) and suppose p /∈ PointsRunning(T, P ). By inspection of the rules for erasure, since
〈P ′, s′p〉 ∈ T ′, there exists a 〈P, sp〉 in T such that 〈P, s〉 �` 〈P ′, s′〉, since only E-AT, E-HIGH, E-BACKAT, and E-LOW
apply, and all have T = 〈P, s〉. We have P ′ 6= P , since otherwise, by the erasure rules, s and s′ would start with the same
instruction, so we would have p ∈ PointsRunning(T, P ). Again by inspection of the rules, we have L(P ) 6v ` and, applying
the case for that condition, T must contain 〈P ′, s1; backatp1 P ; ip; s2〉, and thus p ∈ PointsWaiting(T, P ). However, by the
typing rule for backat, L(P ′) v ∆(p), and so ∆(p) 6v `. We also have that for all p′ ∈ PointsRunning(T, P ), p′ ∈ MHPP(p1),
and so L(P ′) v ∆(p′) for all p′, which is a contradiction.

Lemmas 4 and 5 show the main result of this section of the proof. Lemma 4 runs a step-by-step simulation of an original
configuration against its erasure. At each step, the original configuration may take a step at a high place (the first case of the
lemma), the original configuration may take a step at a different high place, specified by a refiner that is low-equivalent to
the original refiner used (the second case), or both configurations may take a step at a low place (the third case). In any of
these cases, the resulting non-erased configuration still corresponds to the resulting erased configuration. Lemma 5 applies this
inductively to show that configurations produce traces low-equivalent to those produced by their erasures.

Lemma 4 (Simulation). Let ` ∈ L, and m1 = (H1;ω;R1; t1;T1) and m2 = (H2;ω;R2; t2;T2) be well-typed configurations.
Let T ′1, H

′
1 and t′1 be such that T1 �` T

′
1, H1 ∼` H

′
1, t1 ∼` t

′
1. If m1 → m2 and R1 is properly formed with respect to this

step, then one of these cases holds:

• R2 ∼` R1, H2 ∼` H
′
1, t2 ∼` t

′
1, and T2 �` T

′
1

• There exist R,R′, H ′2, t
′
2 and T ′2 such that (H1;ω;R; t1;T1)→ (H ′2;ω;R′; t′2;T ′2),

R ∼` R1, H ′2 ∼` H
′
1, t′2 ∼` t

′
1, and T ′2 �` T

′
1

• there exists a configuration m′2 = (H ′2;ω;R′2; t′2;T ′2) and a refiner R′1 such that
(H ′1;ω;R′1; t′1;T ′1) → m′2 with R′1 properly formed with respect to this step and R1 �` R

′
1. In addition, H2 ∼` H

′
2,

t2 ∼` t
′
2 and T2 �` T

′
2.

Proof. By cases on the derivation of m1 → m2.

• If this transition instantiates JOINDONE, PARALEFTDONE or PARARIGHTDONE, then m′1 can take the same step to a
configuration containing a new tree T ′2. Heaps and traces are not modified and T2 �` T

′
2 by induction, so the third case of

the lemma applies.
• Suppose this transition instantiates IDLE withR1 = (P ·Ps, Sch) and PointsRunning(T ′1, P ) = ∅. Then (H ′1;ω;R′1; t′1;T ′1)→

(H ′1;ω;R′2; t′1;T ′1) for someR′1 such thatR1 �` R
′
1, and this reduction instantiates IDLEPLACE. Since no instructions were

executed, the third case of the lemma applies.
• If it instantiates IDLEPLACE with R1 = (P · Ps, Sch) and PointsRunning(T ′1, P ) 6= ∅, then there is some p ∈
PointsWaiting(T1, P ) waiting for return of control from a place P ′,L(P ′) 6v `. (H1;ω; (P ′ · P · Ps, Sch); t1;T1) →
(H ′2;ω;R1; t′2;T ′2) for some H ′2, t

′
2, T

′
2, ch. (P ′ · P · Ps, Sch) ∼` R1. The second case of the lemma applies.

Otherwise, T1 = 〈P, i; s〉. We proceed further in cases on the execution of this statement.
• Suppose m1 → m2 executes an instruction at a place P , such that L(P ) 6v `. Then this step must only modify high parts of

the tree, heap and trace, so the first case of the lemma applies.
• Suppose m1 → m2 executes an activity 〈P, atp P ′ s1; s2〉 such that L(P ) v ` but L(P ′) 6v `. By rule E-AT, T ′1 = 〈P, s2〉,

so T2 �` T
′
1 still holds and the first case of the lemma applies.

• Suppose R1 = (P · Ps, Sch) such that L(P ) v ` and m1 → m2 executes a program point p ∈ PointsRunning(T1, P ).
If for some p ∈ PointsWaiting(T1, P ) we have ∆(p) = L(P ) v `, then let R′1 = (Ps′ · P, Sch′), where (Ps, Sch) �`

(Ps′, Sch′). By Lemma 3, we have PointsRunning(T1, P )=PointsRunning(T ′1, P ), so instantiating PLACE on both config-
urations will execute the same program point p. Otherwise, let R′1 = (P · Ps′, Sch′[P 7→ ∗ · chs]) such that R1 �` R

′
1. In

22 2012/8/8



either case, there exists a configuration m′2 such that (H ′1;ω;R′1; t′1;T ′1)→ m′2 instantiates PLACE or PLACENONDET and
executes p. Straightforward case analysis on i; s and i′; s′ gives the conclusions for the third case of the lemma.

Lemma 5. For any ` ∈ L, and for all well-typed configurations m1 = (H1;ω;R0; t1;T1), if T1 �` T
′
1, H1 ∼` H

′
1, t1 ∼` t

′
1

and (T1, ω,R0) emits t0, then there exist t, t′, R1, R
′
1 such that

R0 ∼` R1, R1 �` R
′
1

(T1, ω,R1) emits t

(T ′1, ω,R
′
1) emits t′

t0 ∼` t ∼` t
′

and R′1 is properly formed with respect to the derivation of (T ′1, ω,R
′
1) emits t′.

Proof. This is an inductive application of Lemma 4. Handling the first case of the lemma is straightforward, and the second
case of the lemma is straightforward keeping in mind the transitivity of low-equivalence of refiners. In the third case of the
lemma, there exists a configuration m′2 = (H ′2;ω;R′2; t′2;T ′2) and a refiner R′0 such that (H ′1;ω;R′0; t′1;T ′1) → m′2 with R′0
properly formed with respect to this step and R0 �` R

′
0. In addition, H2 ∼` H

′
2, t2 ∼` t

′
2 and T2 �` T

′
2. By induction,

there exist ti, t′i, Ri, R
′
i such that R2 ∼` Ri, Ri �` R

′
i, (T2, ω,Ri) emits ti, (T ′2, ω,R

′
i) emits t′i and R′i is properly formed

with respect to the latter derivation. Suppose Ri = (Psi, Schi), R
′
i = (Ps′i, Sch

′
i), R0 = (Ps0, Sch0), R′0 = (Ps′0, Sch

′
0).

Suppose the step m1 → m2 consumed a scheduler function ch at place P . Let R1 = (P · Psi, Schi[P 7→ ch · Schi(P )]).
Similarly, suppose the step (H ′1;ω;R′0; t′1;T ′1) → m′2 consumed a scheduler element E at place P (E may be a scheduler
function, ∗ or ε indicating no element was consumed). Let R′1 = (P · Ps′i, Schi[P 7→ E · Sch′i(P )]). Since Ri �` R

′
i, we

have R1 �` R
′
1. Since R2 ∼` Ri, we have R0 ∼` R1. Since R′i was properly formed with respect to its derivation and R′0 was

properly formed with respect to the step (H ′1;ω;R′0; t′1;T ′1) → m′2, R′1 is properly formed with respect to this step, followed
by the remainder of the derivation.

The next section of the proof simulates two erased configurations against each other. The next definition formalizes the
notion of an erased configuration. The proof then proceeds by showing the diamond property: if two erased configurations begin
in agreement and take two different steps, they may each be made to take another step such that the resulting configurations
agree. In particular, Lemmas 6 and 7 show that if a configuration executes p0 followed by p1 and an identical configuration
executes p1 followed by p0, the resulting configurations will agree on their heaps, traces and trees. This does not require
observational determinism throughout the program, because we are considering configurations with equivalent refiners.

Definition 10 (Erased Configuration). A configuration m = (H;ω;R; t;T ) is erased at level ` ∈ L if there exists a T0 such
that T0 �` T .

Lemma 6. Let ` ∈ L and m0 = (H0;ω0;R0; t0; 〈P, ip; s〉) and m1 = (H1;ω1;R1; t1; 〈P, ip; s〉) be well-typed erased
configurations. Suppose that p reads only over channels in the set I and writes only over channels in O (either or both sets
may be empty) and that ω0 ∼` ω1, H0�I=H1�I , and t0�I=t1�I . If
m0 → (H ′0;ω0;R′0; t′0;T ′0) and
m1 → (H ′1;ω1;R′1; t′1;T ′1),
then H ′0�C=H ′1�C and t′0�C=t′1�C , where C = I ∪O, and T ′0 = T ′1.

Proof. Since the instruction executed is the same in both reductions, proceed in cases on i. Note that since these are
erased configurations at `, it must be the case that L(P ) v `. Otherwise, no instruction would execute at P in these
configurations. This allows us to apply Lemma 2 for the expressions of assignments and input and output instructions, which
gives H ′0�C = H ′1�C , t

′
0�C = t′1�C , since the changes to heaps and traces depend only on the instruction itself and on the

constant to which the expression evaluates. For all other instructions, heaps and traces are unchanged and these equalities are
trivial. T ′0 = T ′1 follows from a straightforward analysis of each case.

Lemma 7. Let ` ∈ L and m0 = (H; ω0; t; T ) and m1 = (H; ω1; t; T ) be well-typed erased configurations, with Γ; ∆ ` T .
Suppose p0, p1 ∈ PointsRunning(T, P ), ∆(p0) 6v L(P ) and ∆(p1) 6v L(P ) (using ∆ from the original, non-erased
configuration). If m0

p0_ m′0
p1_ m′′0 and m1

p1_ m′1
p0_ m′′1 to reach final configurations

m′′0 = (H ′′0 ; ω0; t′′0 ; T ′′0 ) and m′′1 = (H ′′1 ; ω1; t′′1 ; T ′′1 ),
then H ′′0 = H ′′1 , t′′0 = t′′1 and T ′′0 = T ′′1 .
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Proof. Let m′0 = (H ′0; ω0; t′0; T ′0) be the intermediate step such that m0
p0_ m′0 and m′1 = (H ′1; ω1; t′1; T ′1) be the

intermediate step such that m1
p1_ m′1. Let S0 = 〈P, ip0

0 ; s0〉, S1 = 〈P, ip1

1 ; s1〉. S0 and S1 are both contained in T . Suppose

(H0; ω0; t0; S0)
p0_ (H0; ω0; t0; S′0), (H1; ω1; t1; S1)

p1_ (H1; ω1; t1; S′1)

By the reduction rules on trees, T ′0 is equal to T with S0 replaced by S′0 and T ′1 is T with S1 replaced by S′1.

Suppose instruction i0 reads only on channels in set I0 and writes only on channels in set O0, and that instruction
i1 reads only on channels in set I1 and writes only on channels in set O1. Since p0 ∈ MHPP(p1), the definitions of
noWrite(·, ·),noReadWrite(·, ·) and noIO(·) ensure that

I0 ∩O1 = I1 ∩O0 = O0 ∩ (I1 ∪O1) = O1 ∩ (I0 ∪O0) = ∅

We now execute i1 to produce the reduction m′0
p1_ m′′0 . Since executing i0 could not alter any channel in I1 (because the

sets of channels are disjoint), we have
H ′0�I1 = H1�I1t

′
0�I1 = t1�I1

The derivation of m′0
p1_ m′′0 contains the reduction

(H ′0; ω0; t′0; 〈P, i1; s1〉)
p1_ (H ′′0 ; ω0; t′′0 ; T )

so by Lemma 6, H ′′0 �I1∪O1
= H ′1�I1∪O1

and t′′0�I1∪O1
= t′1�I1∪O1

. Executing i0 on m′1 cannot alter any channel in I1 ∪O1, so
we have

H ′′0 �I1∪O1
= H ′′1 �I1∪O1

, t′′0�I1∪O1
= t′′1�I1∪O1

The symmetry of the situation gives

H ′′1 �I0∪O0 = H ′′0 �I0∪O0 , t
′′
1�I0∪O0 = t′′0�I0∪O0

No other channels were modified in the execution of the two instructions, so H ′′0 = H ′′1 and t′′0 = t′′1 .

Since p0 ∈ MHPP(p1), S0 and S1 are non-overlapping parts of the program tree T . Thus, after executing i0, S1 is still
contained in T ′0. By Lemma 6, T ′′1 is T ′1 with S0 replaced by S′0. By symmetry, T ′′0 is T ′0 with S1 replaced by S′1. This makes
both T ′′0 and T ′′1 equal to T with both of these replacements.

Lemma 8 (Diamond Property). Let ` ∈ L. Let

m0 = (H;ω0;R0; t;T )

m1 = (H;ω1;R1; t;T )

m′0 = (H ′0;ω0;R′0; t′0;T ′0)

m′1 = (H ′1;ω1;R′1; t′1;T ′1)

be well-typed erased configurations such that ω0 ∼` ω1, R0 ∼` R1. If m0 → m′0, m1 → m′1 and R0 and R1 are properly
formed with respect to their respective steps, then either

• t′0 = t′1, T
′
0 = T ′1 and H ′0 = H ′1 or

• there exist configurations m′′0 = (H ′;ω0;R′0; t′;T ′) and m′′1 = (H ′;ω1;R′1; t′;T ′) such that

(H ′0;ω0;R′′0 ; t′0;T ′0)→ m′′0 , (H
′
1;ω1;R′′1 ; t′1;T ′1)→ m′′1

where R′′0 ∼` R
′′
1 and these refiners are properly formed with respect to their respective steps.

Proof. By case analysis. Let R0 = (P · Ps0, Sch0), R1 = (P · Ps1, Sch1) (the same place must be at the front of both lists
since L(P ) v ` andR0 ∼` R1).

• If m0 → m′0 instantiates JOINDONE, PARALEFTDONE or PARARIGHTDONE, then T contains X . T ′, X ||T2 or T1 ||X
(the place attached toX is not important, but must be a place whose level is below ` since T is erased.) The step m1 → m′1
can instantiate the same rule. Since these rules do not depend on ω or R, we must have T ′0 = T ′1. Neither emits an event or
modifies the heap, so so t′0 = t′1 = t and H ′0 = H ′1 = H .
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• Suppose Sch0(P ) = ch · chs0. Since R0 is properly formed, it must be the case that ∆(p) v ` for some p ∈
PointsWaiting(T, P ). Since R1 is also properly formed with respect to a step from T and R0 ∼` R1, Sch1(P ) = ch · chs1.
Thus, m0 → m′0 and m1 → m′1 both instantiate PLACE with the same ch, so both execute the same instruction. The
statement reduction rules only depend on H , t and ω(P, t�P ), all of which are the same for both configurations, so
T ′0 = T ′1, H

′
0 = H ′1 and t′0 = t′1.

• Otherwise, Sch0(P ) = ∗ · chs0. Since R0 is properly formed, it must be the case that ∆(p) 6v ` for all p ∈
PointsWaiting(T, P ). Since R1 is also properly formed with respect to a step from T and R0 ∼` R1, Sch1 = ∗ · chs1,
and m0 → m′0 and m1 → m′1 instantiate PLACENONDET. If both execute the same instruction, then, as above,
T ′0 = T ′1, H

′
0 = H ′1 and t′0 = t′1.

• If the two configurations instantiate PLACENONDET with different instructions, then suppose m0
p0_ m′0 and m1

p1_ m′1.
Since R0 and R1 were properly formed, ∆(p0) 6v L(P ) and ∆(p1) 6v L(P ). Let R′′0 = R0, R′′1 = R1. This allows the
transitions

m0 → (H ′0;ω0; (P · Ps0, Sch0[P 7→ ∗ · chs0]); t′0;T ′0)→ (H ′′0 ;ω0;R′0; t′′0 ;T ′′0 )

m1 → (H ′1;ω1; (P · Ps1, Sch1[P 7→ ∗ · chs1]); t′1;T ′1)→ (H ′′1 ;ω1;R′1; t′′1 ;T ′′1 )

where the first transition executes program point p0 followed by p1 and the second executes program point p1 followed
by p0. By Lemma 7, H ′′0 = H ′′1 , t′′0 = t′′1 and T ′′0 = T ′′1 . Since R0 and R1 were properly formed, ∆(p) 6= L(P ) for
all p ∈ PointsWaiting(T, P ). Rules T-FINISH and T-JOIN ensure that if all activities at a place are tainted with high
information, this will be the case until they all finish executing, so ∆(p) 6= L(P ) for all p ∈ PointsWaiting(T ′0, P ) and
p ∈ PointsWaiting(T ′1, P ). Thus, (P · Ps0, Sch0[P 7→ ∗ · chs0]) and (P · Ps1, Sch1[P 7→ ∗ · chs1]) are properly formed
with respect to their respective steps.

We are now prepared to show a confluence property similar to those of other proofs that use this technique [44, 45]. That
is, if two erased configurations begin with identical heaps, trees and traces and low-equivalent refiners and input strategies,
and each take an arbitrary numbers of steps, these configurations are confluent. Lemma 10 uses this to show that, at any given
point, two erased configurations that began in agreement must have traces that agree, up to prefix.

Lemma 9 (Confluence of Erased Configurations). Let ` ∈ L and

m0 = (H;ω0;R0; t;T ),

m1 = (H;ω1;R1; t;T ),

m′0 = (H ′0;ω0;R′0; t′0;T ′0),

m′1 = (H ′1;ω1;R′1; t′1;T ′1)

be well-typed erased configurations such that ω0 ∼` ω1, R0 ∼` R1. If m0 →∗ m′0, m1 →∗ m′1 and R0 and R1 are properly
formed with respect to their respective derivations, then there exist configurations

m′′0 = (H ′;ω0;R′′0 ; t′;T ′),

m′′1 = (H ′;ω1;R′′1 ; t′;T ′)

such that (H ′0;ω0;R′0; t′0;T ′0) →∗ m′′0 , (H ′1;ω1;R′1; t′1;T ′1) →∗ m′′1 , where R′0 ∼` R′1 and R0 and R1 are properly formed
with respect to their respective derivations.

Proof. This is a standard induction on the diamond property (Lemma 8).

Lemma 10 (Prefix-Equivalence of Erased Configurations). Let Hinit be the default (empty) heap. For any ` ∈ L and erased
configurations

m0 = (Hinit;ω0;R0; ε;T ),

m1 = (Hinit;ω1;R1; ε;T )

such that Γ; ∆ ` T , R0 ∼` R1, ω0 ∼` ω1, if (T, ω0, R0) emits t0, (T, ω1, R1) emits t1 and R0 and R1 are properly formed
with respect to their respective derivations, then for all P , either t0�P is a prefix of t1�P or t1�P is a prefix of t0�P .
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Proof. There exist configurations
m′0 = (H0;ω0;R′0; t0;T0),

m′1 = (H1;ω1;R′1; t1;T1)

such that m0 →∗ m′0 and m1 →∗ m′1. By Lemma 9, there exist configurations

m′′0 = (H ′;ω0;R′′0 ; t′;T ′),

m′′1 = (H ′;ω1;R′′1 ; t′;T ′)

and refiners R′0 and R′1 such that (H0;ω0;R′0; t0;T0) →∗ m′′0 , and (H1;ω1;R′1; t1;T1) →∗ m′′1 . Thus, for all places P , t0�P
and t1�P are both prefixes of t′�P , and so t0�P is a prefix of t1�P or t1�P is a prefix of t0�P .

Theorem 2 combines the two major results by simulating original configurations against their corresponding erasures and
the erasures against each other to show that the low restrictions of the traces produced by the original configurations agree
up to prefix. If the original execution traces are t0 and t1 and the execution traces of the erased configurations are t′′0 and
t′′1 respectively, the first simulation shows that t0 and t′′0 are low-equivalent, as are t1 and t′′1 . The second simulation shows
prefix-equivalence of t′′0 and t′′1 and transitivity gives the desired result.

Theorem 2. For any ` ∈ L and for all configurations m0 = (Hinit;ω0;R; ε; 〈P, s〉) and m1 = (Hinit;ω1;R; ε; 〈P, s〉) such
that Γ; ∆ ` 〈P, s〉, R is fully specified, and ω0 ∼` ω1, if (〈P, s〉, ω0, R) emits t0 and (〈P, s〉, ω1, R) emits t1, then for all P
such that L(P ) v `, t0�P is a prefix of t1�P or t1�P is a prefix of t0�P .

Proof. Let 〈P, s′〉 be such that 〈P, s〉 �` 〈P, s′〉. If a program is well-typed, its erasure is well-typed with the same ∆ and Γ,
so Γ; ∆ ` 〈P, s′〉. By Lemma 5, there exist t′0, t

′
1, t
′′
0 , t
′′
1 , R0, R1, R

′
0, R

′
1 such that

(〈P, s〉, ω0, R0) emits t′0,

(〈P, s〉, ω1, R1) emits t′1,

(〈P, s′〉, ω0, R
′
0) emits t′′0 ,

(〈P, s′〉, ω1, R
′
1) emits t′′1 ,

t0 ∼` t
′
0 ∼` t

′′
0 , t1 ∼` t

′
1 ∼` t

′′
1 .

R′0 and R′1 are properly formed with respect to their respective derivations, R ∼` R0 �` R
′
0 and R ∼` R1 �` R

′
1. Low-

equivalence of refiners is transitive, so R0 ∼` R1. Erasures of low-equivalent refiners are equivalent (this can be shown by
induction on the rules for erasure), so R′0 ∼` R

′
1. Let P be a place with L(P ) v `. By Lemma 10, either t′′0�P is a prefix of

t′′1�P or t′′1�P is a prefix of t′′0�P . Since t′′0�P = t0�P and t′′1�P = t1�P , the theorem is proven.

We now prove Theorem 1.

Proof of Theorem 1. Let P be a place such that L(P ) v `. Take an initial configuration (Hinit;ω;R; ε; 〈P, s〉). If the set on
the right side of the inclusion in Definition 5 is empty, the theorem is trivially satisfied. Otherwise, there exists an ω′ ∼` ω
such that (〈P, s〉, ω′, R) emits t′ · α′ and t′�P = t�P . By Theorem 2, (t · α)�P is a prefix of (t′ · α′)�P or vice versa. If
Place(α) = P , then (t · α)�P and (t′ · α′)�P are the same length since Place(α′) = P by definition and t′�P = t�P .
Therefore, (t · α)�P = (t′ · α′)�P and ω′ ∈ k(〈P, s〉, t · α, P, `). If Place(α) 6= P , then (t · α)�P = t�P = t′�P . Since
(〈P, s〉, ω′, R) emits t′, we have ω′ ∈ k(〈P, s〉, t · α, P, `). This shows the required inclusion.
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