Granular flow in pebble-bed nuclear reactors: Scaling, Dust Generation, and Stress

Chris H. Rycrofta,b, Abdel Dehbic, Terttiialiisa Lindc, Salih Güntayc

aDepartment of Mathematics, University of California, Berkeley, CA 94720, United States
bDepartment of Mathematics, Lawrence Berkeley Laboratory, Berkeley, CA 94720, United States
cPaul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

Abstract

In experimental prototypes of pebble-bed reactors, significant quantities of graphite dust have been observed due to rubbing between pebbles as they flow through the core. At the typical operating conditions in these reactors, which feature high temperatures, pressures, and a helium atmosphere, limited data is available on the frictional properties of the pebble surfaces, and as a result, a conceptual design of a scaled-down version of a pebble-bed reactor has been proposed to investigate this issue in detail. However, this raises general questions about how the granular flow in a scaled facility will emulate that in a full-size reactor. To address this, simulations of granular flow in pebble-bed reactors using the discrete-element method (DEM) have been carried out in a full-size geometry (using 440,000 pebbles) and compared to those in geometries scaled down by factors of 3:1 and 6:1. Differences in velocity profiles, pebble ordering, pebble wear, and stresses are examined, and the effect of friction is discussed. The results show complex behavior due to discrete pebble packing effects, although several simple scaling rules can be derived.

Keywords: granular flow, dust generation, numerical methods

1. Introduction

Pebble bed nuclear reactors are a type of gas-cooled high temperature reactor (HTR) that are currently under study as part of the Generation IV initiative, and offer many potential advantages over current reactor technology, such as passive safety, continuous refueling, and proliferation resistance. However, early prototypes have identified a number of potential safety concerns, such as the generation of large amounts of graphite dust as the pebbles flow past each other and against the moderator. During the reactor operation, the dust may become activated, and may accumulate both in the reactor core and the heat exchange system. The characteristics and amount of the generated dust are not well-known, nor is its potential for release during a fast flow velocity increase.

Currently the most extensive data on dust generation is available from the German prototype Arbeitsgemeinschaft Versuchreaktor (AVR) (1; 2). During the reactor’s twenty-year operation span, it is estimated that 50 kg to 60 kg of dust was generated, and the median diameter of the dust...
particles was 1 µm. The concentration of the dust circulating the reactor was only a very small fraction (10^{-7}) of the total. It is expected that oil and air ingress incidents during the early operation may be responsible for the significant portion of the dust. Furthermore, several different types of fuels were employed over the reactor’s lifetime, with the earlier fuel designs being less durable than those used later. The relevance of this data to modern reactor designs and graphites is therefore limited.

Recently, a number of research groups have carried out studies that are relevant to the dust generation problem. One significant issue is that the frictional and wearing properties of graphite are not well-known at the typical helium atmosphere, temperatures, and pressures within the reactor, and several experimental studies have aimed to properly characterize these (3; 4; 5). Two recent survey articles on frictional properties (6) and wear (7) summarize the available values in the literature. Building on this work, a finite-element analysis of individual pebble interactions has been constructed to more accurately characterize the dust produced during a pebble–pebble contact (8). In other work, computational fluid dynamics (CFD) simulations of gas flow around pebble assemblies have been conducted (9; 10; 11), which may have important consequences for dust transport. Another recent study has examined the consequences of dust generation for the reactor system as a whole (12).

To complement this work a conceptual design of an experimental facility has been proposed (13) that would enable the generation of dust to be studied in a holistic manner. The facility would consist of a core simulator coupled to a heat exchanger. In tandem with analytical work, the project would characterize the aerodynamics of the core and heat exchanger, investigate the amount of dust generated and the locations most prone for deposition, and examine both normal operating conditions as well as fast depressurization events. Due to cost constraints, the experimental facility would be a scaled-down version of a full-size reactor. A suitable reference design is the pebble-bed modular reactor (PBMR) (14), which features a cylindrical reactor vessel of height 10 m and diameter 3.5 m, with approximately 440,000 pebbles of diameter 6 cm. Several designs in which the geometry is scaled down, but the pebble size is kept the same, have been considered, significantly reducing the number of pebbles required.

However, despite a large amount of study, there is still no complete theoretical description for how dense granular materials will flow, and hence no simple way to understand how pebble flow in a scaled facility will relate to that in the full-size geometry, or how this will affect pebble wear and dust generation. Granular flows have been of great interest to the engineering and geology communities, and in the past two decades have attracted renewed interest from physicists (15; 16), particularly due to their relation to the glass transition (17; 18). Their rheology is complex, allowing for a solid-like behavior and the ability to support stress, but also exhibiting a transition to liquid-like flow (19; 20). Granular materials exhibit many complexities at the level of a single particle, with forces being inhomogeneous (21; 22) and concentrated along fractal-like force chains (23; 24) making it difficult to define a continuum theory. In the slow, dense, quasi-static limit that is appropriate for modeling the pebble bed, the packing geometry of the pebbles themselves strongly influences the flow, since in order to move, pebbles must have enough space available to rearrange with their neighbors (25). In the absence of a theoretical description, the available data on granular flow in pebble-bed reactors consists of experimental studies in scaled-down geometries (26; 27) or simulations carried
out using the discrete-element method (DEM) in which each pebble is integrated according to Newton’s laws, with a frictional contact model. Due to the stiff contact equations required to simulate hard particles, DEM simulations are computationally intensive but are feasible on a parallel computer; they have been employed to analyze granular flows in many situations such as on inclined planes (28) and static granular packings (29), and have been shown to be in good quantitative agreement with laboratory granular flows (30). In relation to pebble-bed reactors, several DEM studies have examined the structure of static packed beds (31; 32), whereas others have analyzed flowing packings using both commercial software (33; 34) as well as in-house codes (35) that offer more flexibility to examine issues relevant to reactor design, including dust production (36). Full-size reactor simulations (37) have been carried out and also compared to experiment (38). The simulations can be used to analyze bulk flow features such as velocity profiles, but are also useful in determining pebble-based statistics such as pebble residence times and pebble diffusion, which may be useful in determining the propensity for rare events, that could affect individual pebble peaking factors (39).

In the current study, we aim to understand how flows in a scaled reactor will relate to the full-size geometry, and in particular investigate how pebble wear will differ. While the results are of direct relevance to the design of the proposed experimental facility, they also highlight the more general challenges in scaling of dense granular flows. We identify several areas where scaling presents some significant challenges, but also derive some general rules about how various quantities of interest will behave as a function of scale. Given the ambiguities in the frictional properties, we also systematically examine the role of friction. We place a particular emphasis on simulations with a Coulomb friction of $\mu = 0.35$, which we expect may be a reasonable match to the conditions within the proposed facility. In a recent conference paper (40), we have also presented a variety of results for $\mu = 0.5$ for comparison.

2. Methods

2.1. Pebble contact model

The DEM simulations are carried out using the Large Atomic/Molecular Massively Parallel Simulator (LAMMPS) developed at Sandia National Laboratories (41). The code is widely-used and provides a framework for carrying out particle simulations interacting under a diverse variety of forces. Here, we make use of modified version of the particle contact model introduced by (42), that is suitable for simulating frictional hard spheres of diameter d. From this, a natural simulation time scale τ can be introduced according to $\tau = \sqrt{g/d}$ where g is the gravitational acceleration. Masses are scaled in terms of the pebble mass m. Throughout this paper, the results are specified in terms of these simulation scales, but they can be related to physical units at any time through specification of physical scales. In particular, typical designs for pebble-bed reactors make use of a pebble diameter of $d = 6$ cm, and by using $g = 9.81$ m s$^{-2}$, the time scale can be calculated to be $\tau = 0.0782$ s. A typical mass for a pebble is $m = 180$ g.

The spherical pebbles interact according to a spring–dashpot contact model. If a pebble and its neighbor are separated by r, and they are in compression, so that $\delta = d - |r| > 0$, then they
Table 1: Typical values of the pebble contact model parameters used for the simulations in the paper.

<table>
<thead>
<tr>
<th>Simulation parameter</th>
<th>Typical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal elastic constant k_n</td>
<td>$2 \times 10^6 \text{mg/d}$</td>
</tr>
<tr>
<td>Tangential elastic constant k_t</td>
<td>$\frac{2}{7} k_n$</td>
</tr>
<tr>
<td>Normal viscoelastic constant γ_n</td>
<td>$50 \sqrt{10} \tau^{-1}$</td>
</tr>
<tr>
<td>Tangential viscoelastic constant γ_t</td>
<td>$50 \sqrt{10} \tau^{-1}$</td>
</tr>
<tr>
<td>Friction coefficient μ</td>
<td>0.2, 0.35, 0.5, 0.65, 0.8</td>
</tr>
<tr>
<td>Timestep</td>
<td>$2.5 \times 10^{-5} \tau$</td>
</tr>
</tbody>
</table>

Experience a force $F = F_n + F_t$, where the normal and tangential components are given by

\[F_n = f(\delta/d) \left(-k_n \delta n - \frac{\gamma_n v_n}{2} \right) \] \hspace{1cm} (1)
\[F_t = f(\delta/d) \left(-k_t \Delta s_t - \frac{\gamma_t v_t}{2} \right). \] \hspace{1cm} (2)

Here, $\mathbf{n} = \mathbf{r}/|\mathbf{r}|$ is a normal vector at the point of contact between the pebbles. $k_{n,t}$ and $\gamma_{n,t}$ are the elastic and viscoelastic constants respectively, and $v_{n,t}$ and the normal and tangential components of the relative surface velocity. The function f can be modified to consider different force models; here, Hookean contacts employing $f(\xi) = 1$ are primarily used, but Hertzian contacts using $f(\xi) = \sqrt{\xi}$ are also discussed. Δs_t is the elastic tangential displacement between spheres, obtained by integrating tangential relative velocities during elastic deformation for the lifetime of the contact.

It should be noted that this adds a significant computational complexity to the simulation, since it requires tracking the history of every pair of pebbles in contact within the simulation. The model also makes use of a Coulomb friction coefficient μ, so that if $|F_t| > \mu |F_n|$ and a local Coulomb yield criterion is exceeded, then F_t is rescaled so that it has magnitude $\mu |F_n|$ and Δs_t is modified to that Eq. 2 is upheld—this issue is discussed in more detail in Sec. 4 on pebble wear.

Appropriate values of the contact model parameters have been considered in a number of previous studies. The initial calibration was carried out by (author?) (28), who found that values of $k_n = 2 \times 10^5 \text{mg/d}$ and $\gamma_{n,t} = 50 \tau^{-1}$ were appropriate for simulations of granular flows on inclined planes with 20,000 spheres of height 40d. This value of k_n is significantly softer than for typical hard materials like glass, where a value of 10^9mg/d would more appropriate. However, since the simulation timestep must scale according to $k_n^{-1/2}$, it is not computationally feasible to use a physically realistic value, and the value of $2 \times 10^5 \text{mg/d}$ was found to be a reasonable compromise, correctly capturing the granular dynamics without creating prohibitively large elastic oscillations.

In the previous full-size simulations of pebble-bed reactors (37), these values were adopted, and were sufficient to carry out a variety of analyses. However, subsequent work has shown that the above parameters can lead to spurious vertical oscillations in velocity that grow in significance at higher points in a drainage simulation (30). These oscillations occur rapidly, and it was found that they only had a weak effect on macroscopic flow features such as velocity profiles. However, beyond a height of around 60d, they had a significant effect on microscopic quantities that were measured, such as autocorrelations in pebble velocity. Since one of the main aims of the current study is to investigate the microscopic quantity of wear, a value of k_n of ten times larger than previous work...
was considered, which was shown to mitigate the vertical oscillations. To accommodate this, the
timestep was decreased by a factor of four, which remains feasible given progresses in computer
technology. In this study, it was chosen to focus on the Hookean contact model. While the Hertzian
model provides a more accurate description of the contact force between two spheres, the additional
factor in Eqs. 1 and 2 means that the effective spring constant is significantly lower for the small
particle overlaps that are typical for slow, dense flows, and this can lead to particularly large spurious
vertical oscillations (30). We therefore decided to adopt the Hookean model, since it is widely used,
and we considered that the additional realism of the Hertzian model did not outweigh the potential
for numerical complications. However, we did carry out a test (discussed below) to ensure that the
differences between the Hookean and Hertzian models were small. Table 1 summarizes the typical
parameters used throughout this study. The value of k_t is chosen based on considerations of the
Poisson ratio of the pebble. The values of the viscoelastic constants are scaled up by a factor of
$\sqrt{10}$ for consistency, to preserve the same coefficient of restitution for two pebbles colliding in free
space.

2.2. Geometry and initial packing generation

The reactor geometries are specified in a cylindrical (r, θ, z) coordinate system with gravity
pointing in the negative z direction. The reactor is composed of several wall objects that are added to
the simulation, with pebble–wall interactions being handled with the same contact model as pebble–
pebble interactions. In the reactor, the moderator is a different type of graphite than the pebble
surfaces, but in the absence of friction coefficient data for the materials at the reactor conditions,
the pebble–wall friction coefficient was chosen to match the pebble–pebble friction coefficient for
all simulations.

To carry out the scaling study, four different reactor geometries have been considered, and the
parameters describing these are given in Tab. 2. Firstly, full-size simulations with 440,000 pebbles,
matching the same geometry as previous studies (37) and based on the MIT modular pebble-bed

<table>
<thead>
<tr>
<th>Simulation parameter</th>
<th>Full-size</th>
<th>3:1 scaled</th>
<th>6:1 scaled</th>
<th>Tall 6:1 scaled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pebbles</td>
<td>440,000</td>
<td>16,500</td>
<td>2,050</td>
<td>13,900</td>
</tr>
<tr>
<td>Exit pipe radius r_p</td>
<td>$5d$</td>
<td>$3.5d$</td>
<td>$2.5d$</td>
<td>$2.5d$</td>
</tr>
<tr>
<td>Exit pipe height z_p</td>
<td>$10d$</td>
<td>$3d$</td>
<td>$2.5d$</td>
<td>$2.5d$</td>
</tr>
<tr>
<td>Reactor radius r_r</td>
<td>$29d$</td>
<td>$10d$</td>
<td>$5d$</td>
<td>$5d$</td>
</tr>
<tr>
<td>Pebble insertion height z_i</td>
<td>$180d$</td>
<td>$60d$</td>
<td>$30d$</td>
<td>$180d$</td>
</tr>
<tr>
<td>Wear cutoff height z_w</td>
<td>$135d$</td>
<td>$45d$</td>
<td>$22.5d$</td>
<td>$135d$</td>
</tr>
<tr>
<td>Pebble insertion rate R_i</td>
<td>$774\tau^{-1}$</td>
<td>$86.6\tau^{-1}$</td>
<td>$19.0\tau^{-1}$</td>
<td>$19.0\tau^{-1}$</td>
</tr>
<tr>
<td>Pebble pouring time t_P</td>
<td>750τ</td>
<td>1000τ</td>
<td>250τ</td>
<td>1000τ</td>
</tr>
<tr>
<td>Drainage time t_D</td>
<td>2750τ</td>
<td>4000τ</td>
<td>4750τ</td>
<td>4000τ</td>
</tr>
<tr>
<td>Drainage snapshot interval t_s</td>
<td>5τ</td>
<td>2τ</td>
<td>0.5τ</td>
<td>τ</td>
</tr>
<tr>
<td>Typical processors</td>
<td>256</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Computation time</td>
<td>$130.6\text{ s}/\tau$</td>
<td>$130.3\text{ s}/\tau$</td>
<td>$16.9\text{ s}/\tau$</td>
<td>$85.3\text{ s}/\tau$</td>
</tr>
</tbody>
</table>

Table 2: Parameters describing the geometry, insertion process, and computation time for the four families of simulations.
reactor design (14) have been carried out. A 3:1 scaled geometry with 16,500 pebbles, and a 6:1 scaled geometry with 2,050 pebbles have been considered. Finally, a tall geometry with 13,900 pebbles has been considered, in which the reactor radius is scaled by 6 but the height is left the same—this is referred to as “tall 6:1” in this study. While this geometry has a different aspect ratio to the original design, it was of particular interest for its ability to simulate a depressurization event, and replicate the important aerodynamic parameters for dust removal by gas flow. For each of the four geometries, the reactor is composed of a cylindrical exit pipe of radius \(r_p \) that extends downwards from \(z = z_p \). The top of the exit pipe is joined to a funnel with a slope of 30° with the horizontal, which then meets a cylinder of radius \(r_r \) that forms the main reactor vessel.

It should be noted that some immediate challenges are faced with constructing the scaled geometries. For the full-size geometry, an exit pipe of radius \(r_p = 5d \) is used. However, it is well-known that granular flows have a tendency to jam when the outflow pipe is less than \(5d \) in diameter, and thus the natural values of \(r_p \) in the scaled geometries would be too small. They were therefore chosen to be \(3.5d \) and \(2.5d \) for the scaled runs to avoid this problem. Furthermore, granular materials tend to have lower packing densities near walls due to additional pebble ordering, and thus the number of pebbles in the 6:1 is slightly smaller than what would be expected based on volume scaling alone.

For each of the geometries, initial pebble packings are created by plugging the exit pipe with a horizontal wall at \(z = z_p \), and then randomly raining pebbles in from a fixed height of \(z_i \) at a given rate \(R_i \); details of this process can be found in previous work (29). For each of the four geometries, five initial pebble packings are created using the friction coefficients listed in Tab. 1. Friction has a relatively weak effect on the generated packings, with packing densities in the full-size geometry varying from 63.8% for \(\mu = 0.2 \) to 63.2% for \(\mu = 0.8 \). Each simulation is run for an interval \(t_P \) which is long enough for all pebbles to be inserted and come to rest. At the end of each simulation, a snapshot of the exact pebble configuration is stored, which includes information about all of the tangential displacements \(\Delta s_t \) at pebble contacts that are required in the history-dependent contact law.

Table 2 also provides details of the computations, listing the typical number of processors used for each run, as well as the wall clock time required to compute one unit of simulation time. The full-size simulations are by far the most computationally expensive, and were carried out at the Swiss National Supercomputing Centre on ROSA, a Cray XE6 system with 47,872 cores. All other simulation runs were carried out on a variety of Linux machines and Mac Pros, with the typical computation times in the table corresponding to a particular Linux machine with two quad-core 2.6 GHz AMD Athlon processors. In general, due to the short-range force model where pebbles only interact when they are in contact, the code exhibits very good parallel efficiency and doubling of processors will reduce the simulation time by almost half. Memory and disk usage are relatively small, with processor power being the limiting factor.

2.3. Pebble drainage

For each of the initial pebble packings, a drainage simulation is carried out by removing the horizontal wall plugging the exit pipe, and letting the pebbles fall out under gravity. The flow rates under gravity are typically a lot faster than would be expected in real reactors, where a mechanism may be employed to remove pebbles individually, and a flow rate of one pebble per minute would be
more reasonable. However, previous work has shown that for dense granular flows in the quasistatic regime, the overall flow rate has a weak effect on the features of flow, allowing for time to be scaled out. This is because at slow flow rates, kinetic effects play a weak role, and the flow is largely determined by geometrical features of how pebbles flow past one another. In particular, work by (author?) (42) has shown that the amount of particle diffusion in slow, dense granular drainage experiments is invariant over a large range of flow rates. It is therefore reasonable to expect that the results can be connected to a real reactor by scaling the time variable.

A custom routine was added to the simulation that recycles pebbles that fall out of the exit pipe and reinserts them at the top of the packing. After every one hundred timesteps, any pebbles that have fallen into the region \(z < 0 \) are removed and randomly reinserted into the disk \(z = z_i \) and \(r < r_p \). The recycling routine requires cooperation between many processors in the simulation, since pebbles have to be gathered across several processors, and the operation must ensure that the reinserted pebbles do not overlap with existing ones, and hence it is more efficient to carry out every hundred timesteps rather than continuously. To avoid a buildup of pebbles within the disk, which would prohibit further insertions, the recycled pebbles are given an initial downwards velocity of \(6d/\tau \) in the full-size simulations and \(3d/\tau \) in the scaled simulations.

Typical flow rates for each simulation geometry and each value of friction are shown in Tab. 3. Snapshots of the pebble positions are saved at intervals of \(t_s \), which can post-processed to carry out a variety of analyses. In addition, diagnostic routines to analyze pebble wear and stress are carried out within the simulation, and these are discussed in more detail in the following sections. To check the that the choice of contact model did not have large effect on the results, we carried out an additional drainage simulation with the Hertzian contact model in the 3:1 geometry with \(\mu = 0.35 \). For a variety of statistics (flow rate, velocity profile, wear generation, and stress) the simulation matched the corresponding Hookean simulation to within 5%, a difference that is small compared to many of the other factors considered.

3. Pebble ordering and velocity profiles

Figure 1 shows snapshots of the full-size, 3:1, 6:1, and tall 6:1 simulations for the case when \(\mu = 0.35 \). A central slice through each simulation is shown, by only plotting those pebbles whose centers are in the region \(y > 0 \). The snapshots are shown at \(672.5\tau \), \(80\tau \), \(30\tau \), and \(30\tau \) after the onset of drainage respectively; for the first three, this corresponds to approximately 20% of pebbles draining out of the container and being reinserted. Figure 1(d) is shown after approximately the same amount of drainage as Fig. 1(c).
Figure 1: Snapshots of the (a) full-size geometry, (b) 3:1 geometry, (c) 6:1 geometry and (d) tall 6:1 geometry, all making use of a friction coefficient of $\mu = 0.35$. A central slice through each geometry is shown, by only plotting those pebbles with $y > 0$. The snapshots are shown after the 672.5τ, 80τ, 30τ, and 30τ respectively from the initiation of drainage. For the first three, this corresponds to approximately 20% of the pebbles having been drained through the container. For the tall 6:1 geometry this corresponds to roughly the same amount of flow as the 6:1 geometry. Before drainage is initiated, the pebbles are colored in vertical bands of width $24d$, $8d$, $4d$ and $4d$ respectively, and the deformation of the bands highlights the pattern of flow; the two colors of pebbles are mixed together at the top of each simulation, when they mix together during reinsertion.
The pebbles are initially colored in horizontal bands of width $24d$, $8d$, $4d$ and $4d$ respectively, and the deformation of the bands highlights the pebble flow. In the full-size geometry, the bands in the center of container remain horizontal, suggesting a uniform flow profile, although close to the wall the bands are curved, indicating a boundary layer of slower moving pebbles (43). In the lower part of the container, the colored bands undergo significant deformation as the pebbles flow out of the orifice, pointing to higher velocity in the region directly above the exit pipe. In the snapshot, pebbles retain their color as they are recycled, which leads to a band of mixed color at the top of the container.

The 3:1 and 6:1 simulations share many of the same qualitative features. The colored bands are roughly horizontal in the middle of the container, but with evidence of a slower-moving boundary layer at the walls. At the exit pipe, the shapes of the deformed bands are qualitatively similar across the different scales. In the tall 6:1 simulation, the pebble flow near the exit pipe is very similar to the 6:1 simulation, since as discussed in more detail in Sec. 5 the height of the simulation does not have a large effect on the stress profiles.

To investigate the flow in more detail, time-averaged velocity profiles were computed by making use of the pebble snapshot information. Here, and in all subsequent analyses that employ time-averaging, each computation is started after 20% of the pebbles have drained, in order for the pebbles to reach a steadily flowing state. Pebble velocities are binned in horizontal strips of width $1d$, and as a function of the radial coordinate. If a pebble is at x^n at one timestep and x^{n+1} on the next timestep, then it is treated as having velocity $(x^{n+1} - x^n)/\Delta t$ at location $(x^{n+1} + x^n)/2$. Figure 2(a) shows the velocity profiles in the full-size simulation with $\mu = 0.35$ at several heights that are not far above the exit pipe. As expected, the velocity is highest for small values of r in the region above the exit pipe. At larger heights, the velocity profile becomes less pronounced and wider. The Gaussian shapes of the profiles are typical of dense granular drainage experiments (44; 45), and are approximately captured by the kinematic flow model (46).

The velocity profiles in the central region of the container are shown in Fig. 2(b). Over the range $0 < r < 25d$, the velocities are almost perfectly uniform, and the pebbles move downwards with almost no rearrangement. For $r > 25d$, a boundary layer of slower flow is visible, in agreement with the snapshot of Fig. 1(a). Figure 2(c) shows the boundary layer in more detail, and also in comparison to the full-size simulations with different values of friction. Since the profiles are based upon pebble centers, these curves are plotted up to $r = 28.5d$, which is the closest a pebble center can come to the wall. The simulations with higher values of friction have lower speed, and a noticeably wider boundary layer.

Some small oscillations in velocity due to the pebble packing structure are visible in Fig. 2(c), and to investigate this in more detail, profiles of number density are computed. The number density is a dimensionless quantity defined as the number of pebble centers per unit volume, and can be computed by binning the pebble positions using the same procedure as for the velocity. Figure 2(d) shows the number density profile for the boundary layer for the different values of friction. It can be seen that the pebbles are ordered into layers that are very well-defined next to the wall and then become progressively more blurred in the bulk. In the center of the packing, the number density tends to a value of approximately 1.2. Since the volume of a pebble is $V_p = \frac{4}{3}\pi(0.5d)^3$, it follows that the pebble volume fraction is approximately $1.2V_p/d^3 = 63\%$, which closely matches the initial
density of the pebble packing. The ordered layers of pebbles occupy roughly the same width as the boundary layer of slower velocity, suggesting the boundary layer’s origin may be connected with the pebble size itself.

To compare the simulations at different scales, normalized velocity profiles were computed by rescaling the velocity by the total flux, and rescaling the radius by the reactor radius. Velocity profiles for the four simulation geometries with $\mu = 0.35$ are shown in Fig. 3(a), and it can be observed that in the scaled geometries, the boundary layer of slower flow takes up proportionally more of the flow profile. This is particularly apparent in the 6:1 geometries, where gradients in vertical velocity are visible across the entire profile, and no region of constant velocity is present. A plot of rescaled number density (Fig. 3(b)) shows a similar picture, with well-defined layers of pebbles in the 6:1 simulations being present across the entire profile. To examine the absolute widths
Figure 3: Comparison of simulations at different scales with $\mu = 0.35$: (a) vertical velocity normalized by the total flux, as a function of normalized radius, for the four different simulation geometries (b) number density as a function of normalized radius for the four different simulation geometries, (c) number density as a function of distance to the cylindrical wall. In (a)–(c), the profiles are plotted at $z = 90d, 30d, 15d, 15d$ for the full size, 3:1, 6:1, and tall 6:1 simulations respectively. In (d), number density in the tall 6:1 simulation at different heights is plotted.

of the ordered layers, the same curves are plotted in Fig. 3(c) as a function of distance from the wall. It can be seen that the layers are almost identical in structure in the full-size and 3:1 simulations, while they are more pronounced in the 6:1 simulation. In the full-size and 3:1 simulations, the presence of a homogenized central region may serve to dampen the ordering. Figure 3(c) also shows that the layers are highly pronounced in the tall 6:1 geometry. To investigate this further, the number density was plotted at several different heights (Fig. 3(d)), showing that the layers become more well-defined at lower levels, suggesting that over time, the pebbles move into a more ordered state.

The generation of highly ordered pebble arrangements appears to be a particular concern in the 6:1 geometries. To examine this issue further, simulation times are referred to in cycles, with one cycle corresponding to when each pebble has been reinserted once on average. Figure 4(a) shows a snapshot of the 6:1 geometry with $\mu = 0.35$ after one cycle. Unlike Fig. 1, all pebbles are plotted,
Figure 4: Boundary ordering effects in the scaled geometries. The figures are measured in terms of cycles, with one cycle corresponding to when each pebble has on average been recycled once. Simulation snapshots with $\mu = 0.35$ in the 6:1 geometry after (a) one cycle and (b) twenty-five cycles are shown. Boundary ordering, computed as described in the text, is shown as a function of cycles in (c) the 6:1 geometry, and (d) the 3:1 and tall 6:1 geometries. Since the typical simulation lengths reported in Tab. 2 for the tall 6:1 simulations cover approximately ten cycles, the curves in (d) are based on extended simulation runs.

so that the pebble packing arrangements against the wall can be seen. For this snapshot, some pebbles appear ordered into regular hexagonal arrangements, but there is also a large amount of pebble disorder. Figure 4(b) shows the same simulation after twenty-five cycles, at which point the pebbles next to the wall have become highly ordered into a regular hexagonal arrangement—similar patterns have been observed in experiments (47) and simulations (35). The pebbles in this layer are still flowing, with pebbles falling out at the bottom, but as new pebbles are introduced they extend the ordered arrangement at the top; once established, this ordered structure can persist for a long duration.

To quantitatively study this phenomenon, a measure of boundary ordering for a given snapshot was introduced, by first finding the set of all pebble centers x_i that are within a distance d of the cylindrical wall, and in the region $z_c < z < z_w + 1.1d$, where z_c is the height at which the exit funnel meets the cylindrical wall. For each pebble position x_j in the range $z_c + 1.1d < z < z_w$, the number of neighbors can be computed as the number of pebbles with $i \neq j$ such that $|x_i - x_j| < 1.1d$, which corresponds when pebbles are touching or in very close proximity to each other. Boundary ordering is then computed as the average number of neighbors for pebbles in this set. Figure 4(c) shows
the evolution of boundary ordering in the 6:1 simulations. Some of the simulations show evidence of random fluctuations in boundary ordering, but in all cases the amount of boundary ordering generally increases over time. For the runs with $\mu = 0.2$, $\mu = 0.5$, and $\mu = 0.8$, the boundary ordering reaches a value close to six (corresponding to the hexagonal arrangement) after several cycles and then barely deviates over the next thirty cycles. For $\mu = 0.35$ and $\mu = 0.65$ the runs exhibit some variations in boundary ordering, which could be attributed to random differences between runs, but by thirty cycles these have also reached a highly ordered state.

Figure 4(d) shows the evolution of boundary ordering in the 3:1 and tall 6:1 geometries for selected values of the friction coefficient. The ordering in the tall 6:1 simulations appears to increase over time, and while some random variations are present, the boundary ordering sometimes reaches values close to six, suggesting that the entire layer of boundary pebbles can become highly ordered. This is in marked contrast to the 3:1 simulations, where boundary ordering never reaches values above 5.05 even after many complete cycles; similar behavior is seen in the full-size simulations. While the boundary ordering does not appear to have a particularly large effect on the macroscopic flow characteristics, it is interesting from a scaling viewpoint since it is an example where a 6:1 scaled simulation exhibits fundamentally different behavior than at larger scales.

4. Wear and residence times

As the pebbles flow through the reactor, they will slide against each other and against the reactor walls, causing wear and generating graphite dust. This section aims to quantify the dust generation and understand how wear generation is spatially localized.

Quantifying the amount of wear between two surfaces is a complex field, and a very large number of models are discussed in the literature. Many of these models are summarized by (author?) (48), who note that the general picture of wear is poorly understood, citing how wear has been proposed to be a function of a great number of physical variables. For the current study, the situation is particularly unclear, since the properties of graphite at high temperature are not well-known. A recent survey article (7) noted that wear rates differing by several orders of magnitude have been reported, depending on the experimental conditions; little data is available for conditions similar to the reactor and the influences of factors such as pebble sliding velocity or contact force have not been researched in detail. Since we are unable propose a model that may take into account the particular properties of graphite, we therefore make use of the classical model of (author?) (49), which is one of the simplest available. In this model, the volume of worn material is given by

$$\begin{align*}
W &= ks \frac{P}{p_m} \\
\end{align*}$$

(3)

where s is the sliding distance, P is the applied load, and k is the dimensionless parameter. The quantity p_m is referred to as the “flow pressure”, has units of pressure, and is roughly equivalent to a material hardness. For the purposes of this study, since k and p_m are not known, the amount of wear is measured in terms of sP with units of energy, md^2/τ^2. The wear model of Archard was also made use of in previous pebble simulations of dust production (36), where slip was computed in terms of the relative tangential velocities between pebbles. In the contact model employed in these
simulations, presented in Eqs. 1 and 2, the amount of slip can be naturally quantified by making use of the tangential displacement Δs_t.

Consider two pebbles that are in a horizontal plane and are constrained so that they cannot rotate. Suppose the pebbles are brought into contact, and then one pebble is slowly displaced vertically by small amount. This will create a elastic tangential restoring force F_t given by Eq. 2. If the restoring force is below the Coulomb friction criterion, so that $|F_t| < \mu |F_n|$, then if the pebble is allowed to freely move in the vertical plane, the combination of the elastic and viscoelastic tangential forces will cause the pebble to move back to its original position of contact, where $\Delta s_t = 0$. Thus this type of contact can thought of as elastic and reversible, with no slip occurring.

Now suppose that as the pebble is displaced vertically, there is one instant when the elastic tangential restoring force exceeds the Coulomb friction criterion. In that case, the tangential displacement will be modified, so that Δs_t is replaced by $\Delta s_t + c$ for some vector c. If the pebble is allowed to move freely in the vertical plane, then in a similar manner to described previously, it will move back to where $\Delta s_t = 0$. However, this will be displaced by a vector c from its original point of contact. Hence, a modification of Δs_t due to the friction law corresponds exactly to the case when irreversible slip occurs between pebbles. This provides a succinct way to evaluate wear within the simulation: every time a pebble contact is evaluated, an additional step can be carried out to compute an amount of wear as the product of $|F_n|$ and the magnitude of the modification to Δs_t. Wear can also be computed at a pebble–wall contact using the same procedure.

4.1. Wear per pebble

For each pebble within the simulation, the amount of wear that it experiences as it flows through the reactor can be calculated by summing up all its individual wear contributions at each timestep. However, before proceeding, one difficulty has to be addressed: the simulation records a large amount of wear occurring at the top of the packing, as pebbles are reintroduced, fall under gravity, and undergo many collisions as they settle into a densely packed arrangement. Unlike in the bulk of the reactor, where the flow is quasistatic and previous studies suggest that the results can be scaled to match a real reactor flow rate, it is less clear how to scale the simulation results in the top region to a real reactor, or whether the Archard model is appropriate for modeling wear due to rapid collisions between pebbles. A precise match would also depend on the particular procedure to be employed for pebble reinsertion. Because of this, it was chosen to focus on the wear in the bulk below a height of z_w. The values of z_w for the four simulation geometries are given in Tab. 2.

Figure 5 shows snapshots of the full-size, 3:1, and 6:1 simulations with $\mu = 0.35$ after approximately 20% of the pebbles have been drained, where the pebbles have been colored according to the amount of wear they have experienced in the region $z < z_w$. In the full-size geometry it can be seen that the pebbles in the bulk experience very little wear. This agrees with the results of Sec. 3, where this region was shown to be in plug flow with very little rearrangement, and hence very little pebble slip. In the boundary layers of slower flow, a significant amount of pebble wear is visible as the pebbles slide past one another. A large amount of wear is also visible in the converging region of flow above the exit pipe, as expected, since a large amount of pebble slip must occur. In general, the patterns of wear are qualitatively similar for the 3:1 and 6:1 geometries, although since the boundary layers of slower velocity take up a larger fraction of the reactor, there is a smaller region of plug flow where pebbles experience very little wear.
Figure 5: Snapshots of pebble drainage in the (a) full-size geometry, (b) 3:1 geometry, (c) 6:1 geometry and (d) tall 6:1 geometry, all making use of a friction coefficient of $\mu = 0.35$. The snapshots are shown after the 67.5τ, 80τ, 30τ, and 30τ respectively from the initiation of drainage, identical to the snapshots shown in Fig. 1. Each pebble is colored according to the amount of wear it experiences under the Archard model, being measured in units of work. Wear is not recorded for pebbles above $z > z_w$, to avoid counting a large amount of wear due to mixing in the reinsertion region.
Figure 6: (a) The average wear accumulated by a single pebble draining through each simulation geometry, as function of friction coefficient μ. Only wear accumulated in the region $z < z_w$ is considered. Solid lines represent the average pebble–pebble wear and dashed lines represent the average pebble–wall wear. In (b), the average wear values are multiplied by the geometrical scaling factor, showing an approximate collapse. (Due to its different properties, the tall 6:1 simulation is omitted from this graph.)
Table 4: Wear production rates for each simulation geometry and each value of friction, given in units of \(m d^2 / t^3 \). Wear for (a) the bulk of the geometry where \(z < z_w \) and (b) the reinsertion region where \(z \geq z_w \) are given separately. In entries in both of the tables, the first figure is due to pebble–pebble wear, while the second figure in brackets is due to pebble–wall wear.

The information used to generate Fig. 5 can also be used to calculate total wear production rates or each simulation, by computing the total wear and dividing by the total simulation length. These values are presented in Tab. 4, and are divided into wear production for \(z < z_w \) (Tab. 4(a)) and for \(z \geq z_w \) (Tab. 4(b)). In each table, the wear production from pebble–pebble contacts and pebble–wall contacts are shown. If the wear coefficient \(k / p_m \) in Eq. 3 for the pebble surface is known, then the total dust production rate from the pebbles can be calculated by multiplying it by the sum of the pebble–pebble and pebble–wall rates. If the wear coefficient for the wall surface is known, then the total dust production rate from the walls can be calculated by multiplying it by the pebble–wall rates only.

By dividing each of the values in Tab. 4(a) by the corresponding pebble flow rate, the average wear that a pebble accumulates during one cycle of the reactor (not including wear for \(z \geq z_w \)) can be calculated—these amounts are plotted in Fig. 6(a). In all cases, the average pebble wear increases at lower values of friction, since lower friction allows for more tangential displacements between pebbles. It is worth noting that the measure of wear is based entirely on tangential displacements and forces, and does not take into account that for smoother materials the wear coefficients may be lower. Despite complex differences in the flow patterns that are seen at the different simulation scales, Fig. 6(a) highlights a surprisingly simple result: across all values of friction, the average pebble wear in the 3:1 simulations is approximately a third of that in the full-size simulations, and the average pebble wear in the 6:1 simulations is approximately a sixth of that of the full-size simulations. This can be seen more clearly in Fig 6(b), where the wear production rates are multiplied by the geometric scaling factor, and an approximate collapse is visible. In Fig. 6(a), the curves for the tall 6:1 simulation are similar to those for the full-size simulation, although with slightly more pebble–wall wear and slightly less pebble–pebble wear. For all four geometries, there is a marked increase in the pebble–wall wear for \(\mu = 0.2 \), which is in agreement with Fig. 2(c).
where the slip velocity for $\mu = 0.2$ is significantly larger.

4.2. **Correlations in pebble wear**

Figure 7(a) shows a scatter plot of each pebble’s radial position as it passes $z = z_w$ versus the total amount of wear it accumulates from $z = z_w$ before reaching the exit pipe, for the 3:1 simulation with $\mu = 0.35$. The plot shows a large amount of correlation between these two variables, with a high probability that a pebble reinserted close to the wall will experience more wear. In the previous section, it has been observed that the bulk of pebble wear appears close to the walls, and since there is relatively little horizontal pebble motion in most of the reactor geometry, a pebble’s wear is strongly influenced by its initial radial coordinate. In an experimental facility, this may provide a method of controlling how the pebbles are worn: reinserting more heavily worn pebbles in the center of the reactor will lead to a more even distribution of pebble wear, whereas reinserting these pebbles near the reactor wall provides a method of generating and testing extreme cases of wear.
Figure 8: Spatial localization of pebble wear in the 3:1 geometry for (a) $\mu = 0.2$, (b) $\mu = 0.5$, and (c) $\mu = 0.8$. Wear is measured in terms of work per unit time per unit volume.

Figure 7 shows a plot of pebble wear versus the residence time, defined as the time needed for a pebble to travel from $z = z_w$ to the exit pipe. Again, a high degree of correlation can be observed, with an almost linear relationship between the two variables.

As shown in Figs. 7(c) and 7(d), similar correlations are also present in the tall 6:1 geometry with $\mu = 0.35$. However, unlike the 3:1 geometry, it was found that there was a significant evolution in the data points over the duration of the simulation. Pebbles passing $z = z_w$ during the first two complete cycles of the simulation ($0 < t < 1727\tau$) are shown in a different color, and have fairly large spread of wears and residence times. However, later in the simulation the points are separated into two clusters corresponding to interior pebbles and pebbles adjacent to the wall. It is very likely that this evolution in behavior is connected to the increase in boundary organization discussed in Sec. 3, which happens over a similar timescale.
4.3. Spatial distribution of wear

In addition to recording on a per-pebble basis, the wear contributions are also recorded in the \(rz \) plane, by binning them into a square grid with spacing \(d/(10\sqrt{2}) \). Figure 8 shows plots of wear for the 3:1 simulations with \(\mu = 0.2, 0.5, 0.8 \). This figure concentrates on wear by the pebbles themselves, by counting the wear contribution at each pebble–pebble contact twice, and the wear contribution at each pebble–wall contact once. The three plots are qualitatively similar, with the amount of wear being largest near the walls and in the converging region of flow above the orifice. A large amount of wear is also visible at the top of the packing where the pebbles are introduced, which was discounted in the above analysis. The three plots differ considerably in overall magnitude, with the lower values of friction leading to more wear. A lower value of friction leads to less resistance to tangential slip, and thus more wear should be expected.

Figure 9(a) shows a close-up of the wear generation rate for the 3:1 simulation with \(\mu = 0.35 \). Close to the wall, there are bands of high wear generation that are divided into two families: one family is due to wear between layers and appears rather blurred, and the second family is due to wear within each layer and appears more focused, particularly for the layer of pebbles adjacent to the wall. A large amount of wear is visible with the wall, although at the interface between the cylinder and the funnel, a small part of the wall experiences no wear since pebbles can not come into contact with it. In addition to wear, a local measure of porosity is computed, as the probability that a given location will not be covered by a pebble. The center of each square bin in the \(rz \) plane

![Figure 9: Close-up of (a) spatial distribution of wear and (b) porosity for the 3:1 simulation with \(\mu = 0.35 \). Wear is plotted using the scale given in Fig. 8 and porosity is plotted using the scale shown.](image)
corresponds to particular values of \(r \) and \(z \), which define a circle in three-dimensional space. The arc length of this circle that is covered by pebbles can be calculated. Porosity is then defined as the fraction of the circle that is not covered by pebbles, time-averaged over the duration of the simulation. Figure 9(b) shows a close-up of the porosity for the 3:1 simulation with \(\mu = 0.35 \). The ordering of pebbles at the reactor walls creates channels of high porosity, which are particularly well-defined close to the reactor wall, with variations from 17\% in the first pebble layer to 73\% in the space between the first and second layers—these observations are in good agreement with previous studies (32). Recent CFD studies have shown that the gas flow through pebble packings has complex localized features (9; 10; 11), that are not captured by a coarse-grained porous media model. The significant correlations between porosity and the regions of high dust generation may therefore need to be taken into account in determining the transport of dust.

5. Stress

In addition to analyzing wear, the stresses experienced by the pebbles have also been examined, providing further information about the magnitude of the contact forces that the pebbles will encounter. In a particulate system, the stress tensor can be decomposed as \(\sigma = \sigma^S + \sigma^K \), where \(\sigma^S \) is the static stress and \(\sigma^K \) is the kinetic stress (28). Consider a small region with volume \(V \), in which pebbles are labeled from 1 to \(N \). The static stress is due to the forces between pebbles, and can be calculated according to

\[
\sigma^S_{\alpha\beta} = \frac{1}{2V} \sum_{i=1}^{N} \sum_{j \neq i} r_{ij}^\alpha F_{ij}^\beta + r_{ij}^\beta F_{ij}^\alpha
\]

(4)

where \(\alpha \) and \(\beta \) are coordinate suffixes, \(r_{ij} \) is the separation vector from pebble \(i \) to pebble \(j \), and \(F_{ij} \) is the force exerted on pebble \(i \) by pebble \(j \), which is taken to be zero if the pebbles are not in contact. The sum over \(j \) also includes pebbles outside the small region. This equation is a modified version of the original formulation (50), and has been employed in a variety of studies of dense granular flow (51; 20). The kinetic stress is given by

\[
\sigma^K_{\alpha\beta} = -\frac{1}{V} \sum_{i=1}^{N} m(v_i^\alpha - \bar{v}^\alpha)(v_i^\beta - \bar{v}^\beta)
\]

(5)

where \(v_i \) is the velocity of pebble \(i \), \(\bar{v} \) is the average velocity of pebbles in the small region. It represents a contribution to stress due to pebble collisions and momentum, and is particularly significant is highly energized particulate systems like gases.

In the reactor simulations, the stresses have been computed in the \(rz \) plane using square bins with side length \(d \). The stress tensor is computed in the \((r, \theta, z) \) coordinate system. For each pebble under consideration, its velocity \(v_i \), separation vectors \(r_{ij} \), and forces \(F_{ij} \) can be expressed in terms of the orthogonal basis \(e_r, e_\theta, e_z \) at the pebble’s position, which are then made use of in the sums in Eqs. 4 and 5, and time-averaged over all available simulation snapshots.

One difficulty that occurs in the stress computation is choosing the volume \(V \) to use in Eqs. 4 and 5. If pebbles are ordered randomly, then the volume can be simply chosen to be the volume of each stress computation region. However, as described in Sec. 3, the pebbles are persistently
ordered into layers near the reactor walls, with Fig. 2(d) showing typical separations between layers of 0.8d to 0.9d. Since the stress computation regions have width d, then depending on exactly how the layers are aligned, some computation regions may have two layers of pebbles within them and thus have significantly more pebbles than others. This may lead to an overestimate of stress, since the sums in Eqs. 4 and 5 will include a larger number of pebbles. In cases like this, the pebbles whose centers lie within this stress computation region will protrude into the neighboring computation regions. The straightforward choice of V misses the fact that the pebbles in these computation regions effectively take up more volume than others.

To circumvent this issue the Voronoi tessellation can be employed. For a collection of particles in a domain, the Voronoi tessellation is defined by associating a Voronoi cell to each particle that consists of the space that is closer to that particle than any other (52). In the absence of complex boundary conditions, Voronoi cells form irregular convex polyhedrons, whose faces are the perpendicular bisectors with neighboring particles. The Voronoi cells perfectly partition the domain. The Voronoi tessellation provides a method of computing a more accurate value of V. For each stress computation region, the value of V is calculated as the volume of the Voronoi cells of the pebbles whose centers lie within that region. The computation of the Voronoi cells is carried out using the VORO++ software library (53; 54), which is well-suited to the task, since it computes Voronoi cells individually, from which it is straightforward to calculate their volumes. The library can compute over 70,000 Voronoi cells per second, which is fast enough that all pebble snapshots from all runs can be analyzed in a reasonable time frame.

The library also provides a mechanism for approximating the curved reactor walls by making additional plane faces to the Voronoi cells. Figure 10(a) shows an example Voronoi tessellation for a 6:1 simulation snapshot with µ = 0.35, where additional plane faces approximating the cylindrical wall and conical funnel are visible. The exit pipe is not considered in the analysis, since by default the library can only compute Voronoi cells as convex polyhedra, and would therefore encounter a problem at the obtuse internal angle at the funnel–pipe interface. Figure 10(b) shows a cutaway of the Voronoi cells through a central slice of the reactor, and Fig. 10(c) shows the pebbles and Voronoi cells corresponding to the stress computation regions centered on \((r, z) = (3.5d, 20.5d), (4.5d, 14.5d), (1.5d, 7.5d)\). The volumes of the Voronoi cells in each one of these rings can then be summed and time-averaged over all frames to find an appropriate value of V for each stress computation region. Figure 10(d) shows an example of the computed values, which are normalized by the volume of the ring, given by \(\pi d((r + 0.5d)^2 - (r - 0.5d)^2) = 2\pi rd^2\). Variations of up to ±25% are visible, and are particularly noticeable in the region corresponding to \(r = 3.5d\).

Once the stress tensors are computed, the pressure can be calculated according to \(p = -\frac{1}{3} \text{Tr} \sigma\), and several plots are shown in Fig. 11 for the case when \(\mu = 0.35\). In Figs. 11(a) and 11(b), the kinetic component of pressure, and total pressure, in the full-size geometry are compared. To relate them to the same color scale, the kinetic contributions have been multiplied by a factor of 500, confirming that they have an almost negligible effect. The only two regions where there is an appreciable contribution are the exit pipe and the reinsertion region, where values of \(0.14m/d\tau^2\) and \(0.2m/d\tau^2\) respectively are present.

Figure 11(b) shows that the pressure in the reactor initially increases as a function of depth from
the top surface. At \(z = 80d \) on the central axis, about 90\(d \) from the top of the packing, the pressure is approximately \(70m/d\tau^2 \). In Fig. 3, the average number density is approximately 1.2, and thus the density of the pebble packing is \(1.2m/d^3 \). For a fluid with this density, the pressure at \(z = 90d \) would be \(\rho g (90d) = 108m/d^3 \), which is somewhat larger. This should be expected, since stresses in granular materials behave very differently to fluids. In particular, in a phenomenon known as the Janssen effect (55; 56; 57), the stresses in a tall granular column are known to saturate, instead of growing linearly as in a fluid, due to the frictional contacts with the side walls supporting the column’s weight. Below \(z = 80d \), the pressure increases sharply, in an arched band spanning the width of the container, below which the pressure decreases rapidly.

Figures 11(c) and 11(d) show plots of pressure in the 3:1 and 6:1 geometries with \(\mu = 0.35 \). The plots are scaled by factors of three and six respectively, as would be consistent with how hydrodynamic stresses would scale, and with these factors the three plots appear qualitatively similar. However, there are noticeable differences, with the arch above the exit pipe becoming progressively less pronounced, and stresses at the corner between the cylinder and funnel becoming progressively larger. In Fig. 12, plots of pressure are shown for several 3:1 simulations with different values of friction. Pressures are significantly larger in the simulations with lower values of friction,
Figure 11: Plots of pressure in the simulations with $\mu = 0.35$: (a) the kinetic contribution to pressure in the full-size geometry, (b) pressure in the full-size geometry, (c) pressure in the 3:1 geometry, and (d) pressure in the 6:1 geometry. Note that multipliers are applied to (a), (c), (d) to relate them to the color key shown.

which is consistent with the Janssen effect, since it is harder for the weight of the packing to be supported by frictional forces with the wall. Higher pressures will also contribute to the larger amounts of wear that are seen in the simulations with low friction. It is also noticeable in Fig. 12 that the profiles of pressure across the width of the geometry are flatter for the lower values of friction, showing less variation in the radial direction, and are more similar to a hydrostatic pressure profile.

To investigate the friction dependence in more detail, vertical profiles of pressure were computed on the central axis at $r = 0$. Profiles for three full-size simulations are shown in Fig. 13(a) and have similar characteristics to Fig. 11(b), with the pressure slowly increasing as the depth of the packing increases, before rapidly peaking, and decreasing again as the exit pipe is approached. While the pressures appear to be somewhat larger for the lower friction values, the dependence is not straightforward, with the peak in pressure being largest for $\mu = 0.5$. Profiles for the tall 6:1 simulation are also plotted on the graph, and despite the depth of the packing being similar
Figure 12: Plots of pressure in the 3:1 simulations (a) $\mu = 0.2$, (b) $\mu = 0.5$, and (c) $\mu = 0.8$.
to the full-size geometry, the pressures are much smaller, rapidly saturating due to the Janssen effect. Previously, it was shown that the wear in the tall simulations was comparable to the full-size simulations, and since the pressures are much smaller, it must be the case that there is much more pebble slip. Figure 13(b) shows the pressure profiles for the 3:1 and 6:1 simulations. It can be seen that the pressures in the 3:1 simulation are significantly higher than in the tall 6:1 simulation, contrary to what would be expected in a fluid. For both the 3:1 and full-size simulations, the maximum value of pressure is located higher in the reactor as the friction coefficient is increased.

To obtain more information about the stresses, the alignment of the stress tensor throughout each simulation can be plotted, by computing its eigenvectors, which are referred to as the principal directions. Following a previously-used technique (20), the eigenvectors can then plotted with each scaled according to the corresponding eigenvalue. Figure 14 shows plots of the tensor alignment for the three simulations. In a wide granular material in the absence of side walls, the stress tensors would be expected to be aligned with the vertical direction, but here they form arches. This provides further evidence of the Janssen effect since it points to a significant σ_{rz} component, capable of supporting the weight of the packing. Similar patterns in alignment are seen across the three different scales, although the stress tensor in the layer adjacent to the wall in the 6:1 simulation is more strongly aligned with the vertical direction.

6. Conclusion

Overall, the results suggest that flows in scaled geometries will bear some qualitative similarity to a full-size flow, but that there are many issues that make a precise quantitative match difficult. Perhaps the most significant issue is that the pebble length scale controls many features of the flow, with the boundary layers of slower velocity taking up proportionally much more space in the scaled geometries. Given that the boundary layers are of particular importance in the generation of wear, with the simulations showing that a large fraction of pebble wear is generated there, this may be
Figure 14: Plots of stress tensor alignment for $\mu = 0.35$ and the (a) full-size geometry, (b) 3:1 geometry, and (c) 6:1 geometry. Each eigenvector of the stress tensor is plotted as a cylinder, the length of which is proportional to the square root of the magnitude of the corresponding eigenvalue. The largest eigenvalue is shown in magenta, the intermediate eigenvalue is shown in purple, and the smallest eigenvalue is shown in orange.
a critical design issue. Furthermore the results show that flows in the scaled geometries may have fundamentally different features to full-size flows, This is particularly evident in the 6:1 geometries, where the entire flow becomes organized into layers and there is no homogenized central region. Ordering of the pebbles at the wall was also shown to occur in the 6:1 geometries, while largely being absent in the 3:1 and full-size simulations.

Nevertheless, the results highlight some general rules that may be useful in experimental design. It was shown that across the complete range of friction values that were considered, the average wear accumulated by a pebble during a single drainage cycle is roughly proportional to the geometrical scaling factor. Similarly, even though the stresses within the pebble packing are markedly different from those in a fluid, their overall magnitudes scale in a similar manner to a fluid, again being roughly proportional to the geometrical scaling factor. Both of these results may be somewhat contingent on the particular geometry considered, and only apply to the simulations where all dimensions are scaled equally. The tall 6:1 simulation exhibits very different behavior, with higher levels of wear, particularly pebble–wall wear, and lower stresses due to the Janssen effect.

The results can also be used to make some practical recommendations for constructing a scaled-down facility. For this, it is perhaps most useful to compare the 3:1 and tall 6:1 geometries, since they feature similar numbers of pebbles, which would likely make them comparable in cost. If the primary concern is total amount of dust generation, then the tall 6:1 geometry may be the most appropriate since the wear production rates are significantly higher. However, the 3:1 geometry gives a more faithful representation of the granular flow in a full-size reactor, recreating the region of plug flow in the bulk of the geometry, which is absent at the 6:1 scale. Also, while the pebble stresses in all of the scaled geometries are significantly lower than the full-size geometry, the 3:1 simulations exhibit somewhat larger stresses than in the tall 6:1 simulations. Given the importance of the pebble length scale in setting many features of flow, scaling down the pebble diameter may be another avenue worth considering.

Acknowledgments

C. H. Rycroft is grateful to L. E. Silbert for useful discussions about the computation of wear within the simulations. C. H. Rycroft was supported by the Director, Office of Science, Computational and Technology Research, U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

Bibliography

[54] http://math.lbl.gov/voro++./

